diff options
author | Andreas Petlund <apetlund@simula.no> | 2010-02-17 21:45:45 -0500 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2010-02-18 18:43:07 -0500 |
commit | 5aa4b32fc86408705337e941ed716880c63d1590 (patch) | |
tree | 7385d30e16f2c7203a74a3723728b7e8c6ecfa7b /Documentation | |
parent | 16cad981863344ef779ab703545bb6f261a0f0ce (diff) |
net: TCP thin-stream detection
Inline function to dynamically detect thin streams based on
the number of packets in flight. Used to dynamically trigger
thin-stream mechanisms if enabled by ioctl or sysctl.
Signed-off-by: Andreas Petlund <apetlund@simula.no>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/networking/tcp-thin.txt | 47 |
1 files changed, 47 insertions, 0 deletions
diff --git a/Documentation/networking/tcp-thin.txt b/Documentation/networking/tcp-thin.txt new file mode 100644 index 00000000000..151e229980f --- /dev/null +++ b/Documentation/networking/tcp-thin.txt | |||
@@ -0,0 +1,47 @@ | |||
1 | Thin-streams and TCP | ||
2 | ==================== | ||
3 | A wide range of Internet-based services that use reliable transport | ||
4 | protocols display what we call thin-stream properties. This means | ||
5 | that the application sends data with such a low rate that the | ||
6 | retransmission mechanisms of the transport protocol are not fully | ||
7 | effective. In time-dependent scenarios (like online games, control | ||
8 | systems, stock trading etc.) where the user experience depends | ||
9 | on the data delivery latency, packet loss can be devastating for | ||
10 | the service quality. Extreme latencies are caused by TCP's | ||
11 | dependency on the arrival of new data from the application to trigger | ||
12 | retransmissions effectively through fast retransmit instead of | ||
13 | waiting for long timeouts. | ||
14 | |||
15 | After analysing a large number of time-dependent interactive | ||
16 | applications, we have seen that they often produce thin streams | ||
17 | and also stay with this traffic pattern throughout its entire | ||
18 | lifespan. The combination of time-dependency and the fact that the | ||
19 | streams provoke high latencies when using TCP is unfortunate. | ||
20 | |||
21 | In order to reduce application-layer latency when packets are lost, | ||
22 | a set of mechanisms has been made, which address these latency issues | ||
23 | for thin streams. In short, if the kernel detects a thin stream, | ||
24 | the retransmission mechanisms are modified in the following manner: | ||
25 | |||
26 | 1) If the stream is thin, fast retransmit on the first dupACK. | ||
27 | 2) If the stream is thin, do not apply exponential backoff. | ||
28 | |||
29 | These enhancements are applied only if the stream is detected as | ||
30 | thin. This is accomplished by defining a threshold for the number | ||
31 | of packets in flight. If there are less than 4 packets in flight, | ||
32 | fast retransmissions can not be triggered, and the stream is prone | ||
33 | to experience high retransmission latencies. | ||
34 | |||
35 | Since these mechanisms are targeted at time-dependent applications, | ||
36 | they must be specifically activated by the application using the | ||
37 | TCP_THIN_LINEAR_TIMEOUTS and TCP_THIN_DUPACK IOCTLS or the | ||
38 | tcp_thin_linear_timeouts and tcp_thin_dupack sysctls. Both | ||
39 | modifications are turned off by default. | ||
40 | |||
41 | References | ||
42 | ========== | ||
43 | More information on the modifications, as well as a wide range of | ||
44 | experimental data can be found here: | ||
45 | "Improving latency for interactive, thin-stream applications over | ||
46 | reliable transport" | ||
47 | http://simula.no/research/nd/publications/Simula.nd.477/simula_pdf_file | ||