aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMatias Zabaljauregui <matias.zabaljauregui@cern.ch>2007-10-21 21:03:33 -0400
committerRusty Russell <rusty@rustcorp.com.au>2007-10-23 01:49:53 -0400
commitdf29f43e650df29456804dabdb2611de914e7c0f (patch)
tree2f8de4a2f1b7c4141e710123fc86db266f507d83
parent47aee45ae3c708ab678e09abfba0efaf6ca0e87a (diff)
Pagetables to use normal kernel types
This is my first step in the migration of page_tables.c to the kernel types and functions/macros (2.6.23-rc3). Seems to be working OK. Signed-off-by: Matias Zabaljauregui <matias.zabaljauregui@cern.ch> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
-rw-r--r--drivers/lguest/hypercalls.c2
-rw-r--r--drivers/lguest/lg.h45
-rw-r--r--drivers/lguest/page_tables.c192
3 files changed, 98 insertions, 141 deletions
diff --git a/drivers/lguest/hypercalls.c b/drivers/lguest/hypercalls.c
index 2859a768728..02d0ae26826 100644
--- a/drivers/lguest/hypercalls.c
+++ b/drivers/lguest/hypercalls.c
@@ -83,7 +83,7 @@ static void do_hcall(struct lguest *lg, struct hcall_args *args)
83 guest_set_stack(lg, args->arg1, args->arg2, args->arg3); 83 guest_set_stack(lg, args->arg1, args->arg2, args->arg3);
84 break; 84 break;
85 case LHCALL_SET_PTE: 85 case LHCALL_SET_PTE:
86 guest_set_pte(lg, args->arg1, args->arg2, mkgpte(args->arg3)); 86 guest_set_pte(lg, args->arg1, args->arg2, __pte(args->arg3));
87 break; 87 break;
88 case LHCALL_SET_PMD: 88 case LHCALL_SET_PMD:
89 guest_set_pmd(lg, args->arg1, args->arg2); 89 guest_set_pmd(lg, args->arg1, args->arg2);
diff --git a/drivers/lguest/lg.h b/drivers/lguest/lg.h
index c2557cfd86c..dc15b88208f 100644
--- a/drivers/lguest/lg.h
+++ b/drivers/lguest/lg.h
@@ -28,45 +28,10 @@ struct lguest_dma_info
28 u8 interrupt; /* 0 when not registered */ 28 u8 interrupt; /* 0 when not registered */
29}; 29};
30 30
31/*H:310 The page-table code owes a great debt of gratitude to Andi Kleen. He
32 * reviewed the original code which used "u32" for all page table entries, and
33 * insisted that it would be far clearer with explicit typing. I thought it
34 * was overkill, but he was right: it is much clearer than it was before.
35 *
36 * We have separate types for the Guest's ptes & pgds and the shadow ptes &
37 * pgds. There's already a Linux type for these (pte_t and pgd_t) but they
38 * change depending on kernel config options (PAE). */
39
40/* Each entry is identical: lower 12 bits of flags and upper 20 bits for the
41 * "page frame number" (0 == first physical page, etc). They are different
42 * types so the compiler will warn us if we mix them improperly. */
43typedef union {
44 struct { unsigned flags:12, pfn:20; };
45 struct { unsigned long val; } raw;
46} spgd_t;
47typedef union {
48 struct { unsigned flags:12, pfn:20; };
49 struct { unsigned long val; } raw;
50} spte_t;
51typedef union {
52 struct { unsigned flags:12, pfn:20; };
53 struct { unsigned long val; } raw;
54} gpgd_t;
55typedef union {
56 struct { unsigned flags:12, pfn:20; };
57 struct { unsigned long val; } raw;
58} gpte_t;
59
60/* We have two convenient macros to convert a "raw" value as handed to us by
61 * the Guest into the correct Guest PGD or PTE type. */
62#define mkgpte(_val) ((gpte_t){.raw.val = _val})
63#define mkgpgd(_val) ((gpgd_t){.raw.val = _val})
64/*:*/
65
66struct pgdir 31struct pgdir
67{ 32{
68 unsigned long cr3; 33 unsigned long cr3;
69 spgd_t *pgdir; 34 pgd_t *pgdir;
70}; 35};
71 36
72/* We have two pages shared with guests, per cpu. */ 37/* We have two pages shared with guests, per cpu. */
@@ -157,6 +122,12 @@ int lguest_address_ok(const struct lguest *lg,
157 unsigned long addr, unsigned long len); 122 unsigned long addr, unsigned long len);
158int run_guest(struct lguest *lg, unsigned long __user *user); 123int run_guest(struct lguest *lg, unsigned long __user *user);
159 124
125/* Helper macros to obtain the first 12 or the last 20 bits, this is only the
126 * first step in the migration to the kernel types. pte_pfn is already defined
127 * in the kernel. */
128#define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK)
129#define pte_flags(x) (pte_val(x) & ~PAGE_MASK)
130#define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT)
160 131
161/* interrupts_and_traps.c: */ 132/* interrupts_and_traps.c: */
162void maybe_do_interrupt(struct lguest *lg); 133void maybe_do_interrupt(struct lguest *lg);
@@ -187,7 +158,7 @@ void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 i);
187void guest_pagetable_clear_all(struct lguest *lg); 158void guest_pagetable_clear_all(struct lguest *lg);
188void guest_pagetable_flush_user(struct lguest *lg); 159void guest_pagetable_flush_user(struct lguest *lg);
189void guest_set_pte(struct lguest *lg, unsigned long cr3, 160void guest_set_pte(struct lguest *lg, unsigned long cr3,
190 unsigned long vaddr, gpte_t val); 161 unsigned long vaddr, pte_t val);
191void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages); 162void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages);
192int demand_page(struct lguest *info, unsigned long cr2, int errcode); 163int demand_page(struct lguest *info, unsigned long cr2, int errcode);
193void pin_page(struct lguest *lg, unsigned long vaddr); 164void pin_page(struct lguest *lg, unsigned long vaddr);
diff --git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c
index 9cd2faceb87..5c4c53f38cf 100644
--- a/drivers/lguest/page_tables.c
+++ b/drivers/lguest/page_tables.c
@@ -44,44 +44,32 @@
44 * (vii) Setting up the page tables initially. 44 * (vii) Setting up the page tables initially.
45 :*/ 45 :*/
46 46
47/* Pages a 4k long, and each page table entry is 4 bytes long, giving us 1024
48 * (or 2^10) entries per page. */
49#define PTES_PER_PAGE_SHIFT 10
50#define PTES_PER_PAGE (1 << PTES_PER_PAGE_SHIFT)
51 47
52/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is 48/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
53 * conveniently placed at the top 4MB, so it uses a separate, complete PTE 49 * conveniently placed at the top 4MB, so it uses a separate, complete PTE
54 * page. */ 50 * page. */
55#define SWITCHER_PGD_INDEX (PTES_PER_PAGE - 1) 51#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
56 52
57/* We actually need a separate PTE page for each CPU. Remember that after the 53/* We actually need a separate PTE page for each CPU. Remember that after the
58 * Switcher code itself comes two pages for each CPU, and we don't want this 54 * Switcher code itself comes two pages for each CPU, and we don't want this
59 * CPU's guest to see the pages of any other CPU. */ 55 * CPU's guest to see the pages of any other CPU. */
60static DEFINE_PER_CPU(spte_t *, switcher_pte_pages); 56static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
61#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu) 57#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
62 58
63/*H:320 With our shadow and Guest types established, we need to deal with 59/*H:320 With our shadow and Guest types established, we need to deal with
64 * them: the page table code is curly enough to need helper functions to keep 60 * them: the page table code is curly enough to need helper functions to keep
65 * it clear and clean. 61 * it clear and clean.
66 * 62 *
67 * The first helper takes a virtual address, and says which entry in the top 63 * There are two functions which return pointers to the shadow (aka "real")
68 * level page table deals with that address. Since each top level entry deals
69 * with 4M, this effectively divides by 4M. */
70static unsigned vaddr_to_pgd_index(unsigned long vaddr)
71{
72 return vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT);
73}
74
75/* There are two functions which return pointers to the shadow (aka "real")
76 * page tables. 64 * page tables.
77 * 65 *
78 * spgd_addr() takes the virtual address and returns a pointer to the top-level 66 * spgd_addr() takes the virtual address and returns a pointer to the top-level
79 * page directory entry for that address. Since we keep track of several page 67 * page directory entry for that address. Since we keep track of several page
80 * tables, the "i" argument tells us which one we're interested in (it's 68 * tables, the "i" argument tells us which one we're interested in (it's
81 * usually the current one). */ 69 * usually the current one). */
82static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr) 70static pgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
83{ 71{
84 unsigned int index = vaddr_to_pgd_index(vaddr); 72 unsigned int index = pgd_index(vaddr);
85 73
86 /* We kill any Guest trying to touch the Switcher addresses. */ 74 /* We kill any Guest trying to touch the Switcher addresses. */
87 if (index >= SWITCHER_PGD_INDEX) { 75 if (index >= SWITCHER_PGD_INDEX) {
@@ -95,28 +83,28 @@ static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
95/* This routine then takes the PGD entry given above, which contains the 83/* This routine then takes the PGD entry given above, which contains the
96 * address of the PTE page. It then returns a pointer to the PTE entry for the 84 * address of the PTE page. It then returns a pointer to the PTE entry for the
97 * given address. */ 85 * given address. */
98static spte_t *spte_addr(struct lguest *lg, spgd_t spgd, unsigned long vaddr) 86static pte_t *spte_addr(struct lguest *lg, pgd_t spgd, unsigned long vaddr)
99{ 87{
100 spte_t *page = __va(spgd.pfn << PAGE_SHIFT); 88 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
101 /* You should never call this if the PGD entry wasn't valid */ 89 /* You should never call this if the PGD entry wasn't valid */
102 BUG_ON(!(spgd.flags & _PAGE_PRESENT)); 90 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
103 return &page[(vaddr >> PAGE_SHIFT) % PTES_PER_PAGE]; 91 return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
104} 92}
105 93
106/* These two functions just like the above two, except they access the Guest 94/* These two functions just like the above two, except they access the Guest
107 * page tables. Hence they return a Guest address. */ 95 * page tables. Hence they return a Guest address. */
108static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr) 96static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
109{ 97{
110 unsigned int index = vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT); 98 unsigned int index = vaddr >> (PGDIR_SHIFT);
111 return lg->pgdirs[lg->pgdidx].cr3 + index * sizeof(gpgd_t); 99 return lg->pgdirs[lg->pgdidx].cr3 + index * sizeof(pgd_t);
112} 100}
113 101
114static unsigned long gpte_addr(struct lguest *lg, 102static unsigned long gpte_addr(struct lguest *lg,
115 gpgd_t gpgd, unsigned long vaddr) 103 pgd_t gpgd, unsigned long vaddr)
116{ 104{
117 unsigned long gpage = gpgd.pfn << PAGE_SHIFT; 105 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
118 BUG_ON(!(gpgd.flags & _PAGE_PRESENT)); 106 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
119 return gpage + ((vaddr>>PAGE_SHIFT) % PTES_PER_PAGE) * sizeof(gpte_t); 107 return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
120} 108}
121 109
122/*H:350 This routine takes a page number given by the Guest and converts it to 110/*H:350 This routine takes a page number given by the Guest and converts it to
@@ -149,16 +137,15 @@ static unsigned long get_pfn(unsigned long virtpfn, int write)
149 * entry can be a little tricky. The flags are (almost) the same, but the 137 * entry can be a little tricky. The flags are (almost) the same, but the
150 * Guest PTE contains a virtual page number: the CPU needs the real page 138 * Guest PTE contains a virtual page number: the CPU needs the real page
151 * number. */ 139 * number. */
152static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write) 140static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int write)
153{ 141{
154 spte_t spte; 142 unsigned long pfn, base, flags;
155 unsigned long pfn, base;
156 143
157 /* The Guest sets the global flag, because it thinks that it is using 144 /* The Guest sets the global flag, because it thinks that it is using
158 * PGE. We only told it to use PGE so it would tell us whether it was 145 * PGE. We only told it to use PGE so it would tell us whether it was
159 * flushing a kernel mapping or a userspace mapping. We don't actually 146 * flushing a kernel mapping or a userspace mapping. We don't actually
160 * use the global bit, so throw it away. */ 147 * use the global bit, so throw it away. */
161 spte.flags = (gpte.flags & ~_PAGE_GLOBAL); 148 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
162 149
163 /* The Guest's pages are offset inside the Launcher. */ 150 /* The Guest's pages are offset inside the Launcher. */
164 base = (unsigned long)lg->mem_base / PAGE_SIZE; 151 base = (unsigned long)lg->mem_base / PAGE_SIZE;
@@ -167,38 +154,38 @@ static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write)
167 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't 154 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
168 * fit in spte.pfn. get_pfn() finds the real physical number of the 155 * fit in spte.pfn. get_pfn() finds the real physical number of the
169 * page, given the virtual number. */ 156 * page, given the virtual number. */
170 pfn = get_pfn(base + gpte.pfn, write); 157 pfn = get_pfn(base + pte_pfn(gpte), write);
171 if (pfn == -1UL) { 158 if (pfn == -1UL) {
172 kill_guest(lg, "failed to get page %u", gpte.pfn); 159 kill_guest(lg, "failed to get page %lu", pte_pfn(gpte));
173 /* When we destroy the Guest, we'll go through the shadow page 160 /* When we destroy the Guest, we'll go through the shadow page
174 * tables and release_pte() them. Make sure we don't think 161 * tables and release_pte() them. Make sure we don't think
175 * this one is valid! */ 162 * this one is valid! */
176 spte.flags = 0; 163 flags = 0;
177 } 164 }
178 /* Now we assign the page number, and our shadow PTE is complete. */ 165 /* Now we assemble our shadow PTE from the page number and flags. */
179 spte.pfn = pfn; 166 return pfn_pte(pfn, __pgprot(flags));
180 return spte;
181} 167}
182 168
183/*H:460 And to complete the chain, release_pte() looks like this: */ 169/*H:460 And to complete the chain, release_pte() looks like this: */
184static void release_pte(spte_t pte) 170static void release_pte(pte_t pte)
185{ 171{
186 /* Remember that get_user_pages() took a reference to the page, in 172 /* Remember that get_user_pages() took a reference to the page, in
187 * get_pfn()? We have to put it back now. */ 173 * get_pfn()? We have to put it back now. */
188 if (pte.flags & _PAGE_PRESENT) 174 if (pte_flags(pte) & _PAGE_PRESENT)
189 put_page(pfn_to_page(pte.pfn)); 175 put_page(pfn_to_page(pte_pfn(pte)));
190} 176}
191/*:*/ 177/*:*/
192 178
193static void check_gpte(struct lguest *lg, gpte_t gpte) 179static void check_gpte(struct lguest *lg, pte_t gpte)
194{ 180{
195 if ((gpte.flags & (_PAGE_PWT|_PAGE_PSE)) || gpte.pfn >= lg->pfn_limit) 181 if ((pte_flags(gpte) & (_PAGE_PWT|_PAGE_PSE))
182 || pte_pfn(gpte) >= lg->pfn_limit)
196 kill_guest(lg, "bad page table entry"); 183 kill_guest(lg, "bad page table entry");
197} 184}
198 185
199static void check_gpgd(struct lguest *lg, gpgd_t gpgd) 186static void check_gpgd(struct lguest *lg, pgd_t gpgd)
200{ 187{
201 if ((gpgd.flags & ~_PAGE_TABLE) || gpgd.pfn >= lg->pfn_limit) 188 if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || pgd_pfn(gpgd) >= lg->pfn_limit)
202 kill_guest(lg, "bad page directory entry"); 189 kill_guest(lg, "bad page directory entry");
203} 190}
204 191
@@ -214,21 +201,21 @@ static void check_gpgd(struct lguest *lg, gpgd_t gpgd)
214 * true. */ 201 * true. */
215int demand_page(struct lguest *lg, unsigned long vaddr, int errcode) 202int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
216{ 203{
217 gpgd_t gpgd; 204 pgd_t gpgd;
218 spgd_t *spgd; 205 pgd_t *spgd;
219 unsigned long gpte_ptr; 206 unsigned long gpte_ptr;
220 gpte_t gpte; 207 pte_t gpte;
221 spte_t *spte; 208 pte_t *spte;
222 209
223 /* First step: get the top-level Guest page table entry. */ 210 /* First step: get the top-level Guest page table entry. */
224 gpgd = mkgpgd(lgread_u32(lg, gpgd_addr(lg, vaddr))); 211 gpgd = __pgd(lgread_u32(lg, gpgd_addr(lg, vaddr)));
225 /* Toplevel not present? We can't map it in. */ 212 /* Toplevel not present? We can't map it in. */
226 if (!(gpgd.flags & _PAGE_PRESENT)) 213 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
227 return 0; 214 return 0;
228 215
229 /* Now look at the matching shadow entry. */ 216 /* Now look at the matching shadow entry. */
230 spgd = spgd_addr(lg, lg->pgdidx, vaddr); 217 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
231 if (!(spgd->flags & _PAGE_PRESENT)) { 218 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
232 /* No shadow entry: allocate a new shadow PTE page. */ 219 /* No shadow entry: allocate a new shadow PTE page. */
233 unsigned long ptepage = get_zeroed_page(GFP_KERNEL); 220 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
234 /* This is not really the Guest's fault, but killing it is 221 /* This is not really the Guest's fault, but killing it is
@@ -241,34 +228,35 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
241 check_gpgd(lg, gpgd); 228 check_gpgd(lg, gpgd);
242 /* And we copy the flags to the shadow PGD entry. The page 229 /* And we copy the flags to the shadow PGD entry. The page
243 * number in the shadow PGD is the page we just allocated. */ 230 * number in the shadow PGD is the page we just allocated. */
244 spgd->raw.val = (__pa(ptepage) | gpgd.flags); 231 *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
245 } 232 }
246 233
247 /* OK, now we look at the lower level in the Guest page table: keep its 234 /* OK, now we look at the lower level in the Guest page table: keep its
248 * address, because we might update it later. */ 235 * address, because we might update it later. */
249 gpte_ptr = gpte_addr(lg, gpgd, vaddr); 236 gpte_ptr = gpte_addr(lg, gpgd, vaddr);
250 gpte = mkgpte(lgread_u32(lg, gpte_ptr)); 237 gpte = __pte(lgread_u32(lg, gpte_ptr));
251 238
252 /* If this page isn't in the Guest page tables, we can't page it in. */ 239 /* If this page isn't in the Guest page tables, we can't page it in. */
253 if (!(gpte.flags & _PAGE_PRESENT)) 240 if (!(pte_flags(gpte) & _PAGE_PRESENT))
254 return 0; 241 return 0;
255 242
256 /* Check they're not trying to write to a page the Guest wants 243 /* Check they're not trying to write to a page the Guest wants
257 * read-only (bit 2 of errcode == write). */ 244 * read-only (bit 2 of errcode == write). */
258 if ((errcode & 2) && !(gpte.flags & _PAGE_RW)) 245 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
259 return 0; 246 return 0;
260 247
261 /* User access to a kernel page? (bit 3 == user access) */ 248 /* User access to a kernel page? (bit 3 == user access) */
262 if ((errcode & 4) && !(gpte.flags & _PAGE_USER)) 249 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
263 return 0; 250 return 0;
264 251
265 /* Check that the Guest PTE flags are OK, and the page number is below 252 /* Check that the Guest PTE flags are OK, and the page number is below
266 * the pfn_limit (ie. not mapping the Launcher binary). */ 253 * the pfn_limit (ie. not mapping the Launcher binary). */
267 check_gpte(lg, gpte); 254 check_gpte(lg, gpte);
268 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */ 255 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
269 gpte.flags |= _PAGE_ACCESSED; 256 gpte = pte_mkyoung(gpte);
257
270 if (errcode & 2) 258 if (errcode & 2)
271 gpte.flags |= _PAGE_DIRTY; 259 gpte = pte_mkdirty(gpte);
272 260
273 /* Get the pointer to the shadow PTE entry we're going to set. */ 261 /* Get the pointer to the shadow PTE entry we're going to set. */
274 spte = spte_addr(lg, *spgd, vaddr); 262 spte = spte_addr(lg, *spgd, vaddr);
@@ -278,21 +266,18 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
278 266
279 /* If this is a write, we insist that the Guest page is writable (the 267 /* If this is a write, we insist that the Guest page is writable (the
280 * final arg to gpte_to_spte()). */ 268 * final arg to gpte_to_spte()). */
281 if (gpte.flags & _PAGE_DIRTY) 269 if (pte_dirty(gpte))
282 *spte = gpte_to_spte(lg, gpte, 1); 270 *spte = gpte_to_spte(lg, gpte, 1);
283 else { 271 else
284 /* If this is a read, don't set the "writable" bit in the page 272 /* If this is a read, don't set the "writable" bit in the page
285 * table entry, even if the Guest says it's writable. That way 273 * table entry, even if the Guest says it's writable. That way
286 * we come back here when a write does actually ocur, so we can 274 * we come back here when a write does actually ocur, so we can
287 * update the Guest's _PAGE_DIRTY flag. */ 275 * update the Guest's _PAGE_DIRTY flag. */
288 gpte_t ro_gpte = gpte; 276 *spte = gpte_to_spte(lg, pte_wrprotect(gpte), 0);
289 ro_gpte.flags &= ~_PAGE_RW;
290 *spte = gpte_to_spte(lg, ro_gpte, 0);
291 }
292 277
293 /* Finally, we write the Guest PTE entry back: we've set the 278 /* Finally, we write the Guest PTE entry back: we've set the
294 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */ 279 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
295 lgwrite_u32(lg, gpte_ptr, gpte.raw.val); 280 lgwrite_u32(lg, gpte_ptr, pte_val(gpte));
296 281
297 /* We succeeded in mapping the page! */ 282 /* We succeeded in mapping the page! */
298 return 1; 283 return 1;
@@ -308,17 +293,18 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
308 * mapped by the shadow page tables, and is it writable? */ 293 * mapped by the shadow page tables, and is it writable? */
309static int page_writable(struct lguest *lg, unsigned long vaddr) 294static int page_writable(struct lguest *lg, unsigned long vaddr)
310{ 295{
311 spgd_t *spgd; 296 pgd_t *spgd;
312 unsigned long flags; 297 unsigned long flags;
313 298
314 /* Look at the top level entry: is it present? */ 299 /* Look at the top level entry: is it present? */
315 spgd = spgd_addr(lg, lg->pgdidx, vaddr); 300 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
316 if (!(spgd->flags & _PAGE_PRESENT)) 301 if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
317 return 0; 302 return 0;
318 303
319 /* Check the flags on the pte entry itself: it must be present and 304 /* Check the flags on the pte entry itself: it must be present and
320 * writable. */ 305 * writable. */
321 flags = spte_addr(lg, *spgd, vaddr)->flags; 306 flags = pte_flags(*(spte_addr(lg, *spgd, vaddr)));
307
322 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); 308 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
323} 309}
324 310
@@ -332,22 +318,22 @@ void pin_page(struct lguest *lg, unsigned long vaddr)
332} 318}
333 319
334/*H:450 If we chase down the release_pgd() code, it looks like this: */ 320/*H:450 If we chase down the release_pgd() code, it looks like this: */
335static void release_pgd(struct lguest *lg, spgd_t *spgd) 321static void release_pgd(struct lguest *lg, pgd_t *spgd)
336{ 322{
337 /* If the entry's not present, there's nothing to release. */ 323 /* If the entry's not present, there's nothing to release. */
338 if (spgd->flags & _PAGE_PRESENT) { 324 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
339 unsigned int i; 325 unsigned int i;
340 /* Converting the pfn to find the actual PTE page is easy: turn 326 /* Converting the pfn to find the actual PTE page is easy: turn
341 * the page number into a physical address, then convert to a 327 * the page number into a physical address, then convert to a
342 * virtual address (easy for kernel pages like this one). */ 328 * virtual address (easy for kernel pages like this one). */
343 spte_t *ptepage = __va(spgd->pfn << PAGE_SHIFT); 329 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
344 /* For each entry in the page, we might need to release it. */ 330 /* For each entry in the page, we might need to release it. */
345 for (i = 0; i < PTES_PER_PAGE; i++) 331 for (i = 0; i < PTRS_PER_PTE; i++)
346 release_pte(ptepage[i]); 332 release_pte(ptepage[i]);
347 /* Now we can free the page of PTEs */ 333 /* Now we can free the page of PTEs */
348 free_page((long)ptepage); 334 free_page((long)ptepage);
349 /* And zero out the PGD entry we we never release it twice. */ 335 /* And zero out the PGD entry we we never release it twice. */
350 spgd->raw.val = 0; 336 *spgd = __pgd(0);
351 } 337 }
352} 338}
353 339
@@ -359,7 +345,7 @@ static void flush_user_mappings(struct lguest *lg, int idx)
359{ 345{
360 unsigned int i; 346 unsigned int i;
361 /* Release every pgd entry up to the kernel's address. */ 347 /* Release every pgd entry up to the kernel's address. */
362 for (i = 0; i < vaddr_to_pgd_index(lg->page_offset); i++) 348 for (i = 0; i < pgd_index(lg->page_offset); i++)
363 release_pgd(lg, lg->pgdirs[idx].pgdir + i); 349 release_pgd(lg, lg->pgdirs[idx].pgdir + i);
364} 350}
365 351
@@ -398,7 +384,7 @@ static unsigned int new_pgdir(struct lguest *lg,
398 next = random32() % ARRAY_SIZE(lg->pgdirs); 384 next = random32() % ARRAY_SIZE(lg->pgdirs);
399 /* If it's never been allocated at all before, try now. */ 385 /* If it's never been allocated at all before, try now. */
400 if (!lg->pgdirs[next].pgdir) { 386 if (!lg->pgdirs[next].pgdir) {
401 lg->pgdirs[next].pgdir = (spgd_t *)get_zeroed_page(GFP_KERNEL); 387 lg->pgdirs[next].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
402 /* If the allocation fails, just keep using the one we have */ 388 /* If the allocation fails, just keep using the one we have */
403 if (!lg->pgdirs[next].pgdir) 389 if (!lg->pgdirs[next].pgdir)
404 next = lg->pgdidx; 390 next = lg->pgdidx;
@@ -475,26 +461,27 @@ void guest_pagetable_clear_all(struct lguest *lg)
475 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately. 461 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
476 */ 462 */
477static void do_set_pte(struct lguest *lg, int idx, 463static void do_set_pte(struct lguest *lg, int idx,
478 unsigned long vaddr, gpte_t gpte) 464 unsigned long vaddr, pte_t gpte)
479{ 465{
480 /* Look up the matching shadow page directot entry. */ 466 /* Look up the matching shadow page directot entry. */
481 spgd_t *spgd = spgd_addr(lg, idx, vaddr); 467 pgd_t *spgd = spgd_addr(lg, idx, vaddr);
482 468
483 /* If the top level isn't present, there's no entry to update. */ 469 /* If the top level isn't present, there's no entry to update. */
484 if (spgd->flags & _PAGE_PRESENT) { 470 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
485 /* Otherwise, we start by releasing the existing entry. */ 471 /* Otherwise, we start by releasing the existing entry. */
486 spte_t *spte = spte_addr(lg, *spgd, vaddr); 472 pte_t *spte = spte_addr(lg, *spgd, vaddr);
487 release_pte(*spte); 473 release_pte(*spte);
488 474
489 /* If they're setting this entry as dirty or accessed, we might 475 /* If they're setting this entry as dirty or accessed, we might
490 * as well put that entry they've given us in now. This shaves 476 * as well put that entry they've given us in now. This shaves
491 * 10% off a copy-on-write micro-benchmark. */ 477 * 10% off a copy-on-write micro-benchmark. */
492 if (gpte.flags & (_PAGE_DIRTY | _PAGE_ACCESSED)) { 478 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
493 check_gpte(lg, gpte); 479 check_gpte(lg, gpte);
494 *spte = gpte_to_spte(lg, gpte, gpte.flags&_PAGE_DIRTY); 480 *spte = gpte_to_spte(lg, gpte,
481 pte_flags(gpte) & _PAGE_DIRTY);
495 } else 482 } else
496 /* Otherwise we can demand_page() it in later. */ 483 /* Otherwise we can demand_page() it in later. */
497 spte->raw.val = 0; 484 *spte = __pte(0);
498 } 485 }
499} 486}
500 487
@@ -509,7 +496,7 @@ static void do_set_pte(struct lguest *lg, int idx,
509 * The benefit is that when we have to track a new page table, we can copy keep 496 * The benefit is that when we have to track a new page table, we can copy keep
510 * all the kernel mappings. This speeds up context switch immensely. */ 497 * all the kernel mappings. This speeds up context switch immensely. */
511void guest_set_pte(struct lguest *lg, 498void guest_set_pte(struct lguest *lg,
512 unsigned long cr3, unsigned long vaddr, gpte_t gpte) 499 unsigned long cr3, unsigned long vaddr, pte_t gpte)
513{ 500{
514 /* Kernel mappings must be changed on all top levels. Slow, but 501 /* Kernel mappings must be changed on all top levels. Slow, but
515 * doesn't happen often. */ 502 * doesn't happen often. */
@@ -564,15 +551,15 @@ void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx)
564int init_guest_pagetable(struct lguest *lg, unsigned long pgtable) 551int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
565{ 552{
566 /* In flush_user_mappings() we loop from 0 to 553 /* In flush_user_mappings() we loop from 0 to
567 * "vaddr_to_pgd_index(lg->page_offset)". This assumes it won't hit 554 * "pgd_index(lg->page_offset)". This assumes it won't hit
568 * the Switcher mappings, so check that now. */ 555 * the Switcher mappings, so check that now. */
569 if (vaddr_to_pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX) 556 if (pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX)
570 return -EINVAL; 557 return -EINVAL;
571 /* We start on the first shadow page table, and give it a blank PGD 558 /* We start on the first shadow page table, and give it a blank PGD
572 * page. */ 559 * page. */
573 lg->pgdidx = 0; 560 lg->pgdidx = 0;
574 lg->pgdirs[lg->pgdidx].cr3 = pgtable; 561 lg->pgdirs[lg->pgdidx].cr3 = pgtable;
575 lg->pgdirs[lg->pgdidx].pgdir = (spgd_t*)get_zeroed_page(GFP_KERNEL); 562 lg->pgdirs[lg->pgdidx].pgdir = (pgd_t*)get_zeroed_page(GFP_KERNEL);
576 if (!lg->pgdirs[lg->pgdidx].pgdir) 563 if (!lg->pgdirs[lg->pgdidx].pgdir)
577 return -ENOMEM; 564 return -ENOMEM;
578 return 0; 565 return 0;
@@ -597,14 +584,14 @@ void free_guest_pagetable(struct lguest *lg)
597 * for each CPU already set up, we just need to hook them in. */ 584 * for each CPU already set up, we just need to hook them in. */
598void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages) 585void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
599{ 586{
600 spte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); 587 pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
601 spgd_t switcher_pgd; 588 pgd_t switcher_pgd;
602 spte_t regs_pte; 589 pte_t regs_pte;
603 590
604 /* Make the last PGD entry for this Guest point to the Switcher's PTE 591 /* Make the last PGD entry for this Guest point to the Switcher's PTE
605 * page for this CPU (with appropriate flags). */ 592 * page for this CPU (with appropriate flags). */
606 switcher_pgd.pfn = __pa(switcher_pte_page) >> PAGE_SHIFT; 593 switcher_pgd = __pgd(__pa(switcher_pte_page) | _PAGE_KERNEL);
607 switcher_pgd.flags = _PAGE_KERNEL; 594
608 lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; 595 lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
609 596
610 /* We also change the Switcher PTE page. When we're running the Guest, 597 /* We also change the Switcher PTE page. When we're running the Guest,
@@ -614,10 +601,8 @@ void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
614 * CPU's "struct lguest_pages": if we make sure the Guest's register 601 * CPU's "struct lguest_pages": if we make sure the Guest's register
615 * page is already mapped there, we don't have to copy them out 602 * page is already mapped there, we don't have to copy them out
616 * again. */ 603 * again. */
617 regs_pte.pfn = __pa(lg->regs_page) >> PAGE_SHIFT; 604 regs_pte = pfn_pte (__pa(lg->regs_page) >> PAGE_SHIFT, __pgprot(_PAGE_KERNEL));
618 regs_pte.flags = _PAGE_KERNEL; 605 switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
619 switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTES_PER_PAGE]
620 = regs_pte;
621} 606}
622/*:*/ 607/*:*/
623 608
@@ -638,24 +623,25 @@ static __init void populate_switcher_pte_page(unsigned int cpu,
638 unsigned int pages) 623 unsigned int pages)
639{ 624{
640 unsigned int i; 625 unsigned int i;
641 spte_t *pte = switcher_pte_page(cpu); 626 pte_t *pte = switcher_pte_page(cpu);
642 627
643 /* The first entries are easy: they map the Switcher code. */ 628 /* The first entries are easy: they map the Switcher code. */
644 for (i = 0; i < pages; i++) { 629 for (i = 0; i < pages; i++) {
645 pte[i].pfn = page_to_pfn(switcher_page[i]); 630 pte[i] = mk_pte(switcher_page[i],
646 pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED; 631 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
647 } 632 }
648 633
649 /* The only other thing we map is this CPU's pair of pages. */ 634 /* The only other thing we map is this CPU's pair of pages. */
650 i = pages + cpu*2; 635 i = pages + cpu*2;
651 636
652 /* First page (Guest registers) is writable from the Guest */ 637 /* First page (Guest registers) is writable from the Guest */
653 pte[i].pfn = page_to_pfn(switcher_page[i]); 638 pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
654 pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW; 639 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
640
655 /* The second page contains the "struct lguest_ro_state", and is 641 /* The second page contains the "struct lguest_ro_state", and is
656 * read-only. */ 642 * read-only. */
657 pte[i+1].pfn = page_to_pfn(switcher_page[i+1]); 643 pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
658 pte[i+1].flags = _PAGE_PRESENT|_PAGE_ACCESSED; 644 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
659} 645}
660 646
661/*H:510 At boot or module load time, init_pagetables() allocates and populates 647/*H:510 At boot or module load time, init_pagetables() allocates and populates
@@ -665,7 +651,7 @@ __init int init_pagetables(struct page **switcher_page, unsigned int pages)
665 unsigned int i; 651 unsigned int i;
666 652
667 for_each_possible_cpu(i) { 653 for_each_possible_cpu(i) {
668 switcher_pte_page(i) = (spte_t *)get_zeroed_page(GFP_KERNEL); 654 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
669 if (!switcher_pte_page(i)) { 655 if (!switcher_pte_page(i)) {
670 free_switcher_pte_pages(); 656 free_switcher_pte_pages();
671 return -ENOMEM; 657 return -ENOMEM;