aboutsummaryrefslogtreecommitdiffstats
path: root/mm/slab_common.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slab_common.c')
-rw-r--r--mm/slab_common.c292
1 files changed, 282 insertions, 10 deletions
diff --git a/mm/slab_common.c b/mm/slab_common.c
index 069a24e64403..3f3cd97d3fdf 100644
--- a/mm/slab_common.c
+++ b/mm/slab_common.c
@@ -13,9 +13,12 @@
13#include <linux/module.h> 13#include <linux/module.h>
14#include <linux/cpu.h> 14#include <linux/cpu.h>
15#include <linux/uaccess.h> 15#include <linux/uaccess.h>
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
16#include <asm/cacheflush.h> 18#include <asm/cacheflush.h>
17#include <asm/tlbflush.h> 19#include <asm/tlbflush.h>
18#include <asm/page.h> 20#include <asm/page.h>
21#include <linux/memcontrol.h>
19 22
20#include "slab.h" 23#include "slab.h"
21 24
@@ -25,7 +28,8 @@ DEFINE_MUTEX(slab_mutex);
25struct kmem_cache *kmem_cache; 28struct kmem_cache *kmem_cache;
26 29
27#ifdef CONFIG_DEBUG_VM 30#ifdef CONFIG_DEBUG_VM
28static int kmem_cache_sanity_check(const char *name, size_t size) 31static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
32 size_t size)
29{ 33{
30 struct kmem_cache *s = NULL; 34 struct kmem_cache *s = NULL;
31 35
@@ -51,7 +55,13 @@ static int kmem_cache_sanity_check(const char *name, size_t size)
51 continue; 55 continue;
52 } 56 }
53 57
54 if (!strcmp(s->name, name)) { 58 /*
59 * For simplicity, we won't check this in the list of memcg
60 * caches. We have control over memcg naming, and if there
61 * aren't duplicates in the global list, there won't be any
62 * duplicates in the memcg lists as well.
63 */
64 if (!memcg && !strcmp(s->name, name)) {
55 pr_err("%s (%s): Cache name already exists.\n", 65 pr_err("%s (%s): Cache name already exists.\n",
56 __func__, name); 66 __func__, name);
57 dump_stack(); 67 dump_stack();
@@ -64,12 +74,69 @@ static int kmem_cache_sanity_check(const char *name, size_t size)
64 return 0; 74 return 0;
65} 75}
66#else 76#else
67static inline int kmem_cache_sanity_check(const char *name, size_t size) 77static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
78 const char *name, size_t size)
68{ 79{
69 return 0; 80 return 0;
70} 81}
71#endif 82#endif
72 83
84#ifdef CONFIG_MEMCG_KMEM
85int memcg_update_all_caches(int num_memcgs)
86{
87 struct kmem_cache *s;
88 int ret = 0;
89 mutex_lock(&slab_mutex);
90
91 list_for_each_entry(s, &slab_caches, list) {
92 if (!is_root_cache(s))
93 continue;
94
95 ret = memcg_update_cache_size(s, num_memcgs);
96 /*
97 * See comment in memcontrol.c, memcg_update_cache_size:
98 * Instead of freeing the memory, we'll just leave the caches
99 * up to this point in an updated state.
100 */
101 if (ret)
102 goto out;
103 }
104
105 memcg_update_array_size(num_memcgs);
106out:
107 mutex_unlock(&slab_mutex);
108 return ret;
109}
110#endif
111
112/*
113 * Figure out what the alignment of the objects will be given a set of
114 * flags, a user specified alignment and the size of the objects.
115 */
116unsigned long calculate_alignment(unsigned long flags,
117 unsigned long align, unsigned long size)
118{
119 /*
120 * If the user wants hardware cache aligned objects then follow that
121 * suggestion if the object is sufficiently large.
122 *
123 * The hardware cache alignment cannot override the specified
124 * alignment though. If that is greater then use it.
125 */
126 if (flags & SLAB_HWCACHE_ALIGN) {
127 unsigned long ralign = cache_line_size();
128 while (size <= ralign / 2)
129 ralign /= 2;
130 align = max(align, ralign);
131 }
132
133 if (align < ARCH_SLAB_MINALIGN)
134 align = ARCH_SLAB_MINALIGN;
135
136 return ALIGN(align, sizeof(void *));
137}
138
139
73/* 140/*
74 * kmem_cache_create - Create a cache. 141 * kmem_cache_create - Create a cache.
75 * @name: A string which is used in /proc/slabinfo to identify this cache. 142 * @name: A string which is used in /proc/slabinfo to identify this cache.
@@ -95,8 +162,10 @@ static inline int kmem_cache_sanity_check(const char *name, size_t size)
95 * as davem. 162 * as davem.
96 */ 163 */
97 164
98struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align, 165struct kmem_cache *
99 unsigned long flags, void (*ctor)(void *)) 166kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
167 size_t align, unsigned long flags, void (*ctor)(void *),
168 struct kmem_cache *parent_cache)
100{ 169{
101 struct kmem_cache *s = NULL; 170 struct kmem_cache *s = NULL;
102 int err = 0; 171 int err = 0;
@@ -104,19 +173,33 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align
104 get_online_cpus(); 173 get_online_cpus();
105 mutex_lock(&slab_mutex); 174 mutex_lock(&slab_mutex);
106 175
107 if (!kmem_cache_sanity_check(name, size) == 0) 176 if (!kmem_cache_sanity_check(memcg, name, size) == 0)
108 goto out_locked; 177 goto out_locked;
109 178
179 /*
180 * Some allocators will constraint the set of valid flags to a subset
181 * of all flags. We expect them to define CACHE_CREATE_MASK in this
182 * case, and we'll just provide them with a sanitized version of the
183 * passed flags.
184 */
185 flags &= CACHE_CREATE_MASK;
110 186
111 s = __kmem_cache_alias(name, size, align, flags, ctor); 187 s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
112 if (s) 188 if (s)
113 goto out_locked; 189 goto out_locked;
114 190
115 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 191 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
116 if (s) { 192 if (s) {
117 s->object_size = s->size = size; 193 s->object_size = s->size = size;
118 s->align = align; 194 s->align = calculate_alignment(flags, align, size);
119 s->ctor = ctor; 195 s->ctor = ctor;
196
197 if (memcg_register_cache(memcg, s, parent_cache)) {
198 kmem_cache_free(kmem_cache, s);
199 err = -ENOMEM;
200 goto out_locked;
201 }
202
120 s->name = kstrdup(name, GFP_KERNEL); 203 s->name = kstrdup(name, GFP_KERNEL);
121 if (!s->name) { 204 if (!s->name) {
122 kmem_cache_free(kmem_cache, s); 205 kmem_cache_free(kmem_cache, s);
@@ -126,10 +209,9 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align
126 209
127 err = __kmem_cache_create(s, flags); 210 err = __kmem_cache_create(s, flags);
128 if (!err) { 211 if (!err) {
129
130 s->refcount = 1; 212 s->refcount = 1;
131 list_add(&s->list, &slab_caches); 213 list_add(&s->list, &slab_caches);
132 214 memcg_cache_list_add(memcg, s);
133 } else { 215 } else {
134 kfree(s->name); 216 kfree(s->name);
135 kmem_cache_free(kmem_cache, s); 217 kmem_cache_free(kmem_cache, s);
@@ -157,10 +239,20 @@ out_locked:
157 239
158 return s; 240 return s;
159} 241}
242
243struct kmem_cache *
244kmem_cache_create(const char *name, size_t size, size_t align,
245 unsigned long flags, void (*ctor)(void *))
246{
247 return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
248}
160EXPORT_SYMBOL(kmem_cache_create); 249EXPORT_SYMBOL(kmem_cache_create);
161 250
162void kmem_cache_destroy(struct kmem_cache *s) 251void kmem_cache_destroy(struct kmem_cache *s)
163{ 252{
253 /* Destroy all the children caches if we aren't a memcg cache */
254 kmem_cache_destroy_memcg_children(s);
255
164 get_online_cpus(); 256 get_online_cpus();
165 mutex_lock(&slab_mutex); 257 mutex_lock(&slab_mutex);
166 s->refcount--; 258 s->refcount--;
@@ -172,6 +264,7 @@ void kmem_cache_destroy(struct kmem_cache *s)
172 if (s->flags & SLAB_DESTROY_BY_RCU) 264 if (s->flags & SLAB_DESTROY_BY_RCU)
173 rcu_barrier(); 265 rcu_barrier();
174 266
267 memcg_release_cache(s);
175 kfree(s->name); 268 kfree(s->name);
176 kmem_cache_free(kmem_cache, s); 269 kmem_cache_free(kmem_cache, s);
177 } else { 270 } else {
@@ -192,3 +285,182 @@ int slab_is_available(void)
192{ 285{
193 return slab_state >= UP; 286 return slab_state >= UP;
194} 287}
288
289#ifndef CONFIG_SLOB
290/* Create a cache during boot when no slab services are available yet */
291void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
292 unsigned long flags)
293{
294 int err;
295
296 s->name = name;
297 s->size = s->object_size = size;
298 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
299 err = __kmem_cache_create(s, flags);
300
301 if (err)
302 panic("Creation of kmalloc slab %s size=%zd failed. Reason %d\n",
303 name, size, err);
304
305 s->refcount = -1; /* Exempt from merging for now */
306}
307
308struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
309 unsigned long flags)
310{
311 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
312
313 if (!s)
314 panic("Out of memory when creating slab %s\n", name);
315
316 create_boot_cache(s, name, size, flags);
317 list_add(&s->list, &slab_caches);
318 s->refcount = 1;
319 return s;
320}
321
322#endif /* !CONFIG_SLOB */
323
324
325#ifdef CONFIG_SLABINFO
326void print_slabinfo_header(struct seq_file *m)
327{
328 /*
329 * Output format version, so at least we can change it
330 * without _too_ many complaints.
331 */
332#ifdef CONFIG_DEBUG_SLAB
333 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
334#else
335 seq_puts(m, "slabinfo - version: 2.1\n");
336#endif
337 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
338 "<objperslab> <pagesperslab>");
339 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
340 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
341#ifdef CONFIG_DEBUG_SLAB
342 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
343 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
344 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
345#endif
346 seq_putc(m, '\n');
347}
348
349static void *s_start(struct seq_file *m, loff_t *pos)
350{
351 loff_t n = *pos;
352
353 mutex_lock(&slab_mutex);
354 if (!n)
355 print_slabinfo_header(m);
356
357 return seq_list_start(&slab_caches, *pos);
358}
359
360static void *s_next(struct seq_file *m, void *p, loff_t *pos)
361{
362 return seq_list_next(p, &slab_caches, pos);
363}
364
365static void s_stop(struct seq_file *m, void *p)
366{
367 mutex_unlock(&slab_mutex);
368}
369
370static void
371memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
372{
373 struct kmem_cache *c;
374 struct slabinfo sinfo;
375 int i;
376
377 if (!is_root_cache(s))
378 return;
379
380 for_each_memcg_cache_index(i) {
381 c = cache_from_memcg(s, i);
382 if (!c)
383 continue;
384
385 memset(&sinfo, 0, sizeof(sinfo));
386 get_slabinfo(c, &sinfo);
387
388 info->active_slabs += sinfo.active_slabs;
389 info->num_slabs += sinfo.num_slabs;
390 info->shared_avail += sinfo.shared_avail;
391 info->active_objs += sinfo.active_objs;
392 info->num_objs += sinfo.num_objs;
393 }
394}
395
396int cache_show(struct kmem_cache *s, struct seq_file *m)
397{
398 struct slabinfo sinfo;
399
400 memset(&sinfo, 0, sizeof(sinfo));
401 get_slabinfo(s, &sinfo);
402
403 memcg_accumulate_slabinfo(s, &sinfo);
404
405 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
406 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
407 sinfo.objects_per_slab, (1 << sinfo.cache_order));
408
409 seq_printf(m, " : tunables %4u %4u %4u",
410 sinfo.limit, sinfo.batchcount, sinfo.shared);
411 seq_printf(m, " : slabdata %6lu %6lu %6lu",
412 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
413 slabinfo_show_stats(m, s);
414 seq_putc(m, '\n');
415 return 0;
416}
417
418static int s_show(struct seq_file *m, void *p)
419{
420 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
421
422 if (!is_root_cache(s))
423 return 0;
424 return cache_show(s, m);
425}
426
427/*
428 * slabinfo_op - iterator that generates /proc/slabinfo
429 *
430 * Output layout:
431 * cache-name
432 * num-active-objs
433 * total-objs
434 * object size
435 * num-active-slabs
436 * total-slabs
437 * num-pages-per-slab
438 * + further values on SMP and with statistics enabled
439 */
440static const struct seq_operations slabinfo_op = {
441 .start = s_start,
442 .next = s_next,
443 .stop = s_stop,
444 .show = s_show,
445};
446
447static int slabinfo_open(struct inode *inode, struct file *file)
448{
449 return seq_open(file, &slabinfo_op);
450}
451
452static const struct file_operations proc_slabinfo_operations = {
453 .open = slabinfo_open,
454 .read = seq_read,
455 .write = slabinfo_write,
456 .llseek = seq_lseek,
457 .release = seq_release,
458};
459
460static int __init slab_proc_init(void)
461{
462 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
463 return 0;
464}
465module_init(slab_proc_init);
466#endif /* CONFIG_SLABINFO */