diff options
author | Rusty Russell <rusty@rustcorp.com.au> | 2007-07-26 13:41:04 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@woody.linux-foundation.org> | 2007-07-26 14:35:17 -0400 |
commit | bff672e630a015d5b54c8bfb16160b7edc39a57c (patch) | |
tree | 3af06baacb76809234a3e71033d14b7ed769dbd8 /drivers/lguest/core.c | |
parent | dde797899ac17ebb812b7566044124d785e98dc7 (diff) |
lguest: documentation V: Host
Documentation: The Host
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'drivers/lguest/core.c')
-rw-r--r-- | drivers/lguest/core.c | 273 |
1 files changed, 258 insertions, 15 deletions
diff --git a/drivers/lguest/core.c b/drivers/lguest/core.c index 1eb05f9a56b..c0f50b4dd2f 100644 --- a/drivers/lguest/core.c +++ b/drivers/lguest/core.c | |||
@@ -64,11 +64,33 @@ static struct lguest_pages *lguest_pages(unsigned int cpu) | |||
64 | (SWITCHER_ADDR + SHARED_SWITCHER_PAGES*PAGE_SIZE))[cpu]); | 64 | (SWITCHER_ADDR + SHARED_SWITCHER_PAGES*PAGE_SIZE))[cpu]); |
65 | } | 65 | } |
66 | 66 | ||
67 | /*H:010 We need to set up the Switcher at a high virtual address. Remember the | ||
68 | * Switcher is a few hundred bytes of assembler code which actually changes the | ||
69 | * CPU to run the Guest, and then changes back to the Host when a trap or | ||
70 | * interrupt happens. | ||
71 | * | ||
72 | * The Switcher code must be at the same virtual address in the Guest as the | ||
73 | * Host since it will be running as the switchover occurs. | ||
74 | * | ||
75 | * Trying to map memory at a particular address is an unusual thing to do, so | ||
76 | * it's not a simple one-liner. We also set up the per-cpu parts of the | ||
77 | * Switcher here. | ||
78 | */ | ||
67 | static __init int map_switcher(void) | 79 | static __init int map_switcher(void) |
68 | { | 80 | { |
69 | int i, err; | 81 | int i, err; |
70 | struct page **pagep; | 82 | struct page **pagep; |
71 | 83 | ||
84 | /* | ||
85 | * Map the Switcher in to high memory. | ||
86 | * | ||
87 | * It turns out that if we choose the address 0xFFC00000 (4MB under the | ||
88 | * top virtual address), it makes setting up the page tables really | ||
89 | * easy. | ||
90 | */ | ||
91 | |||
92 | /* We allocate an array of "struct page"s. map_vm_area() wants the | ||
93 | * pages in this form, rather than just an array of pointers. */ | ||
72 | switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES, | 94 | switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES, |
73 | GFP_KERNEL); | 95 | GFP_KERNEL); |
74 | if (!switcher_page) { | 96 | if (!switcher_page) { |
@@ -76,6 +98,8 @@ static __init int map_switcher(void) | |||
76 | goto out; | 98 | goto out; |
77 | } | 99 | } |
78 | 100 | ||
101 | /* Now we actually allocate the pages. The Guest will see these pages, | ||
102 | * so we make sure they're zeroed. */ | ||
79 | for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) { | 103 | for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) { |
80 | unsigned long addr = get_zeroed_page(GFP_KERNEL); | 104 | unsigned long addr = get_zeroed_page(GFP_KERNEL); |
81 | if (!addr) { | 105 | if (!addr) { |
@@ -85,6 +109,9 @@ static __init int map_switcher(void) | |||
85 | switcher_page[i] = virt_to_page(addr); | 109 | switcher_page[i] = virt_to_page(addr); |
86 | } | 110 | } |
87 | 111 | ||
112 | /* Now we reserve the "virtual memory area" we want: 0xFFC00000 | ||
113 | * (SWITCHER_ADDR). We might not get it in theory, but in practice | ||
114 | * it's worked so far. */ | ||
88 | switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE, | 115 | switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE, |
89 | VM_ALLOC, SWITCHER_ADDR, VMALLOC_END); | 116 | VM_ALLOC, SWITCHER_ADDR, VMALLOC_END); |
90 | if (!switcher_vma) { | 117 | if (!switcher_vma) { |
@@ -93,49 +120,105 @@ static __init int map_switcher(void) | |||
93 | goto free_pages; | 120 | goto free_pages; |
94 | } | 121 | } |
95 | 122 | ||
123 | /* This code actually sets up the pages we've allocated to appear at | ||
124 | * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the | ||
125 | * kind of pages we're mapping (kernel pages), and a pointer to our | ||
126 | * array of struct pages. It increments that pointer, but we don't | ||
127 | * care. */ | ||
96 | pagep = switcher_page; | 128 | pagep = switcher_page; |
97 | err = map_vm_area(switcher_vma, PAGE_KERNEL, &pagep); | 129 | err = map_vm_area(switcher_vma, PAGE_KERNEL, &pagep); |
98 | if (err) { | 130 | if (err) { |
99 | printk("lguest: map_vm_area failed: %i\n", err); | 131 | printk("lguest: map_vm_area failed: %i\n", err); |
100 | goto free_vma; | 132 | goto free_vma; |
101 | } | 133 | } |
134 | |||
135 | /* Now the switcher is mapped at the right address, we can't fail! | ||
136 | * Copy in the compiled-in Switcher code (from switcher.S). */ | ||
102 | memcpy(switcher_vma->addr, start_switcher_text, | 137 | memcpy(switcher_vma->addr, start_switcher_text, |
103 | end_switcher_text - start_switcher_text); | 138 | end_switcher_text - start_switcher_text); |
104 | 139 | ||
105 | /* Fix up IDT entries to point into copied text. */ | 140 | /* Most of the switcher.S doesn't care that it's been moved; on Intel, |
141 | * jumps are relative, and it doesn't access any references to external | ||
142 | * code or data. | ||
143 | * | ||
144 | * The only exception is the interrupt handlers in switcher.S: their | ||
145 | * addresses are placed in a table (default_idt_entries), so we need to | ||
146 | * update the table with the new addresses. switcher_offset() is a | ||
147 | * convenience function which returns the distance between the builtin | ||
148 | * switcher code and the high-mapped copy we just made. */ | ||
106 | for (i = 0; i < IDT_ENTRIES; i++) | 149 | for (i = 0; i < IDT_ENTRIES; i++) |
107 | default_idt_entries[i] += switcher_offset(); | 150 | default_idt_entries[i] += switcher_offset(); |
108 | 151 | ||
152 | /* | ||
153 | * Set up the Switcher's per-cpu areas. | ||
154 | * | ||
155 | * Each CPU gets two pages of its own within the high-mapped region | ||
156 | * (aka. "struct lguest_pages"). Much of this can be initialized now, | ||
157 | * but some depends on what Guest we are running (which is set up in | ||
158 | * copy_in_guest_info()). | ||
159 | */ | ||
109 | for_each_possible_cpu(i) { | 160 | for_each_possible_cpu(i) { |
161 | /* lguest_pages() returns this CPU's two pages. */ | ||
110 | struct lguest_pages *pages = lguest_pages(i); | 162 | struct lguest_pages *pages = lguest_pages(i); |
163 | /* This is a convenience pointer to make the code fit one | ||
164 | * statement to a line. */ | ||
111 | struct lguest_ro_state *state = &pages->state; | 165 | struct lguest_ro_state *state = &pages->state; |
112 | 166 | ||
113 | /* These fields are static: rest done in copy_in_guest_info */ | 167 | /* The Global Descriptor Table: the Host has a different one |
168 | * for each CPU. We keep a descriptor for the GDT which says | ||
169 | * where it is and how big it is (the size is actually the last | ||
170 | * byte, not the size, hence the "-1"). */ | ||
114 | state->host_gdt_desc.size = GDT_SIZE-1; | 171 | state->host_gdt_desc.size = GDT_SIZE-1; |
115 | state->host_gdt_desc.address = (long)get_cpu_gdt_table(i); | 172 | state->host_gdt_desc.address = (long)get_cpu_gdt_table(i); |
173 | |||
174 | /* All CPUs on the Host use the same Interrupt Descriptor | ||
175 | * Table, so we just use store_idt(), which gets this CPU's IDT | ||
176 | * descriptor. */ | ||
116 | store_idt(&state->host_idt_desc); | 177 | store_idt(&state->host_idt_desc); |
178 | |||
179 | /* The descriptors for the Guest's GDT and IDT can be filled | ||
180 | * out now, too. We copy the GDT & IDT into ->guest_gdt and | ||
181 | * ->guest_idt before actually running the Guest. */ | ||
117 | state->guest_idt_desc.size = sizeof(state->guest_idt)-1; | 182 | state->guest_idt_desc.size = sizeof(state->guest_idt)-1; |
118 | state->guest_idt_desc.address = (long)&state->guest_idt; | 183 | state->guest_idt_desc.address = (long)&state->guest_idt; |
119 | state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1; | 184 | state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1; |
120 | state->guest_gdt_desc.address = (long)&state->guest_gdt; | 185 | state->guest_gdt_desc.address = (long)&state->guest_gdt; |
186 | |||
187 | /* We know where we want the stack to be when the Guest enters | ||
188 | * the switcher: in pages->regs. The stack grows upwards, so | ||
189 | * we start it at the end of that structure. */ | ||
121 | state->guest_tss.esp0 = (long)(&pages->regs + 1); | 190 | state->guest_tss.esp0 = (long)(&pages->regs + 1); |
191 | /* And this is the GDT entry to use for the stack: we keep a | ||
192 | * couple of special LGUEST entries. */ | ||
122 | state->guest_tss.ss0 = LGUEST_DS; | 193 | state->guest_tss.ss0 = LGUEST_DS; |
123 | /* No I/O for you! */ | 194 | |
195 | /* x86 can have a finegrained bitmap which indicates what I/O | ||
196 | * ports the process can use. We set it to the end of our | ||
197 | * structure, meaning "none". */ | ||
124 | state->guest_tss.io_bitmap_base = sizeof(state->guest_tss); | 198 | state->guest_tss.io_bitmap_base = sizeof(state->guest_tss); |
199 | |||
200 | /* Some GDT entries are the same across all Guests, so we can | ||
201 | * set them up now. */ | ||
125 | setup_default_gdt_entries(state); | 202 | setup_default_gdt_entries(state); |
203 | /* Most IDT entries are the same for all Guests, too.*/ | ||
126 | setup_default_idt_entries(state, default_idt_entries); | 204 | setup_default_idt_entries(state, default_idt_entries); |
127 | 205 | ||
128 | /* Setup LGUEST segments on all cpus */ | 206 | /* The Host needs to be able to use the LGUEST segments on this |
207 | * CPU, too, so put them in the Host GDT. */ | ||
129 | get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT; | 208 | get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT; |
130 | get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT; | 209 | get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT; |
131 | } | 210 | } |
132 | 211 | ||
133 | /* Initialize entry point into switcher. */ | 212 | /* In the Switcher, we want the %cs segment register to use the |
213 | * LGUEST_CS GDT entry: we've put that in the Host and Guest GDTs, so | ||
214 | * it will be undisturbed when we switch. To change %cs and jump we | ||
215 | * need this structure to feed to Intel's "lcall" instruction. */ | ||
134 | lguest_entry.offset = (long)switch_to_guest + switcher_offset(); | 216 | lguest_entry.offset = (long)switch_to_guest + switcher_offset(); |
135 | lguest_entry.segment = LGUEST_CS; | 217 | lguest_entry.segment = LGUEST_CS; |
136 | 218 | ||
137 | printk(KERN_INFO "lguest: mapped switcher at %p\n", | 219 | printk(KERN_INFO "lguest: mapped switcher at %p\n", |
138 | switcher_vma->addr); | 220 | switcher_vma->addr); |
221 | /* And we succeeded... */ | ||
139 | return 0; | 222 | return 0; |
140 | 223 | ||
141 | free_vma: | 224 | free_vma: |
@@ -149,35 +232,58 @@ free_some_pages: | |||
149 | out: | 232 | out: |
150 | return err; | 233 | return err; |
151 | } | 234 | } |
235 | /*:*/ | ||
152 | 236 | ||
237 | /* Cleaning up the mapping when the module is unloaded is almost... | ||
238 | * too easy. */ | ||
153 | static void unmap_switcher(void) | 239 | static void unmap_switcher(void) |
154 | { | 240 | { |
155 | unsigned int i; | 241 | unsigned int i; |
156 | 242 | ||
243 | /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */ | ||
157 | vunmap(switcher_vma->addr); | 244 | vunmap(switcher_vma->addr); |
245 | /* Now we just need to free the pages we copied the switcher into */ | ||
158 | for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) | 246 | for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) |
159 | __free_pages(switcher_page[i], 0); | 247 | __free_pages(switcher_page[i], 0); |
160 | } | 248 | } |
161 | 249 | ||
162 | /* IN/OUT insns: enough to get us past boot-time probing. */ | 250 | /*H:130 Our Guest is usually so well behaved; it never tries to do things it |
251 | * isn't allowed to. Unfortunately, "struct paravirt_ops" isn't quite | ||
252 | * complete, because it doesn't contain replacements for the Intel I/O | ||
253 | * instructions. As a result, the Guest sometimes fumbles across one during | ||
254 | * the boot process as it probes for various things which are usually attached | ||
255 | * to a PC. | ||
256 | * | ||
257 | * When the Guest uses one of these instructions, we get trap #13 (General | ||
258 | * Protection Fault) and come here. We see if it's one of those troublesome | ||
259 | * instructions and skip over it. We return true if we did. */ | ||
163 | static int emulate_insn(struct lguest *lg) | 260 | static int emulate_insn(struct lguest *lg) |
164 | { | 261 | { |
165 | u8 insn; | 262 | u8 insn; |
166 | unsigned int insnlen = 0, in = 0, shift = 0; | 263 | unsigned int insnlen = 0, in = 0, shift = 0; |
264 | /* The eip contains the *virtual* address of the Guest's instruction: | ||
265 | * guest_pa just subtracts the Guest's page_offset. */ | ||
167 | unsigned long physaddr = guest_pa(lg, lg->regs->eip); | 266 | unsigned long physaddr = guest_pa(lg, lg->regs->eip); |
168 | 267 | ||
169 | /* This only works for addresses in linear mapping... */ | 268 | /* The guest_pa() function only works for Guest kernel addresses, but |
269 | * that's all we're trying to do anyway. */ | ||
170 | if (lg->regs->eip < lg->page_offset) | 270 | if (lg->regs->eip < lg->page_offset) |
171 | return 0; | 271 | return 0; |
272 | |||
273 | /* Decoding x86 instructions is icky. */ | ||
172 | lgread(lg, &insn, physaddr, 1); | 274 | lgread(lg, &insn, physaddr, 1); |
173 | 275 | ||
174 | /* Operand size prefix means it's actually for ax. */ | 276 | /* 0x66 is an "operand prefix". It means it's using the upper 16 bits |
277 | of the eax register. */ | ||
175 | if (insn == 0x66) { | 278 | if (insn == 0x66) { |
176 | shift = 16; | 279 | shift = 16; |
280 | /* The instruction is 1 byte so far, read the next byte. */ | ||
177 | insnlen = 1; | 281 | insnlen = 1; |
178 | lgread(lg, &insn, physaddr + insnlen, 1); | 282 | lgread(lg, &insn, physaddr + insnlen, 1); |
179 | } | 283 | } |
180 | 284 | ||
285 | /* We can ignore the lower bit for the moment and decode the 4 opcodes | ||
286 | * we need to emulate. */ | ||
181 | switch (insn & 0xFE) { | 287 | switch (insn & 0xFE) { |
182 | case 0xE4: /* in <next byte>,%al */ | 288 | case 0xE4: /* in <next byte>,%al */ |
183 | insnlen += 2; | 289 | insnlen += 2; |
@@ -194,9 +300,13 @@ static int emulate_insn(struct lguest *lg) | |||
194 | insnlen += 1; | 300 | insnlen += 1; |
195 | break; | 301 | break; |
196 | default: | 302 | default: |
303 | /* OK, we don't know what this is, can't emulate. */ | ||
197 | return 0; | 304 | return 0; |
198 | } | 305 | } |
199 | 306 | ||
307 | /* If it was an "IN" instruction, they expect the result to be read | ||
308 | * into %eax, so we change %eax. We always return all-ones, which | ||
309 | * traditionally means "there's nothing there". */ | ||
200 | if (in) { | 310 | if (in) { |
201 | /* Lower bit tells is whether it's a 16 or 32 bit access */ | 311 | /* Lower bit tells is whether it's a 16 or 32 bit access */ |
202 | if (insn & 0x1) | 312 | if (insn & 0x1) |
@@ -204,9 +314,12 @@ static int emulate_insn(struct lguest *lg) | |||
204 | else | 314 | else |
205 | lg->regs->eax |= (0xFFFF << shift); | 315 | lg->regs->eax |= (0xFFFF << shift); |
206 | } | 316 | } |
317 | /* Finally, we've "done" the instruction, so move past it. */ | ||
207 | lg->regs->eip += insnlen; | 318 | lg->regs->eip += insnlen; |
319 | /* Success! */ | ||
208 | return 1; | 320 | return 1; |
209 | } | 321 | } |
322 | /*:*/ | ||
210 | 323 | ||
211 | /*L:305 | 324 | /*L:305 |
212 | * Dealing With Guest Memory. | 325 | * Dealing With Guest Memory. |
@@ -321,13 +434,24 @@ static void run_guest_once(struct lguest *lg, struct lguest_pages *pages) | |||
321 | : "memory", "%edx", "%ecx", "%edi", "%esi"); | 434 | : "memory", "%edx", "%ecx", "%edi", "%esi"); |
322 | } | 435 | } |
323 | 436 | ||
437 | /*H:030 Let's jump straight to the the main loop which runs the Guest. | ||
438 | * Remember, this is called by the Launcher reading /dev/lguest, and we keep | ||
439 | * going around and around until something interesting happens. */ | ||
324 | int run_guest(struct lguest *lg, unsigned long __user *user) | 440 | int run_guest(struct lguest *lg, unsigned long __user *user) |
325 | { | 441 | { |
442 | /* We stop running once the Guest is dead. */ | ||
326 | while (!lg->dead) { | 443 | while (!lg->dead) { |
444 | /* We need to initialize this, otherwise gcc complains. It's | ||
445 | * not (yet) clever enough to see that it's initialized when we | ||
446 | * need it. */ | ||
327 | unsigned int cr2 = 0; /* Damn gcc */ | 447 | unsigned int cr2 = 0; /* Damn gcc */ |
328 | 448 | ||
329 | /* Hypercalls first: we might have been out to userspace */ | 449 | /* First we run any hypercalls the Guest wants done: either in |
450 | * the hypercall ring in "struct lguest_data", or directly by | ||
451 | * using int 31 (LGUEST_TRAP_ENTRY). */ | ||
330 | do_hypercalls(lg); | 452 | do_hypercalls(lg); |
453 | /* It's possible the Guest did a SEND_DMA hypercall to the | ||
454 | * Launcher, in which case we return from the read() now. */ | ||
331 | if (lg->dma_is_pending) { | 455 | if (lg->dma_is_pending) { |
332 | if (put_user(lg->pending_dma, user) || | 456 | if (put_user(lg->pending_dma, user) || |
333 | put_user(lg->pending_key, user+1)) | 457 | put_user(lg->pending_key, user+1)) |
@@ -335,6 +459,7 @@ int run_guest(struct lguest *lg, unsigned long __user *user) | |||
335 | return sizeof(unsigned long)*2; | 459 | return sizeof(unsigned long)*2; |
336 | } | 460 | } |
337 | 461 | ||
462 | /* Check for signals */ | ||
338 | if (signal_pending(current)) | 463 | if (signal_pending(current)) |
339 | return -ERESTARTSYS; | 464 | return -ERESTARTSYS; |
340 | 465 | ||
@@ -342,77 +467,154 @@ int run_guest(struct lguest *lg, unsigned long __user *user) | |||
342 | if (lg->break_out) | 467 | if (lg->break_out) |
343 | return -EAGAIN; | 468 | return -EAGAIN; |
344 | 469 | ||
470 | /* Check if there are any interrupts which can be delivered | ||
471 | * now: if so, this sets up the hander to be executed when we | ||
472 | * next run the Guest. */ | ||
345 | maybe_do_interrupt(lg); | 473 | maybe_do_interrupt(lg); |
346 | 474 | ||
475 | /* All long-lived kernel loops need to check with this horrible | ||
476 | * thing called the freezer. If the Host is trying to suspend, | ||
477 | * it stops us. */ | ||
347 | try_to_freeze(); | 478 | try_to_freeze(); |
348 | 479 | ||
480 | /* Just make absolutely sure the Guest is still alive. One of | ||
481 | * those hypercalls could have been fatal, for example. */ | ||
349 | if (lg->dead) | 482 | if (lg->dead) |
350 | break; | 483 | break; |
351 | 484 | ||
485 | /* If the Guest asked to be stopped, we sleep. The Guest's | ||
486 | * clock timer or LHCALL_BREAK from the Waker will wake us. */ | ||
352 | if (lg->halted) { | 487 | if (lg->halted) { |
353 | set_current_state(TASK_INTERRUPTIBLE); | 488 | set_current_state(TASK_INTERRUPTIBLE); |
354 | schedule(); | 489 | schedule(); |
355 | continue; | 490 | continue; |
356 | } | 491 | } |
357 | 492 | ||
493 | /* OK, now we're ready to jump into the Guest. First we put up | ||
494 | * the "Do Not Disturb" sign: */ | ||
358 | local_irq_disable(); | 495 | local_irq_disable(); |
359 | 496 | ||
360 | /* Even if *we* don't want FPU trap, guest might... */ | 497 | /* Remember the awfully-named TS bit? If the Guest has asked |
498 | * to set it we set it now, so we can trap and pass that trap | ||
499 | * to the Guest if it uses the FPU. */ | ||
361 | if (lg->ts) | 500 | if (lg->ts) |
362 | set_ts(); | 501 | set_ts(); |
363 | 502 | ||
364 | /* Don't let Guest do SYSENTER: we can't handle it. */ | 503 | /* SYSENTER is an optimized way of doing system calls. We |
504 | * can't allow it because it always jumps to privilege level 0. | ||
505 | * A normal Guest won't try it because we don't advertise it in | ||
506 | * CPUID, but a malicious Guest (or malicious Guest userspace | ||
507 | * program) could, so we tell the CPU to disable it before | ||
508 | * running the Guest. */ | ||
365 | if (boot_cpu_has(X86_FEATURE_SEP)) | 509 | if (boot_cpu_has(X86_FEATURE_SEP)) |
366 | wrmsr(MSR_IA32_SYSENTER_CS, 0, 0); | 510 | wrmsr(MSR_IA32_SYSENTER_CS, 0, 0); |
367 | 511 | ||
512 | /* Now we actually run the Guest. It will pop back out when | ||
513 | * something interesting happens, and we can examine its | ||
514 | * registers to see what it was doing. */ | ||
368 | run_guest_once(lg, lguest_pages(raw_smp_processor_id())); | 515 | run_guest_once(lg, lguest_pages(raw_smp_processor_id())); |
369 | 516 | ||
370 | /* Save cr2 now if we page-faulted. */ | 517 | /* The "regs" pointer contains two extra entries which are not |
518 | * really registers: a trap number which says what interrupt or | ||
519 | * trap made the switcher code come back, and an error code | ||
520 | * which some traps set. */ | ||
521 | |||
522 | /* If the Guest page faulted, then the cr2 register will tell | ||
523 | * us the bad virtual address. We have to grab this now, | ||
524 | * because once we re-enable interrupts an interrupt could | ||
525 | * fault and thus overwrite cr2, or we could even move off to a | ||
526 | * different CPU. */ | ||
371 | if (lg->regs->trapnum == 14) | 527 | if (lg->regs->trapnum == 14) |
372 | cr2 = read_cr2(); | 528 | cr2 = read_cr2(); |
529 | /* Similarly, if we took a trap because the Guest used the FPU, | ||
530 | * we have to restore the FPU it expects to see. */ | ||
373 | else if (lg->regs->trapnum == 7) | 531 | else if (lg->regs->trapnum == 7) |
374 | math_state_restore(); | 532 | math_state_restore(); |
375 | 533 | ||
534 | /* Restore SYSENTER if it's supposed to be on. */ | ||
376 | if (boot_cpu_has(X86_FEATURE_SEP)) | 535 | if (boot_cpu_has(X86_FEATURE_SEP)) |
377 | wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0); | 536 | wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0); |
537 | |||
538 | /* Now we're ready to be interrupted or moved to other CPUs */ | ||
378 | local_irq_enable(); | 539 | local_irq_enable(); |
379 | 540 | ||
541 | /* OK, so what happened? */ | ||
380 | switch (lg->regs->trapnum) { | 542 | switch (lg->regs->trapnum) { |
381 | case 13: /* We've intercepted a GPF. */ | 543 | case 13: /* We've intercepted a GPF. */ |
544 | /* Check if this was one of those annoying IN or OUT | ||
545 | * instructions which we need to emulate. If so, we | ||
546 | * just go back into the Guest after we've done it. */ | ||
382 | if (lg->regs->errcode == 0) { | 547 | if (lg->regs->errcode == 0) { |
383 | if (emulate_insn(lg)) | 548 | if (emulate_insn(lg)) |
384 | continue; | 549 | continue; |
385 | } | 550 | } |
386 | break; | 551 | break; |
387 | case 14: /* We've intercepted a page fault. */ | 552 | case 14: /* We've intercepted a page fault. */ |
553 | /* The Guest accessed a virtual address that wasn't | ||
554 | * mapped. This happens a lot: we don't actually set | ||
555 | * up most of the page tables for the Guest at all when | ||
556 | * we start: as it runs it asks for more and more, and | ||
557 | * we set them up as required. In this case, we don't | ||
558 | * even tell the Guest that the fault happened. | ||
559 | * | ||
560 | * The errcode tells whether this was a read or a | ||
561 | * write, and whether kernel or userspace code. */ | ||
388 | if (demand_page(lg, cr2, lg->regs->errcode)) | 562 | if (demand_page(lg, cr2, lg->regs->errcode)) |
389 | continue; | 563 | continue; |
390 | 564 | ||
391 | /* If lguest_data is NULL, this won't hurt. */ | 565 | /* OK, it's really not there (or not OK): the Guest |
566 | * needs to know. We write out the cr2 value so it | ||
567 | * knows where the fault occurred. | ||
568 | * | ||
569 | * Note that if the Guest were really messed up, this | ||
570 | * could happen before it's done the INITIALIZE | ||
571 | * hypercall, so lg->lguest_data will be NULL, so | ||
572 | * &lg->lguest_data->cr2 will be address 8. Writing | ||
573 | * into that address won't hurt the Host at all, | ||
574 | * though. */ | ||
392 | if (put_user(cr2, &lg->lguest_data->cr2)) | 575 | if (put_user(cr2, &lg->lguest_data->cr2)) |
393 | kill_guest(lg, "Writing cr2"); | 576 | kill_guest(lg, "Writing cr2"); |
394 | break; | 577 | break; |
395 | case 7: /* We've intercepted a Device Not Available fault. */ | 578 | case 7: /* We've intercepted a Device Not Available fault. */ |
396 | /* If they don't want to know, just absorb it. */ | 579 | /* If the Guest doesn't want to know, we already |
580 | * restored the Floating Point Unit, so we just | ||
581 | * continue without telling it. */ | ||
397 | if (!lg->ts) | 582 | if (!lg->ts) |
398 | continue; | 583 | continue; |
399 | break; | 584 | break; |
400 | case 32 ... 255: /* Real interrupt, fall thru */ | 585 | case 32 ... 255: |
586 | /* These values mean a real interrupt occurred, in | ||
587 | * which case the Host handler has already been run. | ||
588 | * We just do a friendly check if another process | ||
589 | * should now be run, then fall through to loop | ||
590 | * around: */ | ||
401 | cond_resched(); | 591 | cond_resched(); |
402 | case LGUEST_TRAP_ENTRY: /* Handled at top of loop */ | 592 | case LGUEST_TRAP_ENTRY: /* Handled at top of loop */ |
403 | continue; | 593 | continue; |
404 | } | 594 | } |
405 | 595 | ||
596 | /* If we get here, it's a trap the Guest wants to know | ||
597 | * about. */ | ||
406 | if (deliver_trap(lg, lg->regs->trapnum)) | 598 | if (deliver_trap(lg, lg->regs->trapnum)) |
407 | continue; | 599 | continue; |
408 | 600 | ||
601 | /* If the Guest doesn't have a handler (either it hasn't | ||
602 | * registered any yet, or it's one of the faults we don't let | ||
603 | * it handle), it dies with a cryptic error message. */ | ||
409 | kill_guest(lg, "unhandled trap %li at %#lx (%#lx)", | 604 | kill_guest(lg, "unhandled trap %li at %#lx (%#lx)", |
410 | lg->regs->trapnum, lg->regs->eip, | 605 | lg->regs->trapnum, lg->regs->eip, |
411 | lg->regs->trapnum == 14 ? cr2 : lg->regs->errcode); | 606 | lg->regs->trapnum == 14 ? cr2 : lg->regs->errcode); |
412 | } | 607 | } |
608 | /* The Guest is dead => "No such file or directory" */ | ||
413 | return -ENOENT; | 609 | return -ENOENT; |
414 | } | 610 | } |
415 | 611 | ||
612 | /* Now we can look at each of the routines this calls, in increasing order of | ||
613 | * complexity: do_hypercalls(), emulate_insn(), maybe_do_interrupt(), | ||
614 | * deliver_trap() and demand_page(). After all those, we'll be ready to | ||
615 | * examine the Switcher, and our philosophical understanding of the Host/Guest | ||
616 | * duality will be complete. :*/ | ||
617 | |||
416 | int find_free_guest(void) | 618 | int find_free_guest(void) |
417 | { | 619 | { |
418 | unsigned int i; | 620 | unsigned int i; |
@@ -430,55 +632,96 @@ static void adjust_pge(void *on) | |||
430 | write_cr4(read_cr4() & ~X86_CR4_PGE); | 632 | write_cr4(read_cr4() & ~X86_CR4_PGE); |
431 | } | 633 | } |
432 | 634 | ||
635 | /*H:000 | ||
636 | * Welcome to the Host! | ||
637 | * | ||
638 | * By this point your brain has been tickled by the Guest code and numbed by | ||
639 | * the Launcher code; prepare for it to be stretched by the Host code. This is | ||
640 | * the heart. Let's begin at the initialization routine for the Host's lg | ||
641 | * module. | ||
642 | */ | ||
433 | static int __init init(void) | 643 | static int __init init(void) |
434 | { | 644 | { |
435 | int err; | 645 | int err; |
436 | 646 | ||
647 | /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */ | ||
437 | if (paravirt_enabled()) { | 648 | if (paravirt_enabled()) { |
438 | printk("lguest is afraid of %s\n", paravirt_ops.name); | 649 | printk("lguest is afraid of %s\n", paravirt_ops.name); |
439 | return -EPERM; | 650 | return -EPERM; |
440 | } | 651 | } |
441 | 652 | ||
653 | /* First we put the Switcher up in very high virtual memory. */ | ||
442 | err = map_switcher(); | 654 | err = map_switcher(); |
443 | if (err) | 655 | if (err) |
444 | return err; | 656 | return err; |
445 | 657 | ||
658 | /* Now we set up the pagetable implementation for the Guests. */ | ||
446 | err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES); | 659 | err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES); |
447 | if (err) { | 660 | if (err) { |
448 | unmap_switcher(); | 661 | unmap_switcher(); |
449 | return err; | 662 | return err; |
450 | } | 663 | } |
664 | |||
665 | /* The I/O subsystem needs some things initialized. */ | ||
451 | lguest_io_init(); | 666 | lguest_io_init(); |
452 | 667 | ||
668 | /* /dev/lguest needs to be registered. */ | ||
453 | err = lguest_device_init(); | 669 | err = lguest_device_init(); |
454 | if (err) { | 670 | if (err) { |
455 | free_pagetables(); | 671 | free_pagetables(); |
456 | unmap_switcher(); | 672 | unmap_switcher(); |
457 | return err; | 673 | return err; |
458 | } | 674 | } |
675 | |||
676 | /* Finally, we need to turn off "Page Global Enable". PGE is an | ||
677 | * optimization where page table entries are specially marked to show | ||
678 | * they never change. The Host kernel marks all the kernel pages this | ||
679 | * way because it's always present, even when userspace is running. | ||
680 | * | ||
681 | * Lguest breaks this: unbeknownst to the rest of the Host kernel, we | ||
682 | * switch to the Guest kernel. If you don't disable this on all CPUs, | ||
683 | * you'll get really weird bugs that you'll chase for two days. | ||
684 | * | ||
685 | * I used to turn PGE off every time we switched to the Guest and back | ||
686 | * on when we return, but that slowed the Switcher down noticibly. */ | ||
687 | |||
688 | /* We don't need the complexity of CPUs coming and going while we're | ||
689 | * doing this. */ | ||
459 | lock_cpu_hotplug(); | 690 | lock_cpu_hotplug(); |
460 | if (cpu_has_pge) { /* We have a broader idea of "global". */ | 691 | if (cpu_has_pge) { /* We have a broader idea of "global". */ |
692 | /* Remember that this was originally set (for cleanup). */ | ||
461 | cpu_had_pge = 1; | 693 | cpu_had_pge = 1; |
694 | /* adjust_pge is a helper function which sets or unsets the PGE | ||
695 | * bit on its CPU, depending on the argument (0 == unset). */ | ||
462 | on_each_cpu(adjust_pge, (void *)0, 0, 1); | 696 | on_each_cpu(adjust_pge, (void *)0, 0, 1); |
697 | /* Turn off the feature in the global feature set. */ | ||
463 | clear_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability); | 698 | clear_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability); |
464 | } | 699 | } |
465 | unlock_cpu_hotplug(); | 700 | unlock_cpu_hotplug(); |
701 | |||
702 | /* All good! */ | ||
466 | return 0; | 703 | return 0; |
467 | } | 704 | } |
468 | 705 | ||
706 | /* Cleaning up is just the same code, backwards. With a little French. */ | ||
469 | static void __exit fini(void) | 707 | static void __exit fini(void) |
470 | { | 708 | { |
471 | lguest_device_remove(); | 709 | lguest_device_remove(); |
472 | free_pagetables(); | 710 | free_pagetables(); |
473 | unmap_switcher(); | 711 | unmap_switcher(); |
712 | |||
713 | /* If we had PGE before we started, turn it back on now. */ | ||
474 | lock_cpu_hotplug(); | 714 | lock_cpu_hotplug(); |
475 | if (cpu_had_pge) { | 715 | if (cpu_had_pge) { |
476 | set_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability); | 716 | set_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability); |
717 | /* adjust_pge's argument "1" means set PGE. */ | ||
477 | on_each_cpu(adjust_pge, (void *)1, 0, 1); | 718 | on_each_cpu(adjust_pge, (void *)1, 0, 1); |
478 | } | 719 | } |
479 | unlock_cpu_hotplug(); | 720 | unlock_cpu_hotplug(); |
480 | } | 721 | } |
481 | 722 | ||
723 | /* The Host side of lguest can be a module. This is a nice way for people to | ||
724 | * play with it. */ | ||
482 | module_init(init); | 725 | module_init(init); |
483 | module_exit(fini); | 726 | module_exit(fini); |
484 | MODULE_LICENSE("GPL"); | 727 | MODULE_LICENSE("GPL"); |