diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2009-09-14 20:52:32 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2009-09-14 20:52:32 -0400 |
commit | a9bbd210a44102cc50b30a5f3d111dbf5f2f9cd4 (patch) | |
tree | 27bf5c64fbda8ed7796de52d495982fc30a56c8b /Documentation | |
parent | 2ca7d674d7ab2220707b2ada0b690c0e7c95e7ac (diff) | |
parent | 6c19efb46aacf2c5043ad210b888ee58ffb848c0 (diff) |
Merge branch 'docs-next' of git://git.lwn.net/linux-2.6
* 'docs-next' of git://git.lwn.net/linux-2.6:
Document the flex_array library.
Doc: seq_file.txt fix wrong dd command example.
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/filesystems/seq_file.txt | 2 | ||||
-rw-r--r-- | Documentation/flexible-arrays.txt | 99 |
2 files changed, 100 insertions, 1 deletions
diff --git a/Documentation/filesystems/seq_file.txt b/Documentation/filesystems/seq_file.txt index b843743aa0b..0d15ebccf5b 100644 --- a/Documentation/filesystems/seq_file.txt +++ b/Documentation/filesystems/seq_file.txt | |||
@@ -46,7 +46,7 @@ better to do. The file is seekable, in that one can do something like the | |||
46 | following: | 46 | following: |
47 | 47 | ||
48 | dd if=/proc/sequence of=out1 count=1 | 48 | dd if=/proc/sequence of=out1 count=1 |
49 | dd if=/proc/sequence skip=1 out=out2 count=1 | 49 | dd if=/proc/sequence skip=1 of=out2 count=1 |
50 | 50 | ||
51 | Then concatenate the output files out1 and out2 and get the right | 51 | Then concatenate the output files out1 and out2 and get the right |
52 | result. Yes, it is a thoroughly useless module, but the point is to show | 52 | result. Yes, it is a thoroughly useless module, but the point is to show |
diff --git a/Documentation/flexible-arrays.txt b/Documentation/flexible-arrays.txt new file mode 100644 index 00000000000..84eb26808de --- /dev/null +++ b/Documentation/flexible-arrays.txt | |||
@@ -0,0 +1,99 @@ | |||
1 | Using flexible arrays in the kernel | ||
2 | Last updated for 2.6.31 | ||
3 | Jonathan Corbet <corbet@lwn.net> | ||
4 | |||
5 | Large contiguous memory allocations can be unreliable in the Linux kernel. | ||
6 | Kernel programmers will sometimes respond to this problem by allocating | ||
7 | pages with vmalloc(). This solution not ideal, though. On 32-bit systems, | ||
8 | memory from vmalloc() must be mapped into a relatively small address space; | ||
9 | it's easy to run out. On SMP systems, the page table changes required by | ||
10 | vmalloc() allocations can require expensive cross-processor interrupts on | ||
11 | all CPUs. And, on all systems, use of space in the vmalloc() range | ||
12 | increases pressure on the translation lookaside buffer (TLB), reducing the | ||
13 | performance of the system. | ||
14 | |||
15 | In many cases, the need for memory from vmalloc() can be eliminated by | ||
16 | piecing together an array from smaller parts; the flexible array library | ||
17 | exists to make this task easier. | ||
18 | |||
19 | A flexible array holds an arbitrary (within limits) number of fixed-sized | ||
20 | objects, accessed via an integer index. Sparse arrays are handled | ||
21 | reasonably well. Only single-page allocations are made, so memory | ||
22 | allocation failures should be relatively rare. The down sides are that the | ||
23 | arrays cannot be indexed directly, individual object size cannot exceed the | ||
24 | system page size, and putting data into a flexible array requires a copy | ||
25 | operation. It's also worth noting that flexible arrays do no internal | ||
26 | locking at all; if concurrent access to an array is possible, then the | ||
27 | caller must arrange for appropriate mutual exclusion. | ||
28 | |||
29 | The creation of a flexible array is done with: | ||
30 | |||
31 | #include <linux/flex_array.h> | ||
32 | |||
33 | struct flex_array *flex_array_alloc(int element_size, | ||
34 | unsigned int total, | ||
35 | gfp_t flags); | ||
36 | |||
37 | The individual object size is provided by element_size, while total is the | ||
38 | maximum number of objects which can be stored in the array. The flags | ||
39 | argument is passed directly to the internal memory allocation calls. With | ||
40 | the current code, using flags to ask for high memory is likely to lead to | ||
41 | notably unpleasant side effects. | ||
42 | |||
43 | Storing data into a flexible array is accomplished with a call to: | ||
44 | |||
45 | int flex_array_put(struct flex_array *array, unsigned int element_nr, | ||
46 | void *src, gfp_t flags); | ||
47 | |||
48 | This call will copy the data from src into the array, in the position | ||
49 | indicated by element_nr (which must be less than the maximum specified when | ||
50 | the array was created). If any memory allocations must be performed, flags | ||
51 | will be used. The return value is zero on success, a negative error code | ||
52 | otherwise. | ||
53 | |||
54 | There might possibly be a need to store data into a flexible array while | ||
55 | running in some sort of atomic context; in this situation, sleeping in the | ||
56 | memory allocator would be a bad thing. That can be avoided by using | ||
57 | GFP_ATOMIC for the flags value, but, often, there is a better way. The | ||
58 | trick is to ensure that any needed memory allocations are done before | ||
59 | entering atomic context, using: | ||
60 | |||
61 | int flex_array_prealloc(struct flex_array *array, unsigned int start, | ||
62 | unsigned int end, gfp_t flags); | ||
63 | |||
64 | This function will ensure that memory for the elements indexed in the range | ||
65 | defined by start and end has been allocated. Thereafter, a | ||
66 | flex_array_put() call on an element in that range is guaranteed not to | ||
67 | block. | ||
68 | |||
69 | Getting data back out of the array is done with: | ||
70 | |||
71 | void *flex_array_get(struct flex_array *fa, unsigned int element_nr); | ||
72 | |||
73 | The return value is a pointer to the data element, or NULL if that | ||
74 | particular element has never been allocated. | ||
75 | |||
76 | Note that it is possible to get back a valid pointer for an element which | ||
77 | has never been stored in the array. Memory for array elements is allocated | ||
78 | one page at a time; a single allocation could provide memory for several | ||
79 | adjacent elements. The flexible array code does not know if a specific | ||
80 | element has been written; it only knows if the associated memory is | ||
81 | present. So a flex_array_get() call on an element which was never stored | ||
82 | in the array has the potential to return a pointer to random data. If the | ||
83 | caller does not have a separate way to know which elements were actually | ||
84 | stored, it might be wise, at least, to add GFP_ZERO to the flags argument | ||
85 | to ensure that all elements are zeroed. | ||
86 | |||
87 | There is no way to remove a single element from the array. It is possible, | ||
88 | though, to remove all elements with a call to: | ||
89 | |||
90 | void flex_array_free_parts(struct flex_array *array); | ||
91 | |||
92 | This call frees all elements, but leaves the array itself in place. | ||
93 | Freeing the entire array is done with: | ||
94 | |||
95 | void flex_array_free(struct flex_array *array); | ||
96 | |||
97 | As of this writing, there are no users of flexible arrays in the mainline | ||
98 | kernel. The functions described here are also not exported to modules; | ||
99 | that will probably be fixed when somebody comes up with a need for it. | ||