/*
* BRIEF MODULE DESCRIPTION
* Au1000 Power Management routines.
*
* Copyright 2001 MontaVista Software Inc.
* Author: MontaVista Software, Inc.
* ppopov@mvista.com or source@mvista.com
*
* Some of the routines are right out of init/main.c, whose
* copyrights apply here.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/pm.h>
#include <linux/pm_legacy.h>
#include <linux/slab.h>
#include <linux/sysctl.h>
#include <linux/jiffies.h>
#include <asm/string.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/cacheflush.h>
#include <asm/mach-au1x00/au1000.h>
#ifdef CONFIG_PM
#define DEBUG 1
#ifdef DEBUG
# define DPRINTK(fmt, args...) printk("%s: " fmt, __FUNCTION__ , ## args)
#else
# define DPRINTK(fmt, args...)
#endif
static void au1000_calibrate_delay(void);
extern void set_au1x00_speed(unsigned int new_freq);
extern unsigned int get_au1x00_speed(void);
extern unsigned long get_au1x00_uart_baud_base(void);
extern void set_au1x00_uart_baud_base(unsigned long new_baud_base);
extern unsigned long save_local_and_disable(int controller);
extern void restore_local_and_enable(int controller, unsigned long mask);
extern void local_enable_irq(unsigned int irq_nr);
static DEFINE_SPINLOCK(pm_lock);
/* We need to save/restore a bunch of core registers that are
* either volatile or reset to some state across a processor sleep.
* If reading a register doesn't provide a proper result for a
* later restore, we have to provide a function for loading that
* register and save a copy.
*
* We only have to save/restore registers that aren't otherwise
* done as part of a driver pm_* function.
*/
static unsigned int sleep_aux_pll_cntrl;
static unsigned int sleep_cpu_pll_cntrl;
static unsigned int sleep_pin_function;
static unsigned int sleep_uart0_inten;
static unsigned int sleep_uart0_fifoctl;
static unsigned int sleep_uart0_linectl;
static unsigned int sleep_uart0_clkdiv;
static unsigned int sleep_uart0_enable;
static unsigned int sleep_usbhost_enable;
static unsigned int sleep_usbdev_enable;
static unsigned int sleep_static_memctlr[4][3];
/* Define this to cause the value you write to /proc/sys/pm/sleep to
* set the TOY timer for the amount of time you want to sleep.
* This is done mainly for testing, but may be useful in other cases.
* The value is number of 32KHz ticks to sleep.
*/
#define SLEEP_TEST_TIMEOUT 1
#ifdef SLEEP_TEST_TIMEOUT
static int sleep_ticks;
void wakeup_counter0_set(int ticks);
#endif
static void
save_core_regs(void)
{
extern void save_au1xxx_intctl(void);
extern void pm_eth0_shutdown(void);
/* Do the serial ports.....these really should be a pm_*
* registered function by the driver......but of course the
* standard serial driver doesn't understand our Au1xxx
* unique registers.
*/
sleep_uart0_inten = au_readl(UART0_ADDR + UART_IER);
sleep_uart0_fifoctl = au_readl(UART0_ADDR + UART_FCR);
sleep_uart0_linectl = au_readl(UART0_ADDR + UART_LCR);
sleep_uart0_clkdiv = au_readl(UART0_ADDR + UART_CLK);
sleep_uart0_enable = au_readl(UART0_ADDR + UART_MOD_CNTRL);
/* Shutdown USB host/device.
*/
sleep_usbhost_enable = au_readl(USB_HOST_CONFIG);
/* There appears to be some undocumented reset register....
*/
au_writel(0, 0xb0100004); au_sync();
au_writel(0, USB_HOST_CONFIG); au_sync();
sleep_usbdev_enable = au_readl(USBD_ENABLE);
au_writel(0, USBD_ENABLE); au_sync();
/* Save interrupt controller state.
*/
save_au1xxx_intctl();
/* Clocks and PLLs.
*/
sleep_aux_pll_cntrl = au_readl(SYS_AUXPLL);
/* We don't really need to do this one, but unless we
* write it again it won't have a valid value if we
* happen to read it.
*/
sleep_cpu_pll_cntrl = au_readl(SYS_CPUPLL);
sleep_pin_function = au_readl(SYS_PINFUNC);
/* Save the static memory controller configuration.
*/
sleep_static_memctlr[0][0] = au_readl(MEM_STCFG0);
sleep_static_memctlr[0][1] = au_readl(MEM_STTIME0);
sleep_static_memctlr[0][2] = au_readl(MEM_STADDR0);
sleep_static_memctlr[1][0] = au_readl(MEM_STCFG1);
sleep_static_memctlr[1][1] = au_readl(MEM_STTIME1);
sleep_static_memctlr[1][2] = au_readl(MEM_STADDR1);
sleep_static_memctlr[2][0] = au_readl(MEM_STCFG2);
sleep_static_memctlr[2][1] = au_readl(MEM_STTIME2);
sleep_static_memctlr[2][2] = au_readl(MEM_STADDR2);
sleep_static_memctlr[3][0] = au_readl(MEM_STCFG3);
sleep_static_memctlr[3][1] = au_readl(MEM_STTIME3);
sleep_static_memctlr[3][2] = au_readl(MEM_STADDR3);
}
static void
restore_core_regs(void)
{
extern void restore_au1xxx_intctl(void);
extern void wakeup_counter0_adjust(void);
au_writel(sleep_aux_pll_cntrl, SYS_AUXPLL); au_sync();
au_writel(sleep_cpu_pll_cntrl, SYS_CPUPLL); au_sync();
au_writel(sleep_pin_function, SYS_PINFUNC); au_sync();
/* Restore the static memory controller configuration.
*/
au_writel(sleep_static_memctlr[0][0], MEM_STCFG0);
au_writel(sleep_static_memctlr[0][1], MEM_STTIME0);
au_writel(sleep_static_memctlr[0][2], MEM_STADDR0);
au_writel(sleep_static_memctlr[1][0], MEM_STCFG1);
au_writel(sleep_static_memctlr[1][1], MEM_STTIME1);
au_writel(sleep_static_memctlr[1][2], MEM_STADDR1);
au_writel(sleep_static_memctlr[2][0], MEM_STCFG2);
au_writel(sleep_static_memctlr[2][1], MEM_STTIME2);
au_writel(sleep_static_memctlr[2][2], MEM_STADDR2);
au_writel(sleep_static_memctlr[3][0], MEM_STCFG3);
au_writel(sleep_static_memctlr[3][1], MEM_STTIME3);
au_writel(sleep_static_memctlr[3][2], MEM_STADDR3);
/* Enable the UART if it was enabled before sleep.
* I guess I should define module control bits........
*/
if (sleep_uart0_enable & 0x02) {
au_writel(0, UART0_ADDR + UART_MOD_CNTRL); au_sync();
au_writel(1, UART0_ADDR + UART_MOD_CNTRL); au_sync();
au_writel(3, UART0_ADDR + UART_MOD_CNTRL); au_sync();
au_writel(sleep_uart0_inten, UART0_ADDR + UART_IER); au_sync();
au_writel(sleep_uart0_fifoctl, UART0_ADDR + UART_FCR); au_sync();
au_writel(sleep_uart0_linectl, UART0_ADDR + UART_LCR); au_sync();
au_writel(sleep_uart0_clkdiv, UART0_ADDR + UART_CLK); au_sync();
}
restore_au1xxx_intctl();
wakeup_counter0_adjust();
}
unsigned long suspend_mode;
void wakeup_from_suspend(void)
{
suspend_mode = 0;
}
int au_sleep(void)
{
unsigned long wakeup, flags;
extern void save_and_sleep(void);
spin_lock_irqsave(&pm_lock,flags);
save_core_regs();
flush_cache_all();
/** The code below is all system dependent and we should probably
** have a function call out of here to set this up. You need
** to configure the GPIO or timer interrupts that will bring
** you out of sleep.
** For testing, the TOY counter wakeup is useful.
**/
#if 0
au_writel(au_readl(SYS_PINSTATERD) & ~(1 << 11), SYS_PINSTATERD);
/* gpio 6 can cause a wake up event */
wakeup = au_readl(SYS_WAKEMSK);
wakeup &= ~(1 << 8); /* turn off match20 wakeup */
wakeup |= 1 << 6; /* turn on gpio 6 wakeup */
#else
/* For testing, allow match20 to wake us up.
*/
#ifdef SLEEP_TEST_TIMEOUT
wakeup_counter0_set(sleep_ticks);
#endif
wakeup = 1 << 8; /* turn on match20 wakeup */
wakeup = 0;
#endif
au_writel(1, SYS_WAKESRC); /* clear cause */
au_sync();
au_writel(wakeup, SYS_WAKEMSK);
au_sync();
save_and_sleep();
/* after a wakeup, the cpu vectors back to 0x1fc00000 so
* it's up to the boot code to get us back here.
*/
restore_core_regs();
spin_unlock_irqrestore(&pm_lock, flags);
return 0;
}
static int pm_do_sleep(ctl_table * ctl, int write, struct file *file,
void __user *buffer, size_t * len, loff_t *ppos)
{
int retval = 0;
#ifdef SLEEP_TEST_TIMEOUT
#define TMPBUFLEN2 16
char buf[TMPBUFLEN2], *p;
#endif
if (!write) {
*len = 0;
} else {
#ifdef SLEEP_TEST_TIMEOUT
if (*len > TMPBUFLEN2 - 1) {
return -EFAULT;
}
if (copy_from_user(buf, buffer, *len)) {
return -EFAULT;
}
buf[*len] = 0;
p = buf;
sleep_ticks = simple_strtoul(p, &p, 0);
#endif
retval = pm_send_all(PM_SUSPEND, (void *) 2);
if (retval)
return retval;
au_sleep();
retval = pm_send_all(PM_RESUME, (void *) 0);
}
return retval;
}
static int pm_do_suspend(ctl_table * ctl, int write, struct file *file,
void __user *buffer, size_t * len, loff_t *ppos)
{
int retval = 0;
if (!write) {
*len = 0;
} else {
retval = pm_send_all(PM_SUSPEND, (void *) 2);
if (retval)
return retval;
suspend_mode = 1;
retval = pm_send_all(PM_RESUME, (void *) 0);
}
return retval;
}
static int pm_do_freq(ctl_table * ctl, int write, struct file *file,
void __user *buffer, size_t * len, loff_t *ppos)
{
int retval = 0, i;
unsigned long val, pll;
#define TMPBUFLEN 64
#define MAX_CPU_FREQ 396
char buf[TMPBUFLEN], *p;
unsigned long flags, intc0_mask, intc1_mask;
unsigned long old_baud_base, old_cpu_freq, baud_rate, old_clk,
old_refresh;
unsigned long new_baud_base, new_cpu_freq, new_clk, new_refresh;
spin_lock_irqsave(&pm_lock, flags);
if (!write) {
*len = 0;
} else {
/* Parse the new frequency */
if (*len > TMPBUFLEN - 1) {
spin_unlock_irqrestore(&pm_lock, flags);
return -EFAULT;
}
if (copy_from_user(buf, buffer, *len)) {
spin_unlock_irqrestore(&pm_lock, flags);
return -EFAULT;
}
buf[*len] = 0;
p = buf;
val = simple_strtoul(p, &p, 0);
if (val > MAX_CPU_FREQ) {
spin_unlock_irqrestore(&pm_lock, flags);
return -EFAULT;
}
pll = val / 12;
if ((pll > 33) || (pll < 7)) { /* 396 MHz max, 84 MHz min */
/* revisit this for higher speed cpus */
spin_unlock_irqrestore(&pm_lock, flags);
return -EFAULT;
}
old_baud_base = get_au1x00_uart_baud_base();
old_cpu_freq = get_au1x00_speed();
new_cpu_freq = pll * 12 * 1000000;
new_baud_base = (new_cpu_freq / (2 * ((int)(au_readl(SYS_POWERCTRL)&0x03) + 2) * 16));
set_au1x00_speed(new_cpu_freq);
set_au1x00_uart_baud_base(new_baud_base);
old_refresh = au_readl(MEM_SDREFCFG) & 0x1ffffff;
new_refresh =
((old_refresh * new_cpu_freq) /
old_cpu_freq) | (au_readl(MEM_SDREFCFG) & ~0x1ffffff);
au_writel(pll, SYS_CPUPLL);
au_sync_delay(1);
au_writel(new_refresh, MEM_SDREFCFG);
au_sync_delay(1);
for (i = 0; i < 4; i++) {
if (au_readl
(UART_BASE + UART_MOD_CNTRL +
i * 0x00100000) == 3) {
old_clk =
au_readl(UART_BASE + UART_CLK +
i * 0x00100000);
// baud_rate = baud_base/clk
baud_rate = old_baud_base / old_clk;
/* we won't get an exact baud rate and the error
* could be significant enough that our new
* calculation will result in a clock that will
* give us a baud rate that's too far off from
* what we really want.
*/
if (baud_rate > 100000)
baud_rate = 115200;
else if (baud_rate > 50000)
baud_rate = 57600;
else if (baud_rate > 30000)
baud_rate = 38400;
else if (baud_rate > 17000)
baud_rate = 19200;
else
(baud_rate = 9600);
// new_clk = new_baud_base/baud_rate
new_clk = new_baud_base / baud_rate;
au_writel(new_clk,
UART_BASE + UART_CLK +
i * 0x00100000);
au_sync_delay(10);
}
}
}
/* We don't want _any_ interrupts other than
* match20. Otherwise our au1000_calibrate_delay()
* calculation will be off, potentially a lot.
*/
intc0_mask = save_local_and_disable(0);
intc1_mask = save_local_and_disable(1);
local_enable_irq(AU1000_TOY_MATCH2_INT);
spin_unlock_irqrestore(&pm_lock, flags);
au1000_calibrate_delay();
restore_local_and_enable(0, intc0_mask);
restore_local_and_enable(1, intc1_mask);
return retval;
}
static struct ctl_table pm_table[] = {
{
.ctl_name = CTL_UNNUMBERED,
.procname = "suspend",
.data = NULL,
.maxlen = 0,
.mode = 0600,
.proc_handler = &pm_do_suspend
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "sleep",
.data = NULL,
.maxlen = 0,
.mode = 0600,
.proc_handler = &pm_do_sleep
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "freq",
.data = NULL,
.maxlen = 0,
.mode = 0600,
.proc_handler = &pm_do_freq
},
{}
};
static struct ctl_table pm_dir_table[] = {
{
.ctl_name = CTL_UNNUMBERED,
.procname = "pm",
.mode = 0555,
.child = pm_table
},
{}
};
/*
* Initialize power interface
*/
static int __init pm_init(void)
{
register_sysctl_table(pm_dir_table);
return 0;
}
__initcall(pm_init);
/*
* This is right out of init/main.c
*/
/* This is the number of bits of precision for the loops_per_jiffy. Each
bit takes on average 1.5/HZ seconds. This (like the original) is a little
better than 1% */
#define LPS_PREC 8
static void au1000_calibrate_delay(void)
{
unsigned long ticks, loopbit;
int lps_precision = LPS_PREC;
loops_per_jiffy = (1 << 12);
while (loops_per_jiffy <<= 1) {
/* wait for "start of" clock tick */
ticks = jiffies;
while (ticks == jiffies)
/* nothing */ ;
/* Go .. */
ticks = jiffies;
__delay(loops_per_jiffy);
ticks = jiffies - ticks;
if (ticks)
break;
}
/* Do a binary approximation to get loops_per_jiffy set to equal one clock
(up to lps_precision bits) */
loops_per_jiffy >>= 1;
loopbit = loops_per_jiffy;
while (lps_precision-- && (loopbit >>= 1)) {
loops_per_jiffy |= loopbit;
ticks = jiffies;
while (ticks == jiffies);
ticks = jiffies;
__delay(loops_per_jiffy);
if (jiffies != ticks) /* longer than 1 tick */
loops_per_jiffy &= ~loopbit;
}
}
#endif /* CONFIG_PM */