aboutsummaryrefslogtreecommitdiffstats
path: root/arch
diff options
context:
space:
mode:
authorNicolas Pitre <nico@fluxnic.net>2010-03-29 16:46:02 -0400
committerRussell King <rmk+kernel@arm.linux.org.uk>2010-04-14 06:11:27 -0400
commit7e5a69e83ba7a0d5917ad830f417cba8b8d6aa72 (patch)
treed8547f21cc0dd6fbc605d5f72c5662f65bbd18cd /arch
parent317aa408d69a5b833a116317c18c7e957989ce44 (diff)
ARM: 6007/1: fix highmem with VIPT cache and DMA
The VIVT cache of a highmem page is always flushed before the page is unmapped. This cache flush is explicit through flush_cache_kmaps() in flush_all_zero_pkmaps(), or through __cpuc_flush_dcache_area() in kunmap_atomic(). There is also an implicit flush of those highmem pages that were part of a process that just terminated making those pages free as the whole VIVT cache has to be flushed on every task switch. Hence unmapped highmem pages need no cache maintenance in that case. However unmapped pages may still be cached with a VIPT cache because the cache is tagged with physical addresses. There is no need for a whole cache flush during task switching for that reason, and despite the explicit cache flushes in flush_all_zero_pkmaps() and kunmap_atomic(), some highmem pages that were mapped in user space end up still cached even when they become unmapped. So, we do have to perform cache maintenance on those unmapped highmem pages in the context of DMA when using a VIPT cache. Unfortunately, it is not possible to perform that cache maintenance using physical addresses as all the L1 cache maintenance coprocessor functions accept virtual addresses only. Therefore we have no choice but to set up a temporary virtual mapping for that purpose. And of course the explicit cache flushing when unmapping a highmem page on a system with a VIPT cache now can go, which should increase performance. While at it, because the code in __flush_dcache_page() has to be modified anyway, let's also make sure the mapped highmem pages are pinned with kmap_high_get() for the duration of the cache maintenance operation. Because kunmap() does unmap highmem pages lazily, it was reported by Gary King <GKing@nvidia.com> that those pages ended up being unmapped during cache maintenance on SMP causing segmentation faults. Signed-off-by: Nicolas Pitre <nico@marvell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Diffstat (limited to 'arch')
-rw-r--r--arch/arm/include/asm/highmem.h15
-rw-r--r--arch/arm/include/asm/kmap_types.h1
-rw-r--r--arch/arm/mm/copypage-v6.c9
-rw-r--r--arch/arm/mm/dma-mapping.c5
-rw-r--r--arch/arm/mm/flush.c25
-rw-r--r--arch/arm/mm/highmem.c87
6 files changed, 122 insertions, 20 deletions
diff --git a/arch/arm/include/asm/highmem.h b/arch/arm/include/asm/highmem.h
index 7f36d00600b..feb988a7ec3 100644
--- a/arch/arm/include/asm/highmem.h
+++ b/arch/arm/include/asm/highmem.h
@@ -11,7 +11,11 @@
11 11
12#define kmap_prot PAGE_KERNEL 12#define kmap_prot PAGE_KERNEL
13 13
14#define flush_cache_kmaps() flush_cache_all() 14#define flush_cache_kmaps() \
15 do { \
16 if (cache_is_vivt()) \
17 flush_cache_all(); \
18 } while (0)
15 19
16extern pte_t *pkmap_page_table; 20extern pte_t *pkmap_page_table;
17 21
@@ -21,11 +25,20 @@ extern void *kmap_high(struct page *page);
21extern void *kmap_high_get(struct page *page); 25extern void *kmap_high_get(struct page *page);
22extern void kunmap_high(struct page *page); 26extern void kunmap_high(struct page *page);
23 27
28extern void *kmap_high_l1_vipt(struct page *page, pte_t *saved_pte);
29extern void kunmap_high_l1_vipt(struct page *page, pte_t saved_pte);
30
31/*
32 * The following functions are already defined by <linux/highmem.h>
33 * when CONFIG_HIGHMEM is not set.
34 */
35#ifdef CONFIG_HIGHMEM
24extern void *kmap(struct page *page); 36extern void *kmap(struct page *page);
25extern void kunmap(struct page *page); 37extern void kunmap(struct page *page);
26extern void *kmap_atomic(struct page *page, enum km_type type); 38extern void *kmap_atomic(struct page *page, enum km_type type);
27extern void kunmap_atomic(void *kvaddr, enum km_type type); 39extern void kunmap_atomic(void *kvaddr, enum km_type type);
28extern void *kmap_atomic_pfn(unsigned long pfn, enum km_type type); 40extern void *kmap_atomic_pfn(unsigned long pfn, enum km_type type);
29extern struct page *kmap_atomic_to_page(const void *ptr); 41extern struct page *kmap_atomic_to_page(const void *ptr);
42#endif
30 43
31#endif 44#endif
diff --git a/arch/arm/include/asm/kmap_types.h b/arch/arm/include/asm/kmap_types.h
index c019949a518..c4b2ea3fbe4 100644
--- a/arch/arm/include/asm/kmap_types.h
+++ b/arch/arm/include/asm/kmap_types.h
@@ -18,6 +18,7 @@ enum km_type {
18 KM_IRQ1, 18 KM_IRQ1,
19 KM_SOFTIRQ0, 19 KM_SOFTIRQ0,
20 KM_SOFTIRQ1, 20 KM_SOFTIRQ1,
21 KM_L1_CACHE,
21 KM_L2_CACHE, 22 KM_L2_CACHE,
22 KM_TYPE_NR 23 KM_TYPE_NR
23}; 24};
diff --git a/arch/arm/mm/copypage-v6.c b/arch/arm/mm/copypage-v6.c
index 8bca4dea6df..f55fa1044f7 100644
--- a/arch/arm/mm/copypage-v6.c
+++ b/arch/arm/mm/copypage-v6.c
@@ -41,14 +41,7 @@ static void v6_copy_user_highpage_nonaliasing(struct page *to,
41 kfrom = kmap_atomic(from, KM_USER0); 41 kfrom = kmap_atomic(from, KM_USER0);
42 kto = kmap_atomic(to, KM_USER1); 42 kto = kmap_atomic(to, KM_USER1);
43 copy_page(kto, kfrom); 43 copy_page(kto, kfrom);
44#ifdef CONFIG_HIGHMEM 44 __cpuc_flush_dcache_area(kto, PAGE_SIZE);
45 /*
46 * kmap_atomic() doesn't set the page virtual address, and
47 * kunmap_atomic() takes care of cache flushing already.
48 */
49 if (page_address(to) != NULL)
50#endif
51 __cpuc_flush_dcache_area(kto, PAGE_SIZE);
52 kunmap_atomic(kto, KM_USER1); 45 kunmap_atomic(kto, KM_USER1);
53 kunmap_atomic(kfrom, KM_USER0); 46 kunmap_atomic(kfrom, KM_USER0);
54} 47}
diff --git a/arch/arm/mm/dma-mapping.c b/arch/arm/mm/dma-mapping.c
index 1351edc0b26..13fa536d82e 100644
--- a/arch/arm/mm/dma-mapping.c
+++ b/arch/arm/mm/dma-mapping.c
@@ -464,6 +464,11 @@ static void dma_cache_maint_page(struct page *page, unsigned long offset,
464 vaddr += offset; 464 vaddr += offset;
465 op(vaddr, len, dir); 465 op(vaddr, len, dir);
466 kunmap_high(page); 466 kunmap_high(page);
467 } else if (cache_is_vipt()) {
468 pte_t saved_pte;
469 vaddr = kmap_high_l1_vipt(page, &saved_pte);
470 op(vaddr + offset, len, dir);
471 kunmap_high_l1_vipt(page, saved_pte);
467 } 472 }
468 } else { 473 } else {
469 vaddr = page_address(page) + offset; 474 vaddr = page_address(page) + offset;
diff --git a/arch/arm/mm/flush.c b/arch/arm/mm/flush.c
index e34f095e209..c6844cb9b50 100644
--- a/arch/arm/mm/flush.c
+++ b/arch/arm/mm/flush.c
@@ -13,6 +13,7 @@
13 13
14#include <asm/cacheflush.h> 14#include <asm/cacheflush.h>
15#include <asm/cachetype.h> 15#include <asm/cachetype.h>
16#include <asm/highmem.h>
16#include <asm/smp_plat.h> 17#include <asm/smp_plat.h>
17#include <asm/system.h> 18#include <asm/system.h>
18#include <asm/tlbflush.h> 19#include <asm/tlbflush.h>
@@ -152,21 +153,25 @@ void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
152 153
153void __flush_dcache_page(struct address_space *mapping, struct page *page) 154void __flush_dcache_page(struct address_space *mapping, struct page *page)
154{ 155{
155 void *addr = page_address(page);
156
157 /* 156 /*
158 * Writeback any data associated with the kernel mapping of this 157 * Writeback any data associated with the kernel mapping of this
159 * page. This ensures that data in the physical page is mutually 158 * page. This ensures that data in the physical page is mutually
160 * coherent with the kernels mapping. 159 * coherent with the kernels mapping.
161 */ 160 */
162#ifdef CONFIG_HIGHMEM 161 if (!PageHighMem(page)) {
163 /* 162 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
164 * kmap_atomic() doesn't set the page virtual address, and 163 } else {
165 * kunmap_atomic() takes care of cache flushing already. 164 void *addr = kmap_high_get(page);
166 */ 165 if (addr) {
167 if (addr) 166 __cpuc_flush_dcache_area(addr, PAGE_SIZE);
168#endif 167 kunmap_high(page);
169 __cpuc_flush_dcache_area(addr, PAGE_SIZE); 168 } else if (cache_is_vipt()) {
169 pte_t saved_pte;
170 addr = kmap_high_l1_vipt(page, &saved_pte);
171 __cpuc_flush_dcache_area(addr, PAGE_SIZE);
172 kunmap_high_l1_vipt(page, saved_pte);
173 }
174 }
170 175
171 /* 176 /*
172 * If this is a page cache page, and we have an aliasing VIPT cache, 177 * If this is a page cache page, and we have an aliasing VIPT cache,
diff --git a/arch/arm/mm/highmem.c b/arch/arm/mm/highmem.c
index 2be1ec7c1b4..77b030f5ec0 100644
--- a/arch/arm/mm/highmem.c
+++ b/arch/arm/mm/highmem.c
@@ -79,7 +79,8 @@ void kunmap_atomic(void *kvaddr, enum km_type type)
79 unsigned int idx = type + KM_TYPE_NR * smp_processor_id(); 79 unsigned int idx = type + KM_TYPE_NR * smp_processor_id();
80 80
81 if (kvaddr >= (void *)FIXADDR_START) { 81 if (kvaddr >= (void *)FIXADDR_START) {
82 __cpuc_flush_dcache_area((void *)vaddr, PAGE_SIZE); 82 if (cache_is_vivt())
83 __cpuc_flush_dcache_area((void *)vaddr, PAGE_SIZE);
83#ifdef CONFIG_DEBUG_HIGHMEM 84#ifdef CONFIG_DEBUG_HIGHMEM
84 BUG_ON(vaddr != __fix_to_virt(FIX_KMAP_BEGIN + idx)); 85 BUG_ON(vaddr != __fix_to_virt(FIX_KMAP_BEGIN + idx));
85 set_pte_ext(TOP_PTE(vaddr), __pte(0), 0); 86 set_pte_ext(TOP_PTE(vaddr), __pte(0), 0);
@@ -124,3 +125,87 @@ struct page *kmap_atomic_to_page(const void *ptr)
124 pte = TOP_PTE(vaddr); 125 pte = TOP_PTE(vaddr);
125 return pte_page(*pte); 126 return pte_page(*pte);
126} 127}
128
129#ifdef CONFIG_CPU_CACHE_VIPT
130
131#include <linux/percpu.h>
132
133/*
134 * The VIVT cache of a highmem page is always flushed before the page
135 * is unmapped. Hence unmapped highmem pages need no cache maintenance
136 * in that case.
137 *
138 * However unmapped pages may still be cached with a VIPT cache, and
139 * it is not possible to perform cache maintenance on them using physical
140 * addresses unfortunately. So we have no choice but to set up a temporary
141 * virtual mapping for that purpose.
142 *
143 * Yet this VIPT cache maintenance may be triggered from DMA support
144 * functions which are possibly called from interrupt context. As we don't
145 * want to keep interrupt disabled all the time when such maintenance is
146 * taking place, we therefore allow for some reentrancy by preserving and
147 * restoring the previous fixmap entry before the interrupted context is
148 * resumed. If the reentrancy depth is 0 then there is no need to restore
149 * the previous fixmap, and leaving the current one in place allow it to
150 * be reused the next time without a TLB flush (common with DMA).
151 */
152
153static DEFINE_PER_CPU(int, kmap_high_l1_vipt_depth);
154
155void *kmap_high_l1_vipt(struct page *page, pte_t *saved_pte)
156{
157 unsigned int idx, cpu = smp_processor_id();
158 int *depth = &per_cpu(kmap_high_l1_vipt_depth, cpu);
159 unsigned long vaddr, flags;
160 pte_t pte, *ptep;
161
162 idx = KM_L1_CACHE + KM_TYPE_NR * cpu;
163 vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
164 ptep = TOP_PTE(vaddr);
165 pte = mk_pte(page, kmap_prot);
166
167 if (!in_interrupt())
168 preempt_disable();
169
170 raw_local_irq_save(flags);
171 (*depth)++;
172 if (pte_val(*ptep) == pte_val(pte)) {
173 *saved_pte = pte;
174 } else {
175 *saved_pte = *ptep;
176 set_pte_ext(ptep, pte, 0);
177 local_flush_tlb_kernel_page(vaddr);
178 }
179 raw_local_irq_restore(flags);
180
181 return (void *)vaddr;
182}
183
184void kunmap_high_l1_vipt(struct page *page, pte_t saved_pte)
185{
186 unsigned int idx, cpu = smp_processor_id();
187 int *depth = &per_cpu(kmap_high_l1_vipt_depth, cpu);
188 unsigned long vaddr, flags;
189 pte_t pte, *ptep;
190
191 idx = KM_L1_CACHE + KM_TYPE_NR * cpu;
192 vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
193 ptep = TOP_PTE(vaddr);
194 pte = mk_pte(page, kmap_prot);
195
196 BUG_ON(pte_val(*ptep) != pte_val(pte));
197 BUG_ON(*depth <= 0);
198
199 raw_local_irq_save(flags);
200 (*depth)--;
201 if (*depth != 0 && pte_val(pte) != pte_val(saved_pte)) {
202 set_pte_ext(ptep, saved_pte, 0);
203 local_flush_tlb_kernel_page(vaddr);
204 }
205 raw_local_irq_restore(flags);
206
207 if (!in_interrupt())
208 preempt_enable();
209}
210
211#endif /* CONFIG_CPU_CACHE_VIPT */