diff options
author | Paul Mundt <lethal@linux-sh.org> | 2007-11-21 09:27:52 -0500 |
---|---|---|
committer | Paul Mundt <lethal@linux-sh.org> | 2008-01-27 23:18:55 -0500 |
commit | b4eaa1cc7ce8203ac9af9184c49c635ce79592b1 (patch) | |
tree | 83d71382fed9cc992cd6a1c23e6ec28fef304f2a /arch/sh/kernel/time_64.c | |
parent | 18bc81319b438ae3266e1b2653ce874912dae891 (diff) |
sh: Kill off the rest of arch/sh64/kernel/.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Diffstat (limited to 'arch/sh/kernel/time_64.c')
-rw-r--r-- | arch/sh/kernel/time_64.c | 528 |
1 files changed, 528 insertions, 0 deletions
diff --git a/arch/sh/kernel/time_64.c b/arch/sh/kernel/time_64.c new file mode 100644 index 00000000000..4c52feead11 --- /dev/null +++ b/arch/sh/kernel/time_64.c | |||
@@ -0,0 +1,528 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * arch/sh64/kernel/time.c | ||
7 | * | ||
8 | * Copyright (C) 2000, 2001 Paolo Alberelli | ||
9 | * Copyright (C) 2003 - 2007 Paul Mundt | ||
10 | * Copyright (C) 2003 Richard Curnow | ||
11 | * | ||
12 | * Original TMU/RTC code taken from sh version. | ||
13 | * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka | ||
14 | * Some code taken from i386 version. | ||
15 | * Copyright (C) 1991, 1992, 1995 Linus Torvalds | ||
16 | */ | ||
17 | #include <linux/errno.h> | ||
18 | #include <linux/rwsem.h> | ||
19 | #include <linux/sched.h> | ||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/param.h> | ||
22 | #include <linux/string.h> | ||
23 | #include <linux/mm.h> | ||
24 | #include <linux/interrupt.h> | ||
25 | #include <linux/time.h> | ||
26 | #include <linux/delay.h> | ||
27 | #include <linux/init.h> | ||
28 | #include <linux/profile.h> | ||
29 | #include <linux/smp.h> | ||
30 | #include <linux/module.h> | ||
31 | #include <linux/bcd.h> | ||
32 | #include <linux/timex.h> | ||
33 | #include <linux/irq.h> | ||
34 | #include <linux/io.h> | ||
35 | #include <linux/platform_device.h> | ||
36 | #include <asm/cpu/registers.h> /* required by inline __asm__ stmt. */ | ||
37 | #include <asm/cpu/irq.h> | ||
38 | #include <asm/addrspace.h> | ||
39 | #include <asm/processor.h> | ||
40 | #include <asm/uaccess.h> | ||
41 | #include <asm/delay.h> | ||
42 | |||
43 | #define TMU_TOCR_INIT 0x00 | ||
44 | #define TMU0_TCR_INIT 0x0020 | ||
45 | #define TMU_TSTR_INIT 1 | ||
46 | #define TMU_TSTR_OFF 0 | ||
47 | |||
48 | /* Real Time Clock */ | ||
49 | #define RTC_BLOCK_OFF 0x01040000 | ||
50 | #define RTC_BASE PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF | ||
51 | #define RTC_RCR1_CIE 0x10 /* Carry Interrupt Enable */ | ||
52 | #define RTC_RCR1 (rtc_base + 0x38) | ||
53 | |||
54 | /* Clock, Power and Reset Controller */ | ||
55 | #define CPRC_BLOCK_OFF 0x01010000 | ||
56 | #define CPRC_BASE PHYS_PERIPHERAL_BLOCK + CPRC_BLOCK_OFF | ||
57 | |||
58 | #define FRQCR (cprc_base+0x0) | ||
59 | #define WTCSR (cprc_base+0x0018) | ||
60 | #define STBCR (cprc_base+0x0030) | ||
61 | |||
62 | /* Time Management Unit */ | ||
63 | #define TMU_BLOCK_OFF 0x01020000 | ||
64 | #define TMU_BASE PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF | ||
65 | #define TMU0_BASE tmu_base + 0x8 + (0xc * 0x0) | ||
66 | #define TMU1_BASE tmu_base + 0x8 + (0xc * 0x1) | ||
67 | #define TMU2_BASE tmu_base + 0x8 + (0xc * 0x2) | ||
68 | |||
69 | #define TMU_TOCR tmu_base+0x0 /* Byte access */ | ||
70 | #define TMU_TSTR tmu_base+0x4 /* Byte access */ | ||
71 | |||
72 | #define TMU0_TCOR TMU0_BASE+0x0 /* Long access */ | ||
73 | #define TMU0_TCNT TMU0_BASE+0x4 /* Long access */ | ||
74 | #define TMU0_TCR TMU0_BASE+0x8 /* Word access */ | ||
75 | |||
76 | #define TICK_SIZE (tick_nsec / 1000) | ||
77 | |||
78 | static unsigned long tmu_base, rtc_base; | ||
79 | unsigned long cprc_base; | ||
80 | |||
81 | /* Variables to allow interpolation of time of day to resolution better than a | ||
82 | * jiffy. */ | ||
83 | |||
84 | /* This is effectively protected by xtime_lock */ | ||
85 | static unsigned long ctc_last_interrupt; | ||
86 | static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */ | ||
87 | |||
88 | #define CTC_JIFFY_SCALE_SHIFT 40 | ||
89 | |||
90 | /* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */ | ||
91 | static unsigned long long scaled_recip_ctc_ticks_per_jiffy; | ||
92 | |||
93 | /* Estimate number of microseconds that have elapsed since the last timer tick, | ||
94 | by scaling the delta that has occurred in the CTC register. | ||
95 | |||
96 | WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at | ||
97 | the CPU clock rate. If the CPU sleeps, the CTC stops counting. Bear this | ||
98 | in mind if enabling SLEEP_WORKS in process.c. In that case, this algorithm | ||
99 | probably needs to use TMU.TCNT0 instead. This will work even if the CPU is | ||
100 | sleeping, though will be coarser. | ||
101 | |||
102 | FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime | ||
103 | is running or if the freq or tick arguments of adjtimex are modified after | ||
104 | we have calibrated the scaling factor? This will result in either a jump at | ||
105 | the end of a tick period, or a wrap backwards at the start of the next one, | ||
106 | if the application is reading the time of day often enough. I think we | ||
107 | ought to do better than this. For this reason, usecs_per_jiffy is left | ||
108 | separated out in the calculation below. This allows some future hook into | ||
109 | the adjtime-related stuff in kernel/timer.c to remove this hazard. | ||
110 | |||
111 | */ | ||
112 | |||
113 | static unsigned long usecs_since_tick(void) | ||
114 | { | ||
115 | unsigned long long current_ctc; | ||
116 | long ctc_ticks_since_interrupt; | ||
117 | unsigned long long ull_ctc_ticks_since_interrupt; | ||
118 | unsigned long result; | ||
119 | |||
120 | unsigned long long mul1_out; | ||
121 | unsigned long long mul1_out_high; | ||
122 | unsigned long long mul2_out_low, mul2_out_high; | ||
123 | |||
124 | /* Read CTC register */ | ||
125 | asm ("getcon cr62, %0" : "=r" (current_ctc)); | ||
126 | /* Note, the CTC counts down on each CPU clock, not up. | ||
127 | Note(2), use long type to get correct wraparound arithmetic when | ||
128 | the counter crosses zero. */ | ||
129 | ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc; | ||
130 | ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt; | ||
131 | |||
132 | /* Inline assembly to do 32x32x32->64 multiplier */ | ||
133 | asm volatile ("mulu.l %1, %2, %0" : | ||
134 | "=r" (mul1_out) : | ||
135 | "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy)); | ||
136 | |||
137 | mul1_out_high = mul1_out >> 32; | ||
138 | |||
139 | asm volatile ("mulu.l %1, %2, %0" : | ||
140 | "=r" (mul2_out_low) : | ||
141 | "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy)); | ||
142 | |||
143 | #if 1 | ||
144 | asm volatile ("mulu.l %1, %2, %0" : | ||
145 | "=r" (mul2_out_high) : | ||
146 | "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy)); | ||
147 | #endif | ||
148 | |||
149 | result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT); | ||
150 | |||
151 | return result; | ||
152 | } | ||
153 | |||
154 | void do_gettimeofday(struct timeval *tv) | ||
155 | { | ||
156 | unsigned long flags; | ||
157 | unsigned long seq; | ||
158 | unsigned long usec, sec; | ||
159 | |||
160 | do { | ||
161 | seq = read_seqbegin_irqsave(&xtime_lock, flags); | ||
162 | usec = usecs_since_tick(); | ||
163 | sec = xtime.tv_sec; | ||
164 | usec += xtime.tv_nsec / 1000; | ||
165 | } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); | ||
166 | |||
167 | while (usec >= 1000000) { | ||
168 | usec -= 1000000; | ||
169 | sec++; | ||
170 | } | ||
171 | |||
172 | tv->tv_sec = sec; | ||
173 | tv->tv_usec = usec; | ||
174 | } | ||
175 | |||
176 | int do_settimeofday(struct timespec *tv) | ||
177 | { | ||
178 | time_t wtm_sec, sec = tv->tv_sec; | ||
179 | long wtm_nsec, nsec = tv->tv_nsec; | ||
180 | |||
181 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | ||
182 | return -EINVAL; | ||
183 | |||
184 | write_seqlock_irq(&xtime_lock); | ||
185 | /* | ||
186 | * This is revolting. We need to set "xtime" correctly. However, the | ||
187 | * value in this location is the value at the most recent update of | ||
188 | * wall time. Discover what correction gettimeofday() would have | ||
189 | * made, and then undo it! | ||
190 | */ | ||
191 | nsec -= 1000 * usecs_since_tick(); | ||
192 | |||
193 | wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); | ||
194 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | ||
195 | |||
196 | set_normalized_timespec(&xtime, sec, nsec); | ||
197 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | ||
198 | |||
199 | ntp_clear(); | ||
200 | write_sequnlock_irq(&xtime_lock); | ||
201 | clock_was_set(); | ||
202 | |||
203 | return 0; | ||
204 | } | ||
205 | EXPORT_SYMBOL(do_settimeofday); | ||
206 | |||
207 | /* Dummy RTC ops */ | ||
208 | static void null_rtc_get_time(struct timespec *tv) | ||
209 | { | ||
210 | tv->tv_sec = mktime(2000, 1, 1, 0, 0, 0); | ||
211 | tv->tv_nsec = 0; | ||
212 | } | ||
213 | |||
214 | static int null_rtc_set_time(const time_t secs) | ||
215 | { | ||
216 | return 0; | ||
217 | } | ||
218 | |||
219 | void (*rtc_sh_get_time)(struct timespec *) = null_rtc_get_time; | ||
220 | int (*rtc_sh_set_time)(const time_t) = null_rtc_set_time; | ||
221 | |||
222 | /* last time the RTC clock got updated */ | ||
223 | static long last_rtc_update; | ||
224 | |||
225 | /* | ||
226 | * timer_interrupt() needs to keep up the real-time clock, | ||
227 | * as well as call the "do_timer()" routine every clocktick | ||
228 | */ | ||
229 | static inline void do_timer_interrupt(void) | ||
230 | { | ||
231 | unsigned long long current_ctc; | ||
232 | asm ("getcon cr62, %0" : "=r" (current_ctc)); | ||
233 | ctc_last_interrupt = (unsigned long) current_ctc; | ||
234 | |||
235 | do_timer(1); | ||
236 | #ifndef CONFIG_SMP | ||
237 | update_process_times(user_mode(get_irq_regs())); | ||
238 | #endif | ||
239 | if (current->pid) | ||
240 | profile_tick(CPU_PROFILING); | ||
241 | |||
242 | #ifdef CONFIG_HEARTBEAT | ||
243 | if (sh_mv.mv_heartbeat != NULL) | ||
244 | sh_mv.mv_heartbeat(); | ||
245 | #endif | ||
246 | |||
247 | /* | ||
248 | * If we have an externally synchronized Linux clock, then update | ||
249 | * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | ||
250 | * called as close as possible to 500 ms before the new second starts. | ||
251 | */ | ||
252 | if (ntp_synced() && | ||
253 | xtime.tv_sec > last_rtc_update + 660 && | ||
254 | (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && | ||
255 | (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { | ||
256 | if (rtc_sh_set_time(xtime.tv_sec) == 0) | ||
257 | last_rtc_update = xtime.tv_sec; | ||
258 | else | ||
259 | /* do it again in 60 s */ | ||
260 | last_rtc_update = xtime.tv_sec - 600; | ||
261 | } | ||
262 | } | ||
263 | |||
264 | /* | ||
265 | * This is the same as the above, except we _also_ save the current | ||
266 | * Time Stamp Counter value at the time of the timer interrupt, so that | ||
267 | * we later on can estimate the time of day more exactly. | ||
268 | */ | ||
269 | static irqreturn_t timer_interrupt(int irq, void *dev_id) | ||
270 | { | ||
271 | unsigned long timer_status; | ||
272 | |||
273 | /* Clear UNF bit */ | ||
274 | timer_status = ctrl_inw(TMU0_TCR); | ||
275 | timer_status &= ~0x100; | ||
276 | ctrl_outw(timer_status, TMU0_TCR); | ||
277 | |||
278 | /* | ||
279 | * Here we are in the timer irq handler. We just have irqs locally | ||
280 | * disabled but we don't know if the timer_bh is running on the other | ||
281 | * CPU. We need to avoid to SMP race with it. NOTE: we don' t need | ||
282 | * the irq version of write_lock because as just said we have irq | ||
283 | * locally disabled. -arca | ||
284 | */ | ||
285 | write_lock(&xtime_lock); | ||
286 | do_timer_interrupt(); | ||
287 | write_unlock(&xtime_lock); | ||
288 | |||
289 | return IRQ_HANDLED; | ||
290 | } | ||
291 | |||
292 | |||
293 | static __init unsigned int get_cpu_hz(void) | ||
294 | { | ||
295 | unsigned int count; | ||
296 | unsigned long __dummy; | ||
297 | unsigned long ctc_val_init, ctc_val; | ||
298 | |||
299 | /* | ||
300 | ** Regardless the toolchain, force the compiler to use the | ||
301 | ** arbitrary register r3 as a clock tick counter. | ||
302 | ** NOTE: r3 must be in accordance with sh64_rtc_interrupt() | ||
303 | */ | ||
304 | register unsigned long long __rtc_irq_flag __asm__ ("r3"); | ||
305 | |||
306 | local_irq_enable(); | ||
307 | do {} while (ctrl_inb(rtc_base) != 0); | ||
308 | ctrl_outb(RTC_RCR1_CIE, RTC_RCR1); /* Enable carry interrupt */ | ||
309 | |||
310 | /* | ||
311 | * r3 is arbitrary. CDC does not support "=z". | ||
312 | */ | ||
313 | ctc_val_init = 0xffffffff; | ||
314 | ctc_val = ctc_val_init; | ||
315 | |||
316 | asm volatile("gettr tr0, %1\n\t" | ||
317 | "putcon %0, " __CTC "\n\t" | ||
318 | "and %2, r63, %2\n\t" | ||
319 | "pta $+4, tr0\n\t" | ||
320 | "beq/l %2, r63, tr0\n\t" | ||
321 | "ptabs %1, tr0\n\t" | ||
322 | "getcon " __CTC ", %0\n\t" | ||
323 | : "=r"(ctc_val), "=r" (__dummy), "=r" (__rtc_irq_flag) | ||
324 | : "0" (0)); | ||
325 | local_irq_disable(); | ||
326 | /* | ||
327 | * SH-3: | ||
328 | * CPU clock = 4 stages * loop | ||
329 | * tst rm,rm if id ex | ||
330 | * bt/s 1b if id ex | ||
331 | * add #1,rd if id ex | ||
332 | * (if) pipe line stole | ||
333 | * tst rm,rm if id ex | ||
334 | * .... | ||
335 | * | ||
336 | * | ||
337 | * SH-4: | ||
338 | * CPU clock = 6 stages * loop | ||
339 | * I don't know why. | ||
340 | * .... | ||
341 | * | ||
342 | * SH-5: | ||
343 | * Use CTC register to count. This approach returns the right value | ||
344 | * even if the I-cache is disabled (e.g. whilst debugging.) | ||
345 | * | ||
346 | */ | ||
347 | |||
348 | count = ctc_val_init - ctc_val; /* CTC counts down */ | ||
349 | |||
350 | #if defined (CONFIG_SH_SIMULATOR) | ||
351 | /* | ||
352 | * Let's pretend we are a 5MHz SH-5 to avoid a too | ||
353 | * little timer interval. Also to keep delay | ||
354 | * calibration within a reasonable time. | ||
355 | */ | ||
356 | return 5000000; | ||
357 | #else | ||
358 | /* | ||
359 | * This really is count by the number of clock cycles | ||
360 | * by the ratio between a complete R64CNT | ||
361 | * wrap-around (128) and CUI interrupt being raised (64). | ||
362 | */ | ||
363 | return count*2; | ||
364 | #endif | ||
365 | } | ||
366 | |||
367 | static irqreturn_t sh64_rtc_interrupt(int irq, void *dev_id) | ||
368 | { | ||
369 | struct pt_regs *regs = get_irq_regs(); | ||
370 | |||
371 | ctrl_outb(0, RTC_RCR1); /* Disable Carry Interrupts */ | ||
372 | regs->regs[3] = 1; /* Using r3 */ | ||
373 | |||
374 | return IRQ_HANDLED; | ||
375 | } | ||
376 | |||
377 | static struct irqaction irq0 = { | ||
378 | .handler = timer_interrupt, | ||
379 | .flags = IRQF_DISABLED, | ||
380 | .mask = CPU_MASK_NONE, | ||
381 | .name = "timer", | ||
382 | }; | ||
383 | static struct irqaction irq1 = { | ||
384 | .handler = sh64_rtc_interrupt, | ||
385 | .flags = IRQF_DISABLED, | ||
386 | .mask = CPU_MASK_NONE, | ||
387 | .name = "rtc", | ||
388 | }; | ||
389 | |||
390 | void __init time_init(void) | ||
391 | { | ||
392 | unsigned int cpu_clock, master_clock, bus_clock, module_clock; | ||
393 | unsigned long interval; | ||
394 | unsigned long frqcr, ifc, pfc; | ||
395 | static int ifc_table[] = { 2, 4, 6, 8, 10, 12, 16, 24 }; | ||
396 | #define bfc_table ifc_table /* Same */ | ||
397 | #define pfc_table ifc_table /* Same */ | ||
398 | |||
399 | tmu_base = onchip_remap(TMU_BASE, 1024, "TMU"); | ||
400 | if (!tmu_base) { | ||
401 | panic("Unable to remap TMU\n"); | ||
402 | } | ||
403 | |||
404 | rtc_base = onchip_remap(RTC_BASE, 1024, "RTC"); | ||
405 | if (!rtc_base) { | ||
406 | panic("Unable to remap RTC\n"); | ||
407 | } | ||
408 | |||
409 | cprc_base = onchip_remap(CPRC_BASE, 1024, "CPRC"); | ||
410 | if (!cprc_base) { | ||
411 | panic("Unable to remap CPRC\n"); | ||
412 | } | ||
413 | |||
414 | rtc_sh_get_time(&xtime); | ||
415 | |||
416 | setup_irq(TIMER_IRQ, &irq0); | ||
417 | setup_irq(RTC_IRQ, &irq1); | ||
418 | |||
419 | /* Check how fast it is.. */ | ||
420 | cpu_clock = get_cpu_hz(); | ||
421 | |||
422 | /* Note careful order of operations to maintain reasonable precision and avoid overflow. */ | ||
423 | scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) / (unsigned long long)(cpu_clock / HZ)); | ||
424 | |||
425 | free_irq(RTC_IRQ, NULL); | ||
426 | |||
427 | printk("CPU clock: %d.%02dMHz\n", | ||
428 | (cpu_clock / 1000000), (cpu_clock % 1000000)/10000); | ||
429 | { | ||
430 | unsigned short bfc; | ||
431 | frqcr = ctrl_inl(FRQCR); | ||
432 | ifc = ifc_table[(frqcr>> 6) & 0x0007]; | ||
433 | bfc = bfc_table[(frqcr>> 3) & 0x0007]; | ||
434 | pfc = pfc_table[(frqcr>> 12) & 0x0007]; | ||
435 | master_clock = cpu_clock * ifc; | ||
436 | bus_clock = master_clock/bfc; | ||
437 | } | ||
438 | |||
439 | printk("Bus clock: %d.%02dMHz\n", | ||
440 | (bus_clock/1000000), (bus_clock % 1000000)/10000); | ||
441 | module_clock = master_clock/pfc; | ||
442 | printk("Module clock: %d.%02dMHz\n", | ||
443 | (module_clock/1000000), (module_clock % 1000000)/10000); | ||
444 | interval = (module_clock/(HZ*4)); | ||
445 | |||
446 | printk("Interval = %ld\n", interval); | ||
447 | |||
448 | current_cpu_data.cpu_clock = cpu_clock; | ||
449 | current_cpu_data.master_clock = master_clock; | ||
450 | current_cpu_data.bus_clock = bus_clock; | ||
451 | current_cpu_data.module_clock = module_clock; | ||
452 | |||
453 | /* Start TMU0 */ | ||
454 | ctrl_outb(TMU_TSTR_OFF, TMU_TSTR); | ||
455 | ctrl_outb(TMU_TOCR_INIT, TMU_TOCR); | ||
456 | ctrl_outw(TMU0_TCR_INIT, TMU0_TCR); | ||
457 | ctrl_outl(interval, TMU0_TCOR); | ||
458 | ctrl_outl(interval, TMU0_TCNT); | ||
459 | ctrl_outb(TMU_TSTR_INIT, TMU_TSTR); | ||
460 | } | ||
461 | |||
462 | void enter_deep_standby(void) | ||
463 | { | ||
464 | /* Disable watchdog timer */ | ||
465 | ctrl_outl(0xa5000000, WTCSR); | ||
466 | /* Configure deep standby on sleep */ | ||
467 | ctrl_outl(0x03, STBCR); | ||
468 | |||
469 | #ifdef CONFIG_SH_ALPHANUMERIC | ||
470 | { | ||
471 | extern void mach_alphanum(int position, unsigned char value); | ||
472 | extern void mach_alphanum_brightness(int setting); | ||
473 | char halted[] = "Halted. "; | ||
474 | int i; | ||
475 | mach_alphanum_brightness(6); /* dimmest setting above off */ | ||
476 | for (i=0; i<8; i++) { | ||
477 | mach_alphanum(i, halted[i]); | ||
478 | } | ||
479 | asm __volatile__ ("synco"); | ||
480 | } | ||
481 | #endif | ||
482 | |||
483 | asm __volatile__ ("sleep"); | ||
484 | asm __volatile__ ("synci"); | ||
485 | asm __volatile__ ("nop"); | ||
486 | asm __volatile__ ("nop"); | ||
487 | asm __volatile__ ("nop"); | ||
488 | asm __volatile__ ("nop"); | ||
489 | panic("Unexpected wakeup!\n"); | ||
490 | } | ||
491 | |||
492 | static struct resource rtc_resources[] = { | ||
493 | [0] = { | ||
494 | /* RTC base, filled in by rtc_init */ | ||
495 | .flags = IORESOURCE_IO, | ||
496 | }, | ||
497 | [1] = { | ||
498 | /* Period IRQ */ | ||
499 | .start = IRQ_PRI, | ||
500 | .flags = IORESOURCE_IRQ, | ||
501 | }, | ||
502 | [2] = { | ||
503 | /* Carry IRQ */ | ||
504 | .start = IRQ_CUI, | ||
505 | .flags = IORESOURCE_IRQ, | ||
506 | }, | ||
507 | [3] = { | ||
508 | /* Alarm IRQ */ | ||
509 | .start = IRQ_ATI, | ||
510 | .flags = IORESOURCE_IRQ, | ||
511 | }, | ||
512 | }; | ||
513 | |||
514 | static struct platform_device rtc_device = { | ||
515 | .name = "sh-rtc", | ||
516 | .id = -1, | ||
517 | .num_resources = ARRAY_SIZE(rtc_resources), | ||
518 | .resource = rtc_resources, | ||
519 | }; | ||
520 | |||
521 | static int __init rtc_init(void) | ||
522 | { | ||
523 | rtc_resources[0].start = rtc_base; | ||
524 | rtc_resources[0].end = rtc_resources[0].start + 0x58 - 1; | ||
525 | |||
526 | return platform_device_register(&rtc_device); | ||
527 | } | ||
528 | device_initcall(rtc_init); | ||