diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/i386/kernel/timers/timer_tsc.c |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/i386/kernel/timers/timer_tsc.c')
-rw-r--r-- | arch/i386/kernel/timers/timer_tsc.c | 560 |
1 files changed, 560 insertions, 0 deletions
diff --git a/arch/i386/kernel/timers/timer_tsc.c b/arch/i386/kernel/timers/timer_tsc.c new file mode 100644 index 00000000000..a685994e5c8 --- /dev/null +++ b/arch/i386/kernel/timers/timer_tsc.c | |||
@@ -0,0 +1,560 @@ | |||
1 | /* | ||
2 | * This code largely moved from arch/i386/kernel/time.c. | ||
3 | * See comments there for proper credits. | ||
4 | * | ||
5 | * 2004-06-25 Jesper Juhl | ||
6 | * moved mark_offset_tsc below cpufreq_delayed_get to avoid gcc 3.4 | ||
7 | * failing to inline. | ||
8 | */ | ||
9 | |||
10 | #include <linux/spinlock.h> | ||
11 | #include <linux/init.h> | ||
12 | #include <linux/timex.h> | ||
13 | #include <linux/errno.h> | ||
14 | #include <linux/cpufreq.h> | ||
15 | #include <linux/string.h> | ||
16 | #include <linux/jiffies.h> | ||
17 | |||
18 | #include <asm/timer.h> | ||
19 | #include <asm/io.h> | ||
20 | /* processor.h for distable_tsc flag */ | ||
21 | #include <asm/processor.h> | ||
22 | |||
23 | #include "io_ports.h" | ||
24 | #include "mach_timer.h" | ||
25 | |||
26 | #include <asm/hpet.h> | ||
27 | |||
28 | #ifdef CONFIG_HPET_TIMER | ||
29 | static unsigned long hpet_usec_quotient; | ||
30 | static unsigned long hpet_last; | ||
31 | static struct timer_opts timer_tsc; | ||
32 | #endif | ||
33 | |||
34 | static inline void cpufreq_delayed_get(void); | ||
35 | |||
36 | int tsc_disable __initdata = 0; | ||
37 | |||
38 | extern spinlock_t i8253_lock; | ||
39 | |||
40 | static int use_tsc; | ||
41 | /* Number of usecs that the last interrupt was delayed */ | ||
42 | static int delay_at_last_interrupt; | ||
43 | |||
44 | static unsigned long last_tsc_low; /* lsb 32 bits of Time Stamp Counter */ | ||
45 | static unsigned long last_tsc_high; /* msb 32 bits of Time Stamp Counter */ | ||
46 | static unsigned long long monotonic_base; | ||
47 | static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED; | ||
48 | |||
49 | /* convert from cycles(64bits) => nanoseconds (64bits) | ||
50 | * basic equation: | ||
51 | * ns = cycles / (freq / ns_per_sec) | ||
52 | * ns = cycles * (ns_per_sec / freq) | ||
53 | * ns = cycles * (10^9 / (cpu_mhz * 10^6)) | ||
54 | * ns = cycles * (10^3 / cpu_mhz) | ||
55 | * | ||
56 | * Then we use scaling math (suggested by george@mvista.com) to get: | ||
57 | * ns = cycles * (10^3 * SC / cpu_mhz) / SC | ||
58 | * ns = cycles * cyc2ns_scale / SC | ||
59 | * | ||
60 | * And since SC is a constant power of two, we can convert the div | ||
61 | * into a shift. | ||
62 | * -johnstul@us.ibm.com "math is hard, lets go shopping!" | ||
63 | */ | ||
64 | static unsigned long cyc2ns_scale; | ||
65 | #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ | ||
66 | |||
67 | static inline void set_cyc2ns_scale(unsigned long cpu_mhz) | ||
68 | { | ||
69 | cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz; | ||
70 | } | ||
71 | |||
72 | static inline unsigned long long cycles_2_ns(unsigned long long cyc) | ||
73 | { | ||
74 | return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; | ||
75 | } | ||
76 | |||
77 | static int count2; /* counter for mark_offset_tsc() */ | ||
78 | |||
79 | /* Cached *multiplier* to convert TSC counts to microseconds. | ||
80 | * (see the equation below). | ||
81 | * Equal to 2^32 * (1 / (clocks per usec) ). | ||
82 | * Initialized in time_init. | ||
83 | */ | ||
84 | static unsigned long fast_gettimeoffset_quotient; | ||
85 | |||
86 | static unsigned long get_offset_tsc(void) | ||
87 | { | ||
88 | register unsigned long eax, edx; | ||
89 | |||
90 | /* Read the Time Stamp Counter */ | ||
91 | |||
92 | rdtsc(eax,edx); | ||
93 | |||
94 | /* .. relative to previous jiffy (32 bits is enough) */ | ||
95 | eax -= last_tsc_low; /* tsc_low delta */ | ||
96 | |||
97 | /* | ||
98 | * Time offset = (tsc_low delta) * fast_gettimeoffset_quotient | ||
99 | * = (tsc_low delta) * (usecs_per_clock) | ||
100 | * = (tsc_low delta) * (usecs_per_jiffy / clocks_per_jiffy) | ||
101 | * | ||
102 | * Using a mull instead of a divl saves up to 31 clock cycles | ||
103 | * in the critical path. | ||
104 | */ | ||
105 | |||
106 | __asm__("mull %2" | ||
107 | :"=a" (eax), "=d" (edx) | ||
108 | :"rm" (fast_gettimeoffset_quotient), | ||
109 | "0" (eax)); | ||
110 | |||
111 | /* our adjusted time offset in microseconds */ | ||
112 | return delay_at_last_interrupt + edx; | ||
113 | } | ||
114 | |||
115 | static unsigned long long monotonic_clock_tsc(void) | ||
116 | { | ||
117 | unsigned long long last_offset, this_offset, base; | ||
118 | unsigned seq; | ||
119 | |||
120 | /* atomically read monotonic base & last_offset */ | ||
121 | do { | ||
122 | seq = read_seqbegin(&monotonic_lock); | ||
123 | last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; | ||
124 | base = monotonic_base; | ||
125 | } while (read_seqretry(&monotonic_lock, seq)); | ||
126 | |||
127 | /* Read the Time Stamp Counter */ | ||
128 | rdtscll(this_offset); | ||
129 | |||
130 | /* return the value in ns */ | ||
131 | return base + cycles_2_ns(this_offset - last_offset); | ||
132 | } | ||
133 | |||
134 | /* | ||
135 | * Scheduler clock - returns current time in nanosec units. | ||
136 | */ | ||
137 | unsigned long long sched_clock(void) | ||
138 | { | ||
139 | unsigned long long this_offset; | ||
140 | |||
141 | /* | ||
142 | * In the NUMA case we dont use the TSC as they are not | ||
143 | * synchronized across all CPUs. | ||
144 | */ | ||
145 | #ifndef CONFIG_NUMA | ||
146 | if (!use_tsc) | ||
147 | #endif | ||
148 | /* no locking but a rare wrong value is not a big deal */ | ||
149 | return jiffies_64 * (1000000000 / HZ); | ||
150 | |||
151 | /* Read the Time Stamp Counter */ | ||
152 | rdtscll(this_offset); | ||
153 | |||
154 | /* return the value in ns */ | ||
155 | return cycles_2_ns(this_offset); | ||
156 | } | ||
157 | |||
158 | static void delay_tsc(unsigned long loops) | ||
159 | { | ||
160 | unsigned long bclock, now; | ||
161 | |||
162 | rdtscl(bclock); | ||
163 | do | ||
164 | { | ||
165 | rep_nop(); | ||
166 | rdtscl(now); | ||
167 | } while ((now-bclock) < loops); | ||
168 | } | ||
169 | |||
170 | #ifdef CONFIG_HPET_TIMER | ||
171 | static void mark_offset_tsc_hpet(void) | ||
172 | { | ||
173 | unsigned long long this_offset, last_offset; | ||
174 | unsigned long offset, temp, hpet_current; | ||
175 | |||
176 | write_seqlock(&monotonic_lock); | ||
177 | last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; | ||
178 | /* | ||
179 | * It is important that these two operations happen almost at | ||
180 | * the same time. We do the RDTSC stuff first, since it's | ||
181 | * faster. To avoid any inconsistencies, we need interrupts | ||
182 | * disabled locally. | ||
183 | */ | ||
184 | /* | ||
185 | * Interrupts are just disabled locally since the timer irq | ||
186 | * has the SA_INTERRUPT flag set. -arca | ||
187 | */ | ||
188 | /* read Pentium cycle counter */ | ||
189 | |||
190 | hpet_current = hpet_readl(HPET_COUNTER); | ||
191 | rdtsc(last_tsc_low, last_tsc_high); | ||
192 | |||
193 | /* lost tick compensation */ | ||
194 | offset = hpet_readl(HPET_T0_CMP) - hpet_tick; | ||
195 | if (unlikely(((offset - hpet_last) > hpet_tick) && (hpet_last != 0))) { | ||
196 | int lost_ticks = (offset - hpet_last) / hpet_tick; | ||
197 | jiffies_64 += lost_ticks; | ||
198 | } | ||
199 | hpet_last = hpet_current; | ||
200 | |||
201 | /* update the monotonic base value */ | ||
202 | this_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; | ||
203 | monotonic_base += cycles_2_ns(this_offset - last_offset); | ||
204 | write_sequnlock(&monotonic_lock); | ||
205 | |||
206 | /* calculate delay_at_last_interrupt */ | ||
207 | /* | ||
208 | * Time offset = (hpet delta) * ( usecs per HPET clock ) | ||
209 | * = (hpet delta) * ( usecs per tick / HPET clocks per tick) | ||
210 | * = (hpet delta) * ( hpet_usec_quotient ) / (2^32) | ||
211 | * Where, | ||
212 | * hpet_usec_quotient = (2^32 * usecs per tick)/HPET clocks per tick | ||
213 | */ | ||
214 | delay_at_last_interrupt = hpet_current - offset; | ||
215 | ASM_MUL64_REG(temp, delay_at_last_interrupt, | ||
216 | hpet_usec_quotient, delay_at_last_interrupt); | ||
217 | } | ||
218 | #endif | ||
219 | |||
220 | |||
221 | #ifdef CONFIG_CPU_FREQ | ||
222 | #include <linux/workqueue.h> | ||
223 | |||
224 | static unsigned int cpufreq_delayed_issched = 0; | ||
225 | static unsigned int cpufreq_init = 0; | ||
226 | static struct work_struct cpufreq_delayed_get_work; | ||
227 | |||
228 | static void handle_cpufreq_delayed_get(void *v) | ||
229 | { | ||
230 | unsigned int cpu; | ||
231 | for_each_online_cpu(cpu) { | ||
232 | cpufreq_get(cpu); | ||
233 | } | ||
234 | cpufreq_delayed_issched = 0; | ||
235 | } | ||
236 | |||
237 | /* if we notice lost ticks, schedule a call to cpufreq_get() as it tries | ||
238 | * to verify the CPU frequency the timing core thinks the CPU is running | ||
239 | * at is still correct. | ||
240 | */ | ||
241 | static inline void cpufreq_delayed_get(void) | ||
242 | { | ||
243 | if (cpufreq_init && !cpufreq_delayed_issched) { | ||
244 | cpufreq_delayed_issched = 1; | ||
245 | printk(KERN_DEBUG "Losing some ticks... checking if CPU frequency changed.\n"); | ||
246 | schedule_work(&cpufreq_delayed_get_work); | ||
247 | } | ||
248 | } | ||
249 | |||
250 | /* If the CPU frequency is scaled, TSC-based delays will need a different | ||
251 | * loops_per_jiffy value to function properly. | ||
252 | */ | ||
253 | |||
254 | static unsigned int ref_freq = 0; | ||
255 | static unsigned long loops_per_jiffy_ref = 0; | ||
256 | |||
257 | #ifndef CONFIG_SMP | ||
258 | static unsigned long fast_gettimeoffset_ref = 0; | ||
259 | static unsigned long cpu_khz_ref = 0; | ||
260 | #endif | ||
261 | |||
262 | static int | ||
263 | time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | ||
264 | void *data) | ||
265 | { | ||
266 | struct cpufreq_freqs *freq = data; | ||
267 | |||
268 | if (val != CPUFREQ_RESUMECHANGE) | ||
269 | write_seqlock_irq(&xtime_lock); | ||
270 | if (!ref_freq) { | ||
271 | ref_freq = freq->old; | ||
272 | loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy; | ||
273 | #ifndef CONFIG_SMP | ||
274 | fast_gettimeoffset_ref = fast_gettimeoffset_quotient; | ||
275 | cpu_khz_ref = cpu_khz; | ||
276 | #endif | ||
277 | } | ||
278 | |||
279 | if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || | ||
280 | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || | ||
281 | (val == CPUFREQ_RESUMECHANGE)) { | ||
282 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) | ||
283 | cpu_data[freq->cpu].loops_per_jiffy = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); | ||
284 | #ifndef CONFIG_SMP | ||
285 | if (cpu_khz) | ||
286 | cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new); | ||
287 | if (use_tsc) { | ||
288 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) { | ||
289 | fast_gettimeoffset_quotient = cpufreq_scale(fast_gettimeoffset_ref, freq->new, ref_freq); | ||
290 | set_cyc2ns_scale(cpu_khz/1000); | ||
291 | } | ||
292 | } | ||
293 | #endif | ||
294 | } | ||
295 | |||
296 | if (val != CPUFREQ_RESUMECHANGE) | ||
297 | write_sequnlock_irq(&xtime_lock); | ||
298 | |||
299 | return 0; | ||
300 | } | ||
301 | |||
302 | static struct notifier_block time_cpufreq_notifier_block = { | ||
303 | .notifier_call = time_cpufreq_notifier | ||
304 | }; | ||
305 | |||
306 | |||
307 | static int __init cpufreq_tsc(void) | ||
308 | { | ||
309 | int ret; | ||
310 | INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL); | ||
311 | ret = cpufreq_register_notifier(&time_cpufreq_notifier_block, | ||
312 | CPUFREQ_TRANSITION_NOTIFIER); | ||
313 | if (!ret) | ||
314 | cpufreq_init = 1; | ||
315 | return ret; | ||
316 | } | ||
317 | core_initcall(cpufreq_tsc); | ||
318 | |||
319 | #else /* CONFIG_CPU_FREQ */ | ||
320 | static inline void cpufreq_delayed_get(void) { return; } | ||
321 | #endif | ||
322 | |||
323 | static void mark_offset_tsc(void) | ||
324 | { | ||
325 | unsigned long lost,delay; | ||
326 | unsigned long delta = last_tsc_low; | ||
327 | int count; | ||
328 | int countmp; | ||
329 | static int count1 = 0; | ||
330 | unsigned long long this_offset, last_offset; | ||
331 | static int lost_count = 0; | ||
332 | |||
333 | write_seqlock(&monotonic_lock); | ||
334 | last_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; | ||
335 | /* | ||
336 | * It is important that these two operations happen almost at | ||
337 | * the same time. We do the RDTSC stuff first, since it's | ||
338 | * faster. To avoid any inconsistencies, we need interrupts | ||
339 | * disabled locally. | ||
340 | */ | ||
341 | |||
342 | /* | ||
343 | * Interrupts are just disabled locally since the timer irq | ||
344 | * has the SA_INTERRUPT flag set. -arca | ||
345 | */ | ||
346 | |||
347 | /* read Pentium cycle counter */ | ||
348 | |||
349 | rdtsc(last_tsc_low, last_tsc_high); | ||
350 | |||
351 | spin_lock(&i8253_lock); | ||
352 | outb_p(0x00, PIT_MODE); /* latch the count ASAP */ | ||
353 | |||
354 | count = inb_p(PIT_CH0); /* read the latched count */ | ||
355 | count |= inb(PIT_CH0) << 8; | ||
356 | |||
357 | /* | ||
358 | * VIA686a test code... reset the latch if count > max + 1 | ||
359 | * from timer_pit.c - cjb | ||
360 | */ | ||
361 | if (count > LATCH) { | ||
362 | outb_p(0x34, PIT_MODE); | ||
363 | outb_p(LATCH & 0xff, PIT_CH0); | ||
364 | outb(LATCH >> 8, PIT_CH0); | ||
365 | count = LATCH - 1; | ||
366 | } | ||
367 | |||
368 | spin_unlock(&i8253_lock); | ||
369 | |||
370 | if (pit_latch_buggy) { | ||
371 | /* get center value of last 3 time lutch */ | ||
372 | if ((count2 >= count && count >= count1) | ||
373 | || (count1 >= count && count >= count2)) { | ||
374 | count2 = count1; count1 = count; | ||
375 | } else if ((count1 >= count2 && count2 >= count) | ||
376 | || (count >= count2 && count2 >= count1)) { | ||
377 | countmp = count;count = count2; | ||
378 | count2 = count1;count1 = countmp; | ||
379 | } else { | ||
380 | count2 = count1; count1 = count; count = count1; | ||
381 | } | ||
382 | } | ||
383 | |||
384 | /* lost tick compensation */ | ||
385 | delta = last_tsc_low - delta; | ||
386 | { | ||
387 | register unsigned long eax, edx; | ||
388 | eax = delta; | ||
389 | __asm__("mull %2" | ||
390 | :"=a" (eax), "=d" (edx) | ||
391 | :"rm" (fast_gettimeoffset_quotient), | ||
392 | "0" (eax)); | ||
393 | delta = edx; | ||
394 | } | ||
395 | delta += delay_at_last_interrupt; | ||
396 | lost = delta/(1000000/HZ); | ||
397 | delay = delta%(1000000/HZ); | ||
398 | if (lost >= 2) { | ||
399 | jiffies_64 += lost-1; | ||
400 | |||
401 | /* sanity check to ensure we're not always losing ticks */ | ||
402 | if (lost_count++ > 100) { | ||
403 | printk(KERN_WARNING "Losing too many ticks!\n"); | ||
404 | printk(KERN_WARNING "TSC cannot be used as a timesource. \n"); | ||
405 | printk(KERN_WARNING "Possible reasons for this are:\n"); | ||
406 | printk(KERN_WARNING " You're running with Speedstep,\n"); | ||
407 | printk(KERN_WARNING " You don't have DMA enabled for your hard disk (see hdparm),\n"); | ||
408 | printk(KERN_WARNING " Incorrect TSC synchronization on an SMP system (see dmesg).\n"); | ||
409 | printk(KERN_WARNING "Falling back to a sane timesource now.\n"); | ||
410 | |||
411 | clock_fallback(); | ||
412 | } | ||
413 | /* ... but give the TSC a fair chance */ | ||
414 | if (lost_count > 25) | ||
415 | cpufreq_delayed_get(); | ||
416 | } else | ||
417 | lost_count = 0; | ||
418 | /* update the monotonic base value */ | ||
419 | this_offset = ((unsigned long long)last_tsc_high<<32)|last_tsc_low; | ||
420 | monotonic_base += cycles_2_ns(this_offset - last_offset); | ||
421 | write_sequnlock(&monotonic_lock); | ||
422 | |||
423 | /* calculate delay_at_last_interrupt */ | ||
424 | count = ((LATCH-1) - count) * TICK_SIZE; | ||
425 | delay_at_last_interrupt = (count + LATCH/2) / LATCH; | ||
426 | |||
427 | /* catch corner case where tick rollover occured | ||
428 | * between tsc and pit reads (as noted when | ||
429 | * usec delta is > 90% # of usecs/tick) | ||
430 | */ | ||
431 | if (lost && abs(delay - delay_at_last_interrupt) > (900000/HZ)) | ||
432 | jiffies_64++; | ||
433 | } | ||
434 | |||
435 | static int __init init_tsc(char* override) | ||
436 | { | ||
437 | |||
438 | /* check clock override */ | ||
439 | if (override[0] && strncmp(override,"tsc",3)) { | ||
440 | #ifdef CONFIG_HPET_TIMER | ||
441 | if (is_hpet_enabled()) { | ||
442 | printk(KERN_ERR "Warning: clock= override failed. Defaulting to tsc\n"); | ||
443 | } else | ||
444 | #endif | ||
445 | { | ||
446 | return -ENODEV; | ||
447 | } | ||
448 | } | ||
449 | |||
450 | /* | ||
451 | * If we have APM enabled or the CPU clock speed is variable | ||
452 | * (CPU stops clock on HLT or slows clock to save power) | ||
453 | * then the TSC timestamps may diverge by up to 1 jiffy from | ||
454 | * 'real time' but nothing will break. | ||
455 | * The most frequent case is that the CPU is "woken" from a halt | ||
456 | * state by the timer interrupt itself, so we get 0 error. In the | ||
457 | * rare cases where a driver would "wake" the CPU and request a | ||
458 | * timestamp, the maximum error is < 1 jiffy. But timestamps are | ||
459 | * still perfectly ordered. | ||
460 | * Note that the TSC counter will be reset if APM suspends | ||
461 | * to disk; this won't break the kernel, though, 'cuz we're | ||
462 | * smart. See arch/i386/kernel/apm.c. | ||
463 | */ | ||
464 | /* | ||
465 | * Firstly we have to do a CPU check for chips with | ||
466 | * a potentially buggy TSC. At this point we haven't run | ||
467 | * the ident/bugs checks so we must run this hook as it | ||
468 | * may turn off the TSC flag. | ||
469 | * | ||
470 | * NOTE: this doesn't yet handle SMP 486 machines where only | ||
471 | * some CPU's have a TSC. Thats never worked and nobody has | ||
472 | * moaned if you have the only one in the world - you fix it! | ||
473 | */ | ||
474 | |||
475 | count2 = LATCH; /* initialize counter for mark_offset_tsc() */ | ||
476 | |||
477 | if (cpu_has_tsc) { | ||
478 | unsigned long tsc_quotient; | ||
479 | #ifdef CONFIG_HPET_TIMER | ||
480 | if (is_hpet_enabled()){ | ||
481 | unsigned long result, remain; | ||
482 | printk("Using TSC for gettimeofday\n"); | ||
483 | tsc_quotient = calibrate_tsc_hpet(NULL); | ||
484 | timer_tsc.mark_offset = &mark_offset_tsc_hpet; | ||
485 | /* | ||
486 | * Math to calculate hpet to usec multiplier | ||
487 | * Look for the comments at get_offset_tsc_hpet() | ||
488 | */ | ||
489 | ASM_DIV64_REG(result, remain, hpet_tick, | ||
490 | 0, KERNEL_TICK_USEC); | ||
491 | if (remain > (hpet_tick >> 1)) | ||
492 | result++; /* rounding the result */ | ||
493 | |||
494 | hpet_usec_quotient = result; | ||
495 | } else | ||
496 | #endif | ||
497 | { | ||
498 | tsc_quotient = calibrate_tsc(); | ||
499 | } | ||
500 | |||
501 | if (tsc_quotient) { | ||
502 | fast_gettimeoffset_quotient = tsc_quotient; | ||
503 | use_tsc = 1; | ||
504 | /* | ||
505 | * We could be more selective here I suspect | ||
506 | * and just enable this for the next intel chips ? | ||
507 | */ | ||
508 | /* report CPU clock rate in Hz. | ||
509 | * The formula is (10^6 * 2^32) / (2^32 * 1 / (clocks/us)) = | ||
510 | * clock/second. Our precision is about 100 ppm. | ||
511 | */ | ||
512 | { unsigned long eax=0, edx=1000; | ||
513 | __asm__("divl %2" | ||
514 | :"=a" (cpu_khz), "=d" (edx) | ||
515 | :"r" (tsc_quotient), | ||
516 | "0" (eax), "1" (edx)); | ||
517 | printk("Detected %lu.%03lu MHz processor.\n", cpu_khz / 1000, cpu_khz % 1000); | ||
518 | } | ||
519 | set_cyc2ns_scale(cpu_khz/1000); | ||
520 | return 0; | ||
521 | } | ||
522 | } | ||
523 | return -ENODEV; | ||
524 | } | ||
525 | |||
526 | #ifndef CONFIG_X86_TSC | ||
527 | /* disable flag for tsc. Takes effect by clearing the TSC cpu flag | ||
528 | * in cpu/common.c */ | ||
529 | static int __init tsc_setup(char *str) | ||
530 | { | ||
531 | tsc_disable = 1; | ||
532 | return 1; | ||
533 | } | ||
534 | #else | ||
535 | static int __init tsc_setup(char *str) | ||
536 | { | ||
537 | printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " | ||
538 | "cannot disable TSC.\n"); | ||
539 | return 1; | ||
540 | } | ||
541 | #endif | ||
542 | __setup("notsc", tsc_setup); | ||
543 | |||
544 | |||
545 | |||
546 | /************************************************************/ | ||
547 | |||
548 | /* tsc timer_opts struct */ | ||
549 | static struct timer_opts timer_tsc = { | ||
550 | .name = "tsc", | ||
551 | .mark_offset = mark_offset_tsc, | ||
552 | .get_offset = get_offset_tsc, | ||
553 | .monotonic_clock = monotonic_clock_tsc, | ||
554 | .delay = delay_tsc, | ||
555 | }; | ||
556 | |||
557 | struct init_timer_opts __initdata timer_tsc_init = { | ||
558 | .init = init_tsc, | ||
559 | .opts = &timer_tsc, | ||
560 | }; | ||