diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/arm/nwfpe/softfloat.c |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/arm/nwfpe/softfloat.c')
-rw-r--r-- | arch/arm/nwfpe/softfloat.c | 3443 |
1 files changed, 3443 insertions, 0 deletions
diff --git a/arch/arm/nwfpe/softfloat.c b/arch/arm/nwfpe/softfloat.c new file mode 100644 index 00000000000..9d743ae2906 --- /dev/null +++ b/arch/arm/nwfpe/softfloat.c | |||
@@ -0,0 +1,3443 @@ | |||
1 | /* | ||
2 | =============================================================================== | ||
3 | |||
4 | This C source file is part of the SoftFloat IEC/IEEE Floating-point | ||
5 | Arithmetic Package, Release 2. | ||
6 | |||
7 | Written by John R. Hauser. This work was made possible in part by the | ||
8 | International Computer Science Institute, located at Suite 600, 1947 Center | ||
9 | Street, Berkeley, California 94704. Funding was partially provided by the | ||
10 | National Science Foundation under grant MIP-9311980. The original version | ||
11 | of this code was written as part of a project to build a fixed-point vector | ||
12 | processor in collaboration with the University of California at Berkeley, | ||
13 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information | ||
14 | is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ | ||
15 | arithmetic/softfloat.html'. | ||
16 | |||
17 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort | ||
18 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT | ||
19 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO | ||
20 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY | ||
21 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. | ||
22 | |||
23 | Derivative works are acceptable, even for commercial purposes, so long as | ||
24 | (1) they include prominent notice that the work is derivative, and (2) they | ||
25 | include prominent notice akin to these three paragraphs for those parts of | ||
26 | this code that are retained. | ||
27 | |||
28 | =============================================================================== | ||
29 | */ | ||
30 | |||
31 | #include "fpa11.h" | ||
32 | //#include "milieu.h" | ||
33 | //#include "softfloat.h" | ||
34 | |||
35 | /* | ||
36 | ------------------------------------------------------------------------------- | ||
37 | Floating-point rounding mode, extended double-precision rounding precision, | ||
38 | and exception flags. | ||
39 | ------------------------------------------------------------------------------- | ||
40 | */ | ||
41 | int8 float_rounding_mode = float_round_nearest_even; | ||
42 | int8 floatx80_rounding_precision = 80; | ||
43 | int8 float_exception_flags; | ||
44 | |||
45 | /* | ||
46 | ------------------------------------------------------------------------------- | ||
47 | Primitive arithmetic functions, including multi-word arithmetic, and | ||
48 | division and square root approximations. (Can be specialized to target if | ||
49 | desired.) | ||
50 | ------------------------------------------------------------------------------- | ||
51 | */ | ||
52 | #include "softfloat-macros" | ||
53 | |||
54 | /* | ||
55 | ------------------------------------------------------------------------------- | ||
56 | Functions and definitions to determine: (1) whether tininess for underflow | ||
57 | is detected before or after rounding by default, (2) what (if anything) | ||
58 | happens when exceptions are raised, (3) how signaling NaNs are distinguished | ||
59 | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs | ||
60 | are propagated from function inputs to output. These details are target- | ||
61 | specific. | ||
62 | ------------------------------------------------------------------------------- | ||
63 | */ | ||
64 | #include "softfloat-specialize" | ||
65 | |||
66 | /* | ||
67 | ------------------------------------------------------------------------------- | ||
68 | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | ||
69 | and 7, and returns the properly rounded 32-bit integer corresponding to the | ||
70 | input. If `zSign' is nonzero, the input is negated before being converted | ||
71 | to an integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point | ||
72 | input is simply rounded to an integer, with the inexact exception raised if | ||
73 | the input cannot be represented exactly as an integer. If the fixed-point | ||
74 | input is too large, however, the invalid exception is raised and the largest | ||
75 | positive or negative integer is returned. | ||
76 | ------------------------------------------------------------------------------- | ||
77 | */ | ||
78 | static int32 roundAndPackInt32( flag zSign, bits64 absZ ) | ||
79 | { | ||
80 | int8 roundingMode; | ||
81 | flag roundNearestEven; | ||
82 | int8 roundIncrement, roundBits; | ||
83 | int32 z; | ||
84 | |||
85 | roundingMode = float_rounding_mode; | ||
86 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | ||
87 | roundIncrement = 0x40; | ||
88 | if ( ! roundNearestEven ) { | ||
89 | if ( roundingMode == float_round_to_zero ) { | ||
90 | roundIncrement = 0; | ||
91 | } | ||
92 | else { | ||
93 | roundIncrement = 0x7F; | ||
94 | if ( zSign ) { | ||
95 | if ( roundingMode == float_round_up ) roundIncrement = 0; | ||
96 | } | ||
97 | else { | ||
98 | if ( roundingMode == float_round_down ) roundIncrement = 0; | ||
99 | } | ||
100 | } | ||
101 | } | ||
102 | roundBits = absZ & 0x7F; | ||
103 | absZ = ( absZ + roundIncrement )>>7; | ||
104 | absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | ||
105 | z = absZ; | ||
106 | if ( zSign ) z = - z; | ||
107 | if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { | ||
108 | float_exception_flags |= float_flag_invalid; | ||
109 | return zSign ? 0x80000000 : 0x7FFFFFFF; | ||
110 | } | ||
111 | if ( roundBits ) float_exception_flags |= float_flag_inexact; | ||
112 | return z; | ||
113 | |||
114 | } | ||
115 | |||
116 | /* | ||
117 | ------------------------------------------------------------------------------- | ||
118 | Returns the fraction bits of the single-precision floating-point value `a'. | ||
119 | ------------------------------------------------------------------------------- | ||
120 | */ | ||
121 | INLINE bits32 extractFloat32Frac( float32 a ) | ||
122 | { | ||
123 | |||
124 | return a & 0x007FFFFF; | ||
125 | |||
126 | } | ||
127 | |||
128 | /* | ||
129 | ------------------------------------------------------------------------------- | ||
130 | Returns the exponent bits of the single-precision floating-point value `a'. | ||
131 | ------------------------------------------------------------------------------- | ||
132 | */ | ||
133 | INLINE int16 extractFloat32Exp( float32 a ) | ||
134 | { | ||
135 | |||
136 | return ( a>>23 ) & 0xFF; | ||
137 | |||
138 | } | ||
139 | |||
140 | /* | ||
141 | ------------------------------------------------------------------------------- | ||
142 | Returns the sign bit of the single-precision floating-point value `a'. | ||
143 | ------------------------------------------------------------------------------- | ||
144 | */ | ||
145 | #if 0 /* in softfloat.h */ | ||
146 | INLINE flag extractFloat32Sign( float32 a ) | ||
147 | { | ||
148 | |||
149 | return a>>31; | ||
150 | |||
151 | } | ||
152 | #endif | ||
153 | |||
154 | /* | ||
155 | ------------------------------------------------------------------------------- | ||
156 | Normalizes the subnormal single-precision floating-point value represented | ||
157 | by the denormalized significand `aSig'. The normalized exponent and | ||
158 | significand are stored at the locations pointed to by `zExpPtr' and | ||
159 | `zSigPtr', respectively. | ||
160 | ------------------------------------------------------------------------------- | ||
161 | */ | ||
162 | static void | ||
163 | normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) | ||
164 | { | ||
165 | int8 shiftCount; | ||
166 | |||
167 | shiftCount = countLeadingZeros32( aSig ) - 8; | ||
168 | *zSigPtr = aSig<<shiftCount; | ||
169 | *zExpPtr = 1 - shiftCount; | ||
170 | |||
171 | } | ||
172 | |||
173 | /* | ||
174 | ------------------------------------------------------------------------------- | ||
175 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | ||
176 | single-precision floating-point value, returning the result. After being | ||
177 | shifted into the proper positions, the three fields are simply added | ||
178 | together to form the result. This means that any integer portion of `zSig' | ||
179 | will be added into the exponent. Since a properly normalized significand | ||
180 | will have an integer portion equal to 1, the `zExp' input should be 1 less | ||
181 | than the desired result exponent whenever `zSig' is a complete, normalized | ||
182 | significand. | ||
183 | ------------------------------------------------------------------------------- | ||
184 | */ | ||
185 | INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) | ||
186 | { | ||
187 | #if 0 | ||
188 | float32 f; | ||
189 | __asm__("@ packFloat32 \n\ | ||
190 | mov %0, %1, asl #31 \n\ | ||
191 | orr %0, %2, asl #23 \n\ | ||
192 | orr %0, %3" | ||
193 | : /* no outputs */ | ||
194 | : "g" (f), "g" (zSign), "g" (zExp), "g" (zSig) | ||
195 | : "cc"); | ||
196 | return f; | ||
197 | #else | ||
198 | return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; | ||
199 | #endif | ||
200 | } | ||
201 | |||
202 | /* | ||
203 | ------------------------------------------------------------------------------- | ||
204 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | ||
205 | and significand `zSig', and returns the proper single-precision floating- | ||
206 | point value corresponding to the abstract input. Ordinarily, the abstract | ||
207 | value is simply rounded and packed into the single-precision format, with | ||
208 | the inexact exception raised if the abstract input cannot be represented | ||
209 | exactly. If the abstract value is too large, however, the overflow and | ||
210 | inexact exceptions are raised and an infinity or maximal finite value is | ||
211 | returned. If the abstract value is too small, the input value is rounded to | ||
212 | a subnormal number, and the underflow and inexact exceptions are raised if | ||
213 | the abstract input cannot be represented exactly as a subnormal single- | ||
214 | precision floating-point number. | ||
215 | The input significand `zSig' has its binary point between bits 30 | ||
216 | and 29, which is 7 bits to the left of the usual location. This shifted | ||
217 | significand must be normalized or smaller. If `zSig' is not normalized, | ||
218 | `zExp' must be 0; in that case, the result returned is a subnormal number, | ||
219 | and it must not require rounding. In the usual case that `zSig' is | ||
220 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | ||
221 | The handling of underflow and overflow follows the IEC/IEEE Standard for | ||
222 | Binary Floating-point Arithmetic. | ||
223 | ------------------------------------------------------------------------------- | ||
224 | */ | ||
225 | static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) | ||
226 | { | ||
227 | int8 roundingMode; | ||
228 | flag roundNearestEven; | ||
229 | int8 roundIncrement, roundBits; | ||
230 | flag isTiny; | ||
231 | |||
232 | roundingMode = float_rounding_mode; | ||
233 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | ||
234 | roundIncrement = 0x40; | ||
235 | if ( ! roundNearestEven ) { | ||
236 | if ( roundingMode == float_round_to_zero ) { | ||
237 | roundIncrement = 0; | ||
238 | } | ||
239 | else { | ||
240 | roundIncrement = 0x7F; | ||
241 | if ( zSign ) { | ||
242 | if ( roundingMode == float_round_up ) roundIncrement = 0; | ||
243 | } | ||
244 | else { | ||
245 | if ( roundingMode == float_round_down ) roundIncrement = 0; | ||
246 | } | ||
247 | } | ||
248 | } | ||
249 | roundBits = zSig & 0x7F; | ||
250 | if ( 0xFD <= (bits16) zExp ) { | ||
251 | if ( ( 0xFD < zExp ) | ||
252 | || ( ( zExp == 0xFD ) | ||
253 | && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) | ||
254 | ) { | ||
255 | float_raise( float_flag_overflow | float_flag_inexact ); | ||
256 | return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); | ||
257 | } | ||
258 | if ( zExp < 0 ) { | ||
259 | isTiny = | ||
260 | ( float_detect_tininess == float_tininess_before_rounding ) | ||
261 | || ( zExp < -1 ) | ||
262 | || ( zSig + roundIncrement < 0x80000000 ); | ||
263 | shift32RightJamming( zSig, - zExp, &zSig ); | ||
264 | zExp = 0; | ||
265 | roundBits = zSig & 0x7F; | ||
266 | if ( isTiny && roundBits ) float_raise( float_flag_underflow ); | ||
267 | } | ||
268 | } | ||
269 | if ( roundBits ) float_exception_flags |= float_flag_inexact; | ||
270 | zSig = ( zSig + roundIncrement )>>7; | ||
271 | zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); | ||
272 | if ( zSig == 0 ) zExp = 0; | ||
273 | return packFloat32( zSign, zExp, zSig ); | ||
274 | |||
275 | } | ||
276 | |||
277 | /* | ||
278 | ------------------------------------------------------------------------------- | ||
279 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | ||
280 | and significand `zSig', and returns the proper single-precision floating- | ||
281 | point value corresponding to the abstract input. This routine is just like | ||
282 | `roundAndPackFloat32' except that `zSig' does not have to be normalized in | ||
283 | any way. In all cases, `zExp' must be 1 less than the ``true'' floating- | ||
284 | point exponent. | ||
285 | ------------------------------------------------------------------------------- | ||
286 | */ | ||
287 | static float32 | ||
288 | normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) | ||
289 | { | ||
290 | int8 shiftCount; | ||
291 | |||
292 | shiftCount = countLeadingZeros32( zSig ) - 1; | ||
293 | return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount ); | ||
294 | |||
295 | } | ||
296 | |||
297 | /* | ||
298 | ------------------------------------------------------------------------------- | ||
299 | Returns the fraction bits of the double-precision floating-point value `a'. | ||
300 | ------------------------------------------------------------------------------- | ||
301 | */ | ||
302 | INLINE bits64 extractFloat64Frac( float64 a ) | ||
303 | { | ||
304 | |||
305 | return a & LIT64( 0x000FFFFFFFFFFFFF ); | ||
306 | |||
307 | } | ||
308 | |||
309 | /* | ||
310 | ------------------------------------------------------------------------------- | ||
311 | Returns the exponent bits of the double-precision floating-point value `a'. | ||
312 | ------------------------------------------------------------------------------- | ||
313 | */ | ||
314 | INLINE int16 extractFloat64Exp( float64 a ) | ||
315 | { | ||
316 | |||
317 | return ( a>>52 ) & 0x7FF; | ||
318 | |||
319 | } | ||
320 | |||
321 | /* | ||
322 | ------------------------------------------------------------------------------- | ||
323 | Returns the sign bit of the double-precision floating-point value `a'. | ||
324 | ------------------------------------------------------------------------------- | ||
325 | */ | ||
326 | #if 0 /* in softfloat.h */ | ||
327 | INLINE flag extractFloat64Sign( float64 a ) | ||
328 | { | ||
329 | |||
330 | return a>>63; | ||
331 | |||
332 | } | ||
333 | #endif | ||
334 | |||
335 | /* | ||
336 | ------------------------------------------------------------------------------- | ||
337 | Normalizes the subnormal double-precision floating-point value represented | ||
338 | by the denormalized significand `aSig'. The normalized exponent and | ||
339 | significand are stored at the locations pointed to by `zExpPtr' and | ||
340 | `zSigPtr', respectively. | ||
341 | ------------------------------------------------------------------------------- | ||
342 | */ | ||
343 | static void | ||
344 | normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) | ||
345 | { | ||
346 | int8 shiftCount; | ||
347 | |||
348 | shiftCount = countLeadingZeros64( aSig ) - 11; | ||
349 | *zSigPtr = aSig<<shiftCount; | ||
350 | *zExpPtr = 1 - shiftCount; | ||
351 | |||
352 | } | ||
353 | |||
354 | /* | ||
355 | ------------------------------------------------------------------------------- | ||
356 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a | ||
357 | double-precision floating-point value, returning the result. After being | ||
358 | shifted into the proper positions, the three fields are simply added | ||
359 | together to form the result. This means that any integer portion of `zSig' | ||
360 | will be added into the exponent. Since a properly normalized significand | ||
361 | will have an integer portion equal to 1, the `zExp' input should be 1 less | ||
362 | than the desired result exponent whenever `zSig' is a complete, normalized | ||
363 | significand. | ||
364 | ------------------------------------------------------------------------------- | ||
365 | */ | ||
366 | INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig ) | ||
367 | { | ||
368 | |||
369 | return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig; | ||
370 | |||
371 | } | ||
372 | |||
373 | /* | ||
374 | ------------------------------------------------------------------------------- | ||
375 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | ||
376 | and significand `zSig', and returns the proper double-precision floating- | ||
377 | point value corresponding to the abstract input. Ordinarily, the abstract | ||
378 | value is simply rounded and packed into the double-precision format, with | ||
379 | the inexact exception raised if the abstract input cannot be represented | ||
380 | exactly. If the abstract value is too large, however, the overflow and | ||
381 | inexact exceptions are raised and an infinity or maximal finite value is | ||
382 | returned. If the abstract value is too small, the input value is rounded to | ||
383 | a subnormal number, and the underflow and inexact exceptions are raised if | ||
384 | the abstract input cannot be represented exactly as a subnormal double- | ||
385 | precision floating-point number. | ||
386 | The input significand `zSig' has its binary point between bits 62 | ||
387 | and 61, which is 10 bits to the left of the usual location. This shifted | ||
388 | significand must be normalized or smaller. If `zSig' is not normalized, | ||
389 | `zExp' must be 0; in that case, the result returned is a subnormal number, | ||
390 | and it must not require rounding. In the usual case that `zSig' is | ||
391 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. | ||
392 | The handling of underflow and overflow follows the IEC/IEEE Standard for | ||
393 | Binary Floating-point Arithmetic. | ||
394 | ------------------------------------------------------------------------------- | ||
395 | */ | ||
396 | static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) | ||
397 | { | ||
398 | int8 roundingMode; | ||
399 | flag roundNearestEven; | ||
400 | int16 roundIncrement, roundBits; | ||
401 | flag isTiny; | ||
402 | |||
403 | roundingMode = float_rounding_mode; | ||
404 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | ||
405 | roundIncrement = 0x200; | ||
406 | if ( ! roundNearestEven ) { | ||
407 | if ( roundingMode == float_round_to_zero ) { | ||
408 | roundIncrement = 0; | ||
409 | } | ||
410 | else { | ||
411 | roundIncrement = 0x3FF; | ||
412 | if ( zSign ) { | ||
413 | if ( roundingMode == float_round_up ) roundIncrement = 0; | ||
414 | } | ||
415 | else { | ||
416 | if ( roundingMode == float_round_down ) roundIncrement = 0; | ||
417 | } | ||
418 | } | ||
419 | } | ||
420 | roundBits = zSig & 0x3FF; | ||
421 | if ( 0x7FD <= (bits16) zExp ) { | ||
422 | if ( ( 0x7FD < zExp ) | ||
423 | || ( ( zExp == 0x7FD ) | ||
424 | && ( (sbits64) ( zSig + roundIncrement ) < 0 ) ) | ||
425 | ) { | ||
426 | //register int lr = __builtin_return_address(0); | ||
427 | //printk("roundAndPackFloat64 called from 0x%08x\n",lr); | ||
428 | float_raise( float_flag_overflow | float_flag_inexact ); | ||
429 | return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 ); | ||
430 | } | ||
431 | if ( zExp < 0 ) { | ||
432 | isTiny = | ||
433 | ( float_detect_tininess == float_tininess_before_rounding ) | ||
434 | || ( zExp < -1 ) | ||
435 | || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); | ||
436 | shift64RightJamming( zSig, - zExp, &zSig ); | ||
437 | zExp = 0; | ||
438 | roundBits = zSig & 0x3FF; | ||
439 | if ( isTiny && roundBits ) float_raise( float_flag_underflow ); | ||
440 | } | ||
441 | } | ||
442 | if ( roundBits ) float_exception_flags |= float_flag_inexact; | ||
443 | zSig = ( zSig + roundIncrement )>>10; | ||
444 | zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); | ||
445 | if ( zSig == 0 ) zExp = 0; | ||
446 | return packFloat64( zSign, zExp, zSig ); | ||
447 | |||
448 | } | ||
449 | |||
450 | /* | ||
451 | ------------------------------------------------------------------------------- | ||
452 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | ||
453 | and significand `zSig', and returns the proper double-precision floating- | ||
454 | point value corresponding to the abstract input. This routine is just like | ||
455 | `roundAndPackFloat64' except that `zSig' does not have to be normalized in | ||
456 | any way. In all cases, `zExp' must be 1 less than the ``true'' floating- | ||
457 | point exponent. | ||
458 | ------------------------------------------------------------------------------- | ||
459 | */ | ||
460 | static float64 | ||
461 | normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) | ||
462 | { | ||
463 | int8 shiftCount; | ||
464 | |||
465 | shiftCount = countLeadingZeros64( zSig ) - 1; | ||
466 | return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount ); | ||
467 | |||
468 | } | ||
469 | |||
470 | #ifdef FLOATX80 | ||
471 | |||
472 | /* | ||
473 | ------------------------------------------------------------------------------- | ||
474 | Returns the fraction bits of the extended double-precision floating-point | ||
475 | value `a'. | ||
476 | ------------------------------------------------------------------------------- | ||
477 | */ | ||
478 | INLINE bits64 extractFloatx80Frac( floatx80 a ) | ||
479 | { | ||
480 | |||
481 | return a.low; | ||
482 | |||
483 | } | ||
484 | |||
485 | /* | ||
486 | ------------------------------------------------------------------------------- | ||
487 | Returns the exponent bits of the extended double-precision floating-point | ||
488 | value `a'. | ||
489 | ------------------------------------------------------------------------------- | ||
490 | */ | ||
491 | INLINE int32 extractFloatx80Exp( floatx80 a ) | ||
492 | { | ||
493 | |||
494 | return a.high & 0x7FFF; | ||
495 | |||
496 | } | ||
497 | |||
498 | /* | ||
499 | ------------------------------------------------------------------------------- | ||
500 | Returns the sign bit of the extended double-precision floating-point value | ||
501 | `a'. | ||
502 | ------------------------------------------------------------------------------- | ||
503 | */ | ||
504 | INLINE flag extractFloatx80Sign( floatx80 a ) | ||
505 | { | ||
506 | |||
507 | return a.high>>15; | ||
508 | |||
509 | } | ||
510 | |||
511 | /* | ||
512 | ------------------------------------------------------------------------------- | ||
513 | Normalizes the subnormal extended double-precision floating-point value | ||
514 | represented by the denormalized significand `aSig'. The normalized exponent | ||
515 | and significand are stored at the locations pointed to by `zExpPtr' and | ||
516 | `zSigPtr', respectively. | ||
517 | ------------------------------------------------------------------------------- | ||
518 | */ | ||
519 | static void | ||
520 | normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) | ||
521 | { | ||
522 | int8 shiftCount; | ||
523 | |||
524 | shiftCount = countLeadingZeros64( aSig ); | ||
525 | *zSigPtr = aSig<<shiftCount; | ||
526 | *zExpPtr = 1 - shiftCount; | ||
527 | |||
528 | } | ||
529 | |||
530 | /* | ||
531 | ------------------------------------------------------------------------------- | ||
532 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an | ||
533 | extended double-precision floating-point value, returning the result. | ||
534 | ------------------------------------------------------------------------------- | ||
535 | */ | ||
536 | INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig ) | ||
537 | { | ||
538 | floatx80 z; | ||
539 | |||
540 | z.low = zSig; | ||
541 | z.high = ( ( (bits16) zSign )<<15 ) + zExp; | ||
542 | return z; | ||
543 | |||
544 | } | ||
545 | |||
546 | /* | ||
547 | ------------------------------------------------------------------------------- | ||
548 | Takes an abstract floating-point value having sign `zSign', exponent `zExp', | ||
549 | and extended significand formed by the concatenation of `zSig0' and `zSig1', | ||
550 | and returns the proper extended double-precision floating-point value | ||
551 | corresponding to the abstract input. Ordinarily, the abstract value is | ||
552 | rounded and packed into the extended double-precision format, with the | ||
553 | inexact exception raised if the abstract input cannot be represented | ||
554 | exactly. If the abstract value is too large, however, the overflow and | ||
555 | inexact exceptions are raised and an infinity or maximal finite value is | ||
556 | returned. If the abstract value is too small, the input value is rounded to | ||
557 | a subnormal number, and the underflow and inexact exceptions are raised if | ||
558 | the abstract input cannot be represented exactly as a subnormal extended | ||
559 | double-precision floating-point number. | ||
560 | If `roundingPrecision' is 32 or 64, the result is rounded to the same | ||
561 | number of bits as single or double precision, respectively. Otherwise, the | ||
562 | result is rounded to the full precision of the extended double-precision | ||
563 | format. | ||
564 | The input significand must be normalized or smaller. If the input | ||
565 | significand is not normalized, `zExp' must be 0; in that case, the result | ||
566 | returned is a subnormal number, and it must not require rounding. The | ||
567 | handling of underflow and overflow follows the IEC/IEEE Standard for Binary | ||
568 | Floating-point Arithmetic. | ||
569 | ------------------------------------------------------------------------------- | ||
570 | */ | ||
571 | static floatx80 | ||
572 | roundAndPackFloatx80( | ||
573 | int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 | ||
574 | ) | ||
575 | { | ||
576 | int8 roundingMode; | ||
577 | flag roundNearestEven, increment, isTiny; | ||
578 | int64 roundIncrement, roundMask, roundBits; | ||
579 | |||
580 | roundingMode = float_rounding_mode; | ||
581 | roundNearestEven = ( roundingMode == float_round_nearest_even ); | ||
582 | if ( roundingPrecision == 80 ) goto precision80; | ||
583 | if ( roundingPrecision == 64 ) { | ||
584 | roundIncrement = LIT64( 0x0000000000000400 ); | ||
585 | roundMask = LIT64( 0x00000000000007FF ); | ||
586 | } | ||
587 | else if ( roundingPrecision == 32 ) { | ||
588 | roundIncrement = LIT64( 0x0000008000000000 ); | ||
589 | roundMask = LIT64( 0x000000FFFFFFFFFF ); | ||
590 | } | ||
591 | else { | ||
592 | goto precision80; | ||
593 | } | ||
594 | zSig0 |= ( zSig1 != 0 ); | ||
595 | if ( ! roundNearestEven ) { | ||
596 | if ( roundingMode == float_round_to_zero ) { | ||
597 | roundIncrement = 0; | ||
598 | } | ||
599 | else { | ||
600 | roundIncrement = roundMask; | ||
601 | if ( zSign ) { | ||
602 | if ( roundingMode == float_round_up ) roundIncrement = 0; | ||
603 | } | ||
604 | else { | ||
605 | if ( roundingMode == float_round_down ) roundIncrement = 0; | ||
606 | } | ||
607 | } | ||
608 | } | ||
609 | roundBits = zSig0 & roundMask; | ||
610 | if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { | ||
611 | if ( ( 0x7FFE < zExp ) | ||
612 | || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) | ||
613 | ) { | ||
614 | goto overflow; | ||
615 | } | ||
616 | if ( zExp <= 0 ) { | ||
617 | isTiny = | ||
618 | ( float_detect_tininess == float_tininess_before_rounding ) | ||
619 | || ( zExp < 0 ) | ||
620 | || ( zSig0 <= zSig0 + roundIncrement ); | ||
621 | shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); | ||
622 | zExp = 0; | ||
623 | roundBits = zSig0 & roundMask; | ||
624 | if ( isTiny && roundBits ) float_raise( float_flag_underflow ); | ||
625 | if ( roundBits ) float_exception_flags |= float_flag_inexact; | ||
626 | zSig0 += roundIncrement; | ||
627 | if ( (sbits64) zSig0 < 0 ) zExp = 1; | ||
628 | roundIncrement = roundMask + 1; | ||
629 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | ||
630 | roundMask |= roundIncrement; | ||
631 | } | ||
632 | zSig0 &= ~ roundMask; | ||
633 | return packFloatx80( zSign, zExp, zSig0 ); | ||
634 | } | ||
635 | } | ||
636 | if ( roundBits ) float_exception_flags |= float_flag_inexact; | ||
637 | zSig0 += roundIncrement; | ||
638 | if ( zSig0 < roundIncrement ) { | ||
639 | ++zExp; | ||
640 | zSig0 = LIT64( 0x8000000000000000 ); | ||
641 | } | ||
642 | roundIncrement = roundMask + 1; | ||
643 | if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { | ||
644 | roundMask |= roundIncrement; | ||
645 | } | ||
646 | zSig0 &= ~ roundMask; | ||
647 | if ( zSig0 == 0 ) zExp = 0; | ||
648 | return packFloatx80( zSign, zExp, zSig0 ); | ||
649 | precision80: | ||
650 | increment = ( (sbits64) zSig1 < 0 ); | ||
651 | if ( ! roundNearestEven ) { | ||
652 | if ( roundingMode == float_round_to_zero ) { | ||
653 | increment = 0; | ||
654 | } | ||
655 | else { | ||
656 | if ( zSign ) { | ||
657 | increment = ( roundingMode == float_round_down ) && zSig1; | ||
658 | } | ||
659 | else { | ||
660 | increment = ( roundingMode == float_round_up ) && zSig1; | ||
661 | } | ||
662 | } | ||
663 | } | ||
664 | if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { | ||
665 | if ( ( 0x7FFE < zExp ) | ||
666 | || ( ( zExp == 0x7FFE ) | ||
667 | && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) | ||
668 | && increment | ||
669 | ) | ||
670 | ) { | ||
671 | roundMask = 0; | ||
672 | overflow: | ||
673 | float_raise( float_flag_overflow | float_flag_inexact ); | ||
674 | if ( ( roundingMode == float_round_to_zero ) | ||
675 | || ( zSign && ( roundingMode == float_round_up ) ) | ||
676 | || ( ! zSign && ( roundingMode == float_round_down ) ) | ||
677 | ) { | ||
678 | return packFloatx80( zSign, 0x7FFE, ~ roundMask ); | ||
679 | } | ||
680 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
681 | } | ||
682 | if ( zExp <= 0 ) { | ||
683 | isTiny = | ||
684 | ( float_detect_tininess == float_tininess_before_rounding ) | ||
685 | || ( zExp < 0 ) | ||
686 | || ! increment | ||
687 | || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); | ||
688 | shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); | ||
689 | zExp = 0; | ||
690 | if ( isTiny && zSig1 ) float_raise( float_flag_underflow ); | ||
691 | if ( zSig1 ) float_exception_flags |= float_flag_inexact; | ||
692 | if ( roundNearestEven ) { | ||
693 | increment = ( (sbits64) zSig1 < 0 ); | ||
694 | } | ||
695 | else { | ||
696 | if ( zSign ) { | ||
697 | increment = ( roundingMode == float_round_down ) && zSig1; | ||
698 | } | ||
699 | else { | ||
700 | increment = ( roundingMode == float_round_up ) && zSig1; | ||
701 | } | ||
702 | } | ||
703 | if ( increment ) { | ||
704 | ++zSig0; | ||
705 | zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); | ||
706 | if ( (sbits64) zSig0 < 0 ) zExp = 1; | ||
707 | } | ||
708 | return packFloatx80( zSign, zExp, zSig0 ); | ||
709 | } | ||
710 | } | ||
711 | if ( zSig1 ) float_exception_flags |= float_flag_inexact; | ||
712 | if ( increment ) { | ||
713 | ++zSig0; | ||
714 | if ( zSig0 == 0 ) { | ||
715 | ++zExp; | ||
716 | zSig0 = LIT64( 0x8000000000000000 ); | ||
717 | } | ||
718 | else { | ||
719 | zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); | ||
720 | } | ||
721 | } | ||
722 | else { | ||
723 | if ( zSig0 == 0 ) zExp = 0; | ||
724 | } | ||
725 | |||
726 | return packFloatx80( zSign, zExp, zSig0 ); | ||
727 | } | ||
728 | |||
729 | /* | ||
730 | ------------------------------------------------------------------------------- | ||
731 | Takes an abstract floating-point value having sign `zSign', exponent | ||
732 | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', | ||
733 | and returns the proper extended double-precision floating-point value | ||
734 | corresponding to the abstract input. This routine is just like | ||
735 | `roundAndPackFloatx80' except that the input significand does not have to be | ||
736 | normalized. | ||
737 | ------------------------------------------------------------------------------- | ||
738 | */ | ||
739 | static floatx80 | ||
740 | normalizeRoundAndPackFloatx80( | ||
741 | int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 | ||
742 | ) | ||
743 | { | ||
744 | int8 shiftCount; | ||
745 | |||
746 | if ( zSig0 == 0 ) { | ||
747 | zSig0 = zSig1; | ||
748 | zSig1 = 0; | ||
749 | zExp -= 64; | ||
750 | } | ||
751 | shiftCount = countLeadingZeros64( zSig0 ); | ||
752 | shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); | ||
753 | zExp -= shiftCount; | ||
754 | return | ||
755 | roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 ); | ||
756 | |||
757 | } | ||
758 | |||
759 | #endif | ||
760 | |||
761 | /* | ||
762 | ------------------------------------------------------------------------------- | ||
763 | Returns the result of converting the 32-bit two's complement integer `a' to | ||
764 | the single-precision floating-point format. The conversion is performed | ||
765 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
766 | ------------------------------------------------------------------------------- | ||
767 | */ | ||
768 | float32 int32_to_float32( int32 a ) | ||
769 | { | ||
770 | flag zSign; | ||
771 | |||
772 | if ( a == 0 ) return 0; | ||
773 | if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); | ||
774 | zSign = ( a < 0 ); | ||
775 | return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a ); | ||
776 | |||
777 | } | ||
778 | |||
779 | /* | ||
780 | ------------------------------------------------------------------------------- | ||
781 | Returns the result of converting the 32-bit two's complement integer `a' to | ||
782 | the double-precision floating-point format. The conversion is performed | ||
783 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
784 | ------------------------------------------------------------------------------- | ||
785 | */ | ||
786 | float64 int32_to_float64( int32 a ) | ||
787 | { | ||
788 | flag aSign; | ||
789 | uint32 absA; | ||
790 | int8 shiftCount; | ||
791 | bits64 zSig; | ||
792 | |||
793 | if ( a == 0 ) return 0; | ||
794 | aSign = ( a < 0 ); | ||
795 | absA = aSign ? - a : a; | ||
796 | shiftCount = countLeadingZeros32( absA ) + 21; | ||
797 | zSig = absA; | ||
798 | return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount ); | ||
799 | |||
800 | } | ||
801 | |||
802 | #ifdef FLOATX80 | ||
803 | |||
804 | /* | ||
805 | ------------------------------------------------------------------------------- | ||
806 | Returns the result of converting the 32-bit two's complement integer `a' | ||
807 | to the extended double-precision floating-point format. The conversion | ||
808 | is performed according to the IEC/IEEE Standard for Binary Floating-point | ||
809 | Arithmetic. | ||
810 | ------------------------------------------------------------------------------- | ||
811 | */ | ||
812 | floatx80 int32_to_floatx80( int32 a ) | ||
813 | { | ||
814 | flag zSign; | ||
815 | uint32 absA; | ||
816 | int8 shiftCount; | ||
817 | bits64 zSig; | ||
818 | |||
819 | if ( a == 0 ) return packFloatx80( 0, 0, 0 ); | ||
820 | zSign = ( a < 0 ); | ||
821 | absA = zSign ? - a : a; | ||
822 | shiftCount = countLeadingZeros32( absA ) + 32; | ||
823 | zSig = absA; | ||
824 | return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); | ||
825 | |||
826 | } | ||
827 | |||
828 | #endif | ||
829 | |||
830 | /* | ||
831 | ------------------------------------------------------------------------------- | ||
832 | Returns the result of converting the single-precision floating-point value | ||
833 | `a' to the 32-bit two's complement integer format. The conversion is | ||
834 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
835 | Arithmetic---which means in particular that the conversion is rounded | ||
836 | according to the current rounding mode. If `a' is a NaN, the largest | ||
837 | positive integer is returned. Otherwise, if the conversion overflows, the | ||
838 | largest integer with the same sign as `a' is returned. | ||
839 | ------------------------------------------------------------------------------- | ||
840 | */ | ||
841 | int32 float32_to_int32( float32 a ) | ||
842 | { | ||
843 | flag aSign; | ||
844 | int16 aExp, shiftCount; | ||
845 | bits32 aSig; | ||
846 | bits64 zSig; | ||
847 | |||
848 | aSig = extractFloat32Frac( a ); | ||
849 | aExp = extractFloat32Exp( a ); | ||
850 | aSign = extractFloat32Sign( a ); | ||
851 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | ||
852 | if ( aExp ) aSig |= 0x00800000; | ||
853 | shiftCount = 0xAF - aExp; | ||
854 | zSig = aSig; | ||
855 | zSig <<= 32; | ||
856 | if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig ); | ||
857 | return roundAndPackInt32( aSign, zSig ); | ||
858 | |||
859 | } | ||
860 | |||
861 | /* | ||
862 | ------------------------------------------------------------------------------- | ||
863 | Returns the result of converting the single-precision floating-point value | ||
864 | `a' to the 32-bit two's complement integer format. The conversion is | ||
865 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
866 | Arithmetic, except that the conversion is always rounded toward zero. If | ||
867 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | ||
868 | conversion overflows, the largest integer with the same sign as `a' is | ||
869 | returned. | ||
870 | ------------------------------------------------------------------------------- | ||
871 | */ | ||
872 | int32 float32_to_int32_round_to_zero( float32 a ) | ||
873 | { | ||
874 | flag aSign; | ||
875 | int16 aExp, shiftCount; | ||
876 | bits32 aSig; | ||
877 | int32 z; | ||
878 | |||
879 | aSig = extractFloat32Frac( a ); | ||
880 | aExp = extractFloat32Exp( a ); | ||
881 | aSign = extractFloat32Sign( a ); | ||
882 | shiftCount = aExp - 0x9E; | ||
883 | if ( 0 <= shiftCount ) { | ||
884 | if ( a == 0xCF000000 ) return 0x80000000; | ||
885 | float_raise( float_flag_invalid ); | ||
886 | if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; | ||
887 | return 0x80000000; | ||
888 | } | ||
889 | else if ( aExp <= 0x7E ) { | ||
890 | if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; | ||
891 | return 0; | ||
892 | } | ||
893 | aSig = ( aSig | 0x00800000 )<<8; | ||
894 | z = aSig>>( - shiftCount ); | ||
895 | if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { | ||
896 | float_exception_flags |= float_flag_inexact; | ||
897 | } | ||
898 | return aSign ? - z : z; | ||
899 | |||
900 | } | ||
901 | |||
902 | /* | ||
903 | ------------------------------------------------------------------------------- | ||
904 | Returns the result of converting the single-precision floating-point value | ||
905 | `a' to the double-precision floating-point format. The conversion is | ||
906 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
907 | Arithmetic. | ||
908 | ------------------------------------------------------------------------------- | ||
909 | */ | ||
910 | float64 float32_to_float64( float32 a ) | ||
911 | { | ||
912 | flag aSign; | ||
913 | int16 aExp; | ||
914 | bits32 aSig; | ||
915 | |||
916 | aSig = extractFloat32Frac( a ); | ||
917 | aExp = extractFloat32Exp( a ); | ||
918 | aSign = extractFloat32Sign( a ); | ||
919 | if ( aExp == 0xFF ) { | ||
920 | if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); | ||
921 | return packFloat64( aSign, 0x7FF, 0 ); | ||
922 | } | ||
923 | if ( aExp == 0 ) { | ||
924 | if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); | ||
925 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | ||
926 | --aExp; | ||
927 | } | ||
928 | return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); | ||
929 | |||
930 | } | ||
931 | |||
932 | #ifdef FLOATX80 | ||
933 | |||
934 | /* | ||
935 | ------------------------------------------------------------------------------- | ||
936 | Returns the result of converting the single-precision floating-point value | ||
937 | `a' to the extended double-precision floating-point format. The conversion | ||
938 | is performed according to the IEC/IEEE Standard for Binary Floating-point | ||
939 | Arithmetic. | ||
940 | ------------------------------------------------------------------------------- | ||
941 | */ | ||
942 | floatx80 float32_to_floatx80( float32 a ) | ||
943 | { | ||
944 | flag aSign; | ||
945 | int16 aExp; | ||
946 | bits32 aSig; | ||
947 | |||
948 | aSig = extractFloat32Frac( a ); | ||
949 | aExp = extractFloat32Exp( a ); | ||
950 | aSign = extractFloat32Sign( a ); | ||
951 | if ( aExp == 0xFF ) { | ||
952 | if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) ); | ||
953 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
954 | } | ||
955 | if ( aExp == 0 ) { | ||
956 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | ||
957 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | ||
958 | } | ||
959 | aSig |= 0x00800000; | ||
960 | return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); | ||
961 | |||
962 | } | ||
963 | |||
964 | #endif | ||
965 | |||
966 | /* | ||
967 | ------------------------------------------------------------------------------- | ||
968 | Rounds the single-precision floating-point value `a' to an integer, and | ||
969 | returns the result as a single-precision floating-point value. The | ||
970 | operation is performed according to the IEC/IEEE Standard for Binary | ||
971 | Floating-point Arithmetic. | ||
972 | ------------------------------------------------------------------------------- | ||
973 | */ | ||
974 | float32 float32_round_to_int( float32 a ) | ||
975 | { | ||
976 | flag aSign; | ||
977 | int16 aExp; | ||
978 | bits32 lastBitMask, roundBitsMask; | ||
979 | int8 roundingMode; | ||
980 | float32 z; | ||
981 | |||
982 | aExp = extractFloat32Exp( a ); | ||
983 | if ( 0x96 <= aExp ) { | ||
984 | if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { | ||
985 | return propagateFloat32NaN( a, a ); | ||
986 | } | ||
987 | return a; | ||
988 | } | ||
989 | if ( aExp <= 0x7E ) { | ||
990 | if ( (bits32) ( a<<1 ) == 0 ) return a; | ||
991 | float_exception_flags |= float_flag_inexact; | ||
992 | aSign = extractFloat32Sign( a ); | ||
993 | switch ( float_rounding_mode ) { | ||
994 | case float_round_nearest_even: | ||
995 | if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { | ||
996 | return packFloat32( aSign, 0x7F, 0 ); | ||
997 | } | ||
998 | break; | ||
999 | case float_round_down: | ||
1000 | return aSign ? 0xBF800000 : 0; | ||
1001 | case float_round_up: | ||
1002 | return aSign ? 0x80000000 : 0x3F800000; | ||
1003 | } | ||
1004 | return packFloat32( aSign, 0, 0 ); | ||
1005 | } | ||
1006 | lastBitMask = 1; | ||
1007 | lastBitMask <<= 0x96 - aExp; | ||
1008 | roundBitsMask = lastBitMask - 1; | ||
1009 | z = a; | ||
1010 | roundingMode = float_rounding_mode; | ||
1011 | if ( roundingMode == float_round_nearest_even ) { | ||
1012 | z += lastBitMask>>1; | ||
1013 | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | ||
1014 | } | ||
1015 | else if ( roundingMode != float_round_to_zero ) { | ||
1016 | if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { | ||
1017 | z += roundBitsMask; | ||
1018 | } | ||
1019 | } | ||
1020 | z &= ~ roundBitsMask; | ||
1021 | if ( z != a ) float_exception_flags |= float_flag_inexact; | ||
1022 | return z; | ||
1023 | |||
1024 | } | ||
1025 | |||
1026 | /* | ||
1027 | ------------------------------------------------------------------------------- | ||
1028 | Returns the result of adding the absolute values of the single-precision | ||
1029 | floating-point values `a' and `b'. If `zSign' is true, the sum is negated | ||
1030 | before being returned. `zSign' is ignored if the result is a NaN. The | ||
1031 | addition is performed according to the IEC/IEEE Standard for Binary | ||
1032 | Floating-point Arithmetic. | ||
1033 | ------------------------------------------------------------------------------- | ||
1034 | */ | ||
1035 | static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) | ||
1036 | { | ||
1037 | int16 aExp, bExp, zExp; | ||
1038 | bits32 aSig, bSig, zSig; | ||
1039 | int16 expDiff; | ||
1040 | |||
1041 | aSig = extractFloat32Frac( a ); | ||
1042 | aExp = extractFloat32Exp( a ); | ||
1043 | bSig = extractFloat32Frac( b ); | ||
1044 | bExp = extractFloat32Exp( b ); | ||
1045 | expDiff = aExp - bExp; | ||
1046 | aSig <<= 6; | ||
1047 | bSig <<= 6; | ||
1048 | if ( 0 < expDiff ) { | ||
1049 | if ( aExp == 0xFF ) { | ||
1050 | if ( aSig ) return propagateFloat32NaN( a, b ); | ||
1051 | return a; | ||
1052 | } | ||
1053 | if ( bExp == 0 ) { | ||
1054 | --expDiff; | ||
1055 | } | ||
1056 | else { | ||
1057 | bSig |= 0x20000000; | ||
1058 | } | ||
1059 | shift32RightJamming( bSig, expDiff, &bSig ); | ||
1060 | zExp = aExp; | ||
1061 | } | ||
1062 | else if ( expDiff < 0 ) { | ||
1063 | if ( bExp == 0xFF ) { | ||
1064 | if ( bSig ) return propagateFloat32NaN( a, b ); | ||
1065 | return packFloat32( zSign, 0xFF, 0 ); | ||
1066 | } | ||
1067 | if ( aExp == 0 ) { | ||
1068 | ++expDiff; | ||
1069 | } | ||
1070 | else { | ||
1071 | aSig |= 0x20000000; | ||
1072 | } | ||
1073 | shift32RightJamming( aSig, - expDiff, &aSig ); | ||
1074 | zExp = bExp; | ||
1075 | } | ||
1076 | else { | ||
1077 | if ( aExp == 0xFF ) { | ||
1078 | if ( aSig | bSig ) return propagateFloat32NaN( a, b ); | ||
1079 | return a; | ||
1080 | } | ||
1081 | if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); | ||
1082 | zSig = 0x40000000 + aSig + bSig; | ||
1083 | zExp = aExp; | ||
1084 | goto roundAndPack; | ||
1085 | } | ||
1086 | aSig |= 0x20000000; | ||
1087 | zSig = ( aSig + bSig )<<1; | ||
1088 | --zExp; | ||
1089 | if ( (sbits32) zSig < 0 ) { | ||
1090 | zSig = aSig + bSig; | ||
1091 | ++zExp; | ||
1092 | } | ||
1093 | roundAndPack: | ||
1094 | return roundAndPackFloat32( zSign, zExp, zSig ); | ||
1095 | |||
1096 | } | ||
1097 | |||
1098 | /* | ||
1099 | ------------------------------------------------------------------------------- | ||
1100 | Returns the result of subtracting the absolute values of the single- | ||
1101 | precision floating-point values `a' and `b'. If `zSign' is true, the | ||
1102 | difference is negated before being returned. `zSign' is ignored if the | ||
1103 | result is a NaN. The subtraction is performed according to the IEC/IEEE | ||
1104 | Standard for Binary Floating-point Arithmetic. | ||
1105 | ------------------------------------------------------------------------------- | ||
1106 | */ | ||
1107 | static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) | ||
1108 | { | ||
1109 | int16 aExp, bExp, zExp; | ||
1110 | bits32 aSig, bSig, zSig; | ||
1111 | int16 expDiff; | ||
1112 | |||
1113 | aSig = extractFloat32Frac( a ); | ||
1114 | aExp = extractFloat32Exp( a ); | ||
1115 | bSig = extractFloat32Frac( b ); | ||
1116 | bExp = extractFloat32Exp( b ); | ||
1117 | expDiff = aExp - bExp; | ||
1118 | aSig <<= 7; | ||
1119 | bSig <<= 7; | ||
1120 | if ( 0 < expDiff ) goto aExpBigger; | ||
1121 | if ( expDiff < 0 ) goto bExpBigger; | ||
1122 | if ( aExp == 0xFF ) { | ||
1123 | if ( aSig | bSig ) return propagateFloat32NaN( a, b ); | ||
1124 | float_raise( float_flag_invalid ); | ||
1125 | return float32_default_nan; | ||
1126 | } | ||
1127 | if ( aExp == 0 ) { | ||
1128 | aExp = 1; | ||
1129 | bExp = 1; | ||
1130 | } | ||
1131 | if ( bSig < aSig ) goto aBigger; | ||
1132 | if ( aSig < bSig ) goto bBigger; | ||
1133 | return packFloat32( float_rounding_mode == float_round_down, 0, 0 ); | ||
1134 | bExpBigger: | ||
1135 | if ( bExp == 0xFF ) { | ||
1136 | if ( bSig ) return propagateFloat32NaN( a, b ); | ||
1137 | return packFloat32( zSign ^ 1, 0xFF, 0 ); | ||
1138 | } | ||
1139 | if ( aExp == 0 ) { | ||
1140 | ++expDiff; | ||
1141 | } | ||
1142 | else { | ||
1143 | aSig |= 0x40000000; | ||
1144 | } | ||
1145 | shift32RightJamming( aSig, - expDiff, &aSig ); | ||
1146 | bSig |= 0x40000000; | ||
1147 | bBigger: | ||
1148 | zSig = bSig - aSig; | ||
1149 | zExp = bExp; | ||
1150 | zSign ^= 1; | ||
1151 | goto normalizeRoundAndPack; | ||
1152 | aExpBigger: | ||
1153 | if ( aExp == 0xFF ) { | ||
1154 | if ( aSig ) return propagateFloat32NaN( a, b ); | ||
1155 | return a; | ||
1156 | } | ||
1157 | if ( bExp == 0 ) { | ||
1158 | --expDiff; | ||
1159 | } | ||
1160 | else { | ||
1161 | bSig |= 0x40000000; | ||
1162 | } | ||
1163 | shift32RightJamming( bSig, expDiff, &bSig ); | ||
1164 | aSig |= 0x40000000; | ||
1165 | aBigger: | ||
1166 | zSig = aSig - bSig; | ||
1167 | zExp = aExp; | ||
1168 | normalizeRoundAndPack: | ||
1169 | --zExp; | ||
1170 | return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); | ||
1171 | |||
1172 | } | ||
1173 | |||
1174 | /* | ||
1175 | ------------------------------------------------------------------------------- | ||
1176 | Returns the result of adding the single-precision floating-point values `a' | ||
1177 | and `b'. The operation is performed according to the IEC/IEEE Standard for | ||
1178 | Binary Floating-point Arithmetic. | ||
1179 | ------------------------------------------------------------------------------- | ||
1180 | */ | ||
1181 | float32 float32_add( float32 a, float32 b ) | ||
1182 | { | ||
1183 | flag aSign, bSign; | ||
1184 | |||
1185 | aSign = extractFloat32Sign( a ); | ||
1186 | bSign = extractFloat32Sign( b ); | ||
1187 | if ( aSign == bSign ) { | ||
1188 | return addFloat32Sigs( a, b, aSign ); | ||
1189 | } | ||
1190 | else { | ||
1191 | return subFloat32Sigs( a, b, aSign ); | ||
1192 | } | ||
1193 | |||
1194 | } | ||
1195 | |||
1196 | /* | ||
1197 | ------------------------------------------------------------------------------- | ||
1198 | Returns the result of subtracting the single-precision floating-point values | ||
1199 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | ||
1200 | for Binary Floating-point Arithmetic. | ||
1201 | ------------------------------------------------------------------------------- | ||
1202 | */ | ||
1203 | float32 float32_sub( float32 a, float32 b ) | ||
1204 | { | ||
1205 | flag aSign, bSign; | ||
1206 | |||
1207 | aSign = extractFloat32Sign( a ); | ||
1208 | bSign = extractFloat32Sign( b ); | ||
1209 | if ( aSign == bSign ) { | ||
1210 | return subFloat32Sigs( a, b, aSign ); | ||
1211 | } | ||
1212 | else { | ||
1213 | return addFloat32Sigs( a, b, aSign ); | ||
1214 | } | ||
1215 | |||
1216 | } | ||
1217 | |||
1218 | /* | ||
1219 | ------------------------------------------------------------------------------- | ||
1220 | Returns the result of multiplying the single-precision floating-point values | ||
1221 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | ||
1222 | for Binary Floating-point Arithmetic. | ||
1223 | ------------------------------------------------------------------------------- | ||
1224 | */ | ||
1225 | float32 float32_mul( float32 a, float32 b ) | ||
1226 | { | ||
1227 | flag aSign, bSign, zSign; | ||
1228 | int16 aExp, bExp, zExp; | ||
1229 | bits32 aSig, bSig; | ||
1230 | bits64 zSig64; | ||
1231 | bits32 zSig; | ||
1232 | |||
1233 | aSig = extractFloat32Frac( a ); | ||
1234 | aExp = extractFloat32Exp( a ); | ||
1235 | aSign = extractFloat32Sign( a ); | ||
1236 | bSig = extractFloat32Frac( b ); | ||
1237 | bExp = extractFloat32Exp( b ); | ||
1238 | bSign = extractFloat32Sign( b ); | ||
1239 | zSign = aSign ^ bSign; | ||
1240 | if ( aExp == 0xFF ) { | ||
1241 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | ||
1242 | return propagateFloat32NaN( a, b ); | ||
1243 | } | ||
1244 | if ( ( bExp | bSig ) == 0 ) { | ||
1245 | float_raise( float_flag_invalid ); | ||
1246 | return float32_default_nan; | ||
1247 | } | ||
1248 | return packFloat32( zSign, 0xFF, 0 ); | ||
1249 | } | ||
1250 | if ( bExp == 0xFF ) { | ||
1251 | if ( bSig ) return propagateFloat32NaN( a, b ); | ||
1252 | if ( ( aExp | aSig ) == 0 ) { | ||
1253 | float_raise( float_flag_invalid ); | ||
1254 | return float32_default_nan; | ||
1255 | } | ||
1256 | return packFloat32( zSign, 0xFF, 0 ); | ||
1257 | } | ||
1258 | if ( aExp == 0 ) { | ||
1259 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | ||
1260 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | ||
1261 | } | ||
1262 | if ( bExp == 0 ) { | ||
1263 | if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); | ||
1264 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | ||
1265 | } | ||
1266 | zExp = aExp + bExp - 0x7F; | ||
1267 | aSig = ( aSig | 0x00800000 )<<7; | ||
1268 | bSig = ( bSig | 0x00800000 )<<8; | ||
1269 | shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); | ||
1270 | zSig = zSig64; | ||
1271 | if ( 0 <= (sbits32) ( zSig<<1 ) ) { | ||
1272 | zSig <<= 1; | ||
1273 | --zExp; | ||
1274 | } | ||
1275 | return roundAndPackFloat32( zSign, zExp, zSig ); | ||
1276 | |||
1277 | } | ||
1278 | |||
1279 | /* | ||
1280 | ------------------------------------------------------------------------------- | ||
1281 | Returns the result of dividing the single-precision floating-point value `a' | ||
1282 | by the corresponding value `b'. The operation is performed according to the | ||
1283 | IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
1284 | ------------------------------------------------------------------------------- | ||
1285 | */ | ||
1286 | float32 float32_div( float32 a, float32 b ) | ||
1287 | { | ||
1288 | flag aSign, bSign, zSign; | ||
1289 | int16 aExp, bExp, zExp; | ||
1290 | bits32 aSig, bSig, zSig; | ||
1291 | |||
1292 | aSig = extractFloat32Frac( a ); | ||
1293 | aExp = extractFloat32Exp( a ); | ||
1294 | aSign = extractFloat32Sign( a ); | ||
1295 | bSig = extractFloat32Frac( b ); | ||
1296 | bExp = extractFloat32Exp( b ); | ||
1297 | bSign = extractFloat32Sign( b ); | ||
1298 | zSign = aSign ^ bSign; | ||
1299 | if ( aExp == 0xFF ) { | ||
1300 | if ( aSig ) return propagateFloat32NaN( a, b ); | ||
1301 | if ( bExp == 0xFF ) { | ||
1302 | if ( bSig ) return propagateFloat32NaN( a, b ); | ||
1303 | float_raise( float_flag_invalid ); | ||
1304 | return float32_default_nan; | ||
1305 | } | ||
1306 | return packFloat32( zSign, 0xFF, 0 ); | ||
1307 | } | ||
1308 | if ( bExp == 0xFF ) { | ||
1309 | if ( bSig ) return propagateFloat32NaN( a, b ); | ||
1310 | return packFloat32( zSign, 0, 0 ); | ||
1311 | } | ||
1312 | if ( bExp == 0 ) { | ||
1313 | if ( bSig == 0 ) { | ||
1314 | if ( ( aExp | aSig ) == 0 ) { | ||
1315 | float_raise( float_flag_invalid ); | ||
1316 | return float32_default_nan; | ||
1317 | } | ||
1318 | float_raise( float_flag_divbyzero ); | ||
1319 | return packFloat32( zSign, 0xFF, 0 ); | ||
1320 | } | ||
1321 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | ||
1322 | } | ||
1323 | if ( aExp == 0 ) { | ||
1324 | if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); | ||
1325 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | ||
1326 | } | ||
1327 | zExp = aExp - bExp + 0x7D; | ||
1328 | aSig = ( aSig | 0x00800000 )<<7; | ||
1329 | bSig = ( bSig | 0x00800000 )<<8; | ||
1330 | if ( bSig <= ( aSig + aSig ) ) { | ||
1331 | aSig >>= 1; | ||
1332 | ++zExp; | ||
1333 | } | ||
1334 | zSig = ( ( (bits64) aSig )<<32 ) / bSig; | ||
1335 | if ( ( zSig & 0x3F ) == 0 ) { | ||
1336 | zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 ); | ||
1337 | } | ||
1338 | return roundAndPackFloat32( zSign, zExp, zSig ); | ||
1339 | |||
1340 | } | ||
1341 | |||
1342 | /* | ||
1343 | ------------------------------------------------------------------------------- | ||
1344 | Returns the remainder of the single-precision floating-point value `a' | ||
1345 | with respect to the corresponding value `b'. The operation is performed | ||
1346 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
1347 | ------------------------------------------------------------------------------- | ||
1348 | */ | ||
1349 | float32 float32_rem( float32 a, float32 b ) | ||
1350 | { | ||
1351 | flag aSign, bSign, zSign; | ||
1352 | int16 aExp, bExp, expDiff; | ||
1353 | bits32 aSig, bSig; | ||
1354 | bits32 q; | ||
1355 | bits64 aSig64, bSig64, q64; | ||
1356 | bits32 alternateASig; | ||
1357 | sbits32 sigMean; | ||
1358 | |||
1359 | aSig = extractFloat32Frac( a ); | ||
1360 | aExp = extractFloat32Exp( a ); | ||
1361 | aSign = extractFloat32Sign( a ); | ||
1362 | bSig = extractFloat32Frac( b ); | ||
1363 | bExp = extractFloat32Exp( b ); | ||
1364 | bSign = extractFloat32Sign( b ); | ||
1365 | if ( aExp == 0xFF ) { | ||
1366 | if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { | ||
1367 | return propagateFloat32NaN( a, b ); | ||
1368 | } | ||
1369 | float_raise( float_flag_invalid ); | ||
1370 | return float32_default_nan; | ||
1371 | } | ||
1372 | if ( bExp == 0xFF ) { | ||
1373 | if ( bSig ) return propagateFloat32NaN( a, b ); | ||
1374 | return a; | ||
1375 | } | ||
1376 | if ( bExp == 0 ) { | ||
1377 | if ( bSig == 0 ) { | ||
1378 | float_raise( float_flag_invalid ); | ||
1379 | return float32_default_nan; | ||
1380 | } | ||
1381 | normalizeFloat32Subnormal( bSig, &bExp, &bSig ); | ||
1382 | } | ||
1383 | if ( aExp == 0 ) { | ||
1384 | if ( aSig == 0 ) return a; | ||
1385 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | ||
1386 | } | ||
1387 | expDiff = aExp - bExp; | ||
1388 | aSig |= 0x00800000; | ||
1389 | bSig |= 0x00800000; | ||
1390 | if ( expDiff < 32 ) { | ||
1391 | aSig <<= 8; | ||
1392 | bSig <<= 8; | ||
1393 | if ( expDiff < 0 ) { | ||
1394 | if ( expDiff < -1 ) return a; | ||
1395 | aSig >>= 1; | ||
1396 | } | ||
1397 | q = ( bSig <= aSig ); | ||
1398 | if ( q ) aSig -= bSig; | ||
1399 | if ( 0 < expDiff ) { | ||
1400 | q = ( ( (bits64) aSig )<<32 ) / bSig; | ||
1401 | q >>= 32 - expDiff; | ||
1402 | bSig >>= 2; | ||
1403 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | ||
1404 | } | ||
1405 | else { | ||
1406 | aSig >>= 2; | ||
1407 | bSig >>= 2; | ||
1408 | } | ||
1409 | } | ||
1410 | else { | ||
1411 | if ( bSig <= aSig ) aSig -= bSig; | ||
1412 | aSig64 = ( (bits64) aSig )<<40; | ||
1413 | bSig64 = ( (bits64) bSig )<<40; | ||
1414 | expDiff -= 64; | ||
1415 | while ( 0 < expDiff ) { | ||
1416 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | ||
1417 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | ||
1418 | aSig64 = - ( ( bSig * q64 )<<38 ); | ||
1419 | expDiff -= 62; | ||
1420 | } | ||
1421 | expDiff += 64; | ||
1422 | q64 = estimateDiv128To64( aSig64, 0, bSig64 ); | ||
1423 | q64 = ( 2 < q64 ) ? q64 - 2 : 0; | ||
1424 | q = q64>>( 64 - expDiff ); | ||
1425 | bSig <<= 6; | ||
1426 | aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; | ||
1427 | } | ||
1428 | do { | ||
1429 | alternateASig = aSig; | ||
1430 | ++q; | ||
1431 | aSig -= bSig; | ||
1432 | } while ( 0 <= (sbits32) aSig ); | ||
1433 | sigMean = aSig + alternateASig; | ||
1434 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | ||
1435 | aSig = alternateASig; | ||
1436 | } | ||
1437 | zSign = ( (sbits32) aSig < 0 ); | ||
1438 | if ( zSign ) aSig = - aSig; | ||
1439 | return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); | ||
1440 | |||
1441 | } | ||
1442 | |||
1443 | /* | ||
1444 | ------------------------------------------------------------------------------- | ||
1445 | Returns the square root of the single-precision floating-point value `a'. | ||
1446 | The operation is performed according to the IEC/IEEE Standard for Binary | ||
1447 | Floating-point Arithmetic. | ||
1448 | ------------------------------------------------------------------------------- | ||
1449 | */ | ||
1450 | float32 float32_sqrt( float32 a ) | ||
1451 | { | ||
1452 | flag aSign; | ||
1453 | int16 aExp, zExp; | ||
1454 | bits32 aSig, zSig; | ||
1455 | bits64 rem, term; | ||
1456 | |||
1457 | aSig = extractFloat32Frac( a ); | ||
1458 | aExp = extractFloat32Exp( a ); | ||
1459 | aSign = extractFloat32Sign( a ); | ||
1460 | if ( aExp == 0xFF ) { | ||
1461 | if ( aSig ) return propagateFloat32NaN( a, 0 ); | ||
1462 | if ( ! aSign ) return a; | ||
1463 | float_raise( float_flag_invalid ); | ||
1464 | return float32_default_nan; | ||
1465 | } | ||
1466 | if ( aSign ) { | ||
1467 | if ( ( aExp | aSig ) == 0 ) return a; | ||
1468 | float_raise( float_flag_invalid ); | ||
1469 | return float32_default_nan; | ||
1470 | } | ||
1471 | if ( aExp == 0 ) { | ||
1472 | if ( aSig == 0 ) return 0; | ||
1473 | normalizeFloat32Subnormal( aSig, &aExp, &aSig ); | ||
1474 | } | ||
1475 | zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; | ||
1476 | aSig = ( aSig | 0x00800000 )<<8; | ||
1477 | zSig = estimateSqrt32( aExp, aSig ) + 2; | ||
1478 | if ( ( zSig & 0x7F ) <= 5 ) { | ||
1479 | if ( zSig < 2 ) { | ||
1480 | zSig = 0xFFFFFFFF; | ||
1481 | } | ||
1482 | else { | ||
1483 | aSig >>= aExp & 1; | ||
1484 | term = ( (bits64) zSig ) * zSig; | ||
1485 | rem = ( ( (bits64) aSig )<<32 ) - term; | ||
1486 | while ( (sbits64) rem < 0 ) { | ||
1487 | --zSig; | ||
1488 | rem += ( ( (bits64) zSig )<<1 ) | 1; | ||
1489 | } | ||
1490 | zSig |= ( rem != 0 ); | ||
1491 | } | ||
1492 | } | ||
1493 | shift32RightJamming( zSig, 1, &zSig ); | ||
1494 | return roundAndPackFloat32( 0, zExp, zSig ); | ||
1495 | |||
1496 | } | ||
1497 | |||
1498 | /* | ||
1499 | ------------------------------------------------------------------------------- | ||
1500 | Returns 1 if the single-precision floating-point value `a' is equal to the | ||
1501 | corresponding value `b', and 0 otherwise. The comparison is performed | ||
1502 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
1503 | ------------------------------------------------------------------------------- | ||
1504 | */ | ||
1505 | flag float32_eq( float32 a, float32 b ) | ||
1506 | { | ||
1507 | |||
1508 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | ||
1509 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | ||
1510 | ) { | ||
1511 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | ||
1512 | float_raise( float_flag_invalid ); | ||
1513 | } | ||
1514 | return 0; | ||
1515 | } | ||
1516 | return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); | ||
1517 | |||
1518 | } | ||
1519 | |||
1520 | /* | ||
1521 | ------------------------------------------------------------------------------- | ||
1522 | Returns 1 if the single-precision floating-point value `a' is less than or | ||
1523 | equal to the corresponding value `b', and 0 otherwise. The comparison is | ||
1524 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1525 | Arithmetic. | ||
1526 | ------------------------------------------------------------------------------- | ||
1527 | */ | ||
1528 | flag float32_le( float32 a, float32 b ) | ||
1529 | { | ||
1530 | flag aSign, bSign; | ||
1531 | |||
1532 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | ||
1533 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | ||
1534 | ) { | ||
1535 | float_raise( float_flag_invalid ); | ||
1536 | return 0; | ||
1537 | } | ||
1538 | aSign = extractFloat32Sign( a ); | ||
1539 | bSign = extractFloat32Sign( b ); | ||
1540 | if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); | ||
1541 | return ( a == b ) || ( aSign ^ ( a < b ) ); | ||
1542 | |||
1543 | } | ||
1544 | |||
1545 | /* | ||
1546 | ------------------------------------------------------------------------------- | ||
1547 | Returns 1 if the single-precision floating-point value `a' is less than | ||
1548 | the corresponding value `b', and 0 otherwise. The comparison is performed | ||
1549 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
1550 | ------------------------------------------------------------------------------- | ||
1551 | */ | ||
1552 | flag float32_lt( float32 a, float32 b ) | ||
1553 | { | ||
1554 | flag aSign, bSign; | ||
1555 | |||
1556 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | ||
1557 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | ||
1558 | ) { | ||
1559 | float_raise( float_flag_invalid ); | ||
1560 | return 0; | ||
1561 | } | ||
1562 | aSign = extractFloat32Sign( a ); | ||
1563 | bSign = extractFloat32Sign( b ); | ||
1564 | if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); | ||
1565 | return ( a != b ) && ( aSign ^ ( a < b ) ); | ||
1566 | |||
1567 | } | ||
1568 | |||
1569 | /* | ||
1570 | ------------------------------------------------------------------------------- | ||
1571 | Returns 1 if the single-precision floating-point value `a' is equal to the | ||
1572 | corresponding value `b', and 0 otherwise. The invalid exception is raised | ||
1573 | if either operand is a NaN. Otherwise, the comparison is performed | ||
1574 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
1575 | ------------------------------------------------------------------------------- | ||
1576 | */ | ||
1577 | flag float32_eq_signaling( float32 a, float32 b ) | ||
1578 | { | ||
1579 | |||
1580 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | ||
1581 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | ||
1582 | ) { | ||
1583 | float_raise( float_flag_invalid ); | ||
1584 | return 0; | ||
1585 | } | ||
1586 | return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); | ||
1587 | |||
1588 | } | ||
1589 | |||
1590 | /* | ||
1591 | ------------------------------------------------------------------------------- | ||
1592 | Returns 1 if the single-precision floating-point value `a' is less than or | ||
1593 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | ||
1594 | cause an exception. Otherwise, the comparison is performed according to the | ||
1595 | IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
1596 | ------------------------------------------------------------------------------- | ||
1597 | */ | ||
1598 | flag float32_le_quiet( float32 a, float32 b ) | ||
1599 | { | ||
1600 | flag aSign, bSign; | ||
1601 | //int16 aExp, bExp; | ||
1602 | |||
1603 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | ||
1604 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | ||
1605 | ) { | ||
1606 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | ||
1607 | float_raise( float_flag_invalid ); | ||
1608 | } | ||
1609 | return 0; | ||
1610 | } | ||
1611 | aSign = extractFloat32Sign( a ); | ||
1612 | bSign = extractFloat32Sign( b ); | ||
1613 | if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); | ||
1614 | return ( a == b ) || ( aSign ^ ( a < b ) ); | ||
1615 | |||
1616 | } | ||
1617 | |||
1618 | /* | ||
1619 | ------------------------------------------------------------------------------- | ||
1620 | Returns 1 if the single-precision floating-point value `a' is less than | ||
1621 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | ||
1622 | exception. Otherwise, the comparison is performed according to the IEC/IEEE | ||
1623 | Standard for Binary Floating-point Arithmetic. | ||
1624 | ------------------------------------------------------------------------------- | ||
1625 | */ | ||
1626 | flag float32_lt_quiet( float32 a, float32 b ) | ||
1627 | { | ||
1628 | flag aSign, bSign; | ||
1629 | |||
1630 | if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) | ||
1631 | || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) | ||
1632 | ) { | ||
1633 | if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { | ||
1634 | float_raise( float_flag_invalid ); | ||
1635 | } | ||
1636 | return 0; | ||
1637 | } | ||
1638 | aSign = extractFloat32Sign( a ); | ||
1639 | bSign = extractFloat32Sign( b ); | ||
1640 | if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); | ||
1641 | return ( a != b ) && ( aSign ^ ( a < b ) ); | ||
1642 | |||
1643 | } | ||
1644 | |||
1645 | /* | ||
1646 | ------------------------------------------------------------------------------- | ||
1647 | Returns the result of converting the double-precision floating-point value | ||
1648 | `a' to the 32-bit two's complement integer format. The conversion is | ||
1649 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1650 | Arithmetic---which means in particular that the conversion is rounded | ||
1651 | according to the current rounding mode. If `a' is a NaN, the largest | ||
1652 | positive integer is returned. Otherwise, if the conversion overflows, the | ||
1653 | largest integer with the same sign as `a' is returned. | ||
1654 | ------------------------------------------------------------------------------- | ||
1655 | */ | ||
1656 | int32 float64_to_int32( float64 a ) | ||
1657 | { | ||
1658 | flag aSign; | ||
1659 | int16 aExp, shiftCount; | ||
1660 | bits64 aSig; | ||
1661 | |||
1662 | aSig = extractFloat64Frac( a ); | ||
1663 | aExp = extractFloat64Exp( a ); | ||
1664 | aSign = extractFloat64Sign( a ); | ||
1665 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | ||
1666 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | ||
1667 | shiftCount = 0x42C - aExp; | ||
1668 | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | ||
1669 | return roundAndPackInt32( aSign, aSig ); | ||
1670 | |||
1671 | } | ||
1672 | |||
1673 | /* | ||
1674 | ------------------------------------------------------------------------------- | ||
1675 | Returns the result of converting the double-precision floating-point value | ||
1676 | `a' to the 32-bit two's complement integer format. The conversion is | ||
1677 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1678 | Arithmetic, except that the conversion is always rounded toward zero. If | ||
1679 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | ||
1680 | conversion overflows, the largest integer with the same sign as `a' is | ||
1681 | returned. | ||
1682 | ------------------------------------------------------------------------------- | ||
1683 | */ | ||
1684 | int32 float64_to_int32_round_to_zero( float64 a ) | ||
1685 | { | ||
1686 | flag aSign; | ||
1687 | int16 aExp, shiftCount; | ||
1688 | bits64 aSig, savedASig; | ||
1689 | int32 z; | ||
1690 | |||
1691 | aSig = extractFloat64Frac( a ); | ||
1692 | aExp = extractFloat64Exp( a ); | ||
1693 | aSign = extractFloat64Sign( a ); | ||
1694 | shiftCount = 0x433 - aExp; | ||
1695 | if ( shiftCount < 21 ) { | ||
1696 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | ||
1697 | goto invalid; | ||
1698 | } | ||
1699 | else if ( 52 < shiftCount ) { | ||
1700 | if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; | ||
1701 | return 0; | ||
1702 | } | ||
1703 | aSig |= LIT64( 0x0010000000000000 ); | ||
1704 | savedASig = aSig; | ||
1705 | aSig >>= shiftCount; | ||
1706 | z = aSig; | ||
1707 | if ( aSign ) z = - z; | ||
1708 | if ( ( z < 0 ) ^ aSign ) { | ||
1709 | invalid: | ||
1710 | float_exception_flags |= float_flag_invalid; | ||
1711 | return aSign ? 0x80000000 : 0x7FFFFFFF; | ||
1712 | } | ||
1713 | if ( ( aSig<<shiftCount ) != savedASig ) { | ||
1714 | float_exception_flags |= float_flag_inexact; | ||
1715 | } | ||
1716 | return z; | ||
1717 | |||
1718 | } | ||
1719 | |||
1720 | /* | ||
1721 | ------------------------------------------------------------------------------- | ||
1722 | Returns the result of converting the double-precision floating-point value | ||
1723 | `a' to the 32-bit two's complement unsigned integer format. The conversion | ||
1724 | is performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1725 | Arithmetic---which means in particular that the conversion is rounded | ||
1726 | according to the current rounding mode. If `a' is a NaN, the largest | ||
1727 | positive integer is returned. Otherwise, if the conversion overflows, the | ||
1728 | largest positive integer is returned. | ||
1729 | ------------------------------------------------------------------------------- | ||
1730 | */ | ||
1731 | int32 float64_to_uint32( float64 a ) | ||
1732 | { | ||
1733 | flag aSign; | ||
1734 | int16 aExp, shiftCount; | ||
1735 | bits64 aSig; | ||
1736 | |||
1737 | aSig = extractFloat64Frac( a ); | ||
1738 | aExp = extractFloat64Exp( a ); | ||
1739 | aSign = 0; //extractFloat64Sign( a ); | ||
1740 | //if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | ||
1741 | if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); | ||
1742 | shiftCount = 0x42C - aExp; | ||
1743 | if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); | ||
1744 | return roundAndPackInt32( aSign, aSig ); | ||
1745 | } | ||
1746 | |||
1747 | /* | ||
1748 | ------------------------------------------------------------------------------- | ||
1749 | Returns the result of converting the double-precision floating-point value | ||
1750 | `a' to the 32-bit two's complement integer format. The conversion is | ||
1751 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1752 | Arithmetic, except that the conversion is always rounded toward zero. If | ||
1753 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the | ||
1754 | conversion overflows, the largest positive integer is returned. | ||
1755 | ------------------------------------------------------------------------------- | ||
1756 | */ | ||
1757 | int32 float64_to_uint32_round_to_zero( float64 a ) | ||
1758 | { | ||
1759 | flag aSign; | ||
1760 | int16 aExp, shiftCount; | ||
1761 | bits64 aSig, savedASig; | ||
1762 | int32 z; | ||
1763 | |||
1764 | aSig = extractFloat64Frac( a ); | ||
1765 | aExp = extractFloat64Exp( a ); | ||
1766 | aSign = extractFloat64Sign( a ); | ||
1767 | shiftCount = 0x433 - aExp; | ||
1768 | if ( shiftCount < 21 ) { | ||
1769 | if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; | ||
1770 | goto invalid; | ||
1771 | } | ||
1772 | else if ( 52 < shiftCount ) { | ||
1773 | if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; | ||
1774 | return 0; | ||
1775 | } | ||
1776 | aSig |= LIT64( 0x0010000000000000 ); | ||
1777 | savedASig = aSig; | ||
1778 | aSig >>= shiftCount; | ||
1779 | z = aSig; | ||
1780 | if ( aSign ) z = - z; | ||
1781 | if ( ( z < 0 ) ^ aSign ) { | ||
1782 | invalid: | ||
1783 | float_exception_flags |= float_flag_invalid; | ||
1784 | return aSign ? 0x80000000 : 0x7FFFFFFF; | ||
1785 | } | ||
1786 | if ( ( aSig<<shiftCount ) != savedASig ) { | ||
1787 | float_exception_flags |= float_flag_inexact; | ||
1788 | } | ||
1789 | return z; | ||
1790 | } | ||
1791 | |||
1792 | /* | ||
1793 | ------------------------------------------------------------------------------- | ||
1794 | Returns the result of converting the double-precision floating-point value | ||
1795 | `a' to the single-precision floating-point format. The conversion is | ||
1796 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1797 | Arithmetic. | ||
1798 | ------------------------------------------------------------------------------- | ||
1799 | */ | ||
1800 | float32 float64_to_float32( float64 a ) | ||
1801 | { | ||
1802 | flag aSign; | ||
1803 | int16 aExp; | ||
1804 | bits64 aSig; | ||
1805 | bits32 zSig; | ||
1806 | |||
1807 | aSig = extractFloat64Frac( a ); | ||
1808 | aExp = extractFloat64Exp( a ); | ||
1809 | aSign = extractFloat64Sign( a ); | ||
1810 | if ( aExp == 0x7FF ) { | ||
1811 | if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) ); | ||
1812 | return packFloat32( aSign, 0xFF, 0 ); | ||
1813 | } | ||
1814 | shift64RightJamming( aSig, 22, &aSig ); | ||
1815 | zSig = aSig; | ||
1816 | if ( aExp || zSig ) { | ||
1817 | zSig |= 0x40000000; | ||
1818 | aExp -= 0x381; | ||
1819 | } | ||
1820 | return roundAndPackFloat32( aSign, aExp, zSig ); | ||
1821 | |||
1822 | } | ||
1823 | |||
1824 | #ifdef FLOATX80 | ||
1825 | |||
1826 | /* | ||
1827 | ------------------------------------------------------------------------------- | ||
1828 | Returns the result of converting the double-precision floating-point value | ||
1829 | `a' to the extended double-precision floating-point format. The conversion | ||
1830 | is performed according to the IEC/IEEE Standard for Binary Floating-point | ||
1831 | Arithmetic. | ||
1832 | ------------------------------------------------------------------------------- | ||
1833 | */ | ||
1834 | floatx80 float64_to_floatx80( float64 a ) | ||
1835 | { | ||
1836 | flag aSign; | ||
1837 | int16 aExp; | ||
1838 | bits64 aSig; | ||
1839 | |||
1840 | aSig = extractFloat64Frac( a ); | ||
1841 | aExp = extractFloat64Exp( a ); | ||
1842 | aSign = extractFloat64Sign( a ); | ||
1843 | if ( aExp == 0x7FF ) { | ||
1844 | if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) ); | ||
1845 | return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
1846 | } | ||
1847 | if ( aExp == 0 ) { | ||
1848 | if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); | ||
1849 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | ||
1850 | } | ||
1851 | return | ||
1852 | packFloatx80( | ||
1853 | aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); | ||
1854 | |||
1855 | } | ||
1856 | |||
1857 | #endif | ||
1858 | |||
1859 | /* | ||
1860 | ------------------------------------------------------------------------------- | ||
1861 | Rounds the double-precision floating-point value `a' to an integer, and | ||
1862 | returns the result as a double-precision floating-point value. The | ||
1863 | operation is performed according to the IEC/IEEE Standard for Binary | ||
1864 | Floating-point Arithmetic. | ||
1865 | ------------------------------------------------------------------------------- | ||
1866 | */ | ||
1867 | float64 float64_round_to_int( float64 a ) | ||
1868 | { | ||
1869 | flag aSign; | ||
1870 | int16 aExp; | ||
1871 | bits64 lastBitMask, roundBitsMask; | ||
1872 | int8 roundingMode; | ||
1873 | float64 z; | ||
1874 | |||
1875 | aExp = extractFloat64Exp( a ); | ||
1876 | if ( 0x433 <= aExp ) { | ||
1877 | if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { | ||
1878 | return propagateFloat64NaN( a, a ); | ||
1879 | } | ||
1880 | return a; | ||
1881 | } | ||
1882 | if ( aExp <= 0x3FE ) { | ||
1883 | if ( (bits64) ( a<<1 ) == 0 ) return a; | ||
1884 | float_exception_flags |= float_flag_inexact; | ||
1885 | aSign = extractFloat64Sign( a ); | ||
1886 | switch ( float_rounding_mode ) { | ||
1887 | case float_round_nearest_even: | ||
1888 | if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { | ||
1889 | return packFloat64( aSign, 0x3FF, 0 ); | ||
1890 | } | ||
1891 | break; | ||
1892 | case float_round_down: | ||
1893 | return aSign ? LIT64( 0xBFF0000000000000 ) : 0; | ||
1894 | case float_round_up: | ||
1895 | return | ||
1896 | aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ); | ||
1897 | } | ||
1898 | return packFloat64( aSign, 0, 0 ); | ||
1899 | } | ||
1900 | lastBitMask = 1; | ||
1901 | lastBitMask <<= 0x433 - aExp; | ||
1902 | roundBitsMask = lastBitMask - 1; | ||
1903 | z = a; | ||
1904 | roundingMode = float_rounding_mode; | ||
1905 | if ( roundingMode == float_round_nearest_even ) { | ||
1906 | z += lastBitMask>>1; | ||
1907 | if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; | ||
1908 | } | ||
1909 | else if ( roundingMode != float_round_to_zero ) { | ||
1910 | if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) { | ||
1911 | z += roundBitsMask; | ||
1912 | } | ||
1913 | } | ||
1914 | z &= ~ roundBitsMask; | ||
1915 | if ( z != a ) float_exception_flags |= float_flag_inexact; | ||
1916 | return z; | ||
1917 | |||
1918 | } | ||
1919 | |||
1920 | /* | ||
1921 | ------------------------------------------------------------------------------- | ||
1922 | Returns the result of adding the absolute values of the double-precision | ||
1923 | floating-point values `a' and `b'. If `zSign' is true, the sum is negated | ||
1924 | before being returned. `zSign' is ignored if the result is a NaN. The | ||
1925 | addition is performed according to the IEC/IEEE Standard for Binary | ||
1926 | Floating-point Arithmetic. | ||
1927 | ------------------------------------------------------------------------------- | ||
1928 | */ | ||
1929 | static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) | ||
1930 | { | ||
1931 | int16 aExp, bExp, zExp; | ||
1932 | bits64 aSig, bSig, zSig; | ||
1933 | int16 expDiff; | ||
1934 | |||
1935 | aSig = extractFloat64Frac( a ); | ||
1936 | aExp = extractFloat64Exp( a ); | ||
1937 | bSig = extractFloat64Frac( b ); | ||
1938 | bExp = extractFloat64Exp( b ); | ||
1939 | expDiff = aExp - bExp; | ||
1940 | aSig <<= 9; | ||
1941 | bSig <<= 9; | ||
1942 | if ( 0 < expDiff ) { | ||
1943 | if ( aExp == 0x7FF ) { | ||
1944 | if ( aSig ) return propagateFloat64NaN( a, b ); | ||
1945 | return a; | ||
1946 | } | ||
1947 | if ( bExp == 0 ) { | ||
1948 | --expDiff; | ||
1949 | } | ||
1950 | else { | ||
1951 | bSig |= LIT64( 0x2000000000000000 ); | ||
1952 | } | ||
1953 | shift64RightJamming( bSig, expDiff, &bSig ); | ||
1954 | zExp = aExp; | ||
1955 | } | ||
1956 | else if ( expDiff < 0 ) { | ||
1957 | if ( bExp == 0x7FF ) { | ||
1958 | if ( bSig ) return propagateFloat64NaN( a, b ); | ||
1959 | return packFloat64( zSign, 0x7FF, 0 ); | ||
1960 | } | ||
1961 | if ( aExp == 0 ) { | ||
1962 | ++expDiff; | ||
1963 | } | ||
1964 | else { | ||
1965 | aSig |= LIT64( 0x2000000000000000 ); | ||
1966 | } | ||
1967 | shift64RightJamming( aSig, - expDiff, &aSig ); | ||
1968 | zExp = bExp; | ||
1969 | } | ||
1970 | else { | ||
1971 | if ( aExp == 0x7FF ) { | ||
1972 | if ( aSig | bSig ) return propagateFloat64NaN( a, b ); | ||
1973 | return a; | ||
1974 | } | ||
1975 | if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); | ||
1976 | zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; | ||
1977 | zExp = aExp; | ||
1978 | goto roundAndPack; | ||
1979 | } | ||
1980 | aSig |= LIT64( 0x2000000000000000 ); | ||
1981 | zSig = ( aSig + bSig )<<1; | ||
1982 | --zExp; | ||
1983 | if ( (sbits64) zSig < 0 ) { | ||
1984 | zSig = aSig + bSig; | ||
1985 | ++zExp; | ||
1986 | } | ||
1987 | roundAndPack: | ||
1988 | return roundAndPackFloat64( zSign, zExp, zSig ); | ||
1989 | |||
1990 | } | ||
1991 | |||
1992 | /* | ||
1993 | ------------------------------------------------------------------------------- | ||
1994 | Returns the result of subtracting the absolute values of the double- | ||
1995 | precision floating-point values `a' and `b'. If `zSign' is true, the | ||
1996 | difference is negated before being returned. `zSign' is ignored if the | ||
1997 | result is a NaN. The subtraction is performed according to the IEC/IEEE | ||
1998 | Standard for Binary Floating-point Arithmetic. | ||
1999 | ------------------------------------------------------------------------------- | ||
2000 | */ | ||
2001 | static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) | ||
2002 | { | ||
2003 | int16 aExp, bExp, zExp; | ||
2004 | bits64 aSig, bSig, zSig; | ||
2005 | int16 expDiff; | ||
2006 | |||
2007 | aSig = extractFloat64Frac( a ); | ||
2008 | aExp = extractFloat64Exp( a ); | ||
2009 | bSig = extractFloat64Frac( b ); | ||
2010 | bExp = extractFloat64Exp( b ); | ||
2011 | expDiff = aExp - bExp; | ||
2012 | aSig <<= 10; | ||
2013 | bSig <<= 10; | ||
2014 | if ( 0 < expDiff ) goto aExpBigger; | ||
2015 | if ( expDiff < 0 ) goto bExpBigger; | ||
2016 | if ( aExp == 0x7FF ) { | ||
2017 | if ( aSig | bSig ) return propagateFloat64NaN( a, b ); | ||
2018 | float_raise( float_flag_invalid ); | ||
2019 | return float64_default_nan; | ||
2020 | } | ||
2021 | if ( aExp == 0 ) { | ||
2022 | aExp = 1; | ||
2023 | bExp = 1; | ||
2024 | } | ||
2025 | if ( bSig < aSig ) goto aBigger; | ||
2026 | if ( aSig < bSig ) goto bBigger; | ||
2027 | return packFloat64( float_rounding_mode == float_round_down, 0, 0 ); | ||
2028 | bExpBigger: | ||
2029 | if ( bExp == 0x7FF ) { | ||
2030 | if ( bSig ) return propagateFloat64NaN( a, b ); | ||
2031 | return packFloat64( zSign ^ 1, 0x7FF, 0 ); | ||
2032 | } | ||
2033 | if ( aExp == 0 ) { | ||
2034 | ++expDiff; | ||
2035 | } | ||
2036 | else { | ||
2037 | aSig |= LIT64( 0x4000000000000000 ); | ||
2038 | } | ||
2039 | shift64RightJamming( aSig, - expDiff, &aSig ); | ||
2040 | bSig |= LIT64( 0x4000000000000000 ); | ||
2041 | bBigger: | ||
2042 | zSig = bSig - aSig; | ||
2043 | zExp = bExp; | ||
2044 | zSign ^= 1; | ||
2045 | goto normalizeRoundAndPack; | ||
2046 | aExpBigger: | ||
2047 | if ( aExp == 0x7FF ) { | ||
2048 | if ( aSig ) return propagateFloat64NaN( a, b ); | ||
2049 | return a; | ||
2050 | } | ||
2051 | if ( bExp == 0 ) { | ||
2052 | --expDiff; | ||
2053 | } | ||
2054 | else { | ||
2055 | bSig |= LIT64( 0x4000000000000000 ); | ||
2056 | } | ||
2057 | shift64RightJamming( bSig, expDiff, &bSig ); | ||
2058 | aSig |= LIT64( 0x4000000000000000 ); | ||
2059 | aBigger: | ||
2060 | zSig = aSig - bSig; | ||
2061 | zExp = aExp; | ||
2062 | normalizeRoundAndPack: | ||
2063 | --zExp; | ||
2064 | return normalizeRoundAndPackFloat64( zSign, zExp, zSig ); | ||
2065 | |||
2066 | } | ||
2067 | |||
2068 | /* | ||
2069 | ------------------------------------------------------------------------------- | ||
2070 | Returns the result of adding the double-precision floating-point values `a' | ||
2071 | and `b'. The operation is performed according to the IEC/IEEE Standard for | ||
2072 | Binary Floating-point Arithmetic. | ||
2073 | ------------------------------------------------------------------------------- | ||
2074 | */ | ||
2075 | float64 float64_add( float64 a, float64 b ) | ||
2076 | { | ||
2077 | flag aSign, bSign; | ||
2078 | |||
2079 | aSign = extractFloat64Sign( a ); | ||
2080 | bSign = extractFloat64Sign( b ); | ||
2081 | if ( aSign == bSign ) { | ||
2082 | return addFloat64Sigs( a, b, aSign ); | ||
2083 | } | ||
2084 | else { | ||
2085 | return subFloat64Sigs( a, b, aSign ); | ||
2086 | } | ||
2087 | |||
2088 | } | ||
2089 | |||
2090 | /* | ||
2091 | ------------------------------------------------------------------------------- | ||
2092 | Returns the result of subtracting the double-precision floating-point values | ||
2093 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | ||
2094 | for Binary Floating-point Arithmetic. | ||
2095 | ------------------------------------------------------------------------------- | ||
2096 | */ | ||
2097 | float64 float64_sub( float64 a, float64 b ) | ||
2098 | { | ||
2099 | flag aSign, bSign; | ||
2100 | |||
2101 | aSign = extractFloat64Sign( a ); | ||
2102 | bSign = extractFloat64Sign( b ); | ||
2103 | if ( aSign == bSign ) { | ||
2104 | return subFloat64Sigs( a, b, aSign ); | ||
2105 | } | ||
2106 | else { | ||
2107 | return addFloat64Sigs( a, b, aSign ); | ||
2108 | } | ||
2109 | |||
2110 | } | ||
2111 | |||
2112 | /* | ||
2113 | ------------------------------------------------------------------------------- | ||
2114 | Returns the result of multiplying the double-precision floating-point values | ||
2115 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | ||
2116 | for Binary Floating-point Arithmetic. | ||
2117 | ------------------------------------------------------------------------------- | ||
2118 | */ | ||
2119 | float64 float64_mul( float64 a, float64 b ) | ||
2120 | { | ||
2121 | flag aSign, bSign, zSign; | ||
2122 | int16 aExp, bExp, zExp; | ||
2123 | bits64 aSig, bSig, zSig0, zSig1; | ||
2124 | |||
2125 | aSig = extractFloat64Frac( a ); | ||
2126 | aExp = extractFloat64Exp( a ); | ||
2127 | aSign = extractFloat64Sign( a ); | ||
2128 | bSig = extractFloat64Frac( b ); | ||
2129 | bExp = extractFloat64Exp( b ); | ||
2130 | bSign = extractFloat64Sign( b ); | ||
2131 | zSign = aSign ^ bSign; | ||
2132 | if ( aExp == 0x7FF ) { | ||
2133 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | ||
2134 | return propagateFloat64NaN( a, b ); | ||
2135 | } | ||
2136 | if ( ( bExp | bSig ) == 0 ) { | ||
2137 | float_raise( float_flag_invalid ); | ||
2138 | return float64_default_nan; | ||
2139 | } | ||
2140 | return packFloat64( zSign, 0x7FF, 0 ); | ||
2141 | } | ||
2142 | if ( bExp == 0x7FF ) { | ||
2143 | if ( bSig ) return propagateFloat64NaN( a, b ); | ||
2144 | if ( ( aExp | aSig ) == 0 ) { | ||
2145 | float_raise( float_flag_invalid ); | ||
2146 | return float64_default_nan; | ||
2147 | } | ||
2148 | return packFloat64( zSign, 0x7FF, 0 ); | ||
2149 | } | ||
2150 | if ( aExp == 0 ) { | ||
2151 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | ||
2152 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | ||
2153 | } | ||
2154 | if ( bExp == 0 ) { | ||
2155 | if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); | ||
2156 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | ||
2157 | } | ||
2158 | zExp = aExp + bExp - 0x3FF; | ||
2159 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | ||
2160 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | ||
2161 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | ||
2162 | zSig0 |= ( zSig1 != 0 ); | ||
2163 | if ( 0 <= (sbits64) ( zSig0<<1 ) ) { | ||
2164 | zSig0 <<= 1; | ||
2165 | --zExp; | ||
2166 | } | ||
2167 | return roundAndPackFloat64( zSign, zExp, zSig0 ); | ||
2168 | |||
2169 | } | ||
2170 | |||
2171 | /* | ||
2172 | ------------------------------------------------------------------------------- | ||
2173 | Returns the result of dividing the double-precision floating-point value `a' | ||
2174 | by the corresponding value `b'. The operation is performed according to | ||
2175 | the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2176 | ------------------------------------------------------------------------------- | ||
2177 | */ | ||
2178 | float64 float64_div( float64 a, float64 b ) | ||
2179 | { | ||
2180 | flag aSign, bSign, zSign; | ||
2181 | int16 aExp, bExp, zExp; | ||
2182 | bits64 aSig, bSig, zSig; | ||
2183 | bits64 rem0, rem1; | ||
2184 | bits64 term0, term1; | ||
2185 | |||
2186 | aSig = extractFloat64Frac( a ); | ||
2187 | aExp = extractFloat64Exp( a ); | ||
2188 | aSign = extractFloat64Sign( a ); | ||
2189 | bSig = extractFloat64Frac( b ); | ||
2190 | bExp = extractFloat64Exp( b ); | ||
2191 | bSign = extractFloat64Sign( b ); | ||
2192 | zSign = aSign ^ bSign; | ||
2193 | if ( aExp == 0x7FF ) { | ||
2194 | if ( aSig ) return propagateFloat64NaN( a, b ); | ||
2195 | if ( bExp == 0x7FF ) { | ||
2196 | if ( bSig ) return propagateFloat64NaN( a, b ); | ||
2197 | float_raise( float_flag_invalid ); | ||
2198 | return float64_default_nan; | ||
2199 | } | ||
2200 | return packFloat64( zSign, 0x7FF, 0 ); | ||
2201 | } | ||
2202 | if ( bExp == 0x7FF ) { | ||
2203 | if ( bSig ) return propagateFloat64NaN( a, b ); | ||
2204 | return packFloat64( zSign, 0, 0 ); | ||
2205 | } | ||
2206 | if ( bExp == 0 ) { | ||
2207 | if ( bSig == 0 ) { | ||
2208 | if ( ( aExp | aSig ) == 0 ) { | ||
2209 | float_raise( float_flag_invalid ); | ||
2210 | return float64_default_nan; | ||
2211 | } | ||
2212 | float_raise( float_flag_divbyzero ); | ||
2213 | return packFloat64( zSign, 0x7FF, 0 ); | ||
2214 | } | ||
2215 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | ||
2216 | } | ||
2217 | if ( aExp == 0 ) { | ||
2218 | if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); | ||
2219 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | ||
2220 | } | ||
2221 | zExp = aExp - bExp + 0x3FD; | ||
2222 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; | ||
2223 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | ||
2224 | if ( bSig <= ( aSig + aSig ) ) { | ||
2225 | aSig >>= 1; | ||
2226 | ++zExp; | ||
2227 | } | ||
2228 | zSig = estimateDiv128To64( aSig, 0, bSig ); | ||
2229 | if ( ( zSig & 0x1FF ) <= 2 ) { | ||
2230 | mul64To128( bSig, zSig, &term0, &term1 ); | ||
2231 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | ||
2232 | while ( (sbits64) rem0 < 0 ) { | ||
2233 | --zSig; | ||
2234 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | ||
2235 | } | ||
2236 | zSig |= ( rem1 != 0 ); | ||
2237 | } | ||
2238 | return roundAndPackFloat64( zSign, zExp, zSig ); | ||
2239 | |||
2240 | } | ||
2241 | |||
2242 | /* | ||
2243 | ------------------------------------------------------------------------------- | ||
2244 | Returns the remainder of the double-precision floating-point value `a' | ||
2245 | with respect to the corresponding value `b'. The operation is performed | ||
2246 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2247 | ------------------------------------------------------------------------------- | ||
2248 | */ | ||
2249 | float64 float64_rem( float64 a, float64 b ) | ||
2250 | { | ||
2251 | flag aSign, bSign, zSign; | ||
2252 | int16 aExp, bExp, expDiff; | ||
2253 | bits64 aSig, bSig; | ||
2254 | bits64 q, alternateASig; | ||
2255 | sbits64 sigMean; | ||
2256 | |||
2257 | aSig = extractFloat64Frac( a ); | ||
2258 | aExp = extractFloat64Exp( a ); | ||
2259 | aSign = extractFloat64Sign( a ); | ||
2260 | bSig = extractFloat64Frac( b ); | ||
2261 | bExp = extractFloat64Exp( b ); | ||
2262 | bSign = extractFloat64Sign( b ); | ||
2263 | if ( aExp == 0x7FF ) { | ||
2264 | if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { | ||
2265 | return propagateFloat64NaN( a, b ); | ||
2266 | } | ||
2267 | float_raise( float_flag_invalid ); | ||
2268 | return float64_default_nan; | ||
2269 | } | ||
2270 | if ( bExp == 0x7FF ) { | ||
2271 | if ( bSig ) return propagateFloat64NaN( a, b ); | ||
2272 | return a; | ||
2273 | } | ||
2274 | if ( bExp == 0 ) { | ||
2275 | if ( bSig == 0 ) { | ||
2276 | float_raise( float_flag_invalid ); | ||
2277 | return float64_default_nan; | ||
2278 | } | ||
2279 | normalizeFloat64Subnormal( bSig, &bExp, &bSig ); | ||
2280 | } | ||
2281 | if ( aExp == 0 ) { | ||
2282 | if ( aSig == 0 ) return a; | ||
2283 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | ||
2284 | } | ||
2285 | expDiff = aExp - bExp; | ||
2286 | aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; | ||
2287 | bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; | ||
2288 | if ( expDiff < 0 ) { | ||
2289 | if ( expDiff < -1 ) return a; | ||
2290 | aSig >>= 1; | ||
2291 | } | ||
2292 | q = ( bSig <= aSig ); | ||
2293 | if ( q ) aSig -= bSig; | ||
2294 | expDiff -= 64; | ||
2295 | while ( 0 < expDiff ) { | ||
2296 | q = estimateDiv128To64( aSig, 0, bSig ); | ||
2297 | q = ( 2 < q ) ? q - 2 : 0; | ||
2298 | aSig = - ( ( bSig>>2 ) * q ); | ||
2299 | expDiff -= 62; | ||
2300 | } | ||
2301 | expDiff += 64; | ||
2302 | if ( 0 < expDiff ) { | ||
2303 | q = estimateDiv128To64( aSig, 0, bSig ); | ||
2304 | q = ( 2 < q ) ? q - 2 : 0; | ||
2305 | q >>= 64 - expDiff; | ||
2306 | bSig >>= 2; | ||
2307 | aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; | ||
2308 | } | ||
2309 | else { | ||
2310 | aSig >>= 2; | ||
2311 | bSig >>= 2; | ||
2312 | } | ||
2313 | do { | ||
2314 | alternateASig = aSig; | ||
2315 | ++q; | ||
2316 | aSig -= bSig; | ||
2317 | } while ( 0 <= (sbits64) aSig ); | ||
2318 | sigMean = aSig + alternateASig; | ||
2319 | if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { | ||
2320 | aSig = alternateASig; | ||
2321 | } | ||
2322 | zSign = ( (sbits64) aSig < 0 ); | ||
2323 | if ( zSign ) aSig = - aSig; | ||
2324 | return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig ); | ||
2325 | |||
2326 | } | ||
2327 | |||
2328 | /* | ||
2329 | ------------------------------------------------------------------------------- | ||
2330 | Returns the square root of the double-precision floating-point value `a'. | ||
2331 | The operation is performed according to the IEC/IEEE Standard for Binary | ||
2332 | Floating-point Arithmetic. | ||
2333 | ------------------------------------------------------------------------------- | ||
2334 | */ | ||
2335 | float64 float64_sqrt( float64 a ) | ||
2336 | { | ||
2337 | flag aSign; | ||
2338 | int16 aExp, zExp; | ||
2339 | bits64 aSig, zSig; | ||
2340 | bits64 rem0, rem1, term0, term1; //, shiftedRem; | ||
2341 | //float64 z; | ||
2342 | |||
2343 | aSig = extractFloat64Frac( a ); | ||
2344 | aExp = extractFloat64Exp( a ); | ||
2345 | aSign = extractFloat64Sign( a ); | ||
2346 | if ( aExp == 0x7FF ) { | ||
2347 | if ( aSig ) return propagateFloat64NaN( a, a ); | ||
2348 | if ( ! aSign ) return a; | ||
2349 | float_raise( float_flag_invalid ); | ||
2350 | return float64_default_nan; | ||
2351 | } | ||
2352 | if ( aSign ) { | ||
2353 | if ( ( aExp | aSig ) == 0 ) return a; | ||
2354 | float_raise( float_flag_invalid ); | ||
2355 | return float64_default_nan; | ||
2356 | } | ||
2357 | if ( aExp == 0 ) { | ||
2358 | if ( aSig == 0 ) return 0; | ||
2359 | normalizeFloat64Subnormal( aSig, &aExp, &aSig ); | ||
2360 | } | ||
2361 | zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; | ||
2362 | aSig |= LIT64( 0x0010000000000000 ); | ||
2363 | zSig = estimateSqrt32( aExp, aSig>>21 ); | ||
2364 | zSig <<= 31; | ||
2365 | aSig <<= 9 - ( aExp & 1 ); | ||
2366 | zSig = estimateDiv128To64( aSig, 0, zSig ) + zSig + 2; | ||
2367 | if ( ( zSig & 0x3FF ) <= 5 ) { | ||
2368 | if ( zSig < 2 ) { | ||
2369 | zSig = LIT64( 0xFFFFFFFFFFFFFFFF ); | ||
2370 | } | ||
2371 | else { | ||
2372 | aSig <<= 2; | ||
2373 | mul64To128( zSig, zSig, &term0, &term1 ); | ||
2374 | sub128( aSig, 0, term0, term1, &rem0, &rem1 ); | ||
2375 | while ( (sbits64) rem0 < 0 ) { | ||
2376 | --zSig; | ||
2377 | shortShift128Left( 0, zSig, 1, &term0, &term1 ); | ||
2378 | term1 |= 1; | ||
2379 | add128( rem0, rem1, term0, term1, &rem0, &rem1 ); | ||
2380 | } | ||
2381 | zSig |= ( ( rem0 | rem1 ) != 0 ); | ||
2382 | } | ||
2383 | } | ||
2384 | shift64RightJamming( zSig, 1, &zSig ); | ||
2385 | return roundAndPackFloat64( 0, zExp, zSig ); | ||
2386 | |||
2387 | } | ||
2388 | |||
2389 | /* | ||
2390 | ------------------------------------------------------------------------------- | ||
2391 | Returns 1 if the double-precision floating-point value `a' is equal to the | ||
2392 | corresponding value `b', and 0 otherwise. The comparison is performed | ||
2393 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2394 | ------------------------------------------------------------------------------- | ||
2395 | */ | ||
2396 | flag float64_eq( float64 a, float64 b ) | ||
2397 | { | ||
2398 | |||
2399 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | ||
2400 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | ||
2401 | ) { | ||
2402 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | ||
2403 | float_raise( float_flag_invalid ); | ||
2404 | } | ||
2405 | return 0; | ||
2406 | } | ||
2407 | return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); | ||
2408 | |||
2409 | } | ||
2410 | |||
2411 | /* | ||
2412 | ------------------------------------------------------------------------------- | ||
2413 | Returns 1 if the double-precision floating-point value `a' is less than or | ||
2414 | equal to the corresponding value `b', and 0 otherwise. The comparison is | ||
2415 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
2416 | Arithmetic. | ||
2417 | ------------------------------------------------------------------------------- | ||
2418 | */ | ||
2419 | flag float64_le( float64 a, float64 b ) | ||
2420 | { | ||
2421 | flag aSign, bSign; | ||
2422 | |||
2423 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | ||
2424 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | ||
2425 | ) { | ||
2426 | float_raise( float_flag_invalid ); | ||
2427 | return 0; | ||
2428 | } | ||
2429 | aSign = extractFloat64Sign( a ); | ||
2430 | bSign = extractFloat64Sign( b ); | ||
2431 | if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); | ||
2432 | return ( a == b ) || ( aSign ^ ( a < b ) ); | ||
2433 | |||
2434 | } | ||
2435 | |||
2436 | /* | ||
2437 | ------------------------------------------------------------------------------- | ||
2438 | Returns 1 if the double-precision floating-point value `a' is less than | ||
2439 | the corresponding value `b', and 0 otherwise. The comparison is performed | ||
2440 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2441 | ------------------------------------------------------------------------------- | ||
2442 | */ | ||
2443 | flag float64_lt( float64 a, float64 b ) | ||
2444 | { | ||
2445 | flag aSign, bSign; | ||
2446 | |||
2447 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | ||
2448 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | ||
2449 | ) { | ||
2450 | float_raise( float_flag_invalid ); | ||
2451 | return 0; | ||
2452 | } | ||
2453 | aSign = extractFloat64Sign( a ); | ||
2454 | bSign = extractFloat64Sign( b ); | ||
2455 | if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); | ||
2456 | return ( a != b ) && ( aSign ^ ( a < b ) ); | ||
2457 | |||
2458 | } | ||
2459 | |||
2460 | /* | ||
2461 | ------------------------------------------------------------------------------- | ||
2462 | Returns 1 if the double-precision floating-point value `a' is equal to the | ||
2463 | corresponding value `b', and 0 otherwise. The invalid exception is raised | ||
2464 | if either operand is a NaN. Otherwise, the comparison is performed | ||
2465 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2466 | ------------------------------------------------------------------------------- | ||
2467 | */ | ||
2468 | flag float64_eq_signaling( float64 a, float64 b ) | ||
2469 | { | ||
2470 | |||
2471 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | ||
2472 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | ||
2473 | ) { | ||
2474 | float_raise( float_flag_invalid ); | ||
2475 | return 0; | ||
2476 | } | ||
2477 | return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); | ||
2478 | |||
2479 | } | ||
2480 | |||
2481 | /* | ||
2482 | ------------------------------------------------------------------------------- | ||
2483 | Returns 1 if the double-precision floating-point value `a' is less than or | ||
2484 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not | ||
2485 | cause an exception. Otherwise, the comparison is performed according to the | ||
2486 | IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2487 | ------------------------------------------------------------------------------- | ||
2488 | */ | ||
2489 | flag float64_le_quiet( float64 a, float64 b ) | ||
2490 | { | ||
2491 | flag aSign, bSign; | ||
2492 | //int16 aExp, bExp; | ||
2493 | |||
2494 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | ||
2495 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | ||
2496 | ) { | ||
2497 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | ||
2498 | float_raise( float_flag_invalid ); | ||
2499 | } | ||
2500 | return 0; | ||
2501 | } | ||
2502 | aSign = extractFloat64Sign( a ); | ||
2503 | bSign = extractFloat64Sign( b ); | ||
2504 | if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); | ||
2505 | return ( a == b ) || ( aSign ^ ( a < b ) ); | ||
2506 | |||
2507 | } | ||
2508 | |||
2509 | /* | ||
2510 | ------------------------------------------------------------------------------- | ||
2511 | Returns 1 if the double-precision floating-point value `a' is less than | ||
2512 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an | ||
2513 | exception. Otherwise, the comparison is performed according to the IEC/IEEE | ||
2514 | Standard for Binary Floating-point Arithmetic. | ||
2515 | ------------------------------------------------------------------------------- | ||
2516 | */ | ||
2517 | flag float64_lt_quiet( float64 a, float64 b ) | ||
2518 | { | ||
2519 | flag aSign, bSign; | ||
2520 | |||
2521 | if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) | ||
2522 | || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) | ||
2523 | ) { | ||
2524 | if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { | ||
2525 | float_raise( float_flag_invalid ); | ||
2526 | } | ||
2527 | return 0; | ||
2528 | } | ||
2529 | aSign = extractFloat64Sign( a ); | ||
2530 | bSign = extractFloat64Sign( b ); | ||
2531 | if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); | ||
2532 | return ( a != b ) && ( aSign ^ ( a < b ) ); | ||
2533 | |||
2534 | } | ||
2535 | |||
2536 | #ifdef FLOATX80 | ||
2537 | |||
2538 | /* | ||
2539 | ------------------------------------------------------------------------------- | ||
2540 | Returns the result of converting the extended double-precision floating- | ||
2541 | point value `a' to the 32-bit two's complement integer format. The | ||
2542 | conversion is performed according to the IEC/IEEE Standard for Binary | ||
2543 | Floating-point Arithmetic---which means in particular that the conversion | ||
2544 | is rounded according to the current rounding mode. If `a' is a NaN, the | ||
2545 | largest positive integer is returned. Otherwise, if the conversion | ||
2546 | overflows, the largest integer with the same sign as `a' is returned. | ||
2547 | ------------------------------------------------------------------------------- | ||
2548 | */ | ||
2549 | int32 floatx80_to_int32( floatx80 a ) | ||
2550 | { | ||
2551 | flag aSign; | ||
2552 | int32 aExp, shiftCount; | ||
2553 | bits64 aSig; | ||
2554 | |||
2555 | aSig = extractFloatx80Frac( a ); | ||
2556 | aExp = extractFloatx80Exp( a ); | ||
2557 | aSign = extractFloatx80Sign( a ); | ||
2558 | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; | ||
2559 | shiftCount = 0x4037 - aExp; | ||
2560 | if ( shiftCount <= 0 ) shiftCount = 1; | ||
2561 | shift64RightJamming( aSig, shiftCount, &aSig ); | ||
2562 | return roundAndPackInt32( aSign, aSig ); | ||
2563 | |||
2564 | } | ||
2565 | |||
2566 | /* | ||
2567 | ------------------------------------------------------------------------------- | ||
2568 | Returns the result of converting the extended double-precision floating- | ||
2569 | point value `a' to the 32-bit two's complement integer format. The | ||
2570 | conversion is performed according to the IEC/IEEE Standard for Binary | ||
2571 | Floating-point Arithmetic, except that the conversion is always rounded | ||
2572 | toward zero. If `a' is a NaN, the largest positive integer is returned. | ||
2573 | Otherwise, if the conversion overflows, the largest integer with the same | ||
2574 | sign as `a' is returned. | ||
2575 | ------------------------------------------------------------------------------- | ||
2576 | */ | ||
2577 | int32 floatx80_to_int32_round_to_zero( floatx80 a ) | ||
2578 | { | ||
2579 | flag aSign; | ||
2580 | int32 aExp, shiftCount; | ||
2581 | bits64 aSig, savedASig; | ||
2582 | int32 z; | ||
2583 | |||
2584 | aSig = extractFloatx80Frac( a ); | ||
2585 | aExp = extractFloatx80Exp( a ); | ||
2586 | aSign = extractFloatx80Sign( a ); | ||
2587 | shiftCount = 0x403E - aExp; | ||
2588 | if ( shiftCount < 32 ) { | ||
2589 | if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; | ||
2590 | goto invalid; | ||
2591 | } | ||
2592 | else if ( 63 < shiftCount ) { | ||
2593 | if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; | ||
2594 | return 0; | ||
2595 | } | ||
2596 | savedASig = aSig; | ||
2597 | aSig >>= shiftCount; | ||
2598 | z = aSig; | ||
2599 | if ( aSign ) z = - z; | ||
2600 | if ( ( z < 0 ) ^ aSign ) { | ||
2601 | invalid: | ||
2602 | float_exception_flags |= float_flag_invalid; | ||
2603 | return aSign ? 0x80000000 : 0x7FFFFFFF; | ||
2604 | } | ||
2605 | if ( ( aSig<<shiftCount ) != savedASig ) { | ||
2606 | float_exception_flags |= float_flag_inexact; | ||
2607 | } | ||
2608 | return z; | ||
2609 | |||
2610 | } | ||
2611 | |||
2612 | /* | ||
2613 | ------------------------------------------------------------------------------- | ||
2614 | Returns the result of converting the extended double-precision floating- | ||
2615 | point value `a' to the single-precision floating-point format. The | ||
2616 | conversion is performed according to the IEC/IEEE Standard for Binary | ||
2617 | Floating-point Arithmetic. | ||
2618 | ------------------------------------------------------------------------------- | ||
2619 | */ | ||
2620 | float32 floatx80_to_float32( floatx80 a ) | ||
2621 | { | ||
2622 | flag aSign; | ||
2623 | int32 aExp; | ||
2624 | bits64 aSig; | ||
2625 | |||
2626 | aSig = extractFloatx80Frac( a ); | ||
2627 | aExp = extractFloatx80Exp( a ); | ||
2628 | aSign = extractFloatx80Sign( a ); | ||
2629 | if ( aExp == 0x7FFF ) { | ||
2630 | if ( (bits64) ( aSig<<1 ) ) { | ||
2631 | return commonNaNToFloat32( floatx80ToCommonNaN( a ) ); | ||
2632 | } | ||
2633 | return packFloat32( aSign, 0xFF, 0 ); | ||
2634 | } | ||
2635 | shift64RightJamming( aSig, 33, &aSig ); | ||
2636 | if ( aExp || aSig ) aExp -= 0x3F81; | ||
2637 | return roundAndPackFloat32( aSign, aExp, aSig ); | ||
2638 | |||
2639 | } | ||
2640 | |||
2641 | /* | ||
2642 | ------------------------------------------------------------------------------- | ||
2643 | Returns the result of converting the extended double-precision floating- | ||
2644 | point value `a' to the double-precision floating-point format. The | ||
2645 | conversion is performed according to the IEC/IEEE Standard for Binary | ||
2646 | Floating-point Arithmetic. | ||
2647 | ------------------------------------------------------------------------------- | ||
2648 | */ | ||
2649 | float64 floatx80_to_float64( floatx80 a ) | ||
2650 | { | ||
2651 | flag aSign; | ||
2652 | int32 aExp; | ||
2653 | bits64 aSig, zSig; | ||
2654 | |||
2655 | aSig = extractFloatx80Frac( a ); | ||
2656 | aExp = extractFloatx80Exp( a ); | ||
2657 | aSign = extractFloatx80Sign( a ); | ||
2658 | if ( aExp == 0x7FFF ) { | ||
2659 | if ( (bits64) ( aSig<<1 ) ) { | ||
2660 | return commonNaNToFloat64( floatx80ToCommonNaN( a ) ); | ||
2661 | } | ||
2662 | return packFloat64( aSign, 0x7FF, 0 ); | ||
2663 | } | ||
2664 | shift64RightJamming( aSig, 1, &zSig ); | ||
2665 | if ( aExp || aSig ) aExp -= 0x3C01; | ||
2666 | return roundAndPackFloat64( aSign, aExp, zSig ); | ||
2667 | |||
2668 | } | ||
2669 | |||
2670 | /* | ||
2671 | ------------------------------------------------------------------------------- | ||
2672 | Rounds the extended double-precision floating-point value `a' to an integer, | ||
2673 | and returns the result as an extended quadruple-precision floating-point | ||
2674 | value. The operation is performed according to the IEC/IEEE Standard for | ||
2675 | Binary Floating-point Arithmetic. | ||
2676 | ------------------------------------------------------------------------------- | ||
2677 | */ | ||
2678 | floatx80 floatx80_round_to_int( floatx80 a ) | ||
2679 | { | ||
2680 | flag aSign; | ||
2681 | int32 aExp; | ||
2682 | bits64 lastBitMask, roundBitsMask; | ||
2683 | int8 roundingMode; | ||
2684 | floatx80 z; | ||
2685 | |||
2686 | aExp = extractFloatx80Exp( a ); | ||
2687 | if ( 0x403E <= aExp ) { | ||
2688 | if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { | ||
2689 | return propagateFloatx80NaN( a, a ); | ||
2690 | } | ||
2691 | return a; | ||
2692 | } | ||
2693 | if ( aExp <= 0x3FFE ) { | ||
2694 | if ( ( aExp == 0 ) | ||
2695 | && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { | ||
2696 | return a; | ||
2697 | } | ||
2698 | float_exception_flags |= float_flag_inexact; | ||
2699 | aSign = extractFloatx80Sign( a ); | ||
2700 | switch ( float_rounding_mode ) { | ||
2701 | case float_round_nearest_even: | ||
2702 | if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) | ||
2703 | ) { | ||
2704 | return | ||
2705 | packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); | ||
2706 | } | ||
2707 | break; | ||
2708 | case float_round_down: | ||
2709 | return | ||
2710 | aSign ? | ||
2711 | packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) | ||
2712 | : packFloatx80( 0, 0, 0 ); | ||
2713 | case float_round_up: | ||
2714 | return | ||
2715 | aSign ? packFloatx80( 1, 0, 0 ) | ||
2716 | : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); | ||
2717 | } | ||
2718 | return packFloatx80( aSign, 0, 0 ); | ||
2719 | } | ||
2720 | lastBitMask = 1; | ||
2721 | lastBitMask <<= 0x403E - aExp; | ||
2722 | roundBitsMask = lastBitMask - 1; | ||
2723 | z = a; | ||
2724 | roundingMode = float_rounding_mode; | ||
2725 | if ( roundingMode == float_round_nearest_even ) { | ||
2726 | z.low += lastBitMask>>1; | ||
2727 | if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; | ||
2728 | } | ||
2729 | else if ( roundingMode != float_round_to_zero ) { | ||
2730 | if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { | ||
2731 | z.low += roundBitsMask; | ||
2732 | } | ||
2733 | } | ||
2734 | z.low &= ~ roundBitsMask; | ||
2735 | if ( z.low == 0 ) { | ||
2736 | ++z.high; | ||
2737 | z.low = LIT64( 0x8000000000000000 ); | ||
2738 | } | ||
2739 | if ( z.low != a.low ) float_exception_flags |= float_flag_inexact; | ||
2740 | return z; | ||
2741 | |||
2742 | } | ||
2743 | |||
2744 | /* | ||
2745 | ------------------------------------------------------------------------------- | ||
2746 | Returns the result of adding the absolute values of the extended double- | ||
2747 | precision floating-point values `a' and `b'. If `zSign' is true, the sum is | ||
2748 | negated before being returned. `zSign' is ignored if the result is a NaN. | ||
2749 | The addition is performed according to the IEC/IEEE Standard for Binary | ||
2750 | Floating-point Arithmetic. | ||
2751 | ------------------------------------------------------------------------------- | ||
2752 | */ | ||
2753 | static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) | ||
2754 | { | ||
2755 | int32 aExp, bExp, zExp; | ||
2756 | bits64 aSig, bSig, zSig0, zSig1; | ||
2757 | int32 expDiff; | ||
2758 | |||
2759 | aSig = extractFloatx80Frac( a ); | ||
2760 | aExp = extractFloatx80Exp( a ); | ||
2761 | bSig = extractFloatx80Frac( b ); | ||
2762 | bExp = extractFloatx80Exp( b ); | ||
2763 | expDiff = aExp - bExp; | ||
2764 | if ( 0 < expDiff ) { | ||
2765 | if ( aExp == 0x7FFF ) { | ||
2766 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
2767 | return a; | ||
2768 | } | ||
2769 | if ( bExp == 0 ) --expDiff; | ||
2770 | shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | ||
2771 | zExp = aExp; | ||
2772 | } | ||
2773 | else if ( expDiff < 0 ) { | ||
2774 | if ( bExp == 0x7FFF ) { | ||
2775 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
2776 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
2777 | } | ||
2778 | if ( aExp == 0 ) ++expDiff; | ||
2779 | shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | ||
2780 | zExp = bExp; | ||
2781 | } | ||
2782 | else { | ||
2783 | if ( aExp == 0x7FFF ) { | ||
2784 | if ( (bits64) ( ( aSig | bSig )<<1 ) ) { | ||
2785 | return propagateFloatx80NaN( a, b ); | ||
2786 | } | ||
2787 | return a; | ||
2788 | } | ||
2789 | zSig1 = 0; | ||
2790 | zSig0 = aSig + bSig; | ||
2791 | if ( aExp == 0 ) { | ||
2792 | normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); | ||
2793 | goto roundAndPack; | ||
2794 | } | ||
2795 | zExp = aExp; | ||
2796 | goto shiftRight1; | ||
2797 | } | ||
2798 | |||
2799 | zSig0 = aSig + bSig; | ||
2800 | |||
2801 | if ( (sbits64) zSig0 < 0 ) goto roundAndPack; | ||
2802 | shiftRight1: | ||
2803 | shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); | ||
2804 | zSig0 |= LIT64( 0x8000000000000000 ); | ||
2805 | ++zExp; | ||
2806 | roundAndPack: | ||
2807 | return | ||
2808 | roundAndPackFloatx80( | ||
2809 | floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | ||
2810 | |||
2811 | } | ||
2812 | |||
2813 | /* | ||
2814 | ------------------------------------------------------------------------------- | ||
2815 | Returns the result of subtracting the absolute values of the extended | ||
2816 | double-precision floating-point values `a' and `b'. If `zSign' is true, | ||
2817 | the difference is negated before being returned. `zSign' is ignored if the | ||
2818 | result is a NaN. The subtraction is performed according to the IEC/IEEE | ||
2819 | Standard for Binary Floating-point Arithmetic. | ||
2820 | ------------------------------------------------------------------------------- | ||
2821 | */ | ||
2822 | static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) | ||
2823 | { | ||
2824 | int32 aExp, bExp, zExp; | ||
2825 | bits64 aSig, bSig, zSig0, zSig1; | ||
2826 | int32 expDiff; | ||
2827 | floatx80 z; | ||
2828 | |||
2829 | aSig = extractFloatx80Frac( a ); | ||
2830 | aExp = extractFloatx80Exp( a ); | ||
2831 | bSig = extractFloatx80Frac( b ); | ||
2832 | bExp = extractFloatx80Exp( b ); | ||
2833 | expDiff = aExp - bExp; | ||
2834 | if ( 0 < expDiff ) goto aExpBigger; | ||
2835 | if ( expDiff < 0 ) goto bExpBigger; | ||
2836 | if ( aExp == 0x7FFF ) { | ||
2837 | if ( (bits64) ( ( aSig | bSig )<<1 ) ) { | ||
2838 | return propagateFloatx80NaN( a, b ); | ||
2839 | } | ||
2840 | float_raise( float_flag_invalid ); | ||
2841 | z.low = floatx80_default_nan_low; | ||
2842 | z.high = floatx80_default_nan_high; | ||
2843 | return z; | ||
2844 | } | ||
2845 | if ( aExp == 0 ) { | ||
2846 | aExp = 1; | ||
2847 | bExp = 1; | ||
2848 | } | ||
2849 | zSig1 = 0; | ||
2850 | if ( bSig < aSig ) goto aBigger; | ||
2851 | if ( aSig < bSig ) goto bBigger; | ||
2852 | return packFloatx80( float_rounding_mode == float_round_down, 0, 0 ); | ||
2853 | bExpBigger: | ||
2854 | if ( bExp == 0x7FFF ) { | ||
2855 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
2856 | return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
2857 | } | ||
2858 | if ( aExp == 0 ) ++expDiff; | ||
2859 | shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); | ||
2860 | bBigger: | ||
2861 | sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); | ||
2862 | zExp = bExp; | ||
2863 | zSign ^= 1; | ||
2864 | goto normalizeRoundAndPack; | ||
2865 | aExpBigger: | ||
2866 | if ( aExp == 0x7FFF ) { | ||
2867 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
2868 | return a; | ||
2869 | } | ||
2870 | if ( bExp == 0 ) --expDiff; | ||
2871 | shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); | ||
2872 | aBigger: | ||
2873 | sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); | ||
2874 | zExp = aExp; | ||
2875 | normalizeRoundAndPack: | ||
2876 | return | ||
2877 | normalizeRoundAndPackFloatx80( | ||
2878 | floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | ||
2879 | |||
2880 | } | ||
2881 | |||
2882 | /* | ||
2883 | ------------------------------------------------------------------------------- | ||
2884 | Returns the result of adding the extended double-precision floating-point | ||
2885 | values `a' and `b'. The operation is performed according to the IEC/IEEE | ||
2886 | Standard for Binary Floating-point Arithmetic. | ||
2887 | ------------------------------------------------------------------------------- | ||
2888 | */ | ||
2889 | floatx80 floatx80_add( floatx80 a, floatx80 b ) | ||
2890 | { | ||
2891 | flag aSign, bSign; | ||
2892 | |||
2893 | aSign = extractFloatx80Sign( a ); | ||
2894 | bSign = extractFloatx80Sign( b ); | ||
2895 | if ( aSign == bSign ) { | ||
2896 | return addFloatx80Sigs( a, b, aSign ); | ||
2897 | } | ||
2898 | else { | ||
2899 | return subFloatx80Sigs( a, b, aSign ); | ||
2900 | } | ||
2901 | |||
2902 | } | ||
2903 | |||
2904 | /* | ||
2905 | ------------------------------------------------------------------------------- | ||
2906 | Returns the result of subtracting the extended double-precision floating- | ||
2907 | point values `a' and `b'. The operation is performed according to the | ||
2908 | IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2909 | ------------------------------------------------------------------------------- | ||
2910 | */ | ||
2911 | floatx80 floatx80_sub( floatx80 a, floatx80 b ) | ||
2912 | { | ||
2913 | flag aSign, bSign; | ||
2914 | |||
2915 | aSign = extractFloatx80Sign( a ); | ||
2916 | bSign = extractFloatx80Sign( b ); | ||
2917 | if ( aSign == bSign ) { | ||
2918 | return subFloatx80Sigs( a, b, aSign ); | ||
2919 | } | ||
2920 | else { | ||
2921 | return addFloatx80Sigs( a, b, aSign ); | ||
2922 | } | ||
2923 | |||
2924 | } | ||
2925 | |||
2926 | /* | ||
2927 | ------------------------------------------------------------------------------- | ||
2928 | Returns the result of multiplying the extended double-precision floating- | ||
2929 | point values `a' and `b'. The operation is performed according to the | ||
2930 | IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2931 | ------------------------------------------------------------------------------- | ||
2932 | */ | ||
2933 | floatx80 floatx80_mul( floatx80 a, floatx80 b ) | ||
2934 | { | ||
2935 | flag aSign, bSign, zSign; | ||
2936 | int32 aExp, bExp, zExp; | ||
2937 | bits64 aSig, bSig, zSig0, zSig1; | ||
2938 | floatx80 z; | ||
2939 | |||
2940 | aSig = extractFloatx80Frac( a ); | ||
2941 | aExp = extractFloatx80Exp( a ); | ||
2942 | aSign = extractFloatx80Sign( a ); | ||
2943 | bSig = extractFloatx80Frac( b ); | ||
2944 | bExp = extractFloatx80Exp( b ); | ||
2945 | bSign = extractFloatx80Sign( b ); | ||
2946 | zSign = aSign ^ bSign; | ||
2947 | if ( aExp == 0x7FFF ) { | ||
2948 | if ( (bits64) ( aSig<<1 ) | ||
2949 | || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { | ||
2950 | return propagateFloatx80NaN( a, b ); | ||
2951 | } | ||
2952 | if ( ( bExp | bSig ) == 0 ) goto invalid; | ||
2953 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
2954 | } | ||
2955 | if ( bExp == 0x7FFF ) { | ||
2956 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
2957 | if ( ( aExp | aSig ) == 0 ) { | ||
2958 | invalid: | ||
2959 | float_raise( float_flag_invalid ); | ||
2960 | z.low = floatx80_default_nan_low; | ||
2961 | z.high = floatx80_default_nan_high; | ||
2962 | return z; | ||
2963 | } | ||
2964 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
2965 | } | ||
2966 | if ( aExp == 0 ) { | ||
2967 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | ||
2968 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | ||
2969 | } | ||
2970 | if ( bExp == 0 ) { | ||
2971 | if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); | ||
2972 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | ||
2973 | } | ||
2974 | zExp = aExp + bExp - 0x3FFE; | ||
2975 | mul64To128( aSig, bSig, &zSig0, &zSig1 ); | ||
2976 | if ( 0 < (sbits64) zSig0 ) { | ||
2977 | shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); | ||
2978 | --zExp; | ||
2979 | } | ||
2980 | return | ||
2981 | roundAndPackFloatx80( | ||
2982 | floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | ||
2983 | |||
2984 | } | ||
2985 | |||
2986 | /* | ||
2987 | ------------------------------------------------------------------------------- | ||
2988 | Returns the result of dividing the extended double-precision floating-point | ||
2989 | value `a' by the corresponding value `b'. The operation is performed | ||
2990 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
2991 | ------------------------------------------------------------------------------- | ||
2992 | */ | ||
2993 | floatx80 floatx80_div( floatx80 a, floatx80 b ) | ||
2994 | { | ||
2995 | flag aSign, bSign, zSign; | ||
2996 | int32 aExp, bExp, zExp; | ||
2997 | bits64 aSig, bSig, zSig0, zSig1; | ||
2998 | bits64 rem0, rem1, rem2, term0, term1, term2; | ||
2999 | floatx80 z; | ||
3000 | |||
3001 | aSig = extractFloatx80Frac( a ); | ||
3002 | aExp = extractFloatx80Exp( a ); | ||
3003 | aSign = extractFloatx80Sign( a ); | ||
3004 | bSig = extractFloatx80Frac( b ); | ||
3005 | bExp = extractFloatx80Exp( b ); | ||
3006 | bSign = extractFloatx80Sign( b ); | ||
3007 | zSign = aSign ^ bSign; | ||
3008 | if ( aExp == 0x7FFF ) { | ||
3009 | if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
3010 | if ( bExp == 0x7FFF ) { | ||
3011 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
3012 | goto invalid; | ||
3013 | } | ||
3014 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
3015 | } | ||
3016 | if ( bExp == 0x7FFF ) { | ||
3017 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
3018 | return packFloatx80( zSign, 0, 0 ); | ||
3019 | } | ||
3020 | if ( bExp == 0 ) { | ||
3021 | if ( bSig == 0 ) { | ||
3022 | if ( ( aExp | aSig ) == 0 ) { | ||
3023 | invalid: | ||
3024 | float_raise( float_flag_invalid ); | ||
3025 | z.low = floatx80_default_nan_low; | ||
3026 | z.high = floatx80_default_nan_high; | ||
3027 | return z; | ||
3028 | } | ||
3029 | float_raise( float_flag_divbyzero ); | ||
3030 | return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); | ||
3031 | } | ||
3032 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | ||
3033 | } | ||
3034 | if ( aExp == 0 ) { | ||
3035 | if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); | ||
3036 | normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); | ||
3037 | } | ||
3038 | zExp = aExp - bExp + 0x3FFE; | ||
3039 | rem1 = 0; | ||
3040 | if ( bSig <= aSig ) { | ||
3041 | shift128Right( aSig, 0, 1, &aSig, &rem1 ); | ||
3042 | ++zExp; | ||
3043 | } | ||
3044 | zSig0 = estimateDiv128To64( aSig, rem1, bSig ); | ||
3045 | mul64To128( bSig, zSig0, &term0, &term1 ); | ||
3046 | sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); | ||
3047 | while ( (sbits64) rem0 < 0 ) { | ||
3048 | --zSig0; | ||
3049 | add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); | ||
3050 | } | ||
3051 | zSig1 = estimateDiv128To64( rem1, 0, bSig ); | ||
3052 | if ( (bits64) ( zSig1<<1 ) <= 8 ) { | ||
3053 | mul64To128( bSig, zSig1, &term1, &term2 ); | ||
3054 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | ||
3055 | while ( (sbits64) rem1 < 0 ) { | ||
3056 | --zSig1; | ||
3057 | add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); | ||
3058 | } | ||
3059 | zSig1 |= ( ( rem1 | rem2 ) != 0 ); | ||
3060 | } | ||
3061 | return | ||
3062 | roundAndPackFloatx80( | ||
3063 | floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); | ||
3064 | |||
3065 | } | ||
3066 | |||
3067 | /* | ||
3068 | ------------------------------------------------------------------------------- | ||
3069 | Returns the remainder of the extended double-precision floating-point value | ||
3070 | `a' with respect to the corresponding value `b'. The operation is performed | ||
3071 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
3072 | ------------------------------------------------------------------------------- | ||
3073 | */ | ||
3074 | floatx80 floatx80_rem( floatx80 a, floatx80 b ) | ||
3075 | { | ||
3076 | flag aSign, bSign, zSign; | ||
3077 | int32 aExp, bExp, expDiff; | ||
3078 | bits64 aSig0, aSig1, bSig; | ||
3079 | bits64 q, term0, term1, alternateASig0, alternateASig1; | ||
3080 | floatx80 z; | ||
3081 | |||
3082 | aSig0 = extractFloatx80Frac( a ); | ||
3083 | aExp = extractFloatx80Exp( a ); | ||
3084 | aSign = extractFloatx80Sign( a ); | ||
3085 | bSig = extractFloatx80Frac( b ); | ||
3086 | bExp = extractFloatx80Exp( b ); | ||
3087 | bSign = extractFloatx80Sign( b ); | ||
3088 | if ( aExp == 0x7FFF ) { | ||
3089 | if ( (bits64) ( aSig0<<1 ) | ||
3090 | || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { | ||
3091 | return propagateFloatx80NaN( a, b ); | ||
3092 | } | ||
3093 | goto invalid; | ||
3094 | } | ||
3095 | if ( bExp == 0x7FFF ) { | ||
3096 | if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); | ||
3097 | return a; | ||
3098 | } | ||
3099 | if ( bExp == 0 ) { | ||
3100 | if ( bSig == 0 ) { | ||
3101 | invalid: | ||
3102 | float_raise( float_flag_invalid ); | ||
3103 | z.low = floatx80_default_nan_low; | ||
3104 | z.high = floatx80_default_nan_high; | ||
3105 | return z; | ||
3106 | } | ||
3107 | normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); | ||
3108 | } | ||
3109 | if ( aExp == 0 ) { | ||
3110 | if ( (bits64) ( aSig0<<1 ) == 0 ) return a; | ||
3111 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | ||
3112 | } | ||
3113 | bSig |= LIT64( 0x8000000000000000 ); | ||
3114 | zSign = aSign; | ||
3115 | expDiff = aExp - bExp; | ||
3116 | aSig1 = 0; | ||
3117 | if ( expDiff < 0 ) { | ||
3118 | if ( expDiff < -1 ) return a; | ||
3119 | shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); | ||
3120 | expDiff = 0; | ||
3121 | } | ||
3122 | q = ( bSig <= aSig0 ); | ||
3123 | if ( q ) aSig0 -= bSig; | ||
3124 | expDiff -= 64; | ||
3125 | while ( 0 < expDiff ) { | ||
3126 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | ||
3127 | q = ( 2 < q ) ? q - 2 : 0; | ||
3128 | mul64To128( bSig, q, &term0, &term1 ); | ||
3129 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | ||
3130 | shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); | ||
3131 | expDiff -= 62; | ||
3132 | } | ||
3133 | expDiff += 64; | ||
3134 | if ( 0 < expDiff ) { | ||
3135 | q = estimateDiv128To64( aSig0, aSig1, bSig ); | ||
3136 | q = ( 2 < q ) ? q - 2 : 0; | ||
3137 | q >>= 64 - expDiff; | ||
3138 | mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); | ||
3139 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | ||
3140 | shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); | ||
3141 | while ( le128( term0, term1, aSig0, aSig1 ) ) { | ||
3142 | ++q; | ||
3143 | sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); | ||
3144 | } | ||
3145 | } | ||
3146 | else { | ||
3147 | term1 = 0; | ||
3148 | term0 = bSig; | ||
3149 | } | ||
3150 | sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); | ||
3151 | if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) | ||
3152 | || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) | ||
3153 | && ( q & 1 ) ) | ||
3154 | ) { | ||
3155 | aSig0 = alternateASig0; | ||
3156 | aSig1 = alternateASig1; | ||
3157 | zSign = ! zSign; | ||
3158 | } | ||
3159 | return | ||
3160 | normalizeRoundAndPackFloatx80( | ||
3161 | 80, zSign, bExp + expDiff, aSig0, aSig1 ); | ||
3162 | |||
3163 | } | ||
3164 | |||
3165 | /* | ||
3166 | ------------------------------------------------------------------------------- | ||
3167 | Returns the square root of the extended double-precision floating-point | ||
3168 | value `a'. The operation is performed according to the IEC/IEEE Standard | ||
3169 | for Binary Floating-point Arithmetic. | ||
3170 | ------------------------------------------------------------------------------- | ||
3171 | */ | ||
3172 | floatx80 floatx80_sqrt( floatx80 a ) | ||
3173 | { | ||
3174 | flag aSign; | ||
3175 | int32 aExp, zExp; | ||
3176 | bits64 aSig0, aSig1, zSig0, zSig1; | ||
3177 | bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; | ||
3178 | bits64 shiftedRem0, shiftedRem1; | ||
3179 | floatx80 z; | ||
3180 | |||
3181 | aSig0 = extractFloatx80Frac( a ); | ||
3182 | aExp = extractFloatx80Exp( a ); | ||
3183 | aSign = extractFloatx80Sign( a ); | ||
3184 | if ( aExp == 0x7FFF ) { | ||
3185 | if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a ); | ||
3186 | if ( ! aSign ) return a; | ||
3187 | goto invalid; | ||
3188 | } | ||
3189 | if ( aSign ) { | ||
3190 | if ( ( aExp | aSig0 ) == 0 ) return a; | ||
3191 | invalid: | ||
3192 | float_raise( float_flag_invalid ); | ||
3193 | z.low = floatx80_default_nan_low; | ||
3194 | z.high = floatx80_default_nan_high; | ||
3195 | return z; | ||
3196 | } | ||
3197 | if ( aExp == 0 ) { | ||
3198 | if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); | ||
3199 | normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); | ||
3200 | } | ||
3201 | zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; | ||
3202 | zSig0 = estimateSqrt32( aExp, aSig0>>32 ); | ||
3203 | zSig0 <<= 31; | ||
3204 | aSig1 = 0; | ||
3205 | shift128Right( aSig0, 0, ( aExp & 1 ) + 2, &aSig0, &aSig1 ); | ||
3206 | zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0 ) + zSig0 + 4; | ||
3207 | if ( 0 <= (sbits64) zSig0 ) zSig0 = LIT64( 0xFFFFFFFFFFFFFFFF ); | ||
3208 | shortShift128Left( aSig0, aSig1, 2, &aSig0, &aSig1 ); | ||
3209 | mul64To128( zSig0, zSig0, &term0, &term1 ); | ||
3210 | sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); | ||
3211 | while ( (sbits64) rem0 < 0 ) { | ||
3212 | --zSig0; | ||
3213 | shortShift128Left( 0, zSig0, 1, &term0, &term1 ); | ||
3214 | term1 |= 1; | ||
3215 | add128( rem0, rem1, term0, term1, &rem0, &rem1 ); | ||
3216 | } | ||
3217 | shortShift128Left( rem0, rem1, 63, &shiftedRem0, &shiftedRem1 ); | ||
3218 | zSig1 = estimateDiv128To64( shiftedRem0, shiftedRem1, zSig0 ); | ||
3219 | if ( (bits64) ( zSig1<<1 ) <= 10 ) { | ||
3220 | if ( zSig1 == 0 ) zSig1 = 1; | ||
3221 | mul64To128( zSig0, zSig1, &term1, &term2 ); | ||
3222 | shortShift128Left( term1, term2, 1, &term1, &term2 ); | ||
3223 | sub128( rem1, 0, term1, term2, &rem1, &rem2 ); | ||
3224 | mul64To128( zSig1, zSig1, &term2, &term3 ); | ||
3225 | sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); | ||
3226 | while ( (sbits64) rem1 < 0 ) { | ||
3227 | --zSig1; | ||
3228 | shortShift192Left( 0, zSig0, zSig1, 1, &term1, &term2, &term3 ); | ||
3229 | term3 |= 1; | ||
3230 | add192( | ||
3231 | rem1, rem2, rem3, term1, term2, term3, &rem1, &rem2, &rem3 ); | ||
3232 | } | ||
3233 | zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); | ||
3234 | } | ||
3235 | return | ||
3236 | roundAndPackFloatx80( | ||
3237 | floatx80_rounding_precision, 0, zExp, zSig0, zSig1 ); | ||
3238 | |||
3239 | } | ||
3240 | |||
3241 | /* | ||
3242 | ------------------------------------------------------------------------------- | ||
3243 | Returns 1 if the extended double-precision floating-point value `a' is | ||
3244 | equal to the corresponding value `b', and 0 otherwise. The comparison is | ||
3245 | performed according to the IEC/IEEE Standard for Binary Floating-point | ||
3246 | Arithmetic. | ||
3247 | ------------------------------------------------------------------------------- | ||
3248 | */ | ||
3249 | flag floatx80_eq( floatx80 a, floatx80 b ) | ||
3250 | { | ||
3251 | |||
3252 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | ||
3253 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | ||
3254 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | ||
3255 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | ||
3256 | ) { | ||
3257 | if ( floatx80_is_signaling_nan( a ) | ||
3258 | || floatx80_is_signaling_nan( b ) ) { | ||
3259 | float_raise( float_flag_invalid ); | ||
3260 | } | ||
3261 | return 0; | ||
3262 | } | ||
3263 | return | ||
3264 | ( a.low == b.low ) | ||
3265 | && ( ( a.high == b.high ) | ||
3266 | || ( ( a.low == 0 ) | ||
3267 | && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) | ||
3268 | ); | ||
3269 | |||
3270 | } | ||
3271 | |||
3272 | /* | ||
3273 | ------------------------------------------------------------------------------- | ||
3274 | Returns 1 if the extended double-precision floating-point value `a' is | ||
3275 | less than or equal to the corresponding value `b', and 0 otherwise. The | ||
3276 | comparison is performed according to the IEC/IEEE Standard for Binary | ||
3277 | Floating-point Arithmetic. | ||
3278 | ------------------------------------------------------------------------------- | ||
3279 | */ | ||
3280 | flag floatx80_le( floatx80 a, floatx80 b ) | ||
3281 | { | ||
3282 | flag aSign, bSign; | ||
3283 | |||
3284 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | ||
3285 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | ||
3286 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | ||
3287 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | ||
3288 | ) { | ||
3289 | float_raise( float_flag_invalid ); | ||
3290 | return 0; | ||
3291 | } | ||
3292 | aSign = extractFloatx80Sign( a ); | ||
3293 | bSign = extractFloatx80Sign( b ); | ||
3294 | if ( aSign != bSign ) { | ||
3295 | return | ||
3296 | aSign | ||
3297 | || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | ||
3298 | == 0 ); | ||
3299 | } | ||
3300 | return | ||
3301 | aSign ? le128( b.high, b.low, a.high, a.low ) | ||
3302 | : le128( a.high, a.low, b.high, b.low ); | ||
3303 | |||
3304 | } | ||
3305 | |||
3306 | /* | ||
3307 | ------------------------------------------------------------------------------- | ||
3308 | Returns 1 if the extended double-precision floating-point value `a' is | ||
3309 | less than the corresponding value `b', and 0 otherwise. The comparison | ||
3310 | is performed according to the IEC/IEEE Standard for Binary Floating-point | ||
3311 | Arithmetic. | ||
3312 | ------------------------------------------------------------------------------- | ||
3313 | */ | ||
3314 | flag floatx80_lt( floatx80 a, floatx80 b ) | ||
3315 | { | ||
3316 | flag aSign, bSign; | ||
3317 | |||
3318 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | ||
3319 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | ||
3320 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | ||
3321 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | ||
3322 | ) { | ||
3323 | float_raise( float_flag_invalid ); | ||
3324 | return 0; | ||
3325 | } | ||
3326 | aSign = extractFloatx80Sign( a ); | ||
3327 | bSign = extractFloatx80Sign( b ); | ||
3328 | if ( aSign != bSign ) { | ||
3329 | return | ||
3330 | aSign | ||
3331 | && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | ||
3332 | != 0 ); | ||
3333 | } | ||
3334 | return | ||
3335 | aSign ? lt128( b.high, b.low, a.high, a.low ) | ||
3336 | : lt128( a.high, a.low, b.high, b.low ); | ||
3337 | |||
3338 | } | ||
3339 | |||
3340 | /* | ||
3341 | ------------------------------------------------------------------------------- | ||
3342 | Returns 1 if the extended double-precision floating-point value `a' is equal | ||
3343 | to the corresponding value `b', and 0 otherwise. The invalid exception is | ||
3344 | raised if either operand is a NaN. Otherwise, the comparison is performed | ||
3345 | according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
3346 | ------------------------------------------------------------------------------- | ||
3347 | */ | ||
3348 | flag floatx80_eq_signaling( floatx80 a, floatx80 b ) | ||
3349 | { | ||
3350 | |||
3351 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | ||
3352 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | ||
3353 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | ||
3354 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | ||
3355 | ) { | ||
3356 | float_raise( float_flag_invalid ); | ||
3357 | return 0; | ||
3358 | } | ||
3359 | return | ||
3360 | ( a.low == b.low ) | ||
3361 | && ( ( a.high == b.high ) | ||
3362 | || ( ( a.low == 0 ) | ||
3363 | && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) | ||
3364 | ); | ||
3365 | |||
3366 | } | ||
3367 | |||
3368 | /* | ||
3369 | ------------------------------------------------------------------------------- | ||
3370 | Returns 1 if the extended double-precision floating-point value `a' is less | ||
3371 | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs | ||
3372 | do not cause an exception. Otherwise, the comparison is performed according | ||
3373 | to the IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
3374 | ------------------------------------------------------------------------------- | ||
3375 | */ | ||
3376 | flag floatx80_le_quiet( floatx80 a, floatx80 b ) | ||
3377 | { | ||
3378 | flag aSign, bSign; | ||
3379 | |||
3380 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | ||
3381 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | ||
3382 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | ||
3383 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | ||
3384 | ) { | ||
3385 | if ( floatx80_is_signaling_nan( a ) | ||
3386 | || floatx80_is_signaling_nan( b ) ) { | ||
3387 | float_raise( float_flag_invalid ); | ||
3388 | } | ||
3389 | return 0; | ||
3390 | } | ||
3391 | aSign = extractFloatx80Sign( a ); | ||
3392 | bSign = extractFloatx80Sign( b ); | ||
3393 | if ( aSign != bSign ) { | ||
3394 | return | ||
3395 | aSign | ||
3396 | || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | ||
3397 | == 0 ); | ||
3398 | } | ||
3399 | return | ||
3400 | aSign ? le128( b.high, b.low, a.high, a.low ) | ||
3401 | : le128( a.high, a.low, b.high, b.low ); | ||
3402 | |||
3403 | } | ||
3404 | |||
3405 | /* | ||
3406 | ------------------------------------------------------------------------------- | ||
3407 | Returns 1 if the extended double-precision floating-point value `a' is less | ||
3408 | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause | ||
3409 | an exception. Otherwise, the comparison is performed according to the | ||
3410 | IEC/IEEE Standard for Binary Floating-point Arithmetic. | ||
3411 | ------------------------------------------------------------------------------- | ||
3412 | */ | ||
3413 | flag floatx80_lt_quiet( floatx80 a, floatx80 b ) | ||
3414 | { | ||
3415 | flag aSign, bSign; | ||
3416 | |||
3417 | if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) | ||
3418 | && (bits64) ( extractFloatx80Frac( a )<<1 ) ) | ||
3419 | || ( ( extractFloatx80Exp( b ) == 0x7FFF ) | ||
3420 | && (bits64) ( extractFloatx80Frac( b )<<1 ) ) | ||
3421 | ) { | ||
3422 | if ( floatx80_is_signaling_nan( a ) | ||
3423 | || floatx80_is_signaling_nan( b ) ) { | ||
3424 | float_raise( float_flag_invalid ); | ||
3425 | } | ||
3426 | return 0; | ||
3427 | } | ||
3428 | aSign = extractFloatx80Sign( a ); | ||
3429 | bSign = extractFloatx80Sign( b ); | ||
3430 | if ( aSign != bSign ) { | ||
3431 | return | ||
3432 | aSign | ||
3433 | && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) | ||
3434 | != 0 ); | ||
3435 | } | ||
3436 | return | ||
3437 | aSign ? lt128( b.high, b.low, a.high, a.low ) | ||
3438 | : lt128( a.high, a.low, b.high, b.low ); | ||
3439 | |||
3440 | } | ||
3441 | |||
3442 | #endif | ||
3443 | |||