diff options
author | Jason Roberts <jason.e.roberts@intel.com> | 2010-05-13 10:57:33 -0400 |
---|---|---|
committer | David Woodhouse <David.Woodhouse@intel.com> | 2010-05-13 11:12:16 -0400 |
commit | ce082596ae4308f67f0953a67db508bb085520fa (patch) | |
tree | c77be06bdf86c9232bea3514e371bd9bb7b4825a | |
parent | 1cd2620ca9332943c9fff84c0c9240982534d840 (diff) |
mtd/nand: Add Intel Moorestown/Denali NAND support
There is more work to be done on this but it is basically working now.
Signed-off-by: Jason Roberts <jason.e.roberts@intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
-rw-r--r-- | drivers/mtd/nand/Kconfig | 17 | ||||
-rw-r--r-- | drivers/mtd/nand/Makefile | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/denali.c | 2134 | ||||
-rw-r--r-- | drivers/mtd/nand/denali.h | 816 |
4 files changed, 2968 insertions, 0 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 8f402d46a36..98a04b3c952 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig | |||
@@ -50,6 +50,23 @@ config MTD_NAND_AUTCPU12 | |||
50 | This enables the driver for the autronix autcpu12 board to | 50 | This enables the driver for the autronix autcpu12 board to |
51 | access the SmartMediaCard. | 51 | access the SmartMediaCard. |
52 | 52 | ||
53 | config MTD_NAND_DENALI | ||
54 | depends on PCI | ||
55 | tristate "Support Denali NAND controller on Intel Moorestown" | ||
56 | help | ||
57 | Enable the driver for NAND flash on Intel Moorestown, using the | ||
58 | Denali NAND controller core. | ||
59 | |||
60 | config MTD_NAND_DENALI_SCRATCH_REG_ADDR | ||
61 | hex "Denali NAND size scratch register address" | ||
62 | default "0xFF108018" | ||
63 | help | ||
64 | Some platforms place the NAND chip size in a scratch register | ||
65 | because (some versions of) the driver aren't able to automatically | ||
66 | determine the size of certain chips. Set the address of the | ||
67 | scratch register here to enable this feature. On Intel Moorestown | ||
68 | boards, the scratch register is at 0xFF108018. | ||
69 | |||
53 | config MTD_NAND_EDB7312 | 70 | config MTD_NAND_EDB7312 |
54 | tristate "Support for Cirrus Logic EBD7312 evaluation board" | 71 | tristate "Support for Cirrus Logic EBD7312 evaluation board" |
55 | depends on ARCH_EDB7312 | 72 | depends on ARCH_EDB7312 |
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 04bccf9d7b5..e8ab884ba47 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile | |||
@@ -11,6 +11,7 @@ obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o | |||
11 | obj-$(CONFIG_MTD_NAND_SPIA) += spia.o | 11 | obj-$(CONFIG_MTD_NAND_SPIA) += spia.o |
12 | obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o | 12 | obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o |
13 | obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o | 13 | obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o |
14 | obj-$(CONFIG_MTD_NAND_DENALI) += denali.o | ||
14 | obj-$(CONFIG_MTD_NAND_EDB7312) += edb7312.o | 15 | obj-$(CONFIG_MTD_NAND_EDB7312) += edb7312.o |
15 | obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o | 16 | obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o |
16 | obj-$(CONFIG_MTD_NAND_BF5XX) += bf5xx_nand.o | 17 | obj-$(CONFIG_MTD_NAND_BF5XX) += bf5xx_nand.o |
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c new file mode 100644 index 00000000000..8a6ce0dd953 --- /dev/null +++ b/drivers/mtd/nand/denali.c | |||
@@ -0,0 +1,2134 @@ | |||
1 | /* | ||
2 | * NAND Flash Controller Device Driver | ||
3 | * Copyright © 2009-2010, Intel Corporation and its suppliers. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify it | ||
6 | * under the terms and conditions of the GNU General Public License, | ||
7 | * version 2, as published by the Free Software Foundation. | ||
8 | * | ||
9 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
12 | * more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License along with | ||
15 | * this program; if not, write to the Free Software Foundation, Inc., | ||
16 | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
17 | * | ||
18 | */ | ||
19 | |||
20 | #include <linux/interrupt.h> | ||
21 | #include <linux/delay.h> | ||
22 | #include <linux/wait.h> | ||
23 | #include <linux/mutex.h> | ||
24 | #include <linux/pci.h> | ||
25 | #include <linux/mtd/mtd.h> | ||
26 | #include <linux/module.h> | ||
27 | |||
28 | #include "denali.h" | ||
29 | |||
30 | MODULE_LICENSE("GPL"); | ||
31 | |||
32 | /* We define a module parameter that allows the user to override | ||
33 | * the hardware and decide what timing mode should be used. | ||
34 | */ | ||
35 | #define NAND_DEFAULT_TIMINGS -1 | ||
36 | |||
37 | static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; | ||
38 | module_param(onfi_timing_mode, int, S_IRUGO); | ||
39 | MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates" | ||
40 | " use default timings"); | ||
41 | |||
42 | #define DENALI_NAND_NAME "denali-nand" | ||
43 | |||
44 | /* We define a macro here that combines all interrupts this driver uses into | ||
45 | * a single constant value, for convenience. */ | ||
46 | #define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \ | ||
47 | INTR_STATUS0__ECC_TRANSACTION_DONE | \ | ||
48 | INTR_STATUS0__ECC_ERR | \ | ||
49 | INTR_STATUS0__PROGRAM_FAIL | \ | ||
50 | INTR_STATUS0__LOAD_COMP | \ | ||
51 | INTR_STATUS0__PROGRAM_COMP | \ | ||
52 | INTR_STATUS0__TIME_OUT | \ | ||
53 | INTR_STATUS0__ERASE_FAIL | \ | ||
54 | INTR_STATUS0__RST_COMP | \ | ||
55 | INTR_STATUS0__ERASE_COMP) | ||
56 | |||
57 | /* indicates whether or not the internal value for the flash bank is | ||
58 | valid or not */ | ||
59 | #define CHIP_SELECT_INVALID -1 | ||
60 | |||
61 | #define SUPPORT_8BITECC 1 | ||
62 | |||
63 | /* This macro divides two integers and rounds fractional values up | ||
64 | * to the nearest integer value. */ | ||
65 | #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) | ||
66 | |||
67 | /* this macro allows us to convert from an MTD structure to our own | ||
68 | * device context (denali) structure. | ||
69 | */ | ||
70 | #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd) | ||
71 | |||
72 | /* These constants are defined by the driver to enable common driver | ||
73 | configuration options. */ | ||
74 | #define SPARE_ACCESS 0x41 | ||
75 | #define MAIN_ACCESS 0x42 | ||
76 | #define MAIN_SPARE_ACCESS 0x43 | ||
77 | |||
78 | #define DENALI_READ 0 | ||
79 | #define DENALI_WRITE 0x100 | ||
80 | |||
81 | /* types of device accesses. We can issue commands and get status */ | ||
82 | #define COMMAND_CYCLE 0 | ||
83 | #define ADDR_CYCLE 1 | ||
84 | #define STATUS_CYCLE 2 | ||
85 | |||
86 | /* this is a helper macro that allows us to | ||
87 | * format the bank into the proper bits for the controller */ | ||
88 | #define BANK(x) ((x) << 24) | ||
89 | |||
90 | /* List of platforms this NAND controller has be integrated into */ | ||
91 | static const struct pci_device_id denali_pci_ids[] = { | ||
92 | { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 }, | ||
93 | { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST }, | ||
94 | { /* end: all zeroes */ } | ||
95 | }; | ||
96 | |||
97 | |||
98 | /* these are static lookup tables that give us easy access to | ||
99 | registers in the NAND controller. | ||
100 | */ | ||
101 | static const uint32_t intr_status_addresses[4] = {INTR_STATUS0, | ||
102 | INTR_STATUS1, | ||
103 | INTR_STATUS2, | ||
104 | INTR_STATUS3}; | ||
105 | |||
106 | static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0, | ||
107 | DEVICE_RESET__BANK1, | ||
108 | DEVICE_RESET__BANK2, | ||
109 | DEVICE_RESET__BANK3}; | ||
110 | |||
111 | static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT, | ||
112 | INTR_STATUS1__TIME_OUT, | ||
113 | INTR_STATUS2__TIME_OUT, | ||
114 | INTR_STATUS3__TIME_OUT}; | ||
115 | |||
116 | static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP, | ||
117 | INTR_STATUS1__RST_COMP, | ||
118 | INTR_STATUS2__RST_COMP, | ||
119 | INTR_STATUS3__RST_COMP}; | ||
120 | |||
121 | /* specifies the debug level of the driver */ | ||
122 | static int nand_debug_level = 0; | ||
123 | |||
124 | /* forward declarations */ | ||
125 | static void clear_interrupts(struct denali_nand_info *denali); | ||
126 | static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask); | ||
127 | static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask); | ||
128 | static uint32_t read_interrupt_status(struct denali_nand_info *denali); | ||
129 | |||
130 | #define DEBUG_DENALI 0 | ||
131 | |||
132 | /* This is a wrapper for writing to the denali registers. | ||
133 | * this allows us to create debug information so we can | ||
134 | * observe how the driver is programming the device. | ||
135 | * it uses standard linux convention for (val, addr) */ | ||
136 | static void denali_write32(uint32_t value, void *addr) | ||
137 | { | ||
138 | iowrite32(value, addr); | ||
139 | |||
140 | #if DEBUG_DENALI | ||
141 | printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff)); | ||
142 | #endif | ||
143 | } | ||
144 | |||
145 | /* Certain operations for the denali NAND controller use an indexed mode to read/write | ||
146 | data. The operation is performed by writing the address value of the command to | ||
147 | the device memory followed by the data. This function abstracts this common | ||
148 | operation. | ||
149 | */ | ||
150 | static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data) | ||
151 | { | ||
152 | denali_write32(address, denali->flash_mem); | ||
153 | denali_write32(data, denali->flash_mem + 0x10); | ||
154 | } | ||
155 | |||
156 | /* Perform an indexed read of the device */ | ||
157 | static void index_addr_read_data(struct denali_nand_info *denali, | ||
158 | uint32_t address, uint32_t *pdata) | ||
159 | { | ||
160 | denali_write32(address, denali->flash_mem); | ||
161 | *pdata = ioread32(denali->flash_mem + 0x10); | ||
162 | } | ||
163 | |||
164 | /* We need to buffer some data for some of the NAND core routines. | ||
165 | * The operations manage buffering that data. */ | ||
166 | static void reset_buf(struct denali_nand_info *denali) | ||
167 | { | ||
168 | denali->buf.head = denali->buf.tail = 0; | ||
169 | } | ||
170 | |||
171 | static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) | ||
172 | { | ||
173 | BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf)); | ||
174 | denali->buf.buf[denali->buf.tail++] = byte; | ||
175 | } | ||
176 | |||
177 | /* reads the status of the device */ | ||
178 | static void read_status(struct denali_nand_info *denali) | ||
179 | { | ||
180 | uint32_t cmd = 0x0; | ||
181 | |||
182 | /* initialize the data buffer to store status */ | ||
183 | reset_buf(denali); | ||
184 | |||
185 | /* initiate a device status read */ | ||
186 | cmd = MODE_11 | BANK(denali->flash_bank); | ||
187 | index_addr(denali, cmd | COMMAND_CYCLE, 0x70); | ||
188 | denali_write32(cmd | STATUS_CYCLE, denali->flash_mem); | ||
189 | |||
190 | /* update buffer with status value */ | ||
191 | write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10)); | ||
192 | |||
193 | #if DEBUG_DENALI | ||
194 | printk("device reporting status value of 0x%2x\n", denali->buf.buf[0]); | ||
195 | #endif | ||
196 | } | ||
197 | |||
198 | /* resets a specific device connected to the core */ | ||
199 | static void reset_bank(struct denali_nand_info *denali) | ||
200 | { | ||
201 | uint32_t irq_status = 0; | ||
202 | uint32_t irq_mask = reset_complete[denali->flash_bank] | | ||
203 | operation_timeout[denali->flash_bank]; | ||
204 | int bank = 0; | ||
205 | |||
206 | clear_interrupts(denali); | ||
207 | |||
208 | bank = device_reset_banks[denali->flash_bank]; | ||
209 | denali_write32(bank, denali->flash_reg + DEVICE_RESET); | ||
210 | |||
211 | irq_status = wait_for_irq(denali, irq_mask); | ||
212 | |||
213 | if (irq_status & operation_timeout[denali->flash_bank]) | ||
214 | { | ||
215 | printk(KERN_ERR "reset bank failed.\n"); | ||
216 | } | ||
217 | } | ||
218 | |||
219 | /* Reset the flash controller */ | ||
220 | static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali) | ||
221 | { | ||
222 | uint32_t i; | ||
223 | |||
224 | nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", | ||
225 | __FILE__, __LINE__, __func__); | ||
226 | |||
227 | for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) | ||
228 | denali_write32(reset_complete[i] | operation_timeout[i], | ||
229 | denali->flash_reg + intr_status_addresses[i]); | ||
230 | |||
231 | for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) { | ||
232 | denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET); | ||
233 | while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) & | ||
234 | (reset_complete[i] | operation_timeout[i]))) | ||
235 | ; | ||
236 | if (ioread32(denali->flash_reg + intr_status_addresses[i]) & | ||
237 | operation_timeout[i]) | ||
238 | nand_dbg_print(NAND_DBG_WARN, | ||
239 | "NAND Reset operation timed out on bank %d\n", i); | ||
240 | } | ||
241 | |||
242 | for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) | ||
243 | denali_write32(reset_complete[i] | operation_timeout[i], | ||
244 | denali->flash_reg + intr_status_addresses[i]); | ||
245 | |||
246 | return PASS; | ||
247 | } | ||
248 | |||
249 | /* this routine calculates the ONFI timing values for a given mode and programs | ||
250 | * the clocking register accordingly. The mode is determined by the get_onfi_nand_para | ||
251 | routine. | ||
252 | */ | ||
253 | static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode) | ||
254 | { | ||
255 | uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; | ||
256 | uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; | ||
257 | uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; | ||
258 | uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; | ||
259 | uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; | ||
260 | uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; | ||
261 | uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; | ||
262 | uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; | ||
263 | uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; | ||
264 | uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; | ||
265 | uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; | ||
266 | uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; | ||
267 | |||
268 | uint16_t TclsRising = 1; | ||
269 | uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; | ||
270 | uint16_t dv_window = 0; | ||
271 | uint16_t en_lo, en_hi; | ||
272 | uint16_t acc_clks; | ||
273 | uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; | ||
274 | |||
275 | nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", | ||
276 | __FILE__, __LINE__, __func__); | ||
277 | |||
278 | en_lo = CEIL_DIV(Trp[mode], CLK_X); | ||
279 | en_hi = CEIL_DIV(Treh[mode], CLK_X); | ||
280 | #if ONFI_BLOOM_TIME | ||
281 | if ((en_hi * CLK_X) < (Treh[mode] + 2)) | ||
282 | en_hi++; | ||
283 | #endif | ||
284 | |||
285 | if ((en_lo + en_hi) * CLK_X < Trc[mode]) | ||
286 | en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); | ||
287 | |||
288 | if ((en_lo + en_hi) < CLK_MULTI) | ||
289 | en_lo += CLK_MULTI - en_lo - en_hi; | ||
290 | |||
291 | while (dv_window < 8) { | ||
292 | data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; | ||
293 | |||
294 | data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; | ||
295 | |||
296 | data_invalid = | ||
297 | data_invalid_rhoh < | ||
298 | data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh; | ||
299 | |||
300 | dv_window = data_invalid - Trea[mode]; | ||
301 | |||
302 | if (dv_window < 8) | ||
303 | en_lo++; | ||
304 | } | ||
305 | |||
306 | acc_clks = CEIL_DIV(Trea[mode], CLK_X); | ||
307 | |||
308 | while (((acc_clks * CLK_X) - Trea[mode]) < 3) | ||
309 | acc_clks++; | ||
310 | |||
311 | if ((data_invalid - acc_clks * CLK_X) < 2) | ||
312 | nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n", | ||
313 | __FILE__, __LINE__); | ||
314 | |||
315 | addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); | ||
316 | re_2_we = CEIL_DIV(Trhw[mode], CLK_X); | ||
317 | re_2_re = CEIL_DIV(Trhz[mode], CLK_X); | ||
318 | we_2_re = CEIL_DIV(Twhr[mode], CLK_X); | ||
319 | cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); | ||
320 | if (!TclsRising) | ||
321 | cs_cnt = CEIL_DIV(Tcs[mode], CLK_X); | ||
322 | if (cs_cnt == 0) | ||
323 | cs_cnt = 1; | ||
324 | |||
325 | if (Tcea[mode]) { | ||
326 | while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode]) | ||
327 | cs_cnt++; | ||
328 | } | ||
329 | |||
330 | #if MODE5_WORKAROUND | ||
331 | if (mode == 5) | ||
332 | acc_clks = 5; | ||
333 | #endif | ||
334 | |||
335 | /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ | ||
336 | if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) && | ||
337 | (ioread32(denali->flash_reg + DEVICE_ID) == 0x88)) | ||
338 | acc_clks = 6; | ||
339 | |||
340 | denali_write32(acc_clks, denali->flash_reg + ACC_CLKS); | ||
341 | denali_write32(re_2_we, denali->flash_reg + RE_2_WE); | ||
342 | denali_write32(re_2_re, denali->flash_reg + RE_2_RE); | ||
343 | denali_write32(we_2_re, denali->flash_reg + WE_2_RE); | ||
344 | denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA); | ||
345 | denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); | ||
346 | denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); | ||
347 | denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); | ||
348 | } | ||
349 | |||
350 | /* configures the initial ECC settings for the controller */ | ||
351 | static void set_ecc_config(struct denali_nand_info *denali) | ||
352 | { | ||
353 | #if SUPPORT_8BITECC | ||
354 | if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) || | ||
355 | (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128)) | ||
356 | denali_write32(8, denali->flash_reg + ECC_CORRECTION); | ||
357 | #endif | ||
358 | |||
359 | if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE) | ||
360 | == 1) { | ||
361 | denali->dev_info.wECCBytesPerSector = 4; | ||
362 | denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected; | ||
363 | denali->dev_info.wNumPageSpareFlag = | ||
364 | denali->dev_info.wPageSpareSize - | ||
365 | denali->dev_info.wPageDataSize / | ||
366 | (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) * | ||
367 | denali->dev_info.wECCBytesPerSector | ||
368 | - denali->dev_info.wSpareSkipBytes; | ||
369 | } else { | ||
370 | denali->dev_info.wECCBytesPerSector = | ||
371 | (ioread32(denali->flash_reg + ECC_CORRECTION) & | ||
372 | ECC_CORRECTION__VALUE) * 13 / 8; | ||
373 | if ((denali->dev_info.wECCBytesPerSector) % 2 == 0) | ||
374 | denali->dev_info.wECCBytesPerSector += 2; | ||
375 | else | ||
376 | denali->dev_info.wECCBytesPerSector += 1; | ||
377 | |||
378 | denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected; | ||
379 | denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize - | ||
380 | denali->dev_info.wPageDataSize / | ||
381 | (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) * | ||
382 | denali->dev_info.wECCBytesPerSector | ||
383 | - denali->dev_info.wSpareSkipBytes; | ||
384 | } | ||
385 | } | ||
386 | |||
387 | /* queries the NAND device to see what ONFI modes it supports. */ | ||
388 | static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) | ||
389 | { | ||
390 | int i; | ||
391 | uint16_t blks_lun_l, blks_lun_h, n_of_luns; | ||
392 | uint32_t blockperlun, id; | ||
393 | |||
394 | denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET); | ||
395 | |||
396 | while (!((ioread32(denali->flash_reg + INTR_STATUS0) & | ||
397 | INTR_STATUS0__RST_COMP) | | ||
398 | (ioread32(denali->flash_reg + INTR_STATUS0) & | ||
399 | INTR_STATUS0__TIME_OUT))) | ||
400 | ; | ||
401 | |||
402 | if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) { | ||
403 | denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET); | ||
404 | while (!((ioread32(denali->flash_reg + INTR_STATUS1) & | ||
405 | INTR_STATUS1__RST_COMP) | | ||
406 | (ioread32(denali->flash_reg + INTR_STATUS1) & | ||
407 | INTR_STATUS1__TIME_OUT))) | ||
408 | ; | ||
409 | |||
410 | if (ioread32(denali->flash_reg + INTR_STATUS1) & | ||
411 | INTR_STATUS1__RST_COMP) { | ||
412 | denali_write32(DEVICE_RESET__BANK2, | ||
413 | denali->flash_reg + DEVICE_RESET); | ||
414 | while (!((ioread32(denali->flash_reg + INTR_STATUS2) & | ||
415 | INTR_STATUS2__RST_COMP) | | ||
416 | (ioread32(denali->flash_reg + INTR_STATUS2) & | ||
417 | INTR_STATUS2__TIME_OUT))) | ||
418 | ; | ||
419 | |||
420 | if (ioread32(denali->flash_reg + INTR_STATUS2) & | ||
421 | INTR_STATUS2__RST_COMP) { | ||
422 | denali_write32(DEVICE_RESET__BANK3, | ||
423 | denali->flash_reg + DEVICE_RESET); | ||
424 | while (!((ioread32(denali->flash_reg + INTR_STATUS3) & | ||
425 | INTR_STATUS3__RST_COMP) | | ||
426 | (ioread32(denali->flash_reg + INTR_STATUS3) & | ||
427 | INTR_STATUS3__TIME_OUT))) | ||
428 | ; | ||
429 | } else { | ||
430 | printk(KERN_ERR "Getting a time out for bank 2!\n"); | ||
431 | } | ||
432 | } else { | ||
433 | printk(KERN_ERR "Getting a time out for bank 1!\n"); | ||
434 | } | ||
435 | } | ||
436 | |||
437 | denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0); | ||
438 | denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1); | ||
439 | denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2); | ||
440 | denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3); | ||
441 | |||
442 | denali->dev_info.wONFIDevFeatures = | ||
443 | ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES); | ||
444 | denali->dev_info.wONFIOptCommands = | ||
445 | ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS); | ||
446 | denali->dev_info.wONFITimingMode = | ||
447 | ioread32(denali->flash_reg + ONFI_TIMING_MODE); | ||
448 | denali->dev_info.wONFIPgmCacheTimingMode = | ||
449 | ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE); | ||
450 | |||
451 | n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & | ||
452 | ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS; | ||
453 | blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L); | ||
454 | blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U); | ||
455 | |||
456 | blockperlun = (blks_lun_h << 16) | blks_lun_l; | ||
457 | |||
458 | denali->dev_info.wTotalBlocks = n_of_luns * blockperlun; | ||
459 | |||
460 | if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) & | ||
461 | ONFI_TIMING_MODE__VALUE)) | ||
462 | return FAIL; | ||
463 | |||
464 | for (i = 5; i > 0; i--) { | ||
465 | if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i)) | ||
466 | break; | ||
467 | } | ||
468 | |||
469 | NAND_ONFi_Timing_Mode(denali, i); | ||
470 | |||
471 | index_addr(denali, MODE_11 | 0, 0x90); | ||
472 | index_addr(denali, MODE_11 | 1, 0); | ||
473 | |||
474 | for (i = 0; i < 3; i++) | ||
475 | index_addr_read_data(denali, MODE_11 | 2, &id); | ||
476 | |||
477 | nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id); | ||
478 | |||
479 | denali->dev_info.MLCDevice = id & 0x0C; | ||
480 | |||
481 | /* By now, all the ONFI devices we know support the page cache */ | ||
482 | /* rw feature. So here we enable the pipeline_rw_ahead feature */ | ||
483 | /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */ | ||
484 | /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */ | ||
485 | |||
486 | return PASS; | ||
487 | } | ||
488 | |||
489 | static void get_samsung_nand_para(struct denali_nand_info *denali) | ||
490 | { | ||
491 | uint8_t no_of_planes; | ||
492 | uint32_t blk_size; | ||
493 | uint64_t plane_size, capacity; | ||
494 | uint32_t id_bytes[5]; | ||
495 | int i; | ||
496 | |||
497 | index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90); | ||
498 | index_addr(denali, (uint32_t)(MODE_11 | 1), 0); | ||
499 | for (i = 0; i < 5; i++) | ||
500 | index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]); | ||
501 | |||
502 | nand_dbg_print(NAND_DBG_DEBUG, | ||
503 | "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", | ||
504 | id_bytes[0], id_bytes[1], id_bytes[2], | ||
505 | id_bytes[3], id_bytes[4]); | ||
506 | |||
507 | if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */ | ||
508 | /* Set timing register values according to datasheet */ | ||
509 | denali_write32(5, denali->flash_reg + ACC_CLKS); | ||
510 | denali_write32(20, denali->flash_reg + RE_2_WE); | ||
511 | denali_write32(12, denali->flash_reg + WE_2_RE); | ||
512 | denali_write32(14, denali->flash_reg + ADDR_2_DATA); | ||
513 | denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT); | ||
514 | denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT); | ||
515 | denali_write32(2, denali->flash_reg + CS_SETUP_CNT); | ||
516 | } | ||
517 | |||
518 | no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2); | ||
519 | plane_size = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4); | ||
520 | blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4); | ||
521 | capacity = (uint64_t)128 * plane_size * no_of_planes; | ||
522 | |||
523 | do_div(capacity, blk_size); | ||
524 | denali->dev_info.wTotalBlocks = capacity; | ||
525 | } | ||
526 | |||
527 | static void get_toshiba_nand_para(struct denali_nand_info *denali) | ||
528 | { | ||
529 | void __iomem *scratch_reg; | ||
530 | uint32_t tmp; | ||
531 | |||
532 | /* Workaround to fix a controller bug which reports a wrong */ | ||
533 | /* spare area size for some kind of Toshiba NAND device */ | ||
534 | if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && | ||
535 | (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { | ||
536 | denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); | ||
537 | tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * | ||
538 | ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); | ||
539 | denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); | ||
540 | #if SUPPORT_15BITECC | ||
541 | denali_write32(15, denali->flash_reg + ECC_CORRECTION); | ||
542 | #elif SUPPORT_8BITECC | ||
543 | denali_write32(8, denali->flash_reg + ECC_CORRECTION); | ||
544 | #endif | ||
545 | } | ||
546 | |||
547 | /* As Toshiba NAND can not provide it's block number, */ | ||
548 | /* so here we need user to provide the correct block */ | ||
549 | /* number in a scratch register before the Linux NAND */ | ||
550 | /* driver is loaded. If no valid value found in the scratch */ | ||
551 | /* register, then we use default block number value */ | ||
552 | scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE); | ||
553 | if (!scratch_reg) { | ||
554 | printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d", | ||
555 | __FILE__, __LINE__); | ||
556 | denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; | ||
557 | } else { | ||
558 | nand_dbg_print(NAND_DBG_WARN, | ||
559 | "Spectra: ioremap reg address: 0x%p\n", scratch_reg); | ||
560 | denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg); | ||
561 | if (denali->dev_info.wTotalBlocks < 512) | ||
562 | denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; | ||
563 | iounmap(scratch_reg); | ||
564 | } | ||
565 | } | ||
566 | |||
567 | static void get_hynix_nand_para(struct denali_nand_info *denali) | ||
568 | { | ||
569 | void __iomem *scratch_reg; | ||
570 | uint32_t main_size, spare_size; | ||
571 | |||
572 | switch (denali->dev_info.wDeviceID) { | ||
573 | case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ | ||
574 | case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ | ||
575 | denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK); | ||
576 | denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); | ||
577 | denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); | ||
578 | main_size = 4096 * ioread32(denali->flash_reg + DEVICES_CONNECTED); | ||
579 | spare_size = 224 * ioread32(denali->flash_reg + DEVICES_CONNECTED); | ||
580 | denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); | ||
581 | denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); | ||
582 | denali_write32(0, denali->flash_reg + DEVICE_WIDTH); | ||
583 | #if SUPPORT_15BITECC | ||
584 | denali_write32(15, denali->flash_reg + ECC_CORRECTION); | ||
585 | #elif SUPPORT_8BITECC | ||
586 | denali_write32(8, denali->flash_reg + ECC_CORRECTION); | ||
587 | #endif | ||
588 | denali->dev_info.MLCDevice = 1; | ||
589 | break; | ||
590 | default: | ||
591 | nand_dbg_print(NAND_DBG_WARN, | ||
592 | "Spectra: Unknown Hynix NAND (Device ID: 0x%x)." | ||
593 | "Will use default parameter values instead.\n", | ||
594 | denali->dev_info.wDeviceID); | ||
595 | } | ||
596 | |||
597 | scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE); | ||
598 | if (!scratch_reg) { | ||
599 | printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d", | ||
600 | __FILE__, __LINE__); | ||
601 | denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; | ||
602 | } else { | ||
603 | nand_dbg_print(NAND_DBG_WARN, | ||
604 | "Spectra: ioremap reg address: 0x%p\n", scratch_reg); | ||
605 | denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg); | ||
606 | if (denali->dev_info.wTotalBlocks < 512) | ||
607 | denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; | ||
608 | iounmap(scratch_reg); | ||
609 | } | ||
610 | } | ||
611 | |||
612 | /* determines how many NAND chips are connected to the controller. Note for | ||
613 | Intel CE4100 devices we don't support more than one device. | ||
614 | */ | ||
615 | static void find_valid_banks(struct denali_nand_info *denali) | ||
616 | { | ||
617 | uint32_t id[LLD_MAX_FLASH_BANKS]; | ||
618 | int i; | ||
619 | |||
620 | denali->total_used_banks = 1; | ||
621 | for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) { | ||
622 | index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90); | ||
623 | index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0); | ||
624 | index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); | ||
625 | |||
626 | nand_dbg_print(NAND_DBG_DEBUG, | ||
627 | "Return 1st ID for bank[%d]: %x\n", i, id[i]); | ||
628 | |||
629 | if (i == 0) { | ||
630 | if (!(id[i] & 0x0ff)) | ||
631 | break; /* WTF? */ | ||
632 | } else { | ||
633 | if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) | ||
634 | denali->total_used_banks++; | ||
635 | else | ||
636 | break; | ||
637 | } | ||
638 | } | ||
639 | |||
640 | if (denali->platform == INTEL_CE4100) | ||
641 | { | ||
642 | /* Platform limitations of the CE4100 device limit | ||
643 | * users to a single chip solution for NAND. | ||
644 | * Multichip support is not enabled. | ||
645 | */ | ||
646 | if (denali->total_used_banks != 1) | ||
647 | { | ||
648 | printk(KERN_ERR "Sorry, Intel CE4100 only supports " | ||
649 | "a single NAND device.\n"); | ||
650 | BUG(); | ||
651 | } | ||
652 | } | ||
653 | nand_dbg_print(NAND_DBG_DEBUG, | ||
654 | "denali->total_used_banks: %d\n", denali->total_used_banks); | ||
655 | } | ||
656 | |||
657 | static void detect_partition_feature(struct denali_nand_info *denali) | ||
658 | { | ||
659 | if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { | ||
660 | if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) & | ||
661 | PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) { | ||
662 | denali->dev_info.wSpectraStartBlock = | ||
663 | ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) & | ||
664 | MIN_MAX_BANK_1__MIN_VALUE) * | ||
665 | denali->dev_info.wTotalBlocks) | ||
666 | + | ||
667 | (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) & | ||
668 | MIN_BLK_ADDR_1__VALUE); | ||
669 | |||
670 | denali->dev_info.wSpectraEndBlock = | ||
671 | (((ioread32(denali->flash_reg + MIN_MAX_BANK_1) & | ||
672 | MIN_MAX_BANK_1__MAX_VALUE) >> 2) * | ||
673 | denali->dev_info.wTotalBlocks) | ||
674 | + | ||
675 | (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) & | ||
676 | MAX_BLK_ADDR_1__VALUE); | ||
677 | |||
678 | denali->dev_info.wTotalBlocks *= denali->total_used_banks; | ||
679 | |||
680 | if (denali->dev_info.wSpectraEndBlock >= | ||
681 | denali->dev_info.wTotalBlocks) { | ||
682 | denali->dev_info.wSpectraEndBlock = | ||
683 | denali->dev_info.wTotalBlocks - 1; | ||
684 | } | ||
685 | |||
686 | denali->dev_info.wDataBlockNum = | ||
687 | denali->dev_info.wSpectraEndBlock - | ||
688 | denali->dev_info.wSpectraStartBlock + 1; | ||
689 | } else { | ||
690 | denali->dev_info.wTotalBlocks *= denali->total_used_banks; | ||
691 | denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK; | ||
692 | denali->dev_info.wSpectraEndBlock = | ||
693 | denali->dev_info.wTotalBlocks - 1; | ||
694 | denali->dev_info.wDataBlockNum = | ||
695 | denali->dev_info.wSpectraEndBlock - | ||
696 | denali->dev_info.wSpectraStartBlock + 1; | ||
697 | } | ||
698 | } else { | ||
699 | denali->dev_info.wTotalBlocks *= denali->total_used_banks; | ||
700 | denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK; | ||
701 | denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1; | ||
702 | denali->dev_info.wDataBlockNum = | ||
703 | denali->dev_info.wSpectraEndBlock - | ||
704 | denali->dev_info.wSpectraStartBlock + 1; | ||
705 | } | ||
706 | } | ||
707 | |||
708 | static void dump_device_info(struct denali_nand_info *denali) | ||
709 | { | ||
710 | nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n"); | ||
711 | nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n", | ||
712 | denali->dev_info.wDeviceMaker); | ||
713 | nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n", | ||
714 | denali->dev_info.wDeviceID); | ||
715 | nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n", | ||
716 | denali->dev_info.wDeviceType); | ||
717 | nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n", | ||
718 | denali->dev_info.wSpectraStartBlock); | ||
719 | nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n", | ||
720 | denali->dev_info.wSpectraEndBlock); | ||
721 | nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n", | ||
722 | denali->dev_info.wTotalBlocks); | ||
723 | nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n", | ||
724 | denali->dev_info.wPagesPerBlock); | ||
725 | nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n", | ||
726 | denali->dev_info.wPageSize); | ||
727 | nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n", | ||
728 | denali->dev_info.wPageDataSize); | ||
729 | nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n", | ||
730 | denali->dev_info.wPageSpareSize); | ||
731 | nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n", | ||
732 | denali->dev_info.wNumPageSpareFlag); | ||
733 | nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n", | ||
734 | denali->dev_info.wECCBytesPerSector); | ||
735 | nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n", | ||
736 | denali->dev_info.wBlockSize); | ||
737 | nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n", | ||
738 | denali->dev_info.wBlockDataSize); | ||
739 | nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n", | ||
740 | denali->dev_info.wDataBlockNum); | ||
741 | nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n", | ||
742 | denali->dev_info.bPlaneNum); | ||
743 | nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n", | ||
744 | denali->dev_info.wDeviceMainAreaSize); | ||
745 | nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n", | ||
746 | denali->dev_info.wDeviceSpareAreaSize); | ||
747 | nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n", | ||
748 | denali->dev_info.wDevicesConnected); | ||
749 | nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n", | ||
750 | denali->dev_info.wDeviceWidth); | ||
751 | nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n", | ||
752 | denali->dev_info.wHWRevision); | ||
753 | nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n", | ||
754 | denali->dev_info.wHWFeatures); | ||
755 | nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n", | ||
756 | denali->dev_info.wONFIDevFeatures); | ||
757 | nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n", | ||
758 | denali->dev_info.wONFIOptCommands); | ||
759 | nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n", | ||
760 | denali->dev_info.wONFITimingMode); | ||
761 | nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n", | ||
762 | denali->dev_info.wONFIPgmCacheTimingMode); | ||
763 | nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n", | ||
764 | denali->dev_info.MLCDevice ? "Yes" : "No"); | ||
765 | nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n", | ||
766 | denali->dev_info.wSpareSkipBytes); | ||
767 | nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n", | ||
768 | denali->dev_info.nBitsInPageNumber); | ||
769 | nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n", | ||
770 | denali->dev_info.nBitsInPageDataSize); | ||
771 | nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n", | ||
772 | denali->dev_info.nBitsInBlockDataSize); | ||
773 | } | ||
774 | |||
775 | static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali) | ||
776 | { | ||
777 | uint16_t status = PASS; | ||
778 | uint8_t no_of_planes; | ||
779 | |||
780 | nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", | ||
781 | __FILE__, __LINE__, __func__); | ||
782 | |||
783 | denali->dev_info.wDeviceMaker = ioread32(denali->flash_reg + MANUFACTURER_ID); | ||
784 | denali->dev_info.wDeviceID = ioread32(denali->flash_reg + DEVICE_ID); | ||
785 | denali->dev_info.bDeviceParam0 = ioread32(denali->flash_reg + DEVICE_PARAM_0); | ||
786 | denali->dev_info.bDeviceParam1 = ioread32(denali->flash_reg + DEVICE_PARAM_1); | ||
787 | denali->dev_info.bDeviceParam2 = ioread32(denali->flash_reg + DEVICE_PARAM_2); | ||
788 | |||
789 | denali->dev_info.MLCDevice = ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c; | ||
790 | |||
791 | if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & | ||
792 | ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ | ||
793 | if (FAIL == get_onfi_nand_para(denali)) | ||
794 | return FAIL; | ||
795 | } else if (denali->dev_info.wDeviceMaker == 0xEC) { /* Samsung NAND */ | ||
796 | get_samsung_nand_para(denali); | ||
797 | } else if (denali->dev_info.wDeviceMaker == 0x98) { /* Toshiba NAND */ | ||
798 | get_toshiba_nand_para(denali); | ||
799 | } else if (denali->dev_info.wDeviceMaker == 0xAD) { /* Hynix NAND */ | ||
800 | get_hynix_nand_para(denali); | ||
801 | } else { | ||
802 | denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS; | ||
803 | } | ||
804 | |||
805 | nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:" | ||
806 | "acc_clks: %d, re_2_we: %d, we_2_re: %d," | ||
807 | "addr_2_data: %d, rdwr_en_lo_cnt: %d, " | ||
808 | "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", | ||
809 | ioread32(denali->flash_reg + ACC_CLKS), | ||
810 | ioread32(denali->flash_reg + RE_2_WE), | ||
811 | ioread32(denali->flash_reg + WE_2_RE), | ||
812 | ioread32(denali->flash_reg + ADDR_2_DATA), | ||
813 | ioread32(denali->flash_reg + RDWR_EN_LO_CNT), | ||
814 | ioread32(denali->flash_reg + RDWR_EN_HI_CNT), | ||
815 | ioread32(denali->flash_reg + CS_SETUP_CNT)); | ||
816 | |||
817 | denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION); | ||
818 | denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES); | ||
819 | |||
820 | denali->dev_info.wDeviceMainAreaSize = | ||
821 | ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE); | ||
822 | denali->dev_info.wDeviceSpareAreaSize = | ||
823 | ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); | ||
824 | |||
825 | denali->dev_info.wPageDataSize = | ||
826 | ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); | ||
827 | |||
828 | /* Note: When using the Micon 4K NAND device, the controller will report | ||
829 | * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes. | ||
830 | * And if force set it to 218 bytes, the controller can not work | ||
831 | * correctly. So just let it be. But keep in mind that this bug may | ||
832 | * cause | ||
833 | * other problems in future. - Yunpeng 2008-10-10 | ||
834 | */ | ||
835 | denali->dev_info.wPageSpareSize = | ||
836 | ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); | ||
837 | |||
838 | denali->dev_info.wPagesPerBlock = ioread32(denali->flash_reg + PAGES_PER_BLOCK); | ||
839 | |||
840 | denali->dev_info.wPageSize = | ||
841 | denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize; | ||
842 | denali->dev_info.wBlockSize = | ||
843 | denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock; | ||
844 | denali->dev_info.wBlockDataSize = | ||
845 | denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize; | ||
846 | |||
847 | denali->dev_info.wDeviceWidth = ioread32(denali->flash_reg + DEVICE_WIDTH); | ||
848 | denali->dev_info.wDeviceType = | ||
849 | ((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8); | ||
850 | |||
851 | denali->dev_info.wDevicesConnected = ioread32(denali->flash_reg + DEVICES_CONNECTED); | ||
852 | |||
853 | denali->dev_info.wSpareSkipBytes = | ||
854 | ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) * | ||
855 | denali->dev_info.wDevicesConnected; | ||
856 | |||
857 | denali->dev_info.nBitsInPageNumber = | ||
858 | ilog2(denali->dev_info.wPagesPerBlock); | ||
859 | denali->dev_info.nBitsInPageDataSize = | ||
860 | ilog2(denali->dev_info.wPageDataSize); | ||
861 | denali->dev_info.nBitsInBlockDataSize = | ||
862 | ilog2(denali->dev_info.wBlockDataSize); | ||
863 | |||
864 | set_ecc_config(denali); | ||
865 | |||
866 | no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) & | ||
867 | NUMBER_OF_PLANES__VALUE; | ||
868 | |||
869 | switch (no_of_planes) { | ||
870 | case 0: | ||
871 | case 1: | ||
872 | case 3: | ||
873 | case 7: | ||
874 | denali->dev_info.bPlaneNum = no_of_planes + 1; | ||
875 | break; | ||
876 | default: | ||
877 | status = FAIL; | ||
878 | break; | ||
879 | } | ||
880 | |||
881 | find_valid_banks(denali); | ||
882 | |||
883 | detect_partition_feature(denali); | ||
884 | |||
885 | dump_device_info(denali); | ||
886 | |||
887 | /* If the user specified to override the default timings | ||
888 | * with a specific ONFI mode, we apply those changes here. | ||
889 | */ | ||
890 | if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) | ||
891 | { | ||
892 | NAND_ONFi_Timing_Mode(denali, onfi_timing_mode); | ||
893 | } | ||
894 | |||
895 | return status; | ||
896 | } | ||
897 | |||
898 | static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali, | ||
899 | uint16_t INT_ENABLE) | ||
900 | { | ||
901 | nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", | ||
902 | __FILE__, __LINE__, __func__); | ||
903 | |||
904 | if (INT_ENABLE) | ||
905 | denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE); | ||
906 | else | ||
907 | denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE); | ||
908 | } | ||
909 | |||
910 | /* validation function to verify that the controlling software is making | ||
911 | a valid request | ||
912 | */ | ||
913 | static inline bool is_flash_bank_valid(int flash_bank) | ||
914 | { | ||
915 | return (flash_bank >= 0 && flash_bank < 4); | ||
916 | } | ||
917 | |||
918 | static void denali_irq_init(struct denali_nand_info *denali) | ||
919 | { | ||
920 | uint32_t int_mask = 0; | ||
921 | |||
922 | /* Disable global interrupts */ | ||
923 | NAND_LLD_Enable_Disable_Interrupts(denali, false); | ||
924 | |||
925 | int_mask = DENALI_IRQ_ALL; | ||
926 | |||
927 | /* Clear all status bits */ | ||
928 | denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0); | ||
929 | denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1); | ||
930 | denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2); | ||
931 | denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3); | ||
932 | |||
933 | denali_irq_enable(denali, int_mask); | ||
934 | } | ||
935 | |||
936 | static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) | ||
937 | { | ||
938 | NAND_LLD_Enable_Disable_Interrupts(denali, false); | ||
939 | free_irq(irqnum, denali); | ||
940 | } | ||
941 | |||
942 | static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask) | ||
943 | { | ||
944 | denali_write32(int_mask, denali->flash_reg + INTR_EN0); | ||
945 | denali_write32(int_mask, denali->flash_reg + INTR_EN1); | ||
946 | denali_write32(int_mask, denali->flash_reg + INTR_EN2); | ||
947 | denali_write32(int_mask, denali->flash_reg + INTR_EN3); | ||
948 | } | ||
949 | |||
950 | /* This function only returns when an interrupt that this driver cares about | ||
951 | * occurs. This is to reduce the overhead of servicing interrupts | ||
952 | */ | ||
953 | static inline uint32_t denali_irq_detected(struct denali_nand_info *denali) | ||
954 | { | ||
955 | return (read_interrupt_status(denali) & DENALI_IRQ_ALL); | ||
956 | } | ||
957 | |||
958 | /* Interrupts are cleared by writing a 1 to the appropriate status bit */ | ||
959 | static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask) | ||
960 | { | ||
961 | uint32_t intr_status_reg = 0; | ||
962 | |||
963 | intr_status_reg = intr_status_addresses[denali->flash_bank]; | ||
964 | |||
965 | denali_write32(irq_mask, denali->flash_reg + intr_status_reg); | ||
966 | } | ||
967 | |||
968 | static void clear_interrupts(struct denali_nand_info *denali) | ||
969 | { | ||
970 | uint32_t status = 0x0; | ||
971 | spin_lock_irq(&denali->irq_lock); | ||
972 | |||
973 | status = read_interrupt_status(denali); | ||
974 | |||
975 | #if DEBUG_DENALI | ||
976 | denali->irq_debug_array[denali->idx++] = 0x30000000 | status; | ||
977 | denali->idx %= 32; | ||
978 | #endif | ||
979 | |||
980 | denali->irq_status = 0x0; | ||
981 | spin_unlock_irq(&denali->irq_lock); | ||
982 | } | ||
983 | |||
984 | static uint32_t read_interrupt_status(struct denali_nand_info *denali) | ||
985 | { | ||
986 | uint32_t intr_status_reg = 0; | ||
987 | |||
988 | intr_status_reg = intr_status_addresses[denali->flash_bank]; | ||
989 | |||
990 | return ioread32(denali->flash_reg + intr_status_reg); | ||
991 | } | ||
992 | |||
993 | #if DEBUG_DENALI | ||
994 | static void print_irq_log(struct denali_nand_info *denali) | ||
995 | { | ||
996 | int i = 0; | ||
997 | |||
998 | printk("ISR debug log index = %X\n", denali->idx); | ||
999 | for (i = 0; i < 32; i++) | ||
1000 | { | ||
1001 | printk("%08X: %08X\n", i, denali->irq_debug_array[i]); | ||
1002 | } | ||
1003 | } | ||
1004 | #endif | ||
1005 | |||
1006 | /* This is the interrupt service routine. It handles all interrupts | ||
1007 | * sent to this device. Note that on CE4100, this is a shared | ||
1008 | * interrupt. | ||
1009 | */ | ||
1010 | static irqreturn_t denali_isr(int irq, void *dev_id) | ||
1011 | { | ||
1012 | struct denali_nand_info *denali = dev_id; | ||
1013 | uint32_t irq_status = 0x0; | ||
1014 | irqreturn_t result = IRQ_NONE; | ||
1015 | |||
1016 | spin_lock(&denali->irq_lock); | ||
1017 | |||
1018 | /* check to see if a valid NAND chip has | ||
1019 | * been selected. | ||
1020 | */ | ||
1021 | if (is_flash_bank_valid(denali->flash_bank)) | ||
1022 | { | ||
1023 | /* check to see if controller generated | ||
1024 | * the interrupt, since this is a shared interrupt */ | ||
1025 | if ((irq_status = denali_irq_detected(denali)) != 0) | ||
1026 | { | ||
1027 | #if DEBUG_DENALI | ||
1028 | denali->irq_debug_array[denali->idx++] = 0x10000000 | irq_status; | ||
1029 | denali->idx %= 32; | ||
1030 | |||
1031 | printk("IRQ status = 0x%04x\n", irq_status); | ||
1032 | #endif | ||
1033 | /* handle interrupt */ | ||
1034 | /* first acknowledge it */ | ||
1035 | clear_interrupt(denali, irq_status); | ||
1036 | /* store the status in the device context for someone | ||
1037 | to read */ | ||
1038 | denali->irq_status |= irq_status; | ||
1039 | /* notify anyone who cares that it happened */ | ||
1040 | complete(&denali->complete); | ||
1041 | /* tell the OS that we've handled this */ | ||
1042 | result = IRQ_HANDLED; | ||
1043 | } | ||
1044 | } | ||
1045 | spin_unlock(&denali->irq_lock); | ||
1046 | return result; | ||
1047 | } | ||
1048 | #define BANK(x) ((x) << 24) | ||
1049 | |||
1050 | static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) | ||
1051 | { | ||
1052 | unsigned long comp_res = 0; | ||
1053 | uint32_t intr_status = 0; | ||
1054 | bool retry = false; | ||
1055 | unsigned long timeout = msecs_to_jiffies(1000); | ||
1056 | |||
1057 | do | ||
1058 | { | ||
1059 | #if DEBUG_DENALI | ||
1060 | printk("waiting for 0x%x\n", irq_mask); | ||
1061 | #endif | ||
1062 | comp_res = wait_for_completion_timeout(&denali->complete, timeout); | ||
1063 | spin_lock_irq(&denali->irq_lock); | ||
1064 | intr_status = denali->irq_status; | ||
1065 | |||
1066 | #if DEBUG_DENALI | ||
1067 | denali->irq_debug_array[denali->idx++] = 0x20000000 | (irq_mask << 16) | intr_status; | ||
1068 | denali->idx %= 32; | ||
1069 | #endif | ||
1070 | |||
1071 | if (intr_status & irq_mask) | ||
1072 | { | ||
1073 | denali->irq_status &= ~irq_mask; | ||
1074 | spin_unlock_irq(&denali->irq_lock); | ||
1075 | #if DEBUG_DENALI | ||
1076 | if (retry) printk("status on retry = 0x%x\n", intr_status); | ||
1077 | #endif | ||
1078 | /* our interrupt was detected */ | ||
1079 | break; | ||
1080 | } | ||
1081 | else | ||
1082 | { | ||
1083 | /* these are not the interrupts you are looking for - | ||
1084 | need to wait again */ | ||
1085 | spin_unlock_irq(&denali->irq_lock); | ||
1086 | #if DEBUG_DENALI | ||
1087 | print_irq_log(denali); | ||
1088 | printk("received irq nobody cared: irq_status = 0x%x," | ||
1089 | " irq_mask = 0x%x, timeout = %ld\n", intr_status, irq_mask, comp_res); | ||
1090 | #endif | ||
1091 | retry = true; | ||
1092 | } | ||
1093 | } while (comp_res != 0); | ||
1094 | |||
1095 | if (comp_res == 0) | ||
1096 | { | ||
1097 | /* timeout */ | ||
1098 | printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n", | ||
1099 | intr_status, irq_mask); | ||
1100 | |||
1101 | intr_status = 0; | ||
1102 | } | ||
1103 | return intr_status; | ||
1104 | } | ||
1105 | |||
1106 | /* This helper function setups the registers for ECC and whether or not | ||
1107 | the spare area will be transfered. */ | ||
1108 | static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, | ||
1109 | bool transfer_spare) | ||
1110 | { | ||
1111 | int ecc_en_flag = 0, transfer_spare_flag = 0; | ||
1112 | |||
1113 | /* set ECC, transfer spare bits if needed */ | ||
1114 | ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; | ||
1115 | transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; | ||
1116 | |||
1117 | /* Enable spare area/ECC per user's request. */ | ||
1118 | denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); | ||
1119 | denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); | ||
1120 | } | ||
1121 | |||
1122 | /* sends a pipeline command operation to the controller. See the Denali NAND | ||
1123 | controller's user guide for more information (section 4.2.3.6). | ||
1124 | */ | ||
1125 | static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en, | ||
1126 | bool transfer_spare, int access_type, | ||
1127 | int op) | ||
1128 | { | ||
1129 | int status = PASS; | ||
1130 | uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0, | ||
1131 | irq_mask = 0; | ||
1132 | |||
1133 | if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP; | ||
1134 | else if (op == DENALI_WRITE) irq_mask = 0; | ||
1135 | else BUG(); | ||
1136 | |||
1137 | setup_ecc_for_xfer(denali, ecc_en, transfer_spare); | ||
1138 | |||
1139 | #if DEBUG_DENALI | ||
1140 | spin_lock_irq(&denali->irq_lock); | ||
1141 | denali->irq_debug_array[denali->idx++] = 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | (access_type << 4); | ||
1142 | denali->idx %= 32; | ||
1143 | spin_unlock_irq(&denali->irq_lock); | ||
1144 | #endif | ||
1145 | |||
1146 | |||
1147 | /* clear interrupts */ | ||
1148 | clear_interrupts(denali); | ||
1149 | |||
1150 | addr = BANK(denali->flash_bank) | denali->page; | ||
1151 | |||
1152 | if (op == DENALI_WRITE && access_type != SPARE_ACCESS) | ||
1153 | { | ||
1154 | cmd = MODE_01 | addr; | ||
1155 | denali_write32(cmd, denali->flash_mem); | ||
1156 | } | ||
1157 | else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) | ||
1158 | { | ||
1159 | /* read spare area */ | ||
1160 | cmd = MODE_10 | addr; | ||
1161 | index_addr(denali, (uint32_t)cmd, access_type); | ||
1162 | |||
1163 | cmd = MODE_01 | addr; | ||
1164 | denali_write32(cmd, denali->flash_mem); | ||
1165 | } | ||
1166 | else if (op == DENALI_READ) | ||
1167 | { | ||
1168 | /* setup page read request for access type */ | ||
1169 | cmd = MODE_10 | addr; | ||
1170 | index_addr(denali, (uint32_t)cmd, access_type); | ||
1171 | |||
1172 | /* page 33 of the NAND controller spec indicates we should not | ||
1173 | use the pipeline commands in Spare area only mode. So we | ||
1174 | don't. | ||
1175 | */ | ||
1176 | if (access_type == SPARE_ACCESS) | ||
1177 | { | ||
1178 | cmd = MODE_01 | addr; | ||
1179 | denali_write32(cmd, denali->flash_mem); | ||
1180 | } | ||
1181 | else | ||
1182 | { | ||
1183 | index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count); | ||
1184 | |||
1185 | /* wait for command to be accepted | ||
1186 | * can always use status0 bit as the mask is identical for each | ||
1187 | * bank. */ | ||
1188 | irq_status = wait_for_irq(denali, irq_mask); | ||
1189 | |||
1190 | if (irq_status == 0) | ||
1191 | { | ||
1192 | printk(KERN_ERR "cmd, page, addr on timeout " | ||
1193 | "(0x%x, 0x%x, 0x%x)\n", cmd, denali->page, addr); | ||
1194 | status = FAIL; | ||
1195 | } | ||
1196 | else | ||
1197 | { | ||
1198 | cmd = MODE_01 | addr; | ||
1199 | denali_write32(cmd, denali->flash_mem); | ||
1200 | } | ||
1201 | } | ||
1202 | } | ||
1203 | return status; | ||
1204 | } | ||
1205 | |||
1206 | /* helper function that simply writes a buffer to the flash */ | ||
1207 | static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf, | ||
1208 | int len) | ||
1209 | { | ||
1210 | uint32_t i = 0, *buf32; | ||
1211 | |||
1212 | /* verify that the len is a multiple of 4. see comment in | ||
1213 | * read_data_from_flash_mem() */ | ||
1214 | BUG_ON((len % 4) != 0); | ||
1215 | |||
1216 | /* write the data to the flash memory */ | ||
1217 | buf32 = (uint32_t *)buf; | ||
1218 | for (i = 0; i < len / 4; i++) | ||
1219 | { | ||
1220 | denali_write32(*buf32++, denali->flash_mem + 0x10); | ||
1221 | } | ||
1222 | return i*4; /* intent is to return the number of bytes read */ | ||
1223 | } | ||
1224 | |||
1225 | /* helper function that simply reads a buffer from the flash */ | ||
1226 | static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf, | ||
1227 | int len) | ||
1228 | { | ||
1229 | uint32_t i = 0, *buf32; | ||
1230 | |||
1231 | /* we assume that len will be a multiple of 4, if not | ||
1232 | * it would be nice to know about it ASAP rather than | ||
1233 | * have random failures... | ||
1234 | * | ||
1235 | * This assumption is based on the fact that this | ||
1236 | * function is designed to be used to read flash pages, | ||
1237 | * which are typically multiples of 4... | ||
1238 | */ | ||
1239 | |||
1240 | BUG_ON((len % 4) != 0); | ||
1241 | |||
1242 | /* transfer the data from the flash */ | ||
1243 | buf32 = (uint32_t *)buf; | ||
1244 | for (i = 0; i < len / 4; i++) | ||
1245 | { | ||
1246 | *buf32++ = ioread32(denali->flash_mem + 0x10); | ||
1247 | } | ||
1248 | return i*4; /* intent is to return the number of bytes read */ | ||
1249 | } | ||
1250 | |||
1251 | /* writes OOB data to the device */ | ||
1252 | static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) | ||
1253 | { | ||
1254 | struct denali_nand_info *denali = mtd_to_denali(mtd); | ||
1255 | uint32_t irq_status = 0; | ||
1256 | uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP | | ||
1257 | INTR_STATUS0__PROGRAM_FAIL; | ||
1258 | int status = 0; | ||
1259 | |||
1260 | denali->page = page; | ||
1261 | |||
1262 | if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, | ||
1263 | DENALI_WRITE) == PASS) | ||
1264 | { | ||
1265 | write_data_to_flash_mem(denali, buf, mtd->oobsize); | ||
1266 | |||
1267 | #if DEBUG_DENALI | ||
1268 | spin_lock_irq(&denali->irq_lock); | ||
1269 | denali->irq_debug_array[denali->idx++] = 0x80000000 | mtd->oobsize; | ||
1270 | denali->idx %= 32; | ||
1271 | spin_unlock_irq(&denali->irq_lock); | ||
1272 | #endif | ||
1273 | |||
1274 | |||
1275 | /* wait for operation to complete */ | ||
1276 | irq_status = wait_for_irq(denali, irq_mask); | ||
1277 | |||
1278 | if (irq_status == 0) | ||
1279 | { | ||
1280 | printk(KERN_ERR "OOB write failed\n"); | ||
1281 | status = -EIO; | ||
1282 | } | ||
1283 | } | ||
1284 | else | ||
1285 | { | ||
1286 | printk(KERN_ERR "unable to send pipeline command\n"); | ||
1287 | status = -EIO; | ||
1288 | } | ||
1289 | return status; | ||
1290 | } | ||
1291 | |||
1292 | /* reads OOB data from the device */ | ||
1293 | static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) | ||
1294 | { | ||
1295 | struct denali_nand_info *denali = mtd_to_denali(mtd); | ||
1296 | uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0; | ||
1297 | |||
1298 | denali->page = page; | ||
1299 | |||
1300 | #if DEBUG_DENALI | ||
1301 | printk("read_oob %d\n", page); | ||
1302 | #endif | ||
1303 | if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, | ||
1304 | DENALI_READ) == PASS) | ||
1305 | { | ||
1306 | read_data_from_flash_mem(denali, buf, mtd->oobsize); | ||
1307 | |||
1308 | /* wait for command to be accepted | ||
1309 | * can always use status0 bit as the mask is identical for each | ||
1310 | * bank. */ | ||
1311 | irq_status = wait_for_irq(denali, irq_mask); | ||
1312 | |||
1313 | if (irq_status == 0) | ||
1314 | { | ||
1315 | printk(KERN_ERR "page on OOB timeout %d\n", denali->page); | ||
1316 | } | ||
1317 | |||
1318 | /* We set the device back to MAIN_ACCESS here as I observed | ||
1319 | * instability with the controller if you do a block erase | ||
1320 | * and the last transaction was a SPARE_ACCESS. Block erase | ||
1321 | * is reliable (according to the MTD test infrastructure) | ||
1322 | * if you are in MAIN_ACCESS. | ||
1323 | */ | ||
1324 | addr = BANK(denali->flash_bank) | denali->page; | ||
1325 | cmd = MODE_10 | addr; | ||
1326 | index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); | ||
1327 | |||
1328 | #if DEBUG_DENALI | ||
1329 | spin_lock_irq(&denali->irq_lock); | ||
1330 | denali->irq_debug_array[denali->idx++] = 0x60000000 | mtd->oobsize; | ||
1331 | denali->idx %= 32; | ||
1332 | spin_unlock_irq(&denali->irq_lock); | ||
1333 | #endif | ||
1334 | } | ||
1335 | } | ||
1336 | |||
1337 | /* this function examines buffers to see if they contain data that | ||
1338 | * indicate that the buffer is part of an erased region of flash. | ||
1339 | */ | ||
1340 | bool is_erased(uint8_t *buf, int len) | ||
1341 | { | ||
1342 | int i = 0; | ||
1343 | for (i = 0; i < len; i++) | ||
1344 | { | ||
1345 | if (buf[i] != 0xFF) | ||
1346 | { | ||
1347 | return false; | ||
1348 | } | ||
1349 | } | ||
1350 | return true; | ||
1351 | } | ||
1352 | #define ECC_SECTOR_SIZE 512 | ||
1353 | |||
1354 | #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) | ||
1355 | #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) | ||
1356 | #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) | ||
1357 | #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO)) | ||
1358 | #define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8) | ||
1359 | #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) | ||
1360 | |||
1361 | static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, | ||
1362 | uint8_t *oobbuf, uint32_t irq_status) | ||
1363 | { | ||
1364 | bool check_erased_page = false; | ||
1365 | |||
1366 | if (irq_status & INTR_STATUS0__ECC_ERR) | ||
1367 | { | ||
1368 | /* read the ECC errors. we'll ignore them for now */ | ||
1369 | uint32_t err_address = 0, err_correction_info = 0; | ||
1370 | uint32_t err_byte = 0, err_sector = 0, err_device = 0; | ||
1371 | uint32_t err_correction_value = 0; | ||
1372 | |||
1373 | do | ||
1374 | { | ||
1375 | err_address = ioread32(denali->flash_reg + | ||
1376 | ECC_ERROR_ADDRESS); | ||
1377 | err_sector = ECC_SECTOR(err_address); | ||
1378 | err_byte = ECC_BYTE(err_address); | ||
1379 | |||
1380 | |||
1381 | err_correction_info = ioread32(denali->flash_reg + | ||
1382 | ERR_CORRECTION_INFO); | ||
1383 | err_correction_value = | ||
1384 | ECC_CORRECTION_VALUE(err_correction_info); | ||
1385 | err_device = ECC_ERR_DEVICE(err_correction_info); | ||
1386 | |||
1387 | if (ECC_ERROR_CORRECTABLE(err_correction_info)) | ||
1388 | { | ||
1389 | /* offset in our buffer is computed as: | ||
1390 | sector number * sector size + offset in | ||
1391 | sector | ||
1392 | */ | ||
1393 | int offset = err_sector * ECC_SECTOR_SIZE + | ||
1394 | err_byte; | ||
1395 | if (offset < denali->mtd.writesize) | ||
1396 | { | ||
1397 | /* correct the ECC error */ | ||
1398 | buf[offset] ^= err_correction_value; | ||
1399 | denali->mtd.ecc_stats.corrected++; | ||
1400 | } | ||
1401 | else | ||
1402 | { | ||
1403 | /* bummer, couldn't correct the error */ | ||
1404 | printk(KERN_ERR "ECC offset invalid\n"); | ||
1405 | denali->mtd.ecc_stats.failed++; | ||
1406 | } | ||
1407 | } | ||
1408 | else | ||
1409 | { | ||
1410 | /* if the error is not correctable, need to | ||
1411 | * look at the page to see if it is an erased page. | ||
1412 | * if so, then it's not a real ECC error */ | ||
1413 | check_erased_page = true; | ||
1414 | } | ||
1415 | |||
1416 | #if DEBUG_DENALI | ||
1417 | printk("Detected ECC error in page %d: err_addr = 0x%08x," | ||
1418 | " info to fix is 0x%08x\n", denali->page, err_address, | ||
1419 | err_correction_info); | ||
1420 | #endif | ||
1421 | } while (!ECC_LAST_ERR(err_correction_info)); | ||
1422 | } | ||
1423 | return check_erased_page; | ||
1424 | } | ||
1425 | |||
1426 | /* programs the controller to either enable/disable DMA transfers */ | ||
1427 | static void enable_dma(struct denali_nand_info *denali, bool en) | ||
1428 | { | ||
1429 | uint32_t reg_val = 0x0; | ||
1430 | |||
1431 | if (en) reg_val = DMA_ENABLE__FLAG; | ||
1432 | |||
1433 | denali_write32(reg_val, denali->flash_reg + DMA_ENABLE); | ||
1434 | ioread32(denali->flash_reg + DMA_ENABLE); | ||
1435 | } | ||
1436 | |||
1437 | /* setups the HW to perform the data DMA */ | ||
1438 | static void setup_dma(struct denali_nand_info *denali, int op) | ||
1439 | { | ||
1440 | uint32_t mode = 0x0; | ||
1441 | const int page_count = 1; | ||
1442 | dma_addr_t addr = denali->buf.dma_buf; | ||
1443 | |||
1444 | mode = MODE_10 | BANK(denali->flash_bank); | ||
1445 | |||
1446 | /* DMA is a four step process */ | ||
1447 | |||
1448 | /* 1. setup transfer type and # of pages */ | ||
1449 | index_addr(denali, mode | denali->page, 0x2000 | op | page_count); | ||
1450 | |||
1451 | /* 2. set memory high address bits 23:8 */ | ||
1452 | index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200); | ||
1453 | |||
1454 | /* 3. set memory low address bits 23:8 */ | ||
1455 | index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300); | ||
1456 | |||
1457 | /* 4. interrupt when complete, burst len = 64 bytes*/ | ||
1458 | index_addr(denali, mode | 0x14000, 0x2400); | ||
1459 | } | ||
1460 | |||
1461 | /* writes a page. user specifies type, and this function handles the | ||
1462 | configuration details. */ | ||
1463 | static void write_page(struct mtd_info *mtd, struct nand_chip *chip, | ||
1464 | const uint8_t *buf, bool raw_xfer) | ||
1465 | { | ||
1466 | struct denali_nand_info *denali = mtd_to_denali(mtd); | ||
1467 | struct pci_dev *pci_dev = denali->dev; | ||
1468 | |||
1469 | dma_addr_t addr = denali->buf.dma_buf; | ||
1470 | size_t size = denali->mtd.writesize + denali->mtd.oobsize; | ||
1471 | |||
1472 | uint32_t irq_status = 0; | ||
1473 | uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP | | ||
1474 | INTR_STATUS0__PROGRAM_FAIL; | ||
1475 | |||
1476 | /* if it is a raw xfer, we want to disable ecc, and send | ||
1477 | * the spare area. | ||
1478 | * !raw_xfer - enable ecc | ||
1479 | * raw_xfer - transfer spare | ||
1480 | */ | ||
1481 | setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer); | ||
1482 | |||
1483 | /* copy buffer into DMA buffer */ | ||
1484 | memcpy(denali->buf.buf, buf, mtd->writesize); | ||
1485 | |||
1486 | if (raw_xfer) | ||
1487 | { | ||
1488 | /* transfer the data to the spare area */ | ||
1489 | memcpy(denali->buf.buf + mtd->writesize, | ||
1490 | chip->oob_poi, | ||
1491 | mtd->oobsize); | ||
1492 | } | ||
1493 | |||
1494 | pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE); | ||
1495 | |||
1496 | clear_interrupts(denali); | ||
1497 | enable_dma(denali, true); | ||
1498 | |||
1499 | setup_dma(denali, DENALI_WRITE); | ||
1500 | |||
1501 | /* wait for operation to complete */ | ||
1502 | irq_status = wait_for_irq(denali, irq_mask); | ||
1503 | |||
1504 | if (irq_status == 0) | ||
1505 | { | ||
1506 | printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer); | ||
1507 | denali->status = | ||
1508 | (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL : | ||
1509 | PASS; | ||
1510 | } | ||
1511 | |||
1512 | enable_dma(denali, false); | ||
1513 | pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE); | ||
1514 | } | ||
1515 | |||
1516 | /* NAND core entry points */ | ||
1517 | |||
1518 | /* this is the callback that the NAND core calls to write a page. Since | ||
1519 | writing a page with ECC or without is similar, all the work is done | ||
1520 | by write_page above. */ | ||
1521 | static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, | ||
1522 | const uint8_t *buf) | ||
1523 | { | ||
1524 | /* for regular page writes, we let HW handle all the ECC | ||
1525 | * data written to the device. */ | ||
1526 | write_page(mtd, chip, buf, false); | ||
1527 | } | ||
1528 | |||
1529 | /* This is the callback that the NAND core calls to write a page without ECC. | ||
1530 | raw access is similiar to ECC page writes, so all the work is done in the | ||
1531 | write_page() function above. | ||
1532 | */ | ||
1533 | static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | ||
1534 | const uint8_t *buf) | ||
1535 | { | ||
1536 | /* for raw page writes, we want to disable ECC and simply write | ||
1537 | whatever data is in the buffer. */ | ||
1538 | write_page(mtd, chip, buf, true); | ||
1539 | } | ||
1540 | |||
1541 | static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, | ||
1542 | int page) | ||
1543 | { | ||
1544 | return write_oob_data(mtd, chip->oob_poi, page); | ||
1545 | } | ||
1546 | |||
1547 | static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, | ||
1548 | int page, int sndcmd) | ||
1549 | { | ||
1550 | read_oob_data(mtd, chip->oob_poi, page); | ||
1551 | |||
1552 | return 0; /* notify NAND core to send command to | ||
1553 | * NAND device. */ | ||
1554 | } | ||
1555 | |||
1556 | static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, | ||
1557 | uint8_t *buf, int page) | ||
1558 | { | ||
1559 | struct denali_nand_info *denali = mtd_to_denali(mtd); | ||
1560 | struct pci_dev *pci_dev = denali->dev; | ||
1561 | |||
1562 | dma_addr_t addr = denali->buf.dma_buf; | ||
1563 | size_t size = denali->mtd.writesize + denali->mtd.oobsize; | ||
1564 | |||
1565 | uint32_t irq_status = 0; | ||
1566 | uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE | | ||
1567 | INTR_STATUS0__ECC_ERR; | ||
1568 | bool check_erased_page = false; | ||
1569 | |||
1570 | setup_ecc_for_xfer(denali, true, false); | ||
1571 | |||
1572 | enable_dma(denali, true); | ||
1573 | pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE); | ||
1574 | |||
1575 | clear_interrupts(denali); | ||
1576 | setup_dma(denali, DENALI_READ); | ||
1577 | |||
1578 | /* wait for operation to complete */ | ||
1579 | irq_status = wait_for_irq(denali, irq_mask); | ||
1580 | |||
1581 | pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE); | ||
1582 | |||
1583 | memcpy(buf, denali->buf.buf, mtd->writesize); | ||
1584 | |||
1585 | check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status); | ||
1586 | enable_dma(denali, false); | ||
1587 | |||
1588 | if (check_erased_page) | ||
1589 | { | ||
1590 | read_oob_data(&denali->mtd, chip->oob_poi, denali->page); | ||
1591 | |||
1592 | /* check ECC failures that may have occurred on erased pages */ | ||
1593 | if (check_erased_page) | ||
1594 | { | ||
1595 | if (!is_erased(buf, denali->mtd.writesize)) | ||
1596 | { | ||
1597 | denali->mtd.ecc_stats.failed++; | ||
1598 | } | ||
1599 | if (!is_erased(buf, denali->mtd.oobsize)) | ||
1600 | { | ||
1601 | denali->mtd.ecc_stats.failed++; | ||
1602 | } | ||
1603 | } | ||
1604 | } | ||
1605 | return 0; | ||
1606 | } | ||
1607 | |||
1608 | static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, | ||
1609 | uint8_t *buf, int page) | ||
1610 | { | ||
1611 | struct denali_nand_info *denali = mtd_to_denali(mtd); | ||
1612 | struct pci_dev *pci_dev = denali->dev; | ||
1613 | |||
1614 | dma_addr_t addr = denali->buf.dma_buf; | ||
1615 | size_t size = denali->mtd.writesize + denali->mtd.oobsize; | ||
1616 | |||
1617 | uint32_t irq_status = 0; | ||
1618 | uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP; | ||
1619 | |||
1620 | setup_ecc_for_xfer(denali, false, true); | ||
1621 | enable_dma(denali, true); | ||
1622 | |||
1623 | pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE); | ||
1624 | |||
1625 | clear_interrupts(denali); | ||
1626 | setup_dma(denali, DENALI_READ); | ||
1627 | |||
1628 | /* wait for operation to complete */ | ||
1629 | irq_status = wait_for_irq(denali, irq_mask); | ||
1630 | |||
1631 | pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE); | ||
1632 | |||
1633 | enable_dma(denali, false); | ||
1634 | |||
1635 | memcpy(buf, denali->buf.buf, mtd->writesize); | ||
1636 | memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize); | ||
1637 | |||
1638 | return 0; | ||
1639 | } | ||
1640 | |||
1641 | static uint8_t denali_read_byte(struct mtd_info *mtd) | ||
1642 | { | ||
1643 | struct denali_nand_info *denali = mtd_to_denali(mtd); | ||
1644 | uint8_t result = 0xff; | ||
1645 | |||
1646 | if (denali->buf.head < denali->buf.tail) | ||
1647 | { | ||
1648 | result = denali->buf.buf[denali->buf.head++]; | ||
1649 | } | ||
1650 | |||
1651 | #if DEBUG_DENALI | ||
1652 | printk("read byte -> 0x%02x\n", result); | ||
1653 | #endif | ||
1654 | return result; | ||
1655 | } | ||
1656 | |||
1657 | static void denali_select_chip(struct mtd_info *mtd, int chip) | ||
1658 | { | ||
1659 | struct denali_nand_info *denali = mtd_to_denali(mtd); | ||
1660 | #if DEBUG_DENALI | ||
1661 | printk("denali select chip %d\n", chip); | ||
1662 | #endif | ||
1663 | spin_lock_irq(&denali->irq_lock); | ||
1664 | denali->flash_bank = chip; | ||
1665 | spin_unlock_irq(&denali->irq_lock); | ||
1666 | } | ||
1667 | |||
1668 | static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) | ||
1669 | { | ||
1670 | struct denali_nand_info *denali = mtd_to_denali(mtd); | ||
1671 | int status = denali->status; | ||
1672 | denali->status = 0; | ||
1673 | |||
1674 | #if DEBUG_DENALI | ||
1675 | printk("waitfunc %d\n", status); | ||
1676 | #endif | ||
1677 | return status; | ||
1678 | } | ||
1679 | |||
1680 | static void denali_erase(struct mtd_info *mtd, int page) | ||
1681 | { | ||
1682 | struct denali_nand_info *denali = mtd_to_denali(mtd); | ||
1683 | |||
1684 | uint32_t cmd = 0x0, irq_status = 0; | ||
1685 | |||
1686 | #if DEBUG_DENALI | ||
1687 | printk("erase page: %d\n", page); | ||
1688 | #endif | ||
1689 | /* clear interrupts */ | ||
1690 | clear_interrupts(denali); | ||
1691 | |||
1692 | /* setup page read request for access type */ | ||
1693 | cmd = MODE_10 | BANK(denali->flash_bank) | page; | ||
1694 | index_addr(denali, (uint32_t)cmd, 0x1); | ||
1695 | |||
1696 | /* wait for erase to complete or failure to occur */ | ||
1697 | irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP | | ||
1698 | INTR_STATUS0__ERASE_FAIL); | ||
1699 | |||
1700 | denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL : | ||
1701 | PASS; | ||
1702 | } | ||
1703 | |||
1704 | static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, | ||
1705 | int page) | ||
1706 | { | ||
1707 | struct denali_nand_info *denali = mtd_to_denali(mtd); | ||
1708 | |||
1709 | #if DEBUG_DENALI | ||
1710 | printk("cmdfunc: 0x%x %d %d\n", cmd, col, page); | ||
1711 | #endif | ||
1712 | switch (cmd) | ||
1713 | { | ||
1714 | case NAND_CMD_PAGEPROG: | ||
1715 | break; | ||
1716 | case NAND_CMD_STATUS: | ||
1717 | read_status(denali); | ||
1718 | break; | ||
1719 | case NAND_CMD_READID: | ||
1720 | reset_buf(denali); | ||
1721 | if (denali->flash_bank < denali->total_used_banks) | ||
1722 | { | ||
1723 | /* write manufacturer information into nand | ||
1724 | buffer for NAND subsystem to fetch. | ||
1725 | */ | ||
1726 | write_byte_to_buf(denali, denali->dev_info.wDeviceMaker); | ||
1727 | write_byte_to_buf(denali, denali->dev_info.wDeviceID); | ||
1728 | write_byte_to_buf(denali, denali->dev_info.bDeviceParam0); | ||
1729 | write_byte_to_buf(denali, denali->dev_info.bDeviceParam1); | ||
1730 | write_byte_to_buf(denali, denali->dev_info.bDeviceParam2); | ||
1731 | } | ||
1732 | else | ||
1733 | { | ||
1734 | int i; | ||
1735 | for (i = 0; i < 5; i++) | ||
1736 | write_byte_to_buf(denali, 0xff); | ||
1737 | } | ||
1738 | break; | ||
1739 | case NAND_CMD_READ0: | ||
1740 | case NAND_CMD_SEQIN: | ||
1741 | denali->page = page; | ||
1742 | break; | ||
1743 | case NAND_CMD_RESET: | ||
1744 | reset_bank(denali); | ||
1745 | break; | ||
1746 | case NAND_CMD_READOOB: | ||
1747 | /* TODO: Read OOB data */ | ||
1748 | break; | ||
1749 | default: | ||
1750 | printk(KERN_ERR ": unsupported command received 0x%x\n", cmd); | ||
1751 | break; | ||
1752 | } | ||
1753 | } | ||
1754 | |||
1755 | /* stubs for ECC functions not used by the NAND core */ | ||
1756 | static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, | ||
1757 | uint8_t *ecc_code) | ||
1758 | { | ||
1759 | printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n"); | ||
1760 | BUG(); | ||
1761 | return -EIO; | ||
1762 | } | ||
1763 | |||
1764 | static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, | ||
1765 | uint8_t *read_ecc, uint8_t *calc_ecc) | ||
1766 | { | ||
1767 | printk(KERN_ERR "denali_ecc_correct called unexpectedly\n"); | ||
1768 | BUG(); | ||
1769 | return -EIO; | ||
1770 | } | ||
1771 | |||
1772 | static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) | ||
1773 | { | ||
1774 | printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n"); | ||
1775 | BUG(); | ||
1776 | } | ||
1777 | /* end NAND core entry points */ | ||
1778 | |||
1779 | /* Initialization code to bring the device up to a known good state */ | ||
1780 | static void denali_hw_init(struct denali_nand_info *denali) | ||
1781 | { | ||
1782 | denali_irq_init(denali); | ||
1783 | NAND_Flash_Reset(denali); | ||
1784 | denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED); | ||
1785 | denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE); | ||
1786 | |||
1787 | denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES); | ||
1788 | denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); | ||
1789 | |||
1790 | /* Should set value for these registers when init */ | ||
1791 | denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); | ||
1792 | denali_write32(1, denali->flash_reg + ECC_ENABLE); | ||
1793 | } | ||
1794 | |||
1795 | /* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */ | ||
1796 | #define ECC_BYTES_SLC 4 * (2048 / ECC_SECTOR_SIZE) | ||
1797 | static struct nand_ecclayout nand_oob_slc = { | ||
1798 | .eccbytes = 4, | ||
1799 | .eccpos = { 0, 1, 2, 3 }, /* not used */ | ||
1800 | .oobfree = {{ | ||
1801 | .offset = ECC_BYTES_SLC, | ||
1802 | .length = 64 - ECC_BYTES_SLC | ||
1803 | }} | ||
1804 | }; | ||
1805 | |||
1806 | #define ECC_BYTES_MLC 14 * (2048 / ECC_SECTOR_SIZE) | ||
1807 | static struct nand_ecclayout nand_oob_mlc_14bit = { | ||
1808 | .eccbytes = 14, | ||
1809 | .eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */ | ||
1810 | .oobfree = {{ | ||
1811 | .offset = ECC_BYTES_MLC, | ||
1812 | .length = 64 - ECC_BYTES_MLC | ||
1813 | }} | ||
1814 | }; | ||
1815 | |||
1816 | static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; | ||
1817 | static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; | ||
1818 | |||
1819 | static struct nand_bbt_descr bbt_main_descr = { | ||
1820 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | ||
1821 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | ||
1822 | .offs = 8, | ||
1823 | .len = 4, | ||
1824 | .veroffs = 12, | ||
1825 | .maxblocks = 4, | ||
1826 | .pattern = bbt_pattern, | ||
1827 | }; | ||
1828 | |||
1829 | static struct nand_bbt_descr bbt_mirror_descr = { | ||
1830 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | ||
1831 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | ||
1832 | .offs = 8, | ||
1833 | .len = 4, | ||
1834 | .veroffs = 12, | ||
1835 | .maxblocks = 4, | ||
1836 | .pattern = mirror_pattern, | ||
1837 | }; | ||
1838 | |||
1839 | /* initalize driver data structures */ | ||
1840 | void denali_drv_init(struct denali_nand_info *denali) | ||
1841 | { | ||
1842 | denali->idx = 0; | ||
1843 | |||
1844 | /* setup interrupt handler */ | ||
1845 | /* the completion object will be used to notify | ||
1846 | * the callee that the interrupt is done */ | ||
1847 | init_completion(&denali->complete); | ||
1848 | |||
1849 | /* the spinlock will be used to synchronize the ISR | ||
1850 | * with any element that might be access shared | ||
1851 | * data (interrupt status) */ | ||
1852 | spin_lock_init(&denali->irq_lock); | ||
1853 | |||
1854 | /* indicate that MTD has not selected a valid bank yet */ | ||
1855 | denali->flash_bank = CHIP_SELECT_INVALID; | ||
1856 | |||
1857 | /* initialize our irq_status variable to indicate no interrupts */ | ||
1858 | denali->irq_status = 0; | ||
1859 | } | ||
1860 | |||
1861 | /* driver entry point */ | ||
1862 | static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) | ||
1863 | { | ||
1864 | int ret = -ENODEV; | ||
1865 | resource_size_t csr_base, mem_base; | ||
1866 | unsigned long csr_len, mem_len; | ||
1867 | struct denali_nand_info *denali; | ||
1868 | |||
1869 | nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n", | ||
1870 | __FILE__, __LINE__, __func__); | ||
1871 | |||
1872 | denali = kzalloc(sizeof(*denali), GFP_KERNEL); | ||
1873 | if (!denali) | ||
1874 | return -ENOMEM; | ||
1875 | |||
1876 | ret = pci_enable_device(dev); | ||
1877 | if (ret) { | ||
1878 | printk(KERN_ERR "Spectra: pci_enable_device failed.\n"); | ||
1879 | goto failed_enable; | ||
1880 | } | ||
1881 | |||
1882 | if (id->driver_data == INTEL_CE4100) { | ||
1883 | /* Due to a silicon limitation, we can only support | ||
1884 | * ONFI timing mode 1 and below. | ||
1885 | */ | ||
1886 | if (onfi_timing_mode < -1 || onfi_timing_mode > 1) | ||
1887 | { | ||
1888 | printk("Intel CE4100 only supports ONFI timing mode 1 " | ||
1889 | "or below\n"); | ||
1890 | ret = -EINVAL; | ||
1891 | goto failed_enable; | ||
1892 | } | ||
1893 | denali->platform = INTEL_CE4100; | ||
1894 | mem_base = pci_resource_start(dev, 0); | ||
1895 | mem_len = pci_resource_len(dev, 1); | ||
1896 | csr_base = pci_resource_start(dev, 1); | ||
1897 | csr_len = pci_resource_len(dev, 1); | ||
1898 | } else { | ||
1899 | denali->platform = INTEL_MRST; | ||
1900 | csr_base = pci_resource_start(dev, 0); | ||
1901 | csr_len = pci_resource_start(dev, 0); | ||
1902 | mem_base = pci_resource_start(dev, 1); | ||
1903 | mem_len = pci_resource_len(dev, 1); | ||
1904 | if (!mem_len) { | ||
1905 | mem_base = csr_base + csr_len; | ||
1906 | mem_len = csr_len; | ||
1907 | nand_dbg_print(NAND_DBG_WARN, | ||
1908 | "Spectra: No second BAR for PCI device; assuming %08Lx\n", | ||
1909 | (uint64_t)csr_base); | ||
1910 | } | ||
1911 | } | ||
1912 | |||
1913 | /* Is 32-bit DMA supported? */ | ||
1914 | ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32)); | ||
1915 | |||
1916 | if (ret) | ||
1917 | { | ||
1918 | printk(KERN_ERR "Spectra: no usable DMA configuration\n"); | ||
1919 | goto failed_enable; | ||
1920 | } | ||
1921 | denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE, | ||
1922 | PCI_DMA_BIDIRECTIONAL); | ||
1923 | |||
1924 | if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) | ||
1925 | { | ||
1926 | printk(KERN_ERR "Spectra: failed to map DMA buffer\n"); | ||
1927 | goto failed_enable; | ||
1928 | } | ||
1929 | |||
1930 | pci_set_master(dev); | ||
1931 | denali->dev = dev; | ||
1932 | |||
1933 | ret = pci_request_regions(dev, DENALI_NAND_NAME); | ||
1934 | if (ret) { | ||
1935 | printk(KERN_ERR "Spectra: Unable to request memory regions\n"); | ||
1936 | goto failed_req_csr; | ||
1937 | } | ||
1938 | |||
1939 | denali->flash_reg = ioremap_nocache(csr_base, csr_len); | ||
1940 | if (!denali->flash_reg) { | ||
1941 | printk(KERN_ERR "Spectra: Unable to remap memory region\n"); | ||
1942 | ret = -ENOMEM; | ||
1943 | goto failed_remap_csr; | ||
1944 | } | ||
1945 | nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n", | ||
1946 | (uint64_t)csr_base, denali->flash_reg, csr_len); | ||
1947 | |||
1948 | denali->flash_mem = ioremap_nocache(mem_base, mem_len); | ||
1949 | if (!denali->flash_mem) { | ||
1950 | printk(KERN_ERR "Spectra: ioremap_nocache failed!"); | ||
1951 | iounmap(denali->flash_reg); | ||
1952 | ret = -ENOMEM; | ||
1953 | goto failed_remap_csr; | ||
1954 | } | ||
1955 | |||
1956 | nand_dbg_print(NAND_DBG_WARN, | ||
1957 | "Spectra: Remapped flash base address: " | ||
1958 | "0x%p, len: %ld\n", | ||
1959 | denali->flash_mem, csr_len); | ||
1960 | |||
1961 | denali_hw_init(denali); | ||
1962 | denali_drv_init(denali); | ||
1963 | |||
1964 | nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq); | ||
1965 | if (request_irq(dev->irq, denali_isr, IRQF_SHARED, | ||
1966 | DENALI_NAND_NAME, denali)) { | ||
1967 | printk(KERN_ERR "Spectra: Unable to allocate IRQ\n"); | ||
1968 | ret = -ENODEV; | ||
1969 | goto failed_request_irq; | ||
1970 | } | ||
1971 | |||
1972 | /* now that our ISR is registered, we can enable interrupts */ | ||
1973 | NAND_LLD_Enable_Disable_Interrupts(denali, true); | ||
1974 | |||
1975 | pci_set_drvdata(dev, denali); | ||
1976 | |||
1977 | NAND_Read_Device_ID(denali); | ||
1978 | |||
1979 | /* MTD supported page sizes vary by kernel. We validate our | ||
1980 | kernel supports the device here. | ||
1981 | */ | ||
1982 | if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) | ||
1983 | { | ||
1984 | ret = -ENODEV; | ||
1985 | printk(KERN_ERR "Spectra: device size not supported by this " | ||
1986 | "version of MTD."); | ||
1987 | goto failed_nand; | ||
1988 | } | ||
1989 | |||
1990 | nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:" | ||
1991 | "acc_clks: %d, re_2_we: %d, we_2_re: %d," | ||
1992 | "addr_2_data: %d, rdwr_en_lo_cnt: %d, " | ||
1993 | "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", | ||
1994 | ioread32(denali->flash_reg + ACC_CLKS), | ||
1995 | ioread32(denali->flash_reg + RE_2_WE), | ||
1996 | ioread32(denali->flash_reg + WE_2_RE), | ||
1997 | ioread32(denali->flash_reg + ADDR_2_DATA), | ||
1998 | ioread32(denali->flash_reg + RDWR_EN_LO_CNT), | ||
1999 | ioread32(denali->flash_reg + RDWR_EN_HI_CNT), | ||
2000 | ioread32(denali->flash_reg + CS_SETUP_CNT)); | ||
2001 | |||
2002 | denali->mtd.name = "Denali NAND"; | ||
2003 | denali->mtd.owner = THIS_MODULE; | ||
2004 | denali->mtd.priv = &denali->nand; | ||
2005 | |||
2006 | /* register the driver with the NAND core subsystem */ | ||
2007 | denali->nand.select_chip = denali_select_chip; | ||
2008 | denali->nand.cmdfunc = denali_cmdfunc; | ||
2009 | denali->nand.read_byte = denali_read_byte; | ||
2010 | denali->nand.waitfunc = denali_waitfunc; | ||
2011 | |||
2012 | /* scan for NAND devices attached to the controller | ||
2013 | * this is the first stage in a two step process to register | ||
2014 | * with the nand subsystem */ | ||
2015 | if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) | ||
2016 | { | ||
2017 | ret = -ENXIO; | ||
2018 | goto failed_nand; | ||
2019 | } | ||
2020 | |||
2021 | /* second stage of the NAND scan | ||
2022 | * this stage requires information regarding ECC and | ||
2023 | * bad block management. */ | ||
2024 | |||
2025 | /* Bad block management */ | ||
2026 | denali->nand.bbt_td = &bbt_main_descr; | ||
2027 | denali->nand.bbt_md = &bbt_mirror_descr; | ||
2028 | |||
2029 | /* skip the scan for now until we have OOB read and write support */ | ||
2030 | denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN; | ||
2031 | denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME; | ||
2032 | |||
2033 | if (denali->dev_info.MLCDevice) | ||
2034 | { | ||
2035 | denali->nand.ecc.layout = &nand_oob_mlc_14bit; | ||
2036 | denali->nand.ecc.bytes = ECC_BYTES_MLC; | ||
2037 | } | ||
2038 | else /* SLC */ | ||
2039 | { | ||
2040 | denali->nand.ecc.layout = &nand_oob_slc; | ||
2041 | denali->nand.ecc.bytes = ECC_BYTES_SLC; | ||
2042 | } | ||
2043 | |||
2044 | /* These functions are required by the NAND core framework, otherwise, | ||
2045 | the NAND core will assert. However, we don't need them, so we'll stub | ||
2046 | them out. */ | ||
2047 | denali->nand.ecc.calculate = denali_ecc_calculate; | ||
2048 | denali->nand.ecc.correct = denali_ecc_correct; | ||
2049 | denali->nand.ecc.hwctl = denali_ecc_hwctl; | ||
2050 | |||
2051 | /* override the default read operations */ | ||
2052 | denali->nand.ecc.size = denali->mtd.writesize; | ||
2053 | denali->nand.ecc.read_page = denali_read_page; | ||
2054 | denali->nand.ecc.read_page_raw = denali_read_page_raw; | ||
2055 | denali->nand.ecc.write_page = denali_write_page; | ||
2056 | denali->nand.ecc.write_page_raw = denali_write_page_raw; | ||
2057 | denali->nand.ecc.read_oob = denali_read_oob; | ||
2058 | denali->nand.ecc.write_oob = denali_write_oob; | ||
2059 | denali->nand.erase_cmd = denali_erase; | ||
2060 | |||
2061 | if (nand_scan_tail(&denali->mtd)) | ||
2062 | { | ||
2063 | ret = -ENXIO; | ||
2064 | goto failed_nand; | ||
2065 | } | ||
2066 | |||
2067 | ret = add_mtd_device(&denali->mtd); | ||
2068 | if (ret) { | ||
2069 | printk(KERN_ERR "Spectra: Failed to register MTD device: %d\n", ret); | ||
2070 | goto failed_nand; | ||
2071 | } | ||
2072 | return 0; | ||
2073 | |||
2074 | failed_nand: | ||
2075 | denali_irq_cleanup(dev->irq, denali); | ||
2076 | failed_request_irq: | ||
2077 | iounmap(denali->flash_reg); | ||
2078 | iounmap(denali->flash_mem); | ||
2079 | failed_remap_csr: | ||
2080 | pci_release_regions(dev); | ||
2081 | failed_req_csr: | ||
2082 | pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, | ||
2083 | PCI_DMA_BIDIRECTIONAL); | ||
2084 | failed_enable: | ||
2085 | kfree(denali); | ||
2086 | return ret; | ||
2087 | } | ||
2088 | |||
2089 | /* driver exit point */ | ||
2090 | static void denali_pci_remove(struct pci_dev *dev) | ||
2091 | { | ||
2092 | struct denali_nand_info *denali = pci_get_drvdata(dev); | ||
2093 | |||
2094 | nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n", | ||
2095 | __FILE__, __LINE__, __func__); | ||
2096 | |||
2097 | nand_release(&denali->mtd); | ||
2098 | del_mtd_device(&denali->mtd); | ||
2099 | |||
2100 | denali_irq_cleanup(dev->irq, denali); | ||
2101 | |||
2102 | iounmap(denali->flash_reg); | ||
2103 | iounmap(denali->flash_mem); | ||
2104 | pci_release_regions(dev); | ||
2105 | pci_disable_device(dev); | ||
2106 | pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE, | ||
2107 | PCI_DMA_BIDIRECTIONAL); | ||
2108 | pci_set_drvdata(dev, NULL); | ||
2109 | kfree(denali); | ||
2110 | } | ||
2111 | |||
2112 | MODULE_DEVICE_TABLE(pci, denali_pci_ids); | ||
2113 | |||
2114 | static struct pci_driver denali_pci_driver = { | ||
2115 | .name = DENALI_NAND_NAME, | ||
2116 | .id_table = denali_pci_ids, | ||
2117 | .probe = denali_pci_probe, | ||
2118 | .remove = denali_pci_remove, | ||
2119 | }; | ||
2120 | |||
2121 | static int __devinit denali_init(void) | ||
2122 | { | ||
2123 | printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__, __TIME__); | ||
2124 | return pci_register_driver(&denali_pci_driver); | ||
2125 | } | ||
2126 | |||
2127 | /* Free memory */ | ||
2128 | static void __devexit denali_exit(void) | ||
2129 | { | ||
2130 | pci_unregister_driver(&denali_pci_driver); | ||
2131 | } | ||
2132 | |||
2133 | module_init(denali_init); | ||
2134 | module_exit(denali_exit); | ||
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h new file mode 100644 index 00000000000..422a29ab2f6 --- /dev/null +++ b/drivers/mtd/nand/denali.h | |||
@@ -0,0 +1,816 @@ | |||
1 | /* | ||
2 | * NAND Flash Controller Device Driver | ||
3 | * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify it | ||
6 | * under the terms and conditions of the GNU General Public License, | ||
7 | * version 2, as published by the Free Software Foundation. | ||
8 | * | ||
9 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
12 | * more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License along with | ||
15 | * this program; if not, write to the Free Software Foundation, Inc., | ||
16 | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
17 | * | ||
18 | */ | ||
19 | |||
20 | #include <linux/mtd/nand.h> | ||
21 | |||
22 | #define DEVICE_RESET 0x0 | ||
23 | #define DEVICE_RESET__BANK0 0x0001 | ||
24 | #define DEVICE_RESET__BANK1 0x0002 | ||
25 | #define DEVICE_RESET__BANK2 0x0004 | ||
26 | #define DEVICE_RESET__BANK3 0x0008 | ||
27 | |||
28 | #define TRANSFER_SPARE_REG 0x10 | ||
29 | #define TRANSFER_SPARE_REG__FLAG 0x0001 | ||
30 | |||
31 | #define LOAD_WAIT_CNT 0x20 | ||
32 | #define LOAD_WAIT_CNT__VALUE 0xffff | ||
33 | |||
34 | #define PROGRAM_WAIT_CNT 0x30 | ||
35 | #define PROGRAM_WAIT_CNT__VALUE 0xffff | ||
36 | |||
37 | #define ERASE_WAIT_CNT 0x40 | ||
38 | #define ERASE_WAIT_CNT__VALUE 0xffff | ||
39 | |||
40 | #define INT_MON_CYCCNT 0x50 | ||
41 | #define INT_MON_CYCCNT__VALUE 0xffff | ||
42 | |||
43 | #define RB_PIN_ENABLED 0x60 | ||
44 | #define RB_PIN_ENABLED__BANK0 0x0001 | ||
45 | #define RB_PIN_ENABLED__BANK1 0x0002 | ||
46 | #define RB_PIN_ENABLED__BANK2 0x0004 | ||
47 | #define RB_PIN_ENABLED__BANK3 0x0008 | ||
48 | |||
49 | #define MULTIPLANE_OPERATION 0x70 | ||
50 | #define MULTIPLANE_OPERATION__FLAG 0x0001 | ||
51 | |||
52 | #define MULTIPLANE_READ_ENABLE 0x80 | ||
53 | #define MULTIPLANE_READ_ENABLE__FLAG 0x0001 | ||
54 | |||
55 | #define COPYBACK_DISABLE 0x90 | ||
56 | #define COPYBACK_DISABLE__FLAG 0x0001 | ||
57 | |||
58 | #define CACHE_WRITE_ENABLE 0xa0 | ||
59 | #define CACHE_WRITE_ENABLE__FLAG 0x0001 | ||
60 | |||
61 | #define CACHE_READ_ENABLE 0xb0 | ||
62 | #define CACHE_READ_ENABLE__FLAG 0x0001 | ||
63 | |||
64 | #define PREFETCH_MODE 0xc0 | ||
65 | #define PREFETCH_MODE__PREFETCH_EN 0x0001 | ||
66 | #define PREFETCH_MODE__PREFETCH_BURST_LENGTH 0xfff0 | ||
67 | |||
68 | #define CHIP_ENABLE_DONT_CARE 0xd0 | ||
69 | #define CHIP_EN_DONT_CARE__FLAG 0x01 | ||
70 | |||
71 | #define ECC_ENABLE 0xe0 | ||
72 | #define ECC_ENABLE__FLAG 0x0001 | ||
73 | |||
74 | #define GLOBAL_INT_ENABLE 0xf0 | ||
75 | #define GLOBAL_INT_EN_FLAG 0x01 | ||
76 | |||
77 | #define WE_2_RE 0x100 | ||
78 | #define WE_2_RE__VALUE 0x003f | ||
79 | |||
80 | #define ADDR_2_DATA 0x110 | ||
81 | #define ADDR_2_DATA__VALUE 0x003f | ||
82 | |||
83 | #define RE_2_WE 0x120 | ||
84 | #define RE_2_WE__VALUE 0x003f | ||
85 | |||
86 | #define ACC_CLKS 0x130 | ||
87 | #define ACC_CLKS__VALUE 0x000f | ||
88 | |||
89 | #define NUMBER_OF_PLANES 0x140 | ||
90 | #define NUMBER_OF_PLANES__VALUE 0x0007 | ||
91 | |||
92 | #define PAGES_PER_BLOCK 0x150 | ||
93 | #define PAGES_PER_BLOCK__VALUE 0xffff | ||
94 | |||
95 | #define DEVICE_WIDTH 0x160 | ||
96 | #define DEVICE_WIDTH__VALUE 0x0003 | ||
97 | |||
98 | #define DEVICE_MAIN_AREA_SIZE 0x170 | ||
99 | #define DEVICE_MAIN_AREA_SIZE__VALUE 0xffff | ||
100 | |||
101 | #define DEVICE_SPARE_AREA_SIZE 0x180 | ||
102 | #define DEVICE_SPARE_AREA_SIZE__VALUE 0xffff | ||
103 | |||
104 | #define TWO_ROW_ADDR_CYCLES 0x190 | ||
105 | #define TWO_ROW_ADDR_CYCLES__FLAG 0x0001 | ||
106 | |||
107 | #define MULTIPLANE_ADDR_RESTRICT 0x1a0 | ||
108 | #define MULTIPLANE_ADDR_RESTRICT__FLAG 0x0001 | ||
109 | |||
110 | #define ECC_CORRECTION 0x1b0 | ||
111 | #define ECC_CORRECTION__VALUE 0x001f | ||
112 | |||
113 | #define READ_MODE 0x1c0 | ||
114 | #define READ_MODE__VALUE 0x000f | ||
115 | |||
116 | #define WRITE_MODE 0x1d0 | ||
117 | #define WRITE_MODE__VALUE 0x000f | ||
118 | |||
119 | #define COPYBACK_MODE 0x1e0 | ||
120 | #define COPYBACK_MODE__VALUE 0x000f | ||
121 | |||
122 | #define RDWR_EN_LO_CNT 0x1f0 | ||
123 | #define RDWR_EN_LO_CNT__VALUE 0x001f | ||
124 | |||
125 | #define RDWR_EN_HI_CNT 0x200 | ||
126 | #define RDWR_EN_HI_CNT__VALUE 0x001f | ||
127 | |||
128 | #define MAX_RD_DELAY 0x210 | ||
129 | #define MAX_RD_DELAY__VALUE 0x000f | ||
130 | |||
131 | #define CS_SETUP_CNT 0x220 | ||
132 | #define CS_SETUP_CNT__VALUE 0x001f | ||
133 | |||
134 | #define SPARE_AREA_SKIP_BYTES 0x230 | ||
135 | #define SPARE_AREA_SKIP_BYTES__VALUE 0x003f | ||
136 | |||
137 | #define SPARE_AREA_MARKER 0x240 | ||
138 | #define SPARE_AREA_MARKER__VALUE 0xffff | ||
139 | |||
140 | #define DEVICES_CONNECTED 0x250 | ||
141 | #define DEVICES_CONNECTED__VALUE 0x0007 | ||
142 | |||
143 | #define DIE_MASK 0x260 | ||
144 | #define DIE_MASK__VALUE 0x00ff | ||
145 | |||
146 | #define FIRST_BLOCK_OF_NEXT_PLANE 0x270 | ||
147 | #define FIRST_BLOCK_OF_NEXT_PLANE__VALUE 0xffff | ||
148 | |||
149 | #define WRITE_PROTECT 0x280 | ||
150 | #define WRITE_PROTECT__FLAG 0x0001 | ||
151 | |||
152 | #define RE_2_RE 0x290 | ||
153 | #define RE_2_RE__VALUE 0x003f | ||
154 | |||
155 | #define MANUFACTURER_ID 0x300 | ||
156 | #define MANUFACTURER_ID__VALUE 0x00ff | ||
157 | |||
158 | #define DEVICE_ID 0x310 | ||
159 | #define DEVICE_ID__VALUE 0x00ff | ||
160 | |||
161 | #define DEVICE_PARAM_0 0x320 | ||
162 | #define DEVICE_PARAM_0__VALUE 0x00ff | ||
163 | |||
164 | #define DEVICE_PARAM_1 0x330 | ||
165 | #define DEVICE_PARAM_1__VALUE 0x00ff | ||
166 | |||
167 | #define DEVICE_PARAM_2 0x340 | ||
168 | #define DEVICE_PARAM_2__VALUE 0x00ff | ||
169 | |||
170 | #define LOGICAL_PAGE_DATA_SIZE 0x350 | ||
171 | #define LOGICAL_PAGE_DATA_SIZE__VALUE 0xffff | ||
172 | |||
173 | #define LOGICAL_PAGE_SPARE_SIZE 0x360 | ||
174 | #define LOGICAL_PAGE_SPARE_SIZE__VALUE 0xffff | ||
175 | |||
176 | #define REVISION 0x370 | ||
177 | #define REVISION__VALUE 0xffff | ||
178 | |||
179 | #define ONFI_DEVICE_FEATURES 0x380 | ||
180 | #define ONFI_DEVICE_FEATURES__VALUE 0x003f | ||
181 | |||
182 | #define ONFI_OPTIONAL_COMMANDS 0x390 | ||
183 | #define ONFI_OPTIONAL_COMMANDS__VALUE 0x003f | ||
184 | |||
185 | #define ONFI_TIMING_MODE 0x3a0 | ||
186 | #define ONFI_TIMING_MODE__VALUE 0x003f | ||
187 | |||
188 | #define ONFI_PGM_CACHE_TIMING_MODE 0x3b0 | ||
189 | #define ONFI_PGM_CACHE_TIMING_MODE__VALUE 0x003f | ||
190 | |||
191 | #define ONFI_DEVICE_NO_OF_LUNS 0x3c0 | ||
192 | #define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS 0x00ff | ||
193 | #define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE 0x0100 | ||
194 | |||
195 | #define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0 | ||
196 | #define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE 0xffff | ||
197 | |||
198 | #define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0 | ||
199 | #define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE 0xffff | ||
200 | |||
201 | #define FEATURES 0x3f0 | ||
202 | #define FEATURES__N_BANKS 0x0003 | ||
203 | #define FEATURES__ECC_MAX_ERR 0x003c | ||
204 | #define FEATURES__DMA 0x0040 | ||
205 | #define FEATURES__CMD_DMA 0x0080 | ||
206 | #define FEATURES__PARTITION 0x0100 | ||
207 | #define FEATURES__XDMA_SIDEBAND 0x0200 | ||
208 | #define FEATURES__GPREG 0x0400 | ||
209 | #define FEATURES__INDEX_ADDR 0x0800 | ||
210 | |||
211 | #define TRANSFER_MODE 0x400 | ||
212 | #define TRANSFER_MODE__VALUE 0x0003 | ||
213 | |||
214 | #define INTR_STATUS0 0x410 | ||
215 | #define INTR_STATUS0__ECC_TRANSACTION_DONE 0x0001 | ||
216 | #define INTR_STATUS0__ECC_ERR 0x0002 | ||
217 | #define INTR_STATUS0__DMA_CMD_COMP 0x0004 | ||
218 | #define INTR_STATUS0__TIME_OUT 0x0008 | ||
219 | #define INTR_STATUS0__PROGRAM_FAIL 0x0010 | ||
220 | #define INTR_STATUS0__ERASE_FAIL 0x0020 | ||
221 | #define INTR_STATUS0__LOAD_COMP 0x0040 | ||
222 | #define INTR_STATUS0__PROGRAM_COMP 0x0080 | ||
223 | #define INTR_STATUS0__ERASE_COMP 0x0100 | ||
224 | #define INTR_STATUS0__PIPE_CPYBCK_CMD_COMP 0x0200 | ||
225 | #define INTR_STATUS0__LOCKED_BLK 0x0400 | ||
226 | #define INTR_STATUS0__UNSUP_CMD 0x0800 | ||
227 | #define INTR_STATUS0__INT_ACT 0x1000 | ||
228 | #define INTR_STATUS0__RST_COMP 0x2000 | ||
229 | #define INTR_STATUS0__PIPE_CMD_ERR 0x4000 | ||
230 | #define INTR_STATUS0__PAGE_XFER_INC 0x8000 | ||
231 | |||
232 | #define INTR_EN0 0x420 | ||
233 | #define INTR_EN0__ECC_TRANSACTION_DONE 0x0001 | ||
234 | #define INTR_EN0__ECC_ERR 0x0002 | ||
235 | #define INTR_EN0__DMA_CMD_COMP 0x0004 | ||
236 | #define INTR_EN0__TIME_OUT 0x0008 | ||
237 | #define INTR_EN0__PROGRAM_FAIL 0x0010 | ||
238 | #define INTR_EN0__ERASE_FAIL 0x0020 | ||
239 | #define INTR_EN0__LOAD_COMP 0x0040 | ||
240 | #define INTR_EN0__PROGRAM_COMP 0x0080 | ||
241 | #define INTR_EN0__ERASE_COMP 0x0100 | ||
242 | #define INTR_EN0__PIPE_CPYBCK_CMD_COMP 0x0200 | ||
243 | #define INTR_EN0__LOCKED_BLK 0x0400 | ||
244 | #define INTR_EN0__UNSUP_CMD 0x0800 | ||
245 | #define INTR_EN0__INT_ACT 0x1000 | ||
246 | #define INTR_EN0__RST_COMP 0x2000 | ||
247 | #define INTR_EN0__PIPE_CMD_ERR 0x4000 | ||
248 | #define INTR_EN0__PAGE_XFER_INC 0x8000 | ||
249 | |||
250 | #define PAGE_CNT0 0x430 | ||
251 | #define PAGE_CNT0__VALUE 0x00ff | ||
252 | |||
253 | #define ERR_PAGE_ADDR0 0x440 | ||
254 | #define ERR_PAGE_ADDR0__VALUE 0xffff | ||
255 | |||
256 | #define ERR_BLOCK_ADDR0 0x450 | ||
257 | #define ERR_BLOCK_ADDR0__VALUE 0xffff | ||
258 | |||
259 | #define INTR_STATUS1 0x460 | ||
260 | #define INTR_STATUS1__ECC_TRANSACTION_DONE 0x0001 | ||
261 | #define INTR_STATUS1__ECC_ERR 0x0002 | ||
262 | #define INTR_STATUS1__DMA_CMD_COMP 0x0004 | ||
263 | #define INTR_STATUS1__TIME_OUT 0x0008 | ||
264 | #define INTR_STATUS1__PROGRAM_FAIL 0x0010 | ||
265 | #define INTR_STATUS1__ERASE_FAIL 0x0020 | ||
266 | #define INTR_STATUS1__LOAD_COMP 0x0040 | ||
267 | #define INTR_STATUS1__PROGRAM_COMP 0x0080 | ||
268 | #define INTR_STATUS1__ERASE_COMP 0x0100 | ||
269 | #define INTR_STATUS1__PIPE_CPYBCK_CMD_COMP 0x0200 | ||
270 | #define INTR_STATUS1__LOCKED_BLK 0x0400 | ||
271 | #define INTR_STATUS1__UNSUP_CMD 0x0800 | ||
272 | #define INTR_STATUS1__INT_ACT 0x1000 | ||
273 | #define INTR_STATUS1__RST_COMP 0x2000 | ||
274 | #define INTR_STATUS1__PIPE_CMD_ERR 0x4000 | ||
275 | #define INTR_STATUS1__PAGE_XFER_INC 0x8000 | ||
276 | |||
277 | #define INTR_EN1 0x470 | ||
278 | #define INTR_EN1__ECC_TRANSACTION_DONE 0x0001 | ||
279 | #define INTR_EN1__ECC_ERR 0x0002 | ||
280 | #define INTR_EN1__DMA_CMD_COMP 0x0004 | ||
281 | #define INTR_EN1__TIME_OUT 0x0008 | ||
282 | #define INTR_EN1__PROGRAM_FAIL 0x0010 | ||
283 | #define INTR_EN1__ERASE_FAIL 0x0020 | ||
284 | #define INTR_EN1__LOAD_COMP 0x0040 | ||
285 | #define INTR_EN1__PROGRAM_COMP 0x0080 | ||
286 | #define INTR_EN1__ERASE_COMP 0x0100 | ||
287 | #define INTR_EN1__PIPE_CPYBCK_CMD_COMP 0x0200 | ||
288 | #define INTR_EN1__LOCKED_BLK 0x0400 | ||
289 | #define INTR_EN1__UNSUP_CMD 0x0800 | ||
290 | #define INTR_EN1__INT_ACT 0x1000 | ||
291 | #define INTR_EN1__RST_COMP 0x2000 | ||
292 | #define INTR_EN1__PIPE_CMD_ERR 0x4000 | ||
293 | #define INTR_EN1__PAGE_XFER_INC 0x8000 | ||
294 | |||
295 | #define PAGE_CNT1 0x480 | ||
296 | #define PAGE_CNT1__VALUE 0x00ff | ||
297 | |||
298 | #define ERR_PAGE_ADDR1 0x490 | ||
299 | #define ERR_PAGE_ADDR1__VALUE 0xffff | ||
300 | |||
301 | #define ERR_BLOCK_ADDR1 0x4a0 | ||
302 | #define ERR_BLOCK_ADDR1__VALUE 0xffff | ||
303 | |||
304 | #define INTR_STATUS2 0x4b0 | ||
305 | #define INTR_STATUS2__ECC_TRANSACTION_DONE 0x0001 | ||
306 | #define INTR_STATUS2__ECC_ERR 0x0002 | ||
307 | #define INTR_STATUS2__DMA_CMD_COMP 0x0004 | ||
308 | #define INTR_STATUS2__TIME_OUT 0x0008 | ||
309 | #define INTR_STATUS2__PROGRAM_FAIL 0x0010 | ||
310 | #define INTR_STATUS2__ERASE_FAIL 0x0020 | ||
311 | #define INTR_STATUS2__LOAD_COMP 0x0040 | ||
312 | #define INTR_STATUS2__PROGRAM_COMP 0x0080 | ||
313 | #define INTR_STATUS2__ERASE_COMP 0x0100 | ||
314 | #define INTR_STATUS2__PIPE_CPYBCK_CMD_COMP 0x0200 | ||
315 | #define INTR_STATUS2__LOCKED_BLK 0x0400 | ||
316 | #define INTR_STATUS2__UNSUP_CMD 0x0800 | ||
317 | #define INTR_STATUS2__INT_ACT 0x1000 | ||
318 | #define INTR_STATUS2__RST_COMP 0x2000 | ||
319 | #define INTR_STATUS2__PIPE_CMD_ERR 0x4000 | ||
320 | #define INTR_STATUS2__PAGE_XFER_INC 0x8000 | ||
321 | |||
322 | #define INTR_EN2 0x4c0 | ||
323 | #define INTR_EN2__ECC_TRANSACTION_DONE 0x0001 | ||
324 | #define INTR_EN2__ECC_ERR 0x0002 | ||
325 | #define INTR_EN2__DMA_CMD_COMP 0x0004 | ||
326 | #define INTR_EN2__TIME_OUT 0x0008 | ||
327 | #define INTR_EN2__PROGRAM_FAIL 0x0010 | ||
328 | #define INTR_EN2__ERASE_FAIL 0x0020 | ||
329 | #define INTR_EN2__LOAD_COMP 0x0040 | ||
330 | #define INTR_EN2__PROGRAM_COMP 0x0080 | ||
331 | #define INTR_EN2__ERASE_COMP 0x0100 | ||
332 | #define INTR_EN2__PIPE_CPYBCK_CMD_COMP 0x0200 | ||
333 | #define INTR_EN2__LOCKED_BLK 0x0400 | ||
334 | #define INTR_EN2__UNSUP_CMD 0x0800 | ||
335 | #define INTR_EN2__INT_ACT 0x1000 | ||
336 | #define INTR_EN2__RST_COMP 0x2000 | ||
337 | #define INTR_EN2__PIPE_CMD_ERR 0x4000 | ||
338 | #define INTR_EN2__PAGE_XFER_INC 0x8000 | ||
339 | |||
340 | #define PAGE_CNT2 0x4d0 | ||
341 | #define PAGE_CNT2__VALUE 0x00ff | ||
342 | |||
343 | #define ERR_PAGE_ADDR2 0x4e0 | ||
344 | #define ERR_PAGE_ADDR2__VALUE 0xffff | ||
345 | |||
346 | #define ERR_BLOCK_ADDR2 0x4f0 | ||
347 | #define ERR_BLOCK_ADDR2__VALUE 0xffff | ||
348 | |||
349 | #define INTR_STATUS3 0x500 | ||
350 | #define INTR_STATUS3__ECC_TRANSACTION_DONE 0x0001 | ||
351 | #define INTR_STATUS3__ECC_ERR 0x0002 | ||
352 | #define INTR_STATUS3__DMA_CMD_COMP 0x0004 | ||
353 | #define INTR_STATUS3__TIME_OUT 0x0008 | ||
354 | #define INTR_STATUS3__PROGRAM_FAIL 0x0010 | ||
355 | #define INTR_STATUS3__ERASE_FAIL 0x0020 | ||
356 | #define INTR_STATUS3__LOAD_COMP 0x0040 | ||
357 | #define INTR_STATUS3__PROGRAM_COMP 0x0080 | ||
358 | #define INTR_STATUS3__ERASE_COMP 0x0100 | ||
359 | #define INTR_STATUS3__PIPE_CPYBCK_CMD_COMP 0x0200 | ||
360 | #define INTR_STATUS3__LOCKED_BLK 0x0400 | ||
361 | #define INTR_STATUS3__UNSUP_CMD 0x0800 | ||
362 | #define INTR_STATUS3__INT_ACT 0x1000 | ||
363 | #define INTR_STATUS3__RST_COMP 0x2000 | ||
364 | #define INTR_STATUS3__PIPE_CMD_ERR 0x4000 | ||
365 | #define INTR_STATUS3__PAGE_XFER_INC 0x8000 | ||
366 | |||
367 | #define INTR_EN3 0x510 | ||
368 | #define INTR_EN3__ECC_TRANSACTION_DONE 0x0001 | ||
369 | #define INTR_EN3__ECC_ERR 0x0002 | ||
370 | #define INTR_EN3__DMA_CMD_COMP 0x0004 | ||
371 | #define INTR_EN3__TIME_OUT 0x0008 | ||
372 | #define INTR_EN3__PROGRAM_FAIL 0x0010 | ||
373 | #define INTR_EN3__ERASE_FAIL 0x0020 | ||
374 | #define INTR_EN3__LOAD_COMP 0x0040 | ||
375 | #define INTR_EN3__PROGRAM_COMP 0x0080 | ||
376 | #define INTR_EN3__ERASE_COMP 0x0100 | ||
377 | #define INTR_EN3__PIPE_CPYBCK_CMD_COMP 0x0200 | ||
378 | #define INTR_EN3__LOCKED_BLK 0x0400 | ||
379 | #define INTR_EN3__UNSUP_CMD 0x0800 | ||
380 | #define INTR_EN3__INT_ACT 0x1000 | ||
381 | #define INTR_EN3__RST_COMP 0x2000 | ||
382 | #define INTR_EN3__PIPE_CMD_ERR 0x4000 | ||
383 | #define INTR_EN3__PAGE_XFER_INC 0x8000 | ||
384 | |||
385 | #define PAGE_CNT3 0x520 | ||
386 | #define PAGE_CNT3__VALUE 0x00ff | ||
387 | |||
388 | #define ERR_PAGE_ADDR3 0x530 | ||
389 | #define ERR_PAGE_ADDR3__VALUE 0xffff | ||
390 | |||
391 | #define ERR_BLOCK_ADDR3 0x540 | ||
392 | #define ERR_BLOCK_ADDR3__VALUE 0xffff | ||
393 | |||
394 | #define DATA_INTR 0x550 | ||
395 | #define DATA_INTR__WRITE_SPACE_AV 0x0001 | ||
396 | #define DATA_INTR__READ_DATA_AV 0x0002 | ||
397 | |||
398 | #define DATA_INTR_EN 0x560 | ||
399 | #define DATA_INTR_EN__WRITE_SPACE_AV 0x0001 | ||
400 | #define DATA_INTR_EN__READ_DATA_AV 0x0002 | ||
401 | |||
402 | #define GPREG_0 0x570 | ||
403 | #define GPREG_0__VALUE 0xffff | ||
404 | |||
405 | #define GPREG_1 0x580 | ||
406 | #define GPREG_1__VALUE 0xffff | ||
407 | |||
408 | #define GPREG_2 0x590 | ||
409 | #define GPREG_2__VALUE 0xffff | ||
410 | |||
411 | #define GPREG_3 0x5a0 | ||
412 | #define GPREG_3__VALUE 0xffff | ||
413 | |||
414 | #define ECC_THRESHOLD 0x600 | ||
415 | #define ECC_THRESHOLD__VALUE 0x03ff | ||
416 | |||
417 | #define ECC_ERROR_BLOCK_ADDRESS 0x610 | ||
418 | #define ECC_ERROR_BLOCK_ADDRESS__VALUE 0xffff | ||
419 | |||
420 | #define ECC_ERROR_PAGE_ADDRESS 0x620 | ||
421 | #define ECC_ERROR_PAGE_ADDRESS__VALUE 0x0fff | ||
422 | #define ECC_ERROR_PAGE_ADDRESS__BANK 0xf000 | ||
423 | |||
424 | #define ECC_ERROR_ADDRESS 0x630 | ||
425 | #define ECC_ERROR_ADDRESS__OFFSET 0x0fff | ||
426 | #define ECC_ERROR_ADDRESS__SECTOR_NR 0xf000 | ||
427 | |||
428 | #define ERR_CORRECTION_INFO 0x640 | ||
429 | #define ERR_CORRECTION_INFO__BYTEMASK 0x00ff | ||
430 | #define ERR_CORRECTION_INFO__DEVICE_NR 0x0f00 | ||
431 | #define ERR_CORRECTION_INFO__ERROR_TYPE 0x4000 | ||
432 | #define ERR_CORRECTION_INFO__LAST_ERR_INFO 0x8000 | ||
433 | |||
434 | #define DMA_ENABLE 0x700 | ||
435 | #define DMA_ENABLE__FLAG 0x0001 | ||
436 | |||
437 | #define IGNORE_ECC_DONE 0x710 | ||
438 | #define IGNORE_ECC_DONE__FLAG 0x0001 | ||
439 | |||
440 | #define DMA_INTR 0x720 | ||
441 | #define DMA_INTR__TARGET_ERROR 0x0001 | ||
442 | #define DMA_INTR__DESC_COMP_CHANNEL0 0x0002 | ||
443 | #define DMA_INTR__DESC_COMP_CHANNEL1 0x0004 | ||
444 | #define DMA_INTR__DESC_COMP_CHANNEL2 0x0008 | ||
445 | #define DMA_INTR__DESC_COMP_CHANNEL3 0x0010 | ||
446 | #define DMA_INTR__MEMCOPY_DESC_COMP 0x0020 | ||
447 | |||
448 | #define DMA_INTR_EN 0x730 | ||
449 | #define DMA_INTR_EN__TARGET_ERROR 0x0001 | ||
450 | #define DMA_INTR_EN__DESC_COMP_CHANNEL0 0x0002 | ||
451 | #define DMA_INTR_EN__DESC_COMP_CHANNEL1 0x0004 | ||
452 | #define DMA_INTR_EN__DESC_COMP_CHANNEL2 0x0008 | ||
453 | #define DMA_INTR_EN__DESC_COMP_CHANNEL3 0x0010 | ||
454 | #define DMA_INTR_EN__MEMCOPY_DESC_COMP 0x0020 | ||
455 | |||
456 | #define TARGET_ERR_ADDR_LO 0x740 | ||
457 | #define TARGET_ERR_ADDR_LO__VALUE 0xffff | ||
458 | |||
459 | #define TARGET_ERR_ADDR_HI 0x750 | ||
460 | #define TARGET_ERR_ADDR_HI__VALUE 0xffff | ||
461 | |||
462 | #define CHNL_ACTIVE 0x760 | ||
463 | #define CHNL_ACTIVE__CHANNEL0 0x0001 | ||
464 | #define CHNL_ACTIVE__CHANNEL1 0x0002 | ||
465 | #define CHNL_ACTIVE__CHANNEL2 0x0004 | ||
466 | #define CHNL_ACTIVE__CHANNEL3 0x0008 | ||
467 | |||
468 | #define ACTIVE_SRC_ID 0x800 | ||
469 | #define ACTIVE_SRC_ID__VALUE 0x00ff | ||
470 | |||
471 | #define PTN_INTR 0x810 | ||
472 | #define PTN_INTR__CONFIG_ERROR 0x0001 | ||
473 | #define PTN_INTR__ACCESS_ERROR_BANK0 0x0002 | ||
474 | #define PTN_INTR__ACCESS_ERROR_BANK1 0x0004 | ||
475 | #define PTN_INTR__ACCESS_ERROR_BANK2 0x0008 | ||
476 | #define PTN_INTR__ACCESS_ERROR_BANK3 0x0010 | ||
477 | #define PTN_INTR__REG_ACCESS_ERROR 0x0020 | ||
478 | |||
479 | #define PTN_INTR_EN 0x820 | ||
480 | #define PTN_INTR_EN__CONFIG_ERROR 0x0001 | ||
481 | #define PTN_INTR_EN__ACCESS_ERROR_BANK0 0x0002 | ||
482 | #define PTN_INTR_EN__ACCESS_ERROR_BANK1 0x0004 | ||
483 | #define PTN_INTR_EN__ACCESS_ERROR_BANK2 0x0008 | ||
484 | #define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010 | ||
485 | #define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020 | ||
486 | |||
487 | #define PERM_SRC_ID_0 0x830 | ||
488 | #define PERM_SRC_ID_0__SRCID 0x00ff | ||
489 | #define PERM_SRC_ID_0__DIRECT_ACCESS_ACTIVE 0x0800 | ||
490 | #define PERM_SRC_ID_0__WRITE_ACTIVE 0x2000 | ||
491 | #define PERM_SRC_ID_0__READ_ACTIVE 0x4000 | ||
492 | #define PERM_SRC_ID_0__PARTITION_VALID 0x8000 | ||
493 | |||
494 | #define MIN_BLK_ADDR_0 0x840 | ||
495 | #define MIN_BLK_ADDR_0__VALUE 0xffff | ||
496 | |||
497 | #define MAX_BLK_ADDR_0 0x850 | ||
498 | #define MAX_BLK_ADDR_0__VALUE 0xffff | ||
499 | |||
500 | #define MIN_MAX_BANK_0 0x860 | ||
501 | #define MIN_MAX_BANK_0__MIN_VALUE 0x0003 | ||
502 | #define MIN_MAX_BANK_0__MAX_VALUE 0x000c | ||
503 | |||
504 | #define PERM_SRC_ID_1 0x870 | ||
505 | #define PERM_SRC_ID_1__SRCID 0x00ff | ||
506 | #define PERM_SRC_ID_1__DIRECT_ACCESS_ACTIVE 0x0800 | ||
507 | #define PERM_SRC_ID_1__WRITE_ACTIVE 0x2000 | ||
508 | #define PERM_SRC_ID_1__READ_ACTIVE 0x4000 | ||
509 | #define PERM_SRC_ID_1__PARTITION_VALID 0x8000 | ||
510 | |||
511 | #define MIN_BLK_ADDR_1 0x880 | ||
512 | #define MIN_BLK_ADDR_1__VALUE 0xffff | ||
513 | |||
514 | #define MAX_BLK_ADDR_1 0x890 | ||
515 | #define MAX_BLK_ADDR_1__VALUE 0xffff | ||
516 | |||
517 | #define MIN_MAX_BANK_1 0x8a0 | ||
518 | #define MIN_MAX_BANK_1__MIN_VALUE 0x0003 | ||
519 | #define MIN_MAX_BANK_1__MAX_VALUE 0x000c | ||
520 | |||
521 | #define PERM_SRC_ID_2 0x8b0 | ||
522 | #define PERM_SRC_ID_2__SRCID 0x00ff | ||
523 | #define PERM_SRC_ID_2__DIRECT_ACCESS_ACTIVE 0x0800 | ||
524 | #define PERM_SRC_ID_2__WRITE_ACTIVE 0x2000 | ||
525 | #define PERM_SRC_ID_2__READ_ACTIVE 0x4000 | ||
526 | #define PERM_SRC_ID_2__PARTITION_VALID 0x8000 | ||
527 | |||
528 | #define MIN_BLK_ADDR_2 0x8c0 | ||
529 | #define MIN_BLK_ADDR_2__VALUE 0xffff | ||
530 | |||
531 | #define MAX_BLK_ADDR_2 0x8d0 | ||
532 | #define MAX_BLK_ADDR_2__VALUE 0xffff | ||
533 | |||
534 | #define MIN_MAX_BANK_2 0x8e0 | ||
535 | #define MIN_MAX_BANK_2__MIN_VALUE 0x0003 | ||
536 | #define MIN_MAX_BANK_2__MAX_VALUE 0x000c | ||
537 | |||
538 | #define PERM_SRC_ID_3 0x8f0 | ||
539 | #define PERM_SRC_ID_3__SRCID 0x00ff | ||
540 | #define PERM_SRC_ID_3__DIRECT_ACCESS_ACTIVE 0x0800 | ||
541 | #define PERM_SRC_ID_3__WRITE_ACTIVE 0x2000 | ||
542 | #define PERM_SRC_ID_3__READ_ACTIVE 0x4000 | ||
543 | #define PERM_SRC_ID_3__PARTITION_VALID 0x8000 | ||
544 | |||
545 | #define MIN_BLK_ADDR_3 0x900 | ||
546 | #define MIN_BLK_ADDR_3__VALUE 0xffff | ||
547 | |||
548 | #define MAX_BLK_ADDR_3 0x910 | ||
549 | #define MAX_BLK_ADDR_3__VALUE 0xffff | ||
550 | |||
551 | #define MIN_MAX_BANK_3 0x920 | ||
552 | #define MIN_MAX_BANK_3__MIN_VALUE 0x0003 | ||
553 | #define MIN_MAX_BANK_3__MAX_VALUE 0x000c | ||
554 | |||
555 | #define PERM_SRC_ID_4 0x930 | ||
556 | #define PERM_SRC_ID_4__SRCID 0x00ff | ||
557 | #define PERM_SRC_ID_4__DIRECT_ACCESS_ACTIVE 0x0800 | ||
558 | #define PERM_SRC_ID_4__WRITE_ACTIVE 0x2000 | ||
559 | #define PERM_SRC_ID_4__READ_ACTIVE 0x4000 | ||
560 | #define PERM_SRC_ID_4__PARTITION_VALID 0x8000 | ||
561 | |||
562 | #define MIN_BLK_ADDR_4 0x940 | ||
563 | #define MIN_BLK_ADDR_4__VALUE 0xffff | ||
564 | |||
565 | #define MAX_BLK_ADDR_4 0x950 | ||
566 | #define MAX_BLK_ADDR_4__VALUE 0xffff | ||
567 | |||
568 | #define MIN_MAX_BANK_4 0x960 | ||
569 | #define MIN_MAX_BANK_4__MIN_VALUE 0x0003 | ||
570 | #define MIN_MAX_BANK_4__MAX_VALUE 0x000c | ||
571 | |||
572 | #define PERM_SRC_ID_5 0x970 | ||
573 | #define PERM_SRC_ID_5__SRCID 0x00ff | ||
574 | #define PERM_SRC_ID_5__DIRECT_ACCESS_ACTIVE 0x0800 | ||
575 | #define PERM_SRC_ID_5__WRITE_ACTIVE 0x2000 | ||
576 | #define PERM_SRC_ID_5__READ_ACTIVE 0x4000 | ||
577 | #define PERM_SRC_ID_5__PARTITION_VALID 0x8000 | ||
578 | |||
579 | #define MIN_BLK_ADDR_5 0x980 | ||
580 | #define MIN_BLK_ADDR_5__VALUE 0xffff | ||
581 | |||
582 | #define MAX_BLK_ADDR_5 0x990 | ||
583 | #define MAX_BLK_ADDR_5__VALUE 0xffff | ||
584 | |||
585 | #define MIN_MAX_BANK_5 0x9a0 | ||
586 | #define MIN_MAX_BANK_5__MIN_VALUE 0x0003 | ||
587 | #define MIN_MAX_BANK_5__MAX_VALUE 0x000c | ||
588 | |||
589 | #define PERM_SRC_ID_6 0x9b0 | ||
590 | #define PERM_SRC_ID_6__SRCID 0x00ff | ||
591 | #define PERM_SRC_ID_6__DIRECT_ACCESS_ACTIVE 0x0800 | ||
592 | #define PERM_SRC_ID_6__WRITE_ACTIVE 0x2000 | ||
593 | #define PERM_SRC_ID_6__READ_ACTIVE 0x4000 | ||
594 | #define PERM_SRC_ID_6__PARTITION_VALID 0x8000 | ||
595 | |||
596 | #define MIN_BLK_ADDR_6 0x9c0 | ||
597 | #define MIN_BLK_ADDR_6__VALUE 0xffff | ||
598 | |||
599 | #define MAX_BLK_ADDR_6 0x9d0 | ||
600 | #define MAX_BLK_ADDR_6__VALUE 0xffff | ||
601 | |||
602 | #define MIN_MAX_BANK_6 0x9e0 | ||
603 | #define MIN_MAX_BANK_6__MIN_VALUE 0x0003 | ||
604 | #define MIN_MAX_BANK_6__MAX_VALUE 0x000c | ||
605 | |||
606 | #define PERM_SRC_ID_7 0x9f0 | ||
607 | #define PERM_SRC_ID_7__SRCID 0x00ff | ||
608 | #define PERM_SRC_ID_7__DIRECT_ACCESS_ACTIVE 0x0800 | ||
609 | #define PERM_SRC_ID_7__WRITE_ACTIVE 0x2000 | ||
610 | #define PERM_SRC_ID_7__READ_ACTIVE 0x4000 | ||
611 | #define PERM_SRC_ID_7__PARTITION_VALID 0x8000 | ||
612 | |||
613 | #define MIN_BLK_ADDR_7 0xa00 | ||
614 | #define MIN_BLK_ADDR_7__VALUE 0xffff | ||
615 | |||
616 | #define MAX_BLK_ADDR_7 0xa10 | ||
617 | #define MAX_BLK_ADDR_7__VALUE 0xffff | ||
618 | |||
619 | #define MIN_MAX_BANK_7 0xa20 | ||
620 | #define MIN_MAX_BANK_7__MIN_VALUE 0x0003 | ||
621 | #define MIN_MAX_BANK_7__MAX_VALUE 0x000c | ||
622 | |||
623 | /* flash.h */ | ||
624 | struct device_info_tag { | ||
625 | uint16_t wDeviceMaker; | ||
626 | uint16_t wDeviceID; | ||
627 | uint8_t bDeviceParam0; | ||
628 | uint8_t bDeviceParam1; | ||
629 | uint8_t bDeviceParam2; | ||
630 | uint32_t wDeviceType; | ||
631 | uint32_t wSpectraStartBlock; | ||
632 | uint32_t wSpectraEndBlock; | ||
633 | uint32_t wTotalBlocks; | ||
634 | uint16_t wPagesPerBlock; | ||
635 | uint16_t wPageSize; | ||
636 | uint16_t wPageDataSize; | ||
637 | uint16_t wPageSpareSize; | ||
638 | uint16_t wNumPageSpareFlag; | ||
639 | uint16_t wECCBytesPerSector; | ||
640 | uint32_t wBlockSize; | ||
641 | uint32_t wBlockDataSize; | ||
642 | uint32_t wDataBlockNum; | ||
643 | uint8_t bPlaneNum; | ||
644 | uint16_t wDeviceMainAreaSize; | ||
645 | uint16_t wDeviceSpareAreaSize; | ||
646 | uint16_t wDevicesConnected; | ||
647 | uint16_t wDeviceWidth; | ||
648 | uint16_t wHWRevision; | ||
649 | uint16_t wHWFeatures; | ||
650 | |||
651 | uint16_t wONFIDevFeatures; | ||
652 | uint16_t wONFIOptCommands; | ||
653 | uint16_t wONFITimingMode; | ||
654 | uint16_t wONFIPgmCacheTimingMode; | ||
655 | |||
656 | uint16_t MLCDevice; | ||
657 | uint16_t wSpareSkipBytes; | ||
658 | |||
659 | uint8_t nBitsInPageNumber; | ||
660 | uint8_t nBitsInPageDataSize; | ||
661 | uint8_t nBitsInBlockDataSize; | ||
662 | }; | ||
663 | |||
664 | /* ffsdefs.h */ | ||
665 | #define CLEAR 0 /*use this to clear a field instead of "fail"*/ | ||
666 | #define SET 1 /*use this to set a field instead of "pass"*/ | ||
667 | #define FAIL 1 /*failed flag*/ | ||
668 | #define PASS 0 /*success flag*/ | ||
669 | #define ERR -1 /*error flag*/ | ||
670 | |||
671 | /* lld.h */ | ||
672 | #define GOOD_BLOCK 0 | ||
673 | #define DEFECTIVE_BLOCK 1 | ||
674 | #define READ_ERROR 2 | ||
675 | |||
676 | #define CLK_X 5 | ||
677 | #define CLK_MULTI 4 | ||
678 | |||
679 | /* ffsport.h */ | ||
680 | #define VERBOSE 1 | ||
681 | |||
682 | #define NAND_DBG_WARN 1 | ||
683 | #define NAND_DBG_DEBUG 2 | ||
684 | #define NAND_DBG_TRACE 3 | ||
685 | |||
686 | #ifdef VERBOSE | ||
687 | #define nand_dbg_print(level, args...) \ | ||
688 | do { \ | ||
689 | if (level <= nand_debug_level) \ | ||
690 | printk(KERN_ALERT args); \ | ||
691 | } while (0) | ||
692 | #else | ||
693 | #define nand_dbg_print(level, args...) | ||
694 | #endif | ||
695 | |||
696 | |||
697 | /* spectraswconfig.h */ | ||
698 | #define CMD_DMA 0 | ||
699 | |||
700 | #define SPECTRA_PARTITION_ID 0 | ||
701 | /**** Block Table and Reserved Block Parameters *****/ | ||
702 | #define SPECTRA_START_BLOCK 3 | ||
703 | #define NUM_FREE_BLOCKS_GATE 30 | ||
704 | |||
705 | /* KBV - Updated to LNW scratch register address */ | ||
706 | #define SCRATCH_REG_ADDR CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR | ||
707 | #define SCRATCH_REG_SIZE 64 | ||
708 | |||
709 | #define GLOB_HWCTL_DEFAULT_BLKS 2048 | ||
710 | |||
711 | #define SUPPORT_15BITECC 1 | ||
712 | #define SUPPORT_8BITECC 1 | ||
713 | |||
714 | #define CUSTOM_CONF_PARAMS 0 | ||
715 | |||
716 | #define ONFI_BLOOM_TIME 1 | ||
717 | #define MODE5_WORKAROUND 0 | ||
718 | |||
719 | /* lld_nand.h */ | ||
720 | /* | ||
721 | * NAND Flash Controller Device Driver | ||
722 | * Copyright (c) 2009, Intel Corporation and its suppliers. | ||
723 | * | ||
724 | * This program is free software; you can redistribute it and/or modify it | ||
725 | * under the terms and conditions of the GNU General Public License, | ||
726 | * version 2, as published by the Free Software Foundation. | ||
727 | * | ||
728 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
729 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
730 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
731 | * more details. | ||
732 | * | ||
733 | * You should have received a copy of the GNU General Public License along with | ||
734 | * this program; if not, write to the Free Software Foundation, Inc., | ||
735 | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
736 | * | ||
737 | */ | ||
738 | |||
739 | #ifndef _LLD_NAND_ | ||
740 | #define _LLD_NAND_ | ||
741 | |||
742 | #define MODE_00 0x00000000 | ||
743 | #define MODE_01 0x04000000 | ||
744 | #define MODE_10 0x08000000 | ||
745 | #define MODE_11 0x0C000000 | ||
746 | |||
747 | |||
748 | #define DATA_TRANSFER_MODE 0 | ||
749 | #define PROTECTION_PER_BLOCK 1 | ||
750 | #define LOAD_WAIT_COUNT 2 | ||
751 | #define PROGRAM_WAIT_COUNT 3 | ||
752 | #define ERASE_WAIT_COUNT 4 | ||
753 | #define INT_MONITOR_CYCLE_COUNT 5 | ||
754 | #define READ_BUSY_PIN_ENABLED 6 | ||
755 | #define MULTIPLANE_OPERATION_SUPPORT 7 | ||
756 | #define PRE_FETCH_MODE 8 | ||
757 | #define CE_DONT_CARE_SUPPORT 9 | ||
758 | #define COPYBACK_SUPPORT 10 | ||
759 | #define CACHE_WRITE_SUPPORT 11 | ||
760 | #define CACHE_READ_SUPPORT 12 | ||
761 | #define NUM_PAGES_IN_BLOCK 13 | ||
762 | #define ECC_ENABLE_SELECT 14 | ||
763 | #define WRITE_ENABLE_2_READ_ENABLE 15 | ||
764 | #define ADDRESS_2_DATA 16 | ||
765 | #define READ_ENABLE_2_WRITE_ENABLE 17 | ||
766 | #define TWO_ROW_ADDRESS_CYCLES 18 | ||
767 | #define MULTIPLANE_ADDRESS_RESTRICT 19 | ||
768 | #define ACC_CLOCKS 20 | ||
769 | #define READ_WRITE_ENABLE_LOW_COUNT 21 | ||
770 | #define READ_WRITE_ENABLE_HIGH_COUNT 22 | ||
771 | |||
772 | #define ECC_SECTOR_SIZE 512 | ||
773 | #define LLD_MAX_FLASH_BANKS 4 | ||
774 | |||
775 | #define DENALI_BUF_SIZE NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE | ||
776 | |||
777 | struct nand_buf | ||
778 | { | ||
779 | int head; | ||
780 | int tail; | ||
781 | uint8_t buf[DENALI_BUF_SIZE]; | ||
782 | dma_addr_t dma_buf; | ||
783 | }; | ||
784 | |||
785 | #define INTEL_CE4100 1 | ||
786 | #define INTEL_MRST 2 | ||
787 | |||
788 | struct denali_nand_info { | ||
789 | struct mtd_info mtd; | ||
790 | struct nand_chip nand; | ||
791 | struct device_info_tag dev_info; | ||
792 | int flash_bank; /* currently selected chip */ | ||
793 | int status; | ||
794 | int platform; | ||
795 | struct nand_buf buf; | ||
796 | struct pci_dev *dev; | ||
797 | int total_used_banks; | ||
798 | uint32_t block; /* stored for future use */ | ||
799 | uint16_t page; | ||
800 | void __iomem *flash_reg; /* Mapped io reg base address */ | ||
801 | void __iomem *flash_mem; /* Mapped io reg base address */ | ||
802 | |||
803 | /* elements used by ISR */ | ||
804 | struct completion complete; | ||
805 | spinlock_t irq_lock; | ||
806 | uint32_t irq_status; | ||
807 | int irq_debug_array[32]; | ||
808 | int idx; | ||
809 | }; | ||
810 | |||
811 | static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali); | ||
812 | static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali); | ||
813 | static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali, uint16_t INT_ENABLE); | ||
814 | |||
815 | #endif /*_LLD_NAND_*/ | ||
816 | |||