aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/lguest/core.c
diff options
context:
space:
mode:
authorRusty Russell <rusty@rustcorp.com.au>2007-07-26 13:41:04 -0400
committerLinus Torvalds <torvalds@woody.linux-foundation.org>2007-07-26 14:35:17 -0400
commitbff672e630a015d5b54c8bfb16160b7edc39a57c (patch)
tree3af06baacb76809234a3e71033d14b7ed769dbd8 /drivers/lguest/core.c
parentdde797899ac17ebb812b7566044124d785e98dc7 (diff)
lguest: documentation V: Host
Documentation: The Host Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'drivers/lguest/core.c')
-rw-r--r--drivers/lguest/core.c273
1 files changed, 258 insertions, 15 deletions
diff --git a/drivers/lguest/core.c b/drivers/lguest/core.c
index 1eb05f9a56b..c0f50b4dd2f 100644
--- a/drivers/lguest/core.c
+++ b/drivers/lguest/core.c
@@ -64,11 +64,33 @@ static struct lguest_pages *lguest_pages(unsigned int cpu)
64 (SWITCHER_ADDR + SHARED_SWITCHER_PAGES*PAGE_SIZE))[cpu]); 64 (SWITCHER_ADDR + SHARED_SWITCHER_PAGES*PAGE_SIZE))[cpu]);
65} 65}
66 66
67/*H:010 We need to set up the Switcher at a high virtual address. Remember the
68 * Switcher is a few hundred bytes of assembler code which actually changes the
69 * CPU to run the Guest, and then changes back to the Host when a trap or
70 * interrupt happens.
71 *
72 * The Switcher code must be at the same virtual address in the Guest as the
73 * Host since it will be running as the switchover occurs.
74 *
75 * Trying to map memory at a particular address is an unusual thing to do, so
76 * it's not a simple one-liner. We also set up the per-cpu parts of the
77 * Switcher here.
78 */
67static __init int map_switcher(void) 79static __init int map_switcher(void)
68{ 80{
69 int i, err; 81 int i, err;
70 struct page **pagep; 82 struct page **pagep;
71 83
84 /*
85 * Map the Switcher in to high memory.
86 *
87 * It turns out that if we choose the address 0xFFC00000 (4MB under the
88 * top virtual address), it makes setting up the page tables really
89 * easy.
90 */
91
92 /* We allocate an array of "struct page"s. map_vm_area() wants the
93 * pages in this form, rather than just an array of pointers. */
72 switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES, 94 switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
73 GFP_KERNEL); 95 GFP_KERNEL);
74 if (!switcher_page) { 96 if (!switcher_page) {
@@ -76,6 +98,8 @@ static __init int map_switcher(void)
76 goto out; 98 goto out;
77 } 99 }
78 100
101 /* Now we actually allocate the pages. The Guest will see these pages,
102 * so we make sure they're zeroed. */
79 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) { 103 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
80 unsigned long addr = get_zeroed_page(GFP_KERNEL); 104 unsigned long addr = get_zeroed_page(GFP_KERNEL);
81 if (!addr) { 105 if (!addr) {
@@ -85,6 +109,9 @@ static __init int map_switcher(void)
85 switcher_page[i] = virt_to_page(addr); 109 switcher_page[i] = virt_to_page(addr);
86 } 110 }
87 111
112 /* Now we reserve the "virtual memory area" we want: 0xFFC00000
113 * (SWITCHER_ADDR). We might not get it in theory, but in practice
114 * it's worked so far. */
88 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE, 115 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
89 VM_ALLOC, SWITCHER_ADDR, VMALLOC_END); 116 VM_ALLOC, SWITCHER_ADDR, VMALLOC_END);
90 if (!switcher_vma) { 117 if (!switcher_vma) {
@@ -93,49 +120,105 @@ static __init int map_switcher(void)
93 goto free_pages; 120 goto free_pages;
94 } 121 }
95 122
123 /* This code actually sets up the pages we've allocated to appear at
124 * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
125 * kind of pages we're mapping (kernel pages), and a pointer to our
126 * array of struct pages. It increments that pointer, but we don't
127 * care. */
96 pagep = switcher_page; 128 pagep = switcher_page;
97 err = map_vm_area(switcher_vma, PAGE_KERNEL, &pagep); 129 err = map_vm_area(switcher_vma, PAGE_KERNEL, &pagep);
98 if (err) { 130 if (err) {
99 printk("lguest: map_vm_area failed: %i\n", err); 131 printk("lguest: map_vm_area failed: %i\n", err);
100 goto free_vma; 132 goto free_vma;
101 } 133 }
134
135 /* Now the switcher is mapped at the right address, we can't fail!
136 * Copy in the compiled-in Switcher code (from switcher.S). */
102 memcpy(switcher_vma->addr, start_switcher_text, 137 memcpy(switcher_vma->addr, start_switcher_text,
103 end_switcher_text - start_switcher_text); 138 end_switcher_text - start_switcher_text);
104 139
105 /* Fix up IDT entries to point into copied text. */ 140 /* Most of the switcher.S doesn't care that it's been moved; on Intel,
141 * jumps are relative, and it doesn't access any references to external
142 * code or data.
143 *
144 * The only exception is the interrupt handlers in switcher.S: their
145 * addresses are placed in a table (default_idt_entries), so we need to
146 * update the table with the new addresses. switcher_offset() is a
147 * convenience function which returns the distance between the builtin
148 * switcher code and the high-mapped copy we just made. */
106 for (i = 0; i < IDT_ENTRIES; i++) 149 for (i = 0; i < IDT_ENTRIES; i++)
107 default_idt_entries[i] += switcher_offset(); 150 default_idt_entries[i] += switcher_offset();
108 151
152 /*
153 * Set up the Switcher's per-cpu areas.
154 *
155 * Each CPU gets two pages of its own within the high-mapped region
156 * (aka. "struct lguest_pages"). Much of this can be initialized now,
157 * but some depends on what Guest we are running (which is set up in
158 * copy_in_guest_info()).
159 */
109 for_each_possible_cpu(i) { 160 for_each_possible_cpu(i) {
161 /* lguest_pages() returns this CPU's two pages. */
110 struct lguest_pages *pages = lguest_pages(i); 162 struct lguest_pages *pages = lguest_pages(i);
163 /* This is a convenience pointer to make the code fit one
164 * statement to a line. */
111 struct lguest_ro_state *state = &pages->state; 165 struct lguest_ro_state *state = &pages->state;
112 166
113 /* These fields are static: rest done in copy_in_guest_info */ 167 /* The Global Descriptor Table: the Host has a different one
168 * for each CPU. We keep a descriptor for the GDT which says
169 * where it is and how big it is (the size is actually the last
170 * byte, not the size, hence the "-1"). */
114 state->host_gdt_desc.size = GDT_SIZE-1; 171 state->host_gdt_desc.size = GDT_SIZE-1;
115 state->host_gdt_desc.address = (long)get_cpu_gdt_table(i); 172 state->host_gdt_desc.address = (long)get_cpu_gdt_table(i);
173
174 /* All CPUs on the Host use the same Interrupt Descriptor
175 * Table, so we just use store_idt(), which gets this CPU's IDT
176 * descriptor. */
116 store_idt(&state->host_idt_desc); 177 store_idt(&state->host_idt_desc);
178
179 /* The descriptors for the Guest's GDT and IDT can be filled
180 * out now, too. We copy the GDT & IDT into ->guest_gdt and
181 * ->guest_idt before actually running the Guest. */
117 state->guest_idt_desc.size = sizeof(state->guest_idt)-1; 182 state->guest_idt_desc.size = sizeof(state->guest_idt)-1;
118 state->guest_idt_desc.address = (long)&state->guest_idt; 183 state->guest_idt_desc.address = (long)&state->guest_idt;
119 state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1; 184 state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1;
120 state->guest_gdt_desc.address = (long)&state->guest_gdt; 185 state->guest_gdt_desc.address = (long)&state->guest_gdt;
186
187 /* We know where we want the stack to be when the Guest enters
188 * the switcher: in pages->regs. The stack grows upwards, so
189 * we start it at the end of that structure. */
121 state->guest_tss.esp0 = (long)(&pages->regs + 1); 190 state->guest_tss.esp0 = (long)(&pages->regs + 1);
191 /* And this is the GDT entry to use for the stack: we keep a
192 * couple of special LGUEST entries. */
122 state->guest_tss.ss0 = LGUEST_DS; 193 state->guest_tss.ss0 = LGUEST_DS;
123 /* No I/O for you! */ 194
195 /* x86 can have a finegrained bitmap which indicates what I/O
196 * ports the process can use. We set it to the end of our
197 * structure, meaning "none". */
124 state->guest_tss.io_bitmap_base = sizeof(state->guest_tss); 198 state->guest_tss.io_bitmap_base = sizeof(state->guest_tss);
199
200 /* Some GDT entries are the same across all Guests, so we can
201 * set them up now. */
125 setup_default_gdt_entries(state); 202 setup_default_gdt_entries(state);
203 /* Most IDT entries are the same for all Guests, too.*/
126 setup_default_idt_entries(state, default_idt_entries); 204 setup_default_idt_entries(state, default_idt_entries);
127 205
128 /* Setup LGUEST segments on all cpus */ 206 /* The Host needs to be able to use the LGUEST segments on this
207 * CPU, too, so put them in the Host GDT. */
129 get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT; 208 get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
130 get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT; 209 get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
131 } 210 }
132 211
133 /* Initialize entry point into switcher. */ 212 /* In the Switcher, we want the %cs segment register to use the
213 * LGUEST_CS GDT entry: we've put that in the Host and Guest GDTs, so
214 * it will be undisturbed when we switch. To change %cs and jump we
215 * need this structure to feed to Intel's "lcall" instruction. */
134 lguest_entry.offset = (long)switch_to_guest + switcher_offset(); 216 lguest_entry.offset = (long)switch_to_guest + switcher_offset();
135 lguest_entry.segment = LGUEST_CS; 217 lguest_entry.segment = LGUEST_CS;
136 218
137 printk(KERN_INFO "lguest: mapped switcher at %p\n", 219 printk(KERN_INFO "lguest: mapped switcher at %p\n",
138 switcher_vma->addr); 220 switcher_vma->addr);
221 /* And we succeeded... */
139 return 0; 222 return 0;
140 223
141free_vma: 224free_vma:
@@ -149,35 +232,58 @@ free_some_pages:
149out: 232out:
150 return err; 233 return err;
151} 234}
235/*:*/
152 236
237/* Cleaning up the mapping when the module is unloaded is almost...
238 * too easy. */
153static void unmap_switcher(void) 239static void unmap_switcher(void)
154{ 240{
155 unsigned int i; 241 unsigned int i;
156 242
243 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
157 vunmap(switcher_vma->addr); 244 vunmap(switcher_vma->addr);
245 /* Now we just need to free the pages we copied the switcher into */
158 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) 246 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
159 __free_pages(switcher_page[i], 0); 247 __free_pages(switcher_page[i], 0);
160} 248}
161 249
162/* IN/OUT insns: enough to get us past boot-time probing. */ 250/*H:130 Our Guest is usually so well behaved; it never tries to do things it
251 * isn't allowed to. Unfortunately, "struct paravirt_ops" isn't quite
252 * complete, because it doesn't contain replacements for the Intel I/O
253 * instructions. As a result, the Guest sometimes fumbles across one during
254 * the boot process as it probes for various things which are usually attached
255 * to a PC.
256 *
257 * When the Guest uses one of these instructions, we get trap #13 (General
258 * Protection Fault) and come here. We see if it's one of those troublesome
259 * instructions and skip over it. We return true if we did. */
163static int emulate_insn(struct lguest *lg) 260static int emulate_insn(struct lguest *lg)
164{ 261{
165 u8 insn; 262 u8 insn;
166 unsigned int insnlen = 0, in = 0, shift = 0; 263 unsigned int insnlen = 0, in = 0, shift = 0;
264 /* The eip contains the *virtual* address of the Guest's instruction:
265 * guest_pa just subtracts the Guest's page_offset. */
167 unsigned long physaddr = guest_pa(lg, lg->regs->eip); 266 unsigned long physaddr = guest_pa(lg, lg->regs->eip);
168 267
169 /* This only works for addresses in linear mapping... */ 268 /* The guest_pa() function only works for Guest kernel addresses, but
269 * that's all we're trying to do anyway. */
170 if (lg->regs->eip < lg->page_offset) 270 if (lg->regs->eip < lg->page_offset)
171 return 0; 271 return 0;
272
273 /* Decoding x86 instructions is icky. */
172 lgread(lg, &insn, physaddr, 1); 274 lgread(lg, &insn, physaddr, 1);
173 275
174 /* Operand size prefix means it's actually for ax. */ 276 /* 0x66 is an "operand prefix". It means it's using the upper 16 bits
277 of the eax register. */
175 if (insn == 0x66) { 278 if (insn == 0x66) {
176 shift = 16; 279 shift = 16;
280 /* The instruction is 1 byte so far, read the next byte. */
177 insnlen = 1; 281 insnlen = 1;
178 lgread(lg, &insn, physaddr + insnlen, 1); 282 lgread(lg, &insn, physaddr + insnlen, 1);
179 } 283 }
180 284
285 /* We can ignore the lower bit for the moment and decode the 4 opcodes
286 * we need to emulate. */
181 switch (insn & 0xFE) { 287 switch (insn & 0xFE) {
182 case 0xE4: /* in <next byte>,%al */ 288 case 0xE4: /* in <next byte>,%al */
183 insnlen += 2; 289 insnlen += 2;
@@ -194,9 +300,13 @@ static int emulate_insn(struct lguest *lg)
194 insnlen += 1; 300 insnlen += 1;
195 break; 301 break;
196 default: 302 default:
303 /* OK, we don't know what this is, can't emulate. */
197 return 0; 304 return 0;
198 } 305 }
199 306
307 /* If it was an "IN" instruction, they expect the result to be read
308 * into %eax, so we change %eax. We always return all-ones, which
309 * traditionally means "there's nothing there". */
200 if (in) { 310 if (in) {
201 /* Lower bit tells is whether it's a 16 or 32 bit access */ 311 /* Lower bit tells is whether it's a 16 or 32 bit access */
202 if (insn & 0x1) 312 if (insn & 0x1)
@@ -204,9 +314,12 @@ static int emulate_insn(struct lguest *lg)
204 else 314 else
205 lg->regs->eax |= (0xFFFF << shift); 315 lg->regs->eax |= (0xFFFF << shift);
206 } 316 }
317 /* Finally, we've "done" the instruction, so move past it. */
207 lg->regs->eip += insnlen; 318 lg->regs->eip += insnlen;
319 /* Success! */
208 return 1; 320 return 1;
209} 321}
322/*:*/
210 323
211/*L:305 324/*L:305
212 * Dealing With Guest Memory. 325 * Dealing With Guest Memory.
@@ -321,13 +434,24 @@ static void run_guest_once(struct lguest *lg, struct lguest_pages *pages)
321 : "memory", "%edx", "%ecx", "%edi", "%esi"); 434 : "memory", "%edx", "%ecx", "%edi", "%esi");
322} 435}
323 436
437/*H:030 Let's jump straight to the the main loop which runs the Guest.
438 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
439 * going around and around until something interesting happens. */
324int run_guest(struct lguest *lg, unsigned long __user *user) 440int run_guest(struct lguest *lg, unsigned long __user *user)
325{ 441{
442 /* We stop running once the Guest is dead. */
326 while (!lg->dead) { 443 while (!lg->dead) {
444 /* We need to initialize this, otherwise gcc complains. It's
445 * not (yet) clever enough to see that it's initialized when we
446 * need it. */
327 unsigned int cr2 = 0; /* Damn gcc */ 447 unsigned int cr2 = 0; /* Damn gcc */
328 448
329 /* Hypercalls first: we might have been out to userspace */ 449 /* First we run any hypercalls the Guest wants done: either in
450 * the hypercall ring in "struct lguest_data", or directly by
451 * using int 31 (LGUEST_TRAP_ENTRY). */
330 do_hypercalls(lg); 452 do_hypercalls(lg);
453 /* It's possible the Guest did a SEND_DMA hypercall to the
454 * Launcher, in which case we return from the read() now. */
331 if (lg->dma_is_pending) { 455 if (lg->dma_is_pending) {
332 if (put_user(lg->pending_dma, user) || 456 if (put_user(lg->pending_dma, user) ||
333 put_user(lg->pending_key, user+1)) 457 put_user(lg->pending_key, user+1))
@@ -335,6 +459,7 @@ int run_guest(struct lguest *lg, unsigned long __user *user)
335 return sizeof(unsigned long)*2; 459 return sizeof(unsigned long)*2;
336 } 460 }
337 461
462 /* Check for signals */
338 if (signal_pending(current)) 463 if (signal_pending(current))
339 return -ERESTARTSYS; 464 return -ERESTARTSYS;
340 465
@@ -342,77 +467,154 @@ int run_guest(struct lguest *lg, unsigned long __user *user)
342 if (lg->break_out) 467 if (lg->break_out)
343 return -EAGAIN; 468 return -EAGAIN;
344 469
470 /* Check if there are any interrupts which can be delivered
471 * now: if so, this sets up the hander to be executed when we
472 * next run the Guest. */
345 maybe_do_interrupt(lg); 473 maybe_do_interrupt(lg);
346 474
475 /* All long-lived kernel loops need to check with this horrible
476 * thing called the freezer. If the Host is trying to suspend,
477 * it stops us. */
347 try_to_freeze(); 478 try_to_freeze();
348 479
480 /* Just make absolutely sure the Guest is still alive. One of
481 * those hypercalls could have been fatal, for example. */
349 if (lg->dead) 482 if (lg->dead)
350 break; 483 break;
351 484
485 /* If the Guest asked to be stopped, we sleep. The Guest's
486 * clock timer or LHCALL_BREAK from the Waker will wake us. */
352 if (lg->halted) { 487 if (lg->halted) {
353 set_current_state(TASK_INTERRUPTIBLE); 488 set_current_state(TASK_INTERRUPTIBLE);
354 schedule(); 489 schedule();
355 continue; 490 continue;
356 } 491 }
357 492
493 /* OK, now we're ready to jump into the Guest. First we put up
494 * the "Do Not Disturb" sign: */
358 local_irq_disable(); 495 local_irq_disable();
359 496
360 /* Even if *we* don't want FPU trap, guest might... */ 497 /* Remember the awfully-named TS bit? If the Guest has asked
498 * to set it we set it now, so we can trap and pass that trap
499 * to the Guest if it uses the FPU. */
361 if (lg->ts) 500 if (lg->ts)
362 set_ts(); 501 set_ts();
363 502
364 /* Don't let Guest do SYSENTER: we can't handle it. */ 503 /* SYSENTER is an optimized way of doing system calls. We
504 * can't allow it because it always jumps to privilege level 0.
505 * A normal Guest won't try it because we don't advertise it in
506 * CPUID, but a malicious Guest (or malicious Guest userspace
507 * program) could, so we tell the CPU to disable it before
508 * running the Guest. */
365 if (boot_cpu_has(X86_FEATURE_SEP)) 509 if (boot_cpu_has(X86_FEATURE_SEP))
366 wrmsr(MSR_IA32_SYSENTER_CS, 0, 0); 510 wrmsr(MSR_IA32_SYSENTER_CS, 0, 0);
367 511
512 /* Now we actually run the Guest. It will pop back out when
513 * something interesting happens, and we can examine its
514 * registers to see what it was doing. */
368 run_guest_once(lg, lguest_pages(raw_smp_processor_id())); 515 run_guest_once(lg, lguest_pages(raw_smp_processor_id()));
369 516
370 /* Save cr2 now if we page-faulted. */ 517 /* The "regs" pointer contains two extra entries which are not
518 * really registers: a trap number which says what interrupt or
519 * trap made the switcher code come back, and an error code
520 * which some traps set. */
521
522 /* If the Guest page faulted, then the cr2 register will tell
523 * us the bad virtual address. We have to grab this now,
524 * because once we re-enable interrupts an interrupt could
525 * fault and thus overwrite cr2, or we could even move off to a
526 * different CPU. */
371 if (lg->regs->trapnum == 14) 527 if (lg->regs->trapnum == 14)
372 cr2 = read_cr2(); 528 cr2 = read_cr2();
529 /* Similarly, if we took a trap because the Guest used the FPU,
530 * we have to restore the FPU it expects to see. */
373 else if (lg->regs->trapnum == 7) 531 else if (lg->regs->trapnum == 7)
374 math_state_restore(); 532 math_state_restore();
375 533
534 /* Restore SYSENTER if it's supposed to be on. */
376 if (boot_cpu_has(X86_FEATURE_SEP)) 535 if (boot_cpu_has(X86_FEATURE_SEP))
377 wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0); 536 wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
537
538 /* Now we're ready to be interrupted or moved to other CPUs */
378 local_irq_enable(); 539 local_irq_enable();
379 540
541 /* OK, so what happened? */
380 switch (lg->regs->trapnum) { 542 switch (lg->regs->trapnum) {
381 case 13: /* We've intercepted a GPF. */ 543 case 13: /* We've intercepted a GPF. */
544 /* Check if this was one of those annoying IN or OUT
545 * instructions which we need to emulate. If so, we
546 * just go back into the Guest after we've done it. */
382 if (lg->regs->errcode == 0) { 547 if (lg->regs->errcode == 0) {
383 if (emulate_insn(lg)) 548 if (emulate_insn(lg))
384 continue; 549 continue;
385 } 550 }
386 break; 551 break;
387 case 14: /* We've intercepted a page fault. */ 552 case 14: /* We've intercepted a page fault. */
553 /* The Guest accessed a virtual address that wasn't
554 * mapped. This happens a lot: we don't actually set
555 * up most of the page tables for the Guest at all when
556 * we start: as it runs it asks for more and more, and
557 * we set them up as required. In this case, we don't
558 * even tell the Guest that the fault happened.
559 *
560 * The errcode tells whether this was a read or a
561 * write, and whether kernel or userspace code. */
388 if (demand_page(lg, cr2, lg->regs->errcode)) 562 if (demand_page(lg, cr2, lg->regs->errcode))
389 continue; 563 continue;
390 564
391 /* If lguest_data is NULL, this won't hurt. */ 565 /* OK, it's really not there (or not OK): the Guest
566 * needs to know. We write out the cr2 value so it
567 * knows where the fault occurred.
568 *
569 * Note that if the Guest were really messed up, this
570 * could happen before it's done the INITIALIZE
571 * hypercall, so lg->lguest_data will be NULL, so
572 * &lg->lguest_data->cr2 will be address 8. Writing
573 * into that address won't hurt the Host at all,
574 * though. */
392 if (put_user(cr2, &lg->lguest_data->cr2)) 575 if (put_user(cr2, &lg->lguest_data->cr2))
393 kill_guest(lg, "Writing cr2"); 576 kill_guest(lg, "Writing cr2");
394 break; 577 break;
395 case 7: /* We've intercepted a Device Not Available fault. */ 578 case 7: /* We've intercepted a Device Not Available fault. */
396 /* If they don't want to know, just absorb it. */ 579 /* If the Guest doesn't want to know, we already
580 * restored the Floating Point Unit, so we just
581 * continue without telling it. */
397 if (!lg->ts) 582 if (!lg->ts)
398 continue; 583 continue;
399 break; 584 break;
400 case 32 ... 255: /* Real interrupt, fall thru */ 585 case 32 ... 255:
586 /* These values mean a real interrupt occurred, in
587 * which case the Host handler has already been run.
588 * We just do a friendly check if another process
589 * should now be run, then fall through to loop
590 * around: */
401 cond_resched(); 591 cond_resched();
402 case LGUEST_TRAP_ENTRY: /* Handled at top of loop */ 592 case LGUEST_TRAP_ENTRY: /* Handled at top of loop */
403 continue; 593 continue;
404 } 594 }
405 595
596 /* If we get here, it's a trap the Guest wants to know
597 * about. */
406 if (deliver_trap(lg, lg->regs->trapnum)) 598 if (deliver_trap(lg, lg->regs->trapnum))
407 continue; 599 continue;
408 600
601 /* If the Guest doesn't have a handler (either it hasn't
602 * registered any yet, or it's one of the faults we don't let
603 * it handle), it dies with a cryptic error message. */
409 kill_guest(lg, "unhandled trap %li at %#lx (%#lx)", 604 kill_guest(lg, "unhandled trap %li at %#lx (%#lx)",
410 lg->regs->trapnum, lg->regs->eip, 605 lg->regs->trapnum, lg->regs->eip,
411 lg->regs->trapnum == 14 ? cr2 : lg->regs->errcode); 606 lg->regs->trapnum == 14 ? cr2 : lg->regs->errcode);
412 } 607 }
608 /* The Guest is dead => "No such file or directory" */
413 return -ENOENT; 609 return -ENOENT;
414} 610}
415 611
612/* Now we can look at each of the routines this calls, in increasing order of
613 * complexity: do_hypercalls(), emulate_insn(), maybe_do_interrupt(),
614 * deliver_trap() and demand_page(). After all those, we'll be ready to
615 * examine the Switcher, and our philosophical understanding of the Host/Guest
616 * duality will be complete. :*/
617
416int find_free_guest(void) 618int find_free_guest(void)
417{ 619{
418 unsigned int i; 620 unsigned int i;
@@ -430,55 +632,96 @@ static void adjust_pge(void *on)
430 write_cr4(read_cr4() & ~X86_CR4_PGE); 632 write_cr4(read_cr4() & ~X86_CR4_PGE);
431} 633}
432 634
635/*H:000
636 * Welcome to the Host!
637 *
638 * By this point your brain has been tickled by the Guest code and numbed by
639 * the Launcher code; prepare for it to be stretched by the Host code. This is
640 * the heart. Let's begin at the initialization routine for the Host's lg
641 * module.
642 */
433static int __init init(void) 643static int __init init(void)
434{ 644{
435 int err; 645 int err;
436 646
647 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
437 if (paravirt_enabled()) { 648 if (paravirt_enabled()) {
438 printk("lguest is afraid of %s\n", paravirt_ops.name); 649 printk("lguest is afraid of %s\n", paravirt_ops.name);
439 return -EPERM; 650 return -EPERM;
440 } 651 }
441 652
653 /* First we put the Switcher up in very high virtual memory. */
442 err = map_switcher(); 654 err = map_switcher();
443 if (err) 655 if (err)
444 return err; 656 return err;
445 657
658 /* Now we set up the pagetable implementation for the Guests. */
446 err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES); 659 err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
447 if (err) { 660 if (err) {
448 unmap_switcher(); 661 unmap_switcher();
449 return err; 662 return err;
450 } 663 }
664
665 /* The I/O subsystem needs some things initialized. */
451 lguest_io_init(); 666 lguest_io_init();
452 667
668 /* /dev/lguest needs to be registered. */
453 err = lguest_device_init(); 669 err = lguest_device_init();
454 if (err) { 670 if (err) {
455 free_pagetables(); 671 free_pagetables();
456 unmap_switcher(); 672 unmap_switcher();
457 return err; 673 return err;
458 } 674 }
675
676 /* Finally, we need to turn off "Page Global Enable". PGE is an
677 * optimization where page table entries are specially marked to show
678 * they never change. The Host kernel marks all the kernel pages this
679 * way because it's always present, even when userspace is running.
680 *
681 * Lguest breaks this: unbeknownst to the rest of the Host kernel, we
682 * switch to the Guest kernel. If you don't disable this on all CPUs,
683 * you'll get really weird bugs that you'll chase for two days.
684 *
685 * I used to turn PGE off every time we switched to the Guest and back
686 * on when we return, but that slowed the Switcher down noticibly. */
687
688 /* We don't need the complexity of CPUs coming and going while we're
689 * doing this. */
459 lock_cpu_hotplug(); 690 lock_cpu_hotplug();
460 if (cpu_has_pge) { /* We have a broader idea of "global". */ 691 if (cpu_has_pge) { /* We have a broader idea of "global". */
692 /* Remember that this was originally set (for cleanup). */
461 cpu_had_pge = 1; 693 cpu_had_pge = 1;
694 /* adjust_pge is a helper function which sets or unsets the PGE
695 * bit on its CPU, depending on the argument (0 == unset). */
462 on_each_cpu(adjust_pge, (void *)0, 0, 1); 696 on_each_cpu(adjust_pge, (void *)0, 0, 1);
697 /* Turn off the feature in the global feature set. */
463 clear_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability); 698 clear_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability);
464 } 699 }
465 unlock_cpu_hotplug(); 700 unlock_cpu_hotplug();
701
702 /* All good! */
466 return 0; 703 return 0;
467} 704}
468 705
706/* Cleaning up is just the same code, backwards. With a little French. */
469static void __exit fini(void) 707static void __exit fini(void)
470{ 708{
471 lguest_device_remove(); 709 lguest_device_remove();
472 free_pagetables(); 710 free_pagetables();
473 unmap_switcher(); 711 unmap_switcher();
712
713 /* If we had PGE before we started, turn it back on now. */
474 lock_cpu_hotplug(); 714 lock_cpu_hotplug();
475 if (cpu_had_pge) { 715 if (cpu_had_pge) {
476 set_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability); 716 set_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability);
717 /* adjust_pge's argument "1" means set PGE. */
477 on_each_cpu(adjust_pge, (void *)1, 0, 1); 718 on_each_cpu(adjust_pge, (void *)1, 0, 1);
478 } 719 }
479 unlock_cpu_hotplug(); 720 unlock_cpu_hotplug();
480} 721}
481 722
723/* The Host side of lguest can be a module. This is a nice way for people to
724 * play with it. */
482module_init(init); 725module_init(init);
483module_exit(fini); 726module_exit(fini);
484MODULE_LICENSE("GPL"); 727MODULE_LICENSE("GPL");