aboutsummaryrefslogtreecommitdiffstats
path: root/arch/sh/kernel
diff options
context:
space:
mode:
authorPaul Mundt <lethal@linux-sh.org>2006-09-27 02:49:57 -0400
committerPaul Mundt <lethal@linux-sh.org>2006-09-27 02:49:57 -0400
commitd7c30c682a278abe1a52db83f69efec1a9d8f8c2 (patch)
tree48918e531904edb05944b1e097c386b87e746a24 /arch/sh/kernel
parent373e68b5472d421cbd2703e7a77caf053f78c005 (diff)
sh: Store Queue API rework.
Rewrite the store queue API for a per-cpu interface in the driver model. The old miscdevice is dropped, due to TASK_SIZE limitations, and no one was using it anyways. Carve up and allocate store queue space with a bitmap, back sq mapping objects with a slab cache, and let userspace worry about its own prefetching. Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Diffstat (limited to 'arch/sh/kernel')
-rw-r--r--arch/sh/kernel/cpu/sh4/sq.c542
1 files changed, 246 insertions, 296 deletions
diff --git a/arch/sh/kernel/cpu/sh4/sq.c b/arch/sh/kernel/cpu/sh4/sq.c
index b148966dd7c..7bcc73f9b8d 100644
--- a/arch/sh/kernel/cpu/sh4/sq.c
+++ b/arch/sh/kernel/cpu/sh4/sq.c
@@ -1,50 +1,52 @@
1/* 1/*
2 * arch/sh/kernel/cpu/sq.c 2 * arch/sh/kernel/cpu/sh4/sq.c
3 * 3 *
4 * General management API for SH-4 integrated Store Queues 4 * General management API for SH-4 integrated Store Queues
5 * 5 *
6 * Copyright (C) 2001, 2002, 2003, 2004 Paul Mundt 6 * Copyright (C) 2001 - 2006 Paul Mundt
7 * Copyright (C) 2001, 2002 M. R. Brown 7 * Copyright (C) 2001, 2002 M. R. Brown
8 * 8 *
9 * Some of this code has been adopted directly from the old arch/sh/mm/sq.c
10 * hack that was part of the LinuxDC project. For all intents and purposes,
11 * this is a completely new interface that really doesn't have much in common
12 * with the old zone-based approach at all. In fact, it's only listed here for
13 * general completeness.
14 *
15 * This file is subject to the terms and conditions of the GNU General Public 9 * This file is subject to the terms and conditions of the GNU General Public
16 * License. See the file "COPYING" in the main directory of this archive 10 * License. See the file "COPYING" in the main directory of this archive
17 * for more details. 11 * for more details.
18 */ 12 */
19#include <linux/init.h> 13#include <linux/init.h>
14#include <linux/cpu.h>
15#include <linux/bitmap.h>
16#include <linux/sysdev.h>
20#include <linux/kernel.h> 17#include <linux/kernel.h>
21#include <linux/module.h> 18#include <linux/module.h>
22#include <linux/slab.h> 19#include <linux/slab.h>
23#include <linux/list.h>
24#include <linux/proc_fs.h>
25#include <linux/miscdevice.h>
26#include <linux/vmalloc.h> 20#include <linux/vmalloc.h>
27#include <linux/mm.h> 21#include <linux/mm.h>
28#include <asm/io.h> 22#include <asm/io.h>
29#include <asm/page.h> 23#include <asm/page.h>
30#include <asm/cacheflush.h> 24#include <asm/cacheflush.h>
31#include <asm/mmu_context.h>
32#include <asm/cpu/sq.h> 25#include <asm/cpu/sq.h>
33 26
34static LIST_HEAD(sq_mapping_list); 27struct sq_mapping;
28
29struct sq_mapping {
30 const char *name;
31
32 unsigned long sq_addr;
33 unsigned long addr;
34 unsigned int size;
35
36 struct sq_mapping *next;
37};
38
39static struct sq_mapping *sq_mapping_list;
35static DEFINE_SPINLOCK(sq_mapping_lock); 40static DEFINE_SPINLOCK(sq_mapping_lock);
41static kmem_cache_t *sq_cache;
42static unsigned long *sq_bitmap;
36 43
37/** 44#define store_queue_barrier() \
38 * sq_flush - Flush (prefetch) the store queue cache 45do { \
39 * @addr: the store queue address to flush 46 (void)ctrl_inl(P4SEG_STORE_QUE); \
40 * 47 ctrl_outl(0, P4SEG_STORE_QUE + 0); \
41 * Executes a prefetch instruction on the specified store queue cache, 48 ctrl_outl(0, P4SEG_STORE_QUE + 8); \
42 * so that the cached data is written to physical memory. 49} while (0);
43 */
44inline void sq_flush(void *addr)
45{
46 __asm__ __volatile__ ("pref @%0" : : "r" (addr) : "memory");
47}
48 50
49/** 51/**
50 * sq_flush_range - Flush (prefetch) a specific SQ range 52 * sq_flush_range - Flush (prefetch) a specific SQ range
@@ -57,154 +59,73 @@ inline void sq_flush(void *addr)
57void sq_flush_range(unsigned long start, unsigned int len) 59void sq_flush_range(unsigned long start, unsigned int len)
58{ 60{
59 volatile unsigned long *sq = (unsigned long *)start; 61 volatile unsigned long *sq = (unsigned long *)start;
60 unsigned long dummy;
61 62
62 /* Flush the queues */ 63 /* Flush the queues */
63 for (len >>= 5; len--; sq += 8) 64 for (len >>= 5; len--; sq += 8)
64 sq_flush((void *)sq); 65 prefetchw((void *)sq);
65 66
66 /* Wait for completion */ 67 /* Wait for completion */
67 dummy = ctrl_inl(P4SEG_STORE_QUE); 68 store_queue_barrier();
68
69 ctrl_outl(0, P4SEG_STORE_QUE + 0);
70 ctrl_outl(0, P4SEG_STORE_QUE + 8);
71} 69}
72 70
73static struct sq_mapping *__sq_alloc_mapping(unsigned long virt, unsigned long phys, unsigned long size, const char *name) 71static inline void sq_mapping_list_add(struct sq_mapping *map)
74{ 72{
75 struct sq_mapping *map; 73 struct sq_mapping **p, *tmp;
76
77 if (virt + size > SQ_ADDRMAX)
78 return ERR_PTR(-ENOSPC);
79 74
80 map = kmalloc(sizeof(struct sq_mapping), GFP_KERNEL); 75 spin_lock_irq(&sq_mapping_lock);
81 if (!map)
82 return ERR_PTR(-ENOMEM);
83 76
84 INIT_LIST_HEAD(&map->list); 77 p = &sq_mapping_list;
78 while ((tmp = *p) != NULL)
79 p = &tmp->next;
85 80
86 map->sq_addr = virt; 81 map->next = tmp;
87 map->addr = phys; 82 *p = map;
88 map->size = size + 1;
89 map->name = name;
90 83
91 list_add(&map->list, &sq_mapping_list); 84 spin_unlock_irq(&sq_mapping_lock);
92
93 return map;
94} 85}
95 86
96static unsigned long __sq_get_next_addr(void) 87static inline void sq_mapping_list_del(struct sq_mapping *map)
97{ 88{
98 if (!list_empty(&sq_mapping_list)) { 89 struct sq_mapping **p, *tmp;
99 struct list_head *pos, *tmp; 90
100 91 spin_lock_irq(&sq_mapping_lock);
101 /* 92
102 * Read one off the list head, as it will have the highest 93 for (p = &sq_mapping_list; (tmp = *p); p = &tmp->next)
103 * mapped allocation. Set the next one up right above it. 94 if (tmp == map) {
104 * 95 *p = tmp->next;
105 * This is somewhat sub-optimal, as we don't look at 96 break;
106 * gaps between allocations or anything lower then the
107 * highest-level allocation.
108 *
109 * However, in the interest of performance and the general
110 * lack of desire to do constant list rebalancing, we don't
111 * worry about it.
112 */
113 list_for_each_safe(pos, tmp, &sq_mapping_list) {
114 struct sq_mapping *entry;
115
116 entry = list_entry(pos, typeof(*entry), list);
117
118 return entry->sq_addr + entry->size;
119 } 97 }
120 }
121 98
122 return P4SEG_STORE_QUE; 99 spin_unlock_irq(&sq_mapping_lock);
123} 100}
124 101
125/** 102static int __sq_remap(struct sq_mapping *map, unsigned long flags)
126 * __sq_remap - Perform a translation from the SQ to a phys addr
127 * @map: sq mapping containing phys and store queue addresses.
128 *
129 * Maps the store queue address specified in the mapping to the physical
130 * address specified in the mapping.
131 */
132static struct sq_mapping *__sq_remap(struct sq_mapping *map)
133{ 103{
134 unsigned long flags, pteh, ptel; 104#if defined(CONFIG_MMU)
135 struct vm_struct *vma; 105 struct vm_struct *vma;
136 pgprot_t pgprot;
137 106
138 /*
139 * Without an MMU (or with it turned off), this is much more
140 * straightforward, as we can just load up each queue's QACR with
141 * the physical address appropriately masked.
142 */
143
144 ctrl_outl(((map->addr >> 26) << 2) & 0x1c, SQ_QACR0);
145 ctrl_outl(((map->addr >> 26) << 2) & 0x1c, SQ_QACR1);
146
147#ifdef CONFIG_MMU
148 /*
149 * With an MMU on the other hand, things are slightly more involved.
150 * Namely, we have to have a direct mapping between the SQ addr and
151 * the associated physical address in the UTLB by way of setting up
152 * a virt<->phys translation by hand. We do this by simply specifying
153 * the SQ addr in UTLB.VPN and the associated physical address in
154 * UTLB.PPN.
155 *
156 * Notably, even though this is a special case translation, and some
157 * of the configuration bits are meaningless, we're still required
158 * to have a valid ASID context in PTEH.
159 *
160 * We could also probably get by without explicitly setting PTEA, but
161 * we do it here just for good measure.
162 */
163 spin_lock_irqsave(&sq_mapping_lock, flags);
164
165 pteh = map->sq_addr;
166 ctrl_outl((pteh & MMU_VPN_MASK) | get_asid(), MMU_PTEH);
167
168 ptel = map->addr & PAGE_MASK;
169
170 if (cpu_data->flags & CPU_HAS_PTEA)
171 ctrl_outl(((ptel >> 28) & 0xe) | (ptel & 0x1), MMU_PTEA);
172
173 pgprot = pgprot_noncached(PAGE_KERNEL);
174
175 ptel &= _PAGE_FLAGS_HARDWARE_MASK;
176 ptel |= pgprot_val(pgprot);
177 ctrl_outl(ptel, MMU_PTEL);
178
179 __asm__ __volatile__ ("ldtlb" : : : "memory");
180
181 spin_unlock_irqrestore(&sq_mapping_lock, flags);
182
183 /*
184 * Next, we need to map ourselves in the kernel page table, so that
185 * future accesses after a TLB flush will be handled when we take a
186 * page fault.
187 *
188 * Theoretically we could just do this directly and not worry about
189 * setting up the translation by hand ahead of time, but for the
190 * cases where we want a one-shot SQ mapping followed by a quick
191 * writeout before we hit the TLB flush, we do it anyways. This way
192 * we at least save ourselves the initial page fault overhead.
193 */
194 vma = __get_vm_area(map->size, VM_ALLOC, map->sq_addr, SQ_ADDRMAX); 107 vma = __get_vm_area(map->size, VM_ALLOC, map->sq_addr, SQ_ADDRMAX);
195 if (!vma) 108 if (!vma)
196 return ERR_PTR(-ENOMEM); 109 return -ENOMEM;
197 110
198 vma->phys_addr = map->addr; 111 vma->phys_addr = map->addr;
199 112
200 if (remap_area_pages((unsigned long)vma->addr, vma->phys_addr, 113 if (remap_area_pages((unsigned long)vma->addr, vma->phys_addr,
201 map->size, pgprot_val(pgprot))) { 114 map->size, flags)) {
202 vunmap(vma->addr); 115 vunmap(vma->addr);
203 return NULL; 116 return -EAGAIN;
204 } 117 }
205#endif /* CONFIG_MMU */ 118#else
119 /*
120 * Without an MMU (or with it turned off), this is much more
121 * straightforward, as we can just load up each queue's QACR with
122 * the physical address appropriately masked.
123 */
124 ctrl_outl(((map->addr >> 26) << 2) & 0x1c, SQ_QACR0);
125 ctrl_outl(((map->addr >> 26) << 2) & 0x1c, SQ_QACR1);
126#endif
206 127
207 return map; 128 return 0;
208} 129}
209 130
210/** 131/**
@@ -212,42 +133,65 @@ static struct sq_mapping *__sq_remap(struct sq_mapping *map)
212 * @phys: Physical address of mapping. 133 * @phys: Physical address of mapping.
213 * @size: Length of mapping. 134 * @size: Length of mapping.
214 * @name: User invoking mapping. 135 * @name: User invoking mapping.
136 * @flags: Protection flags.
215 * 137 *
216 * Remaps the physical address @phys through the next available store queue 138 * Remaps the physical address @phys through the next available store queue
217 * address of @size length. @name is logged at boot time as well as through 139 * address of @size length. @name is logged at boot time as well as through
218 * the procfs interface. 140 * the sysfs interface.
219 *
220 * A pre-allocated and filled sq_mapping pointer is returned, and must be
221 * cleaned up with a call to sq_unmap() when the user is done with the
222 * mapping.
223 */ 141 */
224struct sq_mapping *sq_remap(unsigned long phys, unsigned int size, const char *name) 142unsigned long sq_remap(unsigned long phys, unsigned int size,
143 const char *name, unsigned long flags)
225{ 144{
226 struct sq_mapping *map; 145 struct sq_mapping *map;
227 unsigned long virt, end; 146 unsigned long end;
228 unsigned int psz; 147 unsigned int psz;
148 int ret, page;
229 149
230 /* Don't allow wraparound or zero size */ 150 /* Don't allow wraparound or zero size */
231 end = phys + size - 1; 151 end = phys + size - 1;
232 if (!size || end < phys) 152 if (unlikely(!size || end < phys))
233 return NULL; 153 return -EINVAL;
234 /* Don't allow anyone to remap normal memory.. */ 154 /* Don't allow anyone to remap normal memory.. */
235 if (phys < virt_to_phys(high_memory)) 155 if (unlikely(phys < virt_to_phys(high_memory)))
236 return NULL; 156 return -EINVAL;
237 157
238 phys &= PAGE_MASK; 158 phys &= PAGE_MASK;
159 size = PAGE_ALIGN(end + 1) - phys;
160
161 map = kmem_cache_alloc(sq_cache, GFP_KERNEL);
162 if (unlikely(!map))
163 return -ENOMEM;
164
165 map->addr = phys;
166 map->size = size;
167 map->name = name;
168
169 page = bitmap_find_free_region(sq_bitmap, 0x04000000,
170 get_order(map->size));
171 if (unlikely(page < 0)) {
172 ret = -ENOSPC;
173 goto out;
174 }
175
176 map->sq_addr = P4SEG_STORE_QUE + (page << PAGE_SHIFT);
177
178 ret = __sq_remap(map, flags);
179 if (unlikely(ret != 0))
180 goto out;
181
182 psz = (size + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
183 pr_info("sqremap: %15s [%4d page%s] va 0x%08lx pa 0x%08lx\n",
184 likely(map->name) ? map->name : "???",
185 psz, psz == 1 ? " " : "s",
186 map->sq_addr, map->addr);
239 187
240 size = PAGE_ALIGN(end + 1) - phys; 188 sq_mapping_list_add(map);
241 virt = __sq_get_next_addr();
242 psz = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
243 map = __sq_alloc_mapping(virt, phys, size, name);
244 189
245 printk("sqremap: %15s [%4d page%s] va 0x%08lx pa 0x%08lx\n", 190 return map->sq_addr;
246 map->name ? map->name : "???",
247 psz, psz == 1 ? " " : "s",
248 map->sq_addr, map->addr);
249 191
250 return __sq_remap(map); 192out:
193 kmem_cache_free(sq_cache, map);
194 return ret;
251} 195}
252 196
253/** 197/**
@@ -258,188 +202,198 @@ struct sq_mapping *sq_remap(unsigned long phys, unsigned int size, const char *n
258 * sq_remap(). Also frees up the pte that was previously inserted into 202 * sq_remap(). Also frees up the pte that was previously inserted into
259 * the kernel page table and discards the UTLB translation. 203 * the kernel page table and discards the UTLB translation.
260 */ 204 */
261void sq_unmap(struct sq_mapping *map) 205void sq_unmap(unsigned long vaddr)
262{ 206{
263 if (map->sq_addr > (unsigned long)high_memory) 207 struct sq_mapping **p, *map;
264 vfree((void *)(map->sq_addr & PAGE_MASK)); 208 struct vm_struct *vma;
209 int page;
265 210
266 list_del(&map->list); 211 for (p = &sq_mapping_list; (map = *p); p = &map->next)
267 kfree(map); 212 if (map->sq_addr == vaddr)
268} 213 break;
269 214
270/** 215 if (unlikely(!map)) {
271 * sq_clear - Clear a store queue range 216 printk("%s: bad store queue address 0x%08lx\n",
272 * @addr: Address to start clearing from. 217 __FUNCTION__, vaddr);
273 * @len: Length to clear. 218 return;
274 * 219 }
275 * A quick zero-fill implementation for clearing out memory that has been
276 * remapped through the store queues.
277 */
278void sq_clear(unsigned long addr, unsigned int len)
279{
280 int i;
281 220
282 /* Clear out both queues linearly */ 221 page = (map->sq_addr - P4SEG_STORE_QUE) >> PAGE_SHIFT;
283 for (i = 0; i < 8; i++) { 222 bitmap_release_region(sq_bitmap, page, get_order(map->size));
284 ctrl_outl(0, addr + i + 0); 223
285 ctrl_outl(0, addr + i + 8); 224#ifdef CONFIG_MMU
225 vma = remove_vm_area((void *)(map->sq_addr & PAGE_MASK));
226 if (!vma) {
227 printk(KERN_ERR "%s: bad address 0x%08lx\n",
228 __FUNCTION__, map->sq_addr);
229 return;
286 } 230 }
231#endif
232
233 sq_mapping_list_del(map);
287 234
288 sq_flush_range(addr, len); 235 kmem_cache_free(sq_cache, map);
289} 236}
290 237
291/** 238/*
292 * sq_vma_unmap - Unmap a VMA range 239 * Needlessly complex sysfs interface. Unfortunately it doesn't seem like
293 * @area: VMA containing range. 240 * there is any other easy way to add things on a per-cpu basis without
294 * @addr: Start of range. 241 * putting the directory entries somewhere stupid and having to create
295 * @len: Length of range. 242 * links in sysfs by hand back in to the per-cpu directories.
296 * 243 *
297 * Searches the sq_mapping_list for a mapping matching the sq addr @addr, 244 * Some day we may want to have an additional abstraction per store
298 * and subsequently frees up the entry. Further cleanup is done by generic 245 * queue, but considering the kobject hell we already have to deal with,
299 * code. 246 * it's simply not worth the trouble.
300 */ 247 */
301static void sq_vma_unmap(struct vm_area_struct *area, 248static struct kobject *sq_kobject[NR_CPUS];
302 unsigned long addr, size_t len)
303{
304 struct list_head *pos, *tmp;
305 249
306 list_for_each_safe(pos, tmp, &sq_mapping_list) { 250struct sq_sysfs_attr {
307 struct sq_mapping *entry; 251 struct attribute attr;
252 ssize_t (*show)(char *buf);
253 ssize_t (*store)(const char *buf, size_t count);
254};
308 255
309 entry = list_entry(pos, typeof(*entry), list); 256#define to_sq_sysfs_attr(attr) container_of(attr, struct sq_sysfs_attr, attr)
310 257
311 if (entry->sq_addr == addr) { 258static ssize_t sq_sysfs_show(struct kobject *kobj, struct attribute *attr,
312 /* 259 char *buf)
313 * We could probably get away without doing the tlb flush 260{
314 * here, as generic code should take care of most of this 261 struct sq_sysfs_attr *sattr = to_sq_sysfs_attr(attr);
315 * when unmapping the rest of the VMA range for us. Leave
316 * it in for added sanity for the time being..
317 */
318 __flush_tlb_page(get_asid(), entry->sq_addr & PAGE_MASK);
319 262
320 list_del(&entry->list); 263 if (likely(sattr->show))
321 kfree(entry); 264 return sattr->show(buf);
322 265
323 return; 266 return -EIO;
324 }
325 }
326} 267}
327 268
328/** 269static ssize_t sq_sysfs_store(struct kobject *kobj, struct attribute *attr,
329 * sq_vma_sync - Sync a VMA range 270 const char *buf, size_t count)
330 * @area: VMA containing range.
331 * @start: Start of range.
332 * @len: Length of range.
333 * @flags: Additional flags.
334 *
335 * Synchronizes an sq mapped range by flushing the store queue cache for
336 * the duration of the mapping.
337 *
338 * Used internally for user mappings, which must use msync() to prefetch
339 * the store queue cache.
340 */
341static int sq_vma_sync(struct vm_area_struct *area,
342 unsigned long start, size_t len, unsigned int flags)
343{ 271{
344 sq_flush_range(start, len); 272 struct sq_sysfs_attr *sattr = to_sq_sysfs_attr(attr);
345 273
346 return 0; 274 if (likely(sattr->store))
275 return sattr->store(buf, count);
276
277 return -EIO;
347} 278}
348 279
349static struct vm_operations_struct sq_vma_ops = { 280static ssize_t mapping_show(char *buf)
350 .unmap = sq_vma_unmap, 281{
351 .sync = sq_vma_sync, 282 struct sq_mapping **list, *entry;
352}; 283 char *p = buf;
353 284
354/** 285 for (list = &sq_mapping_list; (entry = *list); list = &entry->next)
355 * sq_mmap - mmap() for /dev/cpu/sq 286 p += sprintf(p, "%08lx-%08lx [%08lx]: %s\n",
356 * @file: unused. 287 entry->sq_addr, entry->sq_addr + entry->size,
357 * @vma: VMA to remap. 288 entry->addr, entry->name);
358 * 289
359 * Remap the specified vma @vma through the store queues, and setup associated 290 return p - buf;
360 * information for the new mapping. Also build up the page tables for the new 291}
361 * area. 292
362 */ 293static ssize_t mapping_store(const char *buf, size_t count)
363static int sq_mmap(struct file *file, struct vm_area_struct *vma)
364{ 294{
365 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; 295 unsigned long base = 0, len = 0;
366 unsigned long size = vma->vm_end - vma->vm_start;
367 struct sq_mapping *map;
368 296
369 /* 297 sscanf(buf, "%lx %lx", &base, &len);
370 * We're not interested in any arbitrary virtual address that has 298 if (!base)
371 * been stuck in the VMA, as we already know what addresses we 299 return -EIO;
372 * want. Save off the size, and reposition the VMA to begin at
373 * the next available sq address.
374 */
375 vma->vm_start = __sq_get_next_addr();
376 vma->vm_end = vma->vm_start + size;
377 300
378 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 301 if (likely(len)) {
302 int ret = sq_remap(base, len, "Userspace",
303 pgprot_val(PAGE_SHARED));
304 if (ret < 0)
305 return ret;
306 } else
307 sq_unmap(base);
379 308
380 vma->vm_flags |= VM_IO | VM_RESERVED; 309 return count;
310}
381 311
382 map = __sq_alloc_mapping(vma->vm_start, offset, size, "Userspace"); 312static struct sq_sysfs_attr mapping_attr =
313 __ATTR(mapping, 0644, mapping_show, mapping_store);
383 314
384 if (io_remap_pfn_range(vma, map->sq_addr, map->addr >> PAGE_SHIFT, 315static struct attribute *sq_sysfs_attrs[] = {
385 size, vma->vm_page_prot)) 316 &mapping_attr.attr,
386 return -EAGAIN; 317 NULL,
318};
387 319
388 vma->vm_ops = &sq_vma_ops; 320static struct sysfs_ops sq_sysfs_ops = {
321 .show = sq_sysfs_show,
322 .store = sq_sysfs_store,
323};
389 324
390 return 0; 325static struct kobj_type ktype_percpu_entry = {
391} 326 .sysfs_ops = &sq_sysfs_ops,
327 .default_attrs = sq_sysfs_attrs,
328};
392 329
393#ifdef CONFIG_PROC_FS 330static int __devinit sq_sysdev_add(struct sys_device *sysdev)
394static int sq_mapping_read_proc(char *buf, char **start, off_t off,
395 int len, int *eof, void *data)
396{ 331{
397 struct list_head *pos; 332 unsigned int cpu = sysdev->id;
398 char *p = buf; 333 struct kobject *kobj;
399 334
400 list_for_each_prev(pos, &sq_mapping_list) { 335 sq_kobject[cpu] = kzalloc(sizeof(struct kobject), GFP_KERNEL);
401 struct sq_mapping *entry; 336 if (unlikely(!sq_kobject[cpu]))
337 return -ENOMEM;
402 338
403 entry = list_entry(pos, typeof(*entry), list); 339 kobj = sq_kobject[cpu];
340 kobj->parent = &sysdev->kobj;
341 kobject_set_name(kobj, "%s", "sq");
342 kobj->ktype = &ktype_percpu_entry;
404 343
405 p += sprintf(p, "%08lx-%08lx [%08lx]: %s\n", entry->sq_addr, 344 return kobject_register(kobj);
406 entry->sq_addr + entry->size - 1, entry->addr,
407 entry->name);
408 }
409
410 return p - buf;
411} 345}
412#endif
413 346
414static struct file_operations sq_fops = { 347static int __devexit sq_sysdev_remove(struct sys_device *sysdev)
415 .owner = THIS_MODULE, 348{
416 .mmap = sq_mmap, 349 unsigned int cpu = sysdev->id;
417}; 350 struct kobject *kobj = sq_kobject[cpu];
418 351
419static struct miscdevice sq_dev = { 352 kobject_unregister(kobj);
420 .minor = STORE_QUEUE_MINOR, 353 return 0;
421 .name = "sq", 354}
422 .fops = &sq_fops, 355
356static struct sysdev_driver sq_sysdev_driver = {
357 .add = sq_sysdev_add,
358 .remove = __devexit_p(sq_sysdev_remove),
423}; 359};
424 360
425static int __init sq_api_init(void) 361static int __init sq_api_init(void)
426{ 362{
427 int ret; 363 unsigned int nr_pages = 0x04000000 >> PAGE_SHIFT;
364 unsigned int size = (nr_pages + (BITS_PER_LONG - 1)) / BITS_PER_LONG;
365 int ret = -ENOMEM;
366
428 printk(KERN_NOTICE "sq: Registering store queue API.\n"); 367 printk(KERN_NOTICE "sq: Registering store queue API.\n");
429 368
430 create_proc_read_entry("sq_mapping", 0, 0, sq_mapping_read_proc, 0); 369 sq_cache = kmem_cache_create("store_queue_cache",
370 sizeof(struct sq_mapping), 0, 0,
371 NULL, NULL);
372 if (unlikely(!sq_cache))
373 return ret;
431 374
432 ret = misc_register(&sq_dev); 375 sq_bitmap = kzalloc(size, GFP_KERNEL);
433 if (ret) 376 if (unlikely(!sq_bitmap))
434 remove_proc_entry("sq_mapping", NULL); 377 goto out;
378
379 ret = sysdev_driver_register(&cpu_sysdev_class, &sq_sysdev_driver);
380 if (unlikely(ret != 0))
381 goto out;
382
383 return 0;
384
385out:
386 kfree(sq_bitmap);
387 kmem_cache_destroy(sq_cache);
435 388
436 return ret; 389 return ret;
437} 390}
438 391
439static void __exit sq_api_exit(void) 392static void __exit sq_api_exit(void)
440{ 393{
441 misc_deregister(&sq_dev); 394 sysdev_driver_unregister(&cpu_sysdev_class, &sq_sysdev_driver);
442 remove_proc_entry("sq_mapping", NULL); 395 kfree(sq_bitmap);
396 kmem_cache_destroy(sq_cache);
443} 397}
444 398
445module_init(sq_api_init); 399module_init(sq_api_init);
@@ -448,11 +402,7 @@ module_exit(sq_api_exit);
448MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, M. R. Brown <mrbrown@0xd6.org>"); 402MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, M. R. Brown <mrbrown@0xd6.org>");
449MODULE_DESCRIPTION("Simple API for SH-4 integrated Store Queues"); 403MODULE_DESCRIPTION("Simple API for SH-4 integrated Store Queues");
450MODULE_LICENSE("GPL"); 404MODULE_LICENSE("GPL");
451MODULE_ALIAS_MISCDEV(STORE_QUEUE_MINOR);
452 405
453EXPORT_SYMBOL(sq_remap); 406EXPORT_SYMBOL(sq_remap);
454EXPORT_SYMBOL(sq_unmap); 407EXPORT_SYMBOL(sq_unmap);
455EXPORT_SYMBOL(sq_clear);
456EXPORT_SYMBOL(sq_flush);
457EXPORT_SYMBOL(sq_flush_range); 408EXPORT_SYMBOL(sq_flush_range);
458