aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2011-08-03 23:50:44 -0400
committerGreg Kroah-Hartman <gregkh@suse.de>2011-08-15 21:31:35 -0400
commite997d47bff5a467262ef224b4cf8cbba2d3eceea (patch)
tree6560c0ac8f2b19a4b7f40db6cc22a9857fe4f1a3
parent2468b895fc7dcbc436cb02f0707ab8d7cb2f0aa7 (diff)
net: Compute protocol sequence numbers and fragment IDs using MD5.
Computers have become a lot faster since we compromised on the partial MD4 hash which we use currently for performance reasons. MD5 is a much safer choice, and is inline with both RFC1948 and other ISS generators (OpenBSD, Solaris, etc.) Furthermore, only having 24-bits of the sequence number be truly unpredictable is a very serious limitation. So the periodic regeneration and 8-bit counter have been removed. We compute and use a full 32-bit sequence number. For ipv6, DCCP was found to use a 32-bit truncated initial sequence number (it needs 43-bits) and that is fixed here as well. Reported-by: Dan Kaminsky <dan@doxpara.com> Tested-by: Willy Tarreau <w@1wt.eu> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
-rw-r--r--drivers/char/random.c334
-rw-r--r--include/linux/random.h11
-rw-r--r--include/net/secure_seq.h20
-rw-r--r--net/core/Makefile2
-rw-r--r--net/core/secure_seq.c184
-rw-r--r--net/dccp/ipv4.c1
-rw-r--r--net/dccp/ipv6.c9
-rw-r--r--net/ipv4/inet_hashtables.c1
-rw-r--r--net/ipv4/inetpeer.c1
-rw-r--r--net/ipv4/netfilter/nf_nat_proto_common.c1
-rw-r--r--net/ipv4/route.c1
-rw-r--r--net/ipv4/tcp_ipv4.c1
-rw-r--r--net/ipv6/inet6_hashtables.c1
-rw-r--r--net/ipv6/tcp_ipv6.c1
14 files changed, 223 insertions, 345 deletions
diff --git a/drivers/char/random.c b/drivers/char/random.c
index d4ddeba5668..c35a785005b 100644
--- a/drivers/char/random.c
+++ b/drivers/char/random.c
@@ -1300,330 +1300,14 @@ ctl_table random_table[] = {
1300}; 1300};
1301#endif /* CONFIG_SYSCTL */ 1301#endif /* CONFIG_SYSCTL */
1302 1302
1303/******************************************************************** 1303static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1304 *
1305 * Random functions for networking
1306 *
1307 ********************************************************************/
1308
1309/*
1310 * TCP initial sequence number picking. This uses the random number
1311 * generator to pick an initial secret value. This value is hashed
1312 * along with the TCP endpoint information to provide a unique
1313 * starting point for each pair of TCP endpoints. This defeats
1314 * attacks which rely on guessing the initial TCP sequence number.
1315 * This algorithm was suggested by Steve Bellovin.
1316 *
1317 * Using a very strong hash was taking an appreciable amount of the total
1318 * TCP connection establishment time, so this is a weaker hash,
1319 * compensated for by changing the secret periodically.
1320 */
1321
1322/* F, G and H are basic MD4 functions: selection, majority, parity */
1323#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1324#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1325#define H(x, y, z) ((x) ^ (y) ^ (z))
1326
1327/*
1328 * The generic round function. The application is so specific that
1329 * we don't bother protecting all the arguments with parens, as is generally
1330 * good macro practice, in favor of extra legibility.
1331 * Rotation is separate from addition to prevent recomputation
1332 */
1333#define ROUND(f, a, b, c, d, x, s) \
1334 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1335#define K1 0
1336#define K2 013240474631UL
1337#define K3 015666365641UL
1338 1304
1339#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1305static int __init random_int_secret_init(void)
1340
1341static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1342{ 1306{
1343 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; 1307 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1344
1345 /* Round 1 */
1346 ROUND(F, a, b, c, d, in[ 0] + K1, 3);
1347 ROUND(F, d, a, b, c, in[ 1] + K1, 7);
1348 ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1349 ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1350 ROUND(F, a, b, c, d, in[ 4] + K1, 3);
1351 ROUND(F, d, a, b, c, in[ 5] + K1, 7);
1352 ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1353 ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1354 ROUND(F, a, b, c, d, in[ 8] + K1, 3);
1355 ROUND(F, d, a, b, c, in[ 9] + K1, 7);
1356 ROUND(F, c, d, a, b, in[10] + K1, 11);
1357 ROUND(F, b, c, d, a, in[11] + K1, 19);
1358
1359 /* Round 2 */
1360 ROUND(G, a, b, c, d, in[ 1] + K2, 3);
1361 ROUND(G, d, a, b, c, in[ 3] + K2, 5);
1362 ROUND(G, c, d, a, b, in[ 5] + K2, 9);
1363 ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1364 ROUND(G, a, b, c, d, in[ 9] + K2, 3);
1365 ROUND(G, d, a, b, c, in[11] + K2, 5);
1366 ROUND(G, c, d, a, b, in[ 0] + K2, 9);
1367 ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1368 ROUND(G, a, b, c, d, in[ 4] + K2, 3);
1369 ROUND(G, d, a, b, c, in[ 6] + K2, 5);
1370 ROUND(G, c, d, a, b, in[ 8] + K2, 9);
1371 ROUND(G, b, c, d, a, in[10] + K2, 13);
1372
1373 /* Round 3 */
1374 ROUND(H, a, b, c, d, in[ 3] + K3, 3);
1375 ROUND(H, d, a, b, c, in[ 7] + K3, 9);
1376 ROUND(H, c, d, a, b, in[11] + K3, 11);
1377 ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1378 ROUND(H, a, b, c, d, in[ 6] + K3, 3);
1379 ROUND(H, d, a, b, c, in[10] + K3, 9);
1380 ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1381 ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1382 ROUND(H, a, b, c, d, in[ 9] + K3, 3);
1383 ROUND(H, d, a, b, c, in[ 0] + K3, 9);
1384 ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1385 ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1386
1387 return buf[1] + b; /* "most hashed" word */
1388 /* Alternative: return sum of all words? */
1389}
1390#endif
1391
1392#undef ROUND
1393#undef F
1394#undef G
1395#undef H
1396#undef K1
1397#undef K2
1398#undef K3
1399
1400/* This should not be decreased so low that ISNs wrap too fast. */
1401#define REKEY_INTERVAL (300 * HZ)
1402/*
1403 * Bit layout of the tcp sequence numbers (before adding current time):
1404 * bit 24-31: increased after every key exchange
1405 * bit 0-23: hash(source,dest)
1406 *
1407 * The implementation is similar to the algorithm described
1408 * in the Appendix of RFC 1185, except that
1409 * - it uses a 1 MHz clock instead of a 250 kHz clock
1410 * - it performs a rekey every 5 minutes, which is equivalent
1411 * to a (source,dest) tulple dependent forward jump of the
1412 * clock by 0..2^(HASH_BITS+1)
1413 *
1414 * Thus the average ISN wraparound time is 68 minutes instead of
1415 * 4.55 hours.
1416 *
1417 * SMP cleanup and lock avoidance with poor man's RCU.
1418 * Manfred Spraul <manfred@colorfullife.com>
1419 *
1420 */
1421#define COUNT_BITS 8
1422#define COUNT_MASK ((1 << COUNT_BITS) - 1)
1423#define HASH_BITS 24
1424#define HASH_MASK ((1 << HASH_BITS) - 1)
1425
1426static struct keydata {
1427 __u32 count; /* already shifted to the final position */
1428 __u32 secret[12];
1429} ____cacheline_aligned ip_keydata[2];
1430
1431static unsigned int ip_cnt;
1432
1433static void rekey_seq_generator(struct work_struct *work);
1434
1435static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1436
1437/*
1438 * Lock avoidance:
1439 * The ISN generation runs lockless - it's just a hash over random data.
1440 * State changes happen every 5 minutes when the random key is replaced.
1441 * Synchronization is performed by having two copies of the hash function
1442 * state and rekey_seq_generator always updates the inactive copy.
1443 * The copy is then activated by updating ip_cnt.
1444 * The implementation breaks down if someone blocks the thread
1445 * that processes SYN requests for more than 5 minutes. Should never
1446 * happen, and even if that happens only a not perfectly compliant
1447 * ISN is generated, nothing fatal.
1448 */
1449static void rekey_seq_generator(struct work_struct *work)
1450{
1451 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1452
1453 get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1454 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1455 smp_wmb();
1456 ip_cnt++;
1457 schedule_delayed_work(&rekey_work,
1458 round_jiffies_relative(REKEY_INTERVAL));
1459}
1460
1461static inline struct keydata *get_keyptr(void)
1462{
1463 struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1464
1465 smp_rmb();
1466
1467 return keyptr;
1468}
1469
1470static __init int seqgen_init(void)
1471{
1472 rekey_seq_generator(NULL);
1473 return 0; 1308 return 0;
1474} 1309}
1475late_initcall(seqgen_init); 1310late_initcall(random_int_secret_init);
1476
1477#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1478__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1479 __be16 sport, __be16 dport)
1480{
1481 __u32 seq;
1482 __u32 hash[12];
1483 struct keydata *keyptr = get_keyptr();
1484
1485 /* The procedure is the same as for IPv4, but addresses are longer.
1486 * Thus we must use twothirdsMD4Transform.
1487 */
1488
1489 memcpy(hash, saddr, 16);
1490 hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1491 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1492
1493 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1494 seq += keyptr->count;
1495
1496 seq += ktime_to_ns(ktime_get_real());
1497
1498 return seq;
1499}
1500EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1501#endif
1502
1503/* The code below is shamelessly stolen from secure_tcp_sequence_number().
1504 * All blames to Andrey V. Savochkin <saw@msu.ru>.
1505 */
1506__u32 secure_ip_id(__be32 daddr)
1507{
1508 struct keydata *keyptr;
1509 __u32 hash[4];
1510
1511 keyptr = get_keyptr();
1512
1513 /*
1514 * Pick a unique starting offset for each IP destination.
1515 * The dest ip address is placed in the starting vector,
1516 * which is then hashed with random data.
1517 */
1518 hash[0] = (__force __u32)daddr;
1519 hash[1] = keyptr->secret[9];
1520 hash[2] = keyptr->secret[10];
1521 hash[3] = keyptr->secret[11];
1522
1523 return half_md4_transform(hash, keyptr->secret);
1524}
1525
1526#ifdef CONFIG_INET
1527
1528__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1529 __be16 sport, __be16 dport)
1530{
1531 __u32 seq;
1532 __u32 hash[4];
1533 struct keydata *keyptr = get_keyptr();
1534
1535 /*
1536 * Pick a unique starting offset for each TCP connection endpoints
1537 * (saddr, daddr, sport, dport).
1538 * Note that the words are placed into the starting vector, which is
1539 * then mixed with a partial MD4 over random data.
1540 */
1541 hash[0] = (__force u32)saddr;
1542 hash[1] = (__force u32)daddr;
1543 hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1544 hash[3] = keyptr->secret[11];
1545
1546 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1547 seq += keyptr->count;
1548 /*
1549 * As close as possible to RFC 793, which
1550 * suggests using a 250 kHz clock.
1551 * Further reading shows this assumes 2 Mb/s networks.
1552 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1553 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1554 * we also need to limit the resolution so that the u32 seq
1555 * overlaps less than one time per MSL (2 minutes).
1556 * Choosing a clock of 64 ns period is OK. (period of 274 s)
1557 */
1558 seq += ktime_to_ns(ktime_get_real()) >> 6;
1559
1560 return seq;
1561}
1562
1563/* Generate secure starting point for ephemeral IPV4 transport port search */
1564u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1565{
1566 struct keydata *keyptr = get_keyptr();
1567 u32 hash[4];
1568
1569 /*
1570 * Pick a unique starting offset for each ephemeral port search
1571 * (saddr, daddr, dport) and 48bits of random data.
1572 */
1573 hash[0] = (__force u32)saddr;
1574 hash[1] = (__force u32)daddr;
1575 hash[2] = (__force u32)dport ^ keyptr->secret[10];
1576 hash[3] = keyptr->secret[11];
1577
1578 return half_md4_transform(hash, keyptr->secret);
1579}
1580EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
1581
1582#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1583u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1584 __be16 dport)
1585{
1586 struct keydata *keyptr = get_keyptr();
1587 u32 hash[12];
1588
1589 memcpy(hash, saddr, 16);
1590 hash[4] = (__force u32)dport;
1591 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1592
1593 return twothirdsMD4Transform((const __u32 *)daddr, hash);
1594}
1595#endif
1596
1597#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1598/* Similar to secure_tcp_sequence_number but generate a 48 bit value
1599 * bit's 32-47 increase every key exchange
1600 * 0-31 hash(source, dest)
1601 */
1602u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1603 __be16 sport, __be16 dport)
1604{
1605 u64 seq;
1606 __u32 hash[4];
1607 struct keydata *keyptr = get_keyptr();
1608
1609 hash[0] = (__force u32)saddr;
1610 hash[1] = (__force u32)daddr;
1611 hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1612 hash[3] = keyptr->secret[11];
1613
1614 seq = half_md4_transform(hash, keyptr->secret);
1615 seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1616
1617 seq += ktime_to_ns(ktime_get_real());
1618 seq &= (1ull << 48) - 1;
1619
1620 return seq;
1621}
1622EXPORT_SYMBOL(secure_dccp_sequence_number);
1623#endif
1624
1625#endif /* CONFIG_INET */
1626
1627 1311
1628/* 1312/*
1629 * Get a random word for internal kernel use only. Similar to urandom but 1313 * Get a random word for internal kernel use only. Similar to urandom but
@@ -1631,17 +1315,15 @@ EXPORT_SYMBOL(secure_dccp_sequence_number);
1631 * value is not cryptographically secure but for several uses the cost of 1315 * value is not cryptographically secure but for several uses the cost of
1632 * depleting entropy is too high 1316 * depleting entropy is too high
1633 */ 1317 */
1634DEFINE_PER_CPU(__u32 [4], get_random_int_hash); 1318DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1635unsigned int get_random_int(void) 1319unsigned int get_random_int(void)
1636{ 1320{
1637 struct keydata *keyptr;
1638 __u32 *hash = get_cpu_var(get_random_int_hash); 1321 __u32 *hash = get_cpu_var(get_random_int_hash);
1639 int ret; 1322 unsigned int ret;
1640 1323
1641 keyptr = get_keyptr();
1642 hash[0] += current->pid + jiffies + get_cycles(); 1324 hash[0] += current->pid + jiffies + get_cycles();
1643 1325 md5_transform(hash, random_int_secret);
1644 ret = half_md4_transform(hash, keyptr->secret); 1326 ret = hash[0];
1645 put_cpu_var(get_random_int_hash); 1327 put_cpu_var(get_random_int_hash);
1646 1328
1647 return ret; 1329 return ret;
diff --git a/include/linux/random.h b/include/linux/random.h
index fb7ab9de5f3..d13059f3ea3 100644
--- a/include/linux/random.h
+++ b/include/linux/random.h
@@ -57,17 +57,6 @@ extern void add_interrupt_randomness(int irq);
57extern void get_random_bytes(void *buf, int nbytes); 57extern void get_random_bytes(void *buf, int nbytes);
58void generate_random_uuid(unsigned char uuid_out[16]); 58void generate_random_uuid(unsigned char uuid_out[16]);
59 59
60extern __u32 secure_ip_id(__be32 daddr);
61extern u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport);
62extern u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
63 __be16 dport);
64extern __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
65 __be16 sport, __be16 dport);
66extern __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
67 __be16 sport, __be16 dport);
68extern u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
69 __be16 sport, __be16 dport);
70
71#ifndef MODULE 60#ifndef MODULE
72extern const struct file_operations random_fops, urandom_fops; 61extern const struct file_operations random_fops, urandom_fops;
73#endif 62#endif
diff --git a/include/net/secure_seq.h b/include/net/secure_seq.h
new file mode 100644
index 00000000000..d97f6892c01
--- /dev/null
+++ b/include/net/secure_seq.h
@@ -0,0 +1,20 @@
1#ifndef _NET_SECURE_SEQ
2#define _NET_SECURE_SEQ
3
4#include <linux/types.h>
5
6extern __u32 secure_ip_id(__be32 daddr);
7extern __u32 secure_ipv6_id(const __be32 daddr[4]);
8extern u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport);
9extern u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
10 __be16 dport);
11extern __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
12 __be16 sport, __be16 dport);
13extern __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
14 __be16 sport, __be16 dport);
15extern u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
16 __be16 sport, __be16 dport);
17extern u64 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr,
18 __be16 sport, __be16 dport);
19
20#endif /* _NET_SECURE_SEQ */
diff --git a/net/core/Makefile b/net/core/Makefile
index 8a04dd22cf7..0d357b1c4e5 100644
--- a/net/core/Makefile
+++ b/net/core/Makefile
@@ -3,7 +3,7 @@
3# 3#
4 4
5obj-y := sock.o request_sock.o skbuff.o iovec.o datagram.o stream.o scm.o \ 5obj-y := sock.o request_sock.o skbuff.o iovec.o datagram.o stream.o scm.o \
6 gen_stats.o gen_estimator.o net_namespace.o 6 gen_stats.o gen_estimator.o net_namespace.o secure_seq.o
7 7
8obj-$(CONFIG_SYSCTL) += sysctl_net_core.o 8obj-$(CONFIG_SYSCTL) += sysctl_net_core.o
9 9
diff --git a/net/core/secure_seq.c b/net/core/secure_seq.c
new file mode 100644
index 00000000000..45329d7c9dd
--- /dev/null
+++ b/net/core/secure_seq.c
@@ -0,0 +1,184 @@
1#include <linux/kernel.h>
2#include <linux/init.h>
3#include <linux/cryptohash.h>
4#include <linux/module.h>
5#include <linux/cache.h>
6#include <linux/random.h>
7#include <linux/hrtimer.h>
8#include <linux/ktime.h>
9#include <linux/string.h>
10
11#include <net/secure_seq.h>
12
13static u32 net_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
14
15static int __init net_secret_init(void)
16{
17 get_random_bytes(net_secret, sizeof(net_secret));
18 return 0;
19}
20late_initcall(net_secret_init);
21
22static u32 seq_scale(u32 seq)
23{
24 /*
25 * As close as possible to RFC 793, which
26 * suggests using a 250 kHz clock.
27 * Further reading shows this assumes 2 Mb/s networks.
28 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
29 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
30 * we also need to limit the resolution so that the u32 seq
31 * overlaps less than one time per MSL (2 minutes).
32 * Choosing a clock of 64 ns period is OK. (period of 274 s)
33 */
34 return seq + (ktime_to_ns(ktime_get_real()) >> 6);
35}
36
37#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
38__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
39 __be16 sport, __be16 dport)
40{
41 u32 secret[MD5_MESSAGE_BYTES / 4];
42 u32 hash[MD5_DIGEST_WORDS];
43 u32 i;
44
45 memcpy(hash, saddr, 16);
46 for (i = 0; i < 4; i++)
47 secret[i] = net_secret[i] + daddr[i];
48 secret[4] = net_secret[4] +
49 (((__force u16)sport << 16) + (__force u16)dport);
50 for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++)
51 secret[i] = net_secret[i];
52
53 md5_transform(hash, secret);
54
55 return seq_scale(hash[0]);
56}
57EXPORT_SYMBOL(secure_tcpv6_sequence_number);
58
59u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
60 __be16 dport)
61{
62 u32 secret[MD5_MESSAGE_BYTES / 4];
63 u32 hash[MD5_DIGEST_WORDS];
64 u32 i;
65
66 memcpy(hash, saddr, 16);
67 for (i = 0; i < 4; i++)
68 secret[i] = net_secret[i] + (__force u32) daddr[i];
69 secret[4] = net_secret[4] + (__force u32)dport;
70 for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++)
71 secret[i] = net_secret[i];
72
73 md5_transform(hash, secret);
74
75 return hash[0];
76}
77#endif
78
79#ifdef CONFIG_INET
80__u32 secure_ip_id(__be32 daddr)
81{
82 u32 hash[MD5_DIGEST_WORDS];
83
84 hash[0] = (__force __u32) daddr;
85 hash[1] = net_secret[13];
86 hash[2] = net_secret[14];
87 hash[3] = net_secret[15];
88
89 md5_transform(hash, net_secret);
90
91 return hash[0];
92}
93
94__u32 secure_ipv6_id(const __be32 daddr[4])
95{
96 __u32 hash[4];
97
98 memcpy(hash, daddr, 16);
99 md5_transform(hash, net_secret);
100
101 return hash[0];
102}
103
104__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
105 __be16 sport, __be16 dport)
106{
107 u32 hash[MD5_DIGEST_WORDS];
108
109 hash[0] = (__force u32)saddr;
110 hash[1] = (__force u32)daddr;
111 hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
112 hash[3] = net_secret[15];
113
114 md5_transform(hash, net_secret);
115
116 return seq_scale(hash[0]);
117}
118
119u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
120{
121 u32 hash[MD5_DIGEST_WORDS];
122
123 hash[0] = (__force u32)saddr;
124 hash[1] = (__force u32)daddr;
125 hash[2] = (__force u32)dport ^ net_secret[14];
126 hash[3] = net_secret[15];
127
128 md5_transform(hash, net_secret);
129
130 return hash[0];
131}
132EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
133#endif
134
135#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
136u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
137 __be16 sport, __be16 dport)
138{
139 u32 hash[MD5_DIGEST_WORDS];
140 u64 seq;
141
142 hash[0] = (__force u32)saddr;
143 hash[1] = (__force u32)daddr;
144 hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
145 hash[3] = net_secret[15];
146
147 md5_transform(hash, net_secret);
148
149 seq = hash[0] | (((u64)hash[1]) << 32);
150 seq += ktime_to_ns(ktime_get_real());
151 seq &= (1ull << 48) - 1;
152
153 return seq;
154}
155EXPORT_SYMBOL(secure_dccp_sequence_number);
156
157#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
158u64 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr,
159 __be16 sport, __be16 dport)
160{
161 u32 secret[MD5_MESSAGE_BYTES / 4];
162 u32 hash[MD5_DIGEST_WORDS];
163 u64 seq;
164 u32 i;
165
166 memcpy(hash, saddr, 16);
167 for (i = 0; i < 4; i++)
168 secret[i] = net_secret[i] + daddr[i];
169 secret[4] = net_secret[4] +
170 (((__force u16)sport << 16) + (__force u16)dport);
171 for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++)
172 secret[i] = net_secret[i];
173
174 md5_transform(hash, secret);
175
176 seq = hash[0] | (((u64)hash[1]) << 32);
177 seq += ktime_to_ns(ktime_get_real());
178 seq &= (1ull << 48) - 1;
179
180 return seq;
181}
182EXPORT_SYMBOL(secure_dccpv6_sequence_number);
183#endif
184#endif
diff --git a/net/dccp/ipv4.c b/net/dccp/ipv4.c
index 8c36adfd191..332639b56f4 100644
--- a/net/dccp/ipv4.c
+++ b/net/dccp/ipv4.c
@@ -26,6 +26,7 @@
26#include <net/timewait_sock.h> 26#include <net/timewait_sock.h>
27#include <net/tcp_states.h> 27#include <net/tcp_states.h>
28#include <net/xfrm.h> 28#include <net/xfrm.h>
29#include <net/secure_seq.h>
29 30
30#include "ackvec.h" 31#include "ackvec.h"
31#include "ccid.h" 32#include "ccid.h"
diff --git a/net/dccp/ipv6.c b/net/dccp/ipv6.c
index 8dc4348774a..b74f76117dc 100644
--- a/net/dccp/ipv6.c
+++ b/net/dccp/ipv6.c
@@ -29,6 +29,7 @@
29#include <net/transp_v6.h> 29#include <net/transp_v6.h>
30#include <net/ip6_checksum.h> 30#include <net/ip6_checksum.h>
31#include <net/xfrm.h> 31#include <net/xfrm.h>
32#include <net/secure_seq.h>
32 33
33#include "dccp.h" 34#include "dccp.h"
34#include "ipv6.h" 35#include "ipv6.h"
@@ -69,13 +70,7 @@ static inline void dccp_v6_send_check(struct sock *sk, struct sk_buff *skb)
69 dh->dccph_checksum = dccp_v6_csum_finish(skb, &np->saddr, &np->daddr); 70 dh->dccph_checksum = dccp_v6_csum_finish(skb, &np->saddr, &np->daddr);
70} 71}
71 72
72static inline __u32 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr, 73static inline __u64 dccp_v6_init_sequence(struct sk_buff *skb)
73 __be16 sport, __be16 dport )
74{
75 return secure_tcpv6_sequence_number(saddr, daddr, sport, dport);
76}
77
78static inline __u32 dccp_v6_init_sequence(struct sk_buff *skb)
79{ 74{
80 return secure_dccpv6_sequence_number(ipv6_hdr(skb)->daddr.s6_addr32, 75 return secure_dccpv6_sequence_number(ipv6_hdr(skb)->daddr.s6_addr32,
81 ipv6_hdr(skb)->saddr.s6_addr32, 76 ipv6_hdr(skb)->saddr.s6_addr32,
diff --git a/net/ipv4/inet_hashtables.c b/net/ipv4/inet_hashtables.c
index 3c0369a3a66..984ec656b03 100644
--- a/net/ipv4/inet_hashtables.c
+++ b/net/ipv4/inet_hashtables.c
@@ -21,6 +21,7 @@
21 21
22#include <net/inet_connection_sock.h> 22#include <net/inet_connection_sock.h>
23#include <net/inet_hashtables.h> 23#include <net/inet_hashtables.h>
24#include <net/secure_seq.h>
24#include <net/ip.h> 25#include <net/ip.h>
25 26
26/* 27/*
diff --git a/net/ipv4/inetpeer.c b/net/ipv4/inetpeer.c
index ce616d92cc5..687764544af 100644
--- a/net/ipv4/inetpeer.c
+++ b/net/ipv4/inetpeer.c
@@ -19,6 +19,7 @@
19#include <linux/net.h> 19#include <linux/net.h>
20#include <net/ip.h> 20#include <net/ip.h>
21#include <net/inetpeer.h> 21#include <net/inetpeer.h>
22#include <net/secure_seq.h>
22 23
23/* 24/*
24 * Theory of operations. 25 * Theory of operations.
diff --git a/net/ipv4/netfilter/nf_nat_proto_common.c b/net/ipv4/netfilter/nf_nat_proto_common.c
index 3e61faf23a9..f52d41ea069 100644
--- a/net/ipv4/netfilter/nf_nat_proto_common.c
+++ b/net/ipv4/netfilter/nf_nat_proto_common.c
@@ -12,6 +12,7 @@
12#include <linux/ip.h> 12#include <linux/ip.h>
13 13
14#include <linux/netfilter.h> 14#include <linux/netfilter.h>
15#include <net/secure_seq.h>
15#include <net/netfilter/nf_nat.h> 16#include <net/netfilter/nf_nat.h>
16#include <net/netfilter/nf_nat_core.h> 17#include <net/netfilter/nf_nat_core.h>
17#include <net/netfilter/nf_nat_rule.h> 18#include <net/netfilter/nf_nat_rule.h>
diff --git a/net/ipv4/route.c b/net/ipv4/route.c
index aa13ef10511..36fe0540b1c 100644
--- a/net/ipv4/route.c
+++ b/net/ipv4/route.c
@@ -108,6 +108,7 @@
108#ifdef CONFIG_SYSCTL 108#ifdef CONFIG_SYSCTL
109#include <linux/sysctl.h> 109#include <linux/sysctl.h>
110#endif 110#endif
111#include <net/secure_seq.h>
111 112
112#define RT_FL_TOS(oldflp4) \ 113#define RT_FL_TOS(oldflp4) \
113 ((u32)(oldflp4->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))) 114 ((u32)(oldflp4->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
diff --git a/net/ipv4/tcp_ipv4.c b/net/ipv4/tcp_ipv4.c
index 708dc203b03..b3e6956d7ba 100644
--- a/net/ipv4/tcp_ipv4.c
+++ b/net/ipv4/tcp_ipv4.c
@@ -72,6 +72,7 @@
72#include <net/timewait_sock.h> 72#include <net/timewait_sock.h>
73#include <net/xfrm.h> 73#include <net/xfrm.h>
74#include <net/netdma.h> 74#include <net/netdma.h>
75#include <net/secure_seq.h>
75 76
76#include <linux/inet.h> 77#include <linux/inet.h>
77#include <linux/ipv6.h> 78#include <linux/ipv6.h>
diff --git a/net/ipv6/inet6_hashtables.c b/net/ipv6/inet6_hashtables.c
index b5319723370..73f1a00a96a 100644
--- a/net/ipv6/inet6_hashtables.c
+++ b/net/ipv6/inet6_hashtables.c
@@ -20,6 +20,7 @@
20#include <net/inet_connection_sock.h> 20#include <net/inet_connection_sock.h>
21#include <net/inet_hashtables.h> 21#include <net/inet_hashtables.h>
22#include <net/inet6_hashtables.h> 22#include <net/inet6_hashtables.h>
23#include <net/secure_seq.h>
23#include <net/ip.h> 24#include <net/ip.h>
24 25
25int __inet6_hash(struct sock *sk, struct inet_timewait_sock *tw) 26int __inet6_hash(struct sock *sk, struct inet_timewait_sock *tw)
diff --git a/net/ipv6/tcp_ipv6.c b/net/ipv6/tcp_ipv6.c
index 87551ca568c..7c43e861475 100644
--- a/net/ipv6/tcp_ipv6.c
+++ b/net/ipv6/tcp_ipv6.c
@@ -61,6 +61,7 @@
61#include <net/timewait_sock.h> 61#include <net/timewait_sock.h>
62#include <net/netdma.h> 62#include <net/netdma.h>
63#include <net/inet_common.h> 63#include <net/inet_common.h>
64#include <net/secure_seq.h>
64 65
65#include <asm/uaccess.h> 66#include <asm/uaccess.h>
66 67