diff options
Diffstat (limited to 'lib/xz/xz_dec_bcj.c')
-rw-r--r-- | lib/xz/xz_dec_bcj.c | 561 |
1 files changed, 561 insertions, 0 deletions
diff --git a/lib/xz/xz_dec_bcj.c b/lib/xz/xz_dec_bcj.c new file mode 100644 index 000000000000..e51e2558ca9d --- /dev/null +++ b/lib/xz/xz_dec_bcj.c | |||
@@ -0,0 +1,561 @@ | |||
1 | /* | ||
2 | * Branch/Call/Jump (BCJ) filter decoders | ||
3 | * | ||
4 | * Authors: Lasse Collin <lasse.collin@tukaani.org> | ||
5 | * Igor Pavlov <http://7-zip.org/> | ||
6 | * | ||
7 | * This file has been put into the public domain. | ||
8 | * You can do whatever you want with this file. | ||
9 | */ | ||
10 | |||
11 | #include "xz_private.h" | ||
12 | |||
13 | /* | ||
14 | * The rest of the file is inside this ifdef. It makes things a little more | ||
15 | * convenient when building without support for any BCJ filters. | ||
16 | */ | ||
17 | #ifdef XZ_DEC_BCJ | ||
18 | |||
19 | struct xz_dec_bcj { | ||
20 | /* Type of the BCJ filter being used */ | ||
21 | enum { | ||
22 | BCJ_X86 = 4, /* x86 or x86-64 */ | ||
23 | BCJ_POWERPC = 5, /* Big endian only */ | ||
24 | BCJ_IA64 = 6, /* Big or little endian */ | ||
25 | BCJ_ARM = 7, /* Little endian only */ | ||
26 | BCJ_ARMTHUMB = 8, /* Little endian only */ | ||
27 | BCJ_SPARC = 9 /* Big or little endian */ | ||
28 | } type; | ||
29 | |||
30 | /* | ||
31 | * Return value of the next filter in the chain. We need to preserve | ||
32 | * this information across calls, because we must not call the next | ||
33 | * filter anymore once it has returned XZ_STREAM_END. | ||
34 | */ | ||
35 | enum xz_ret ret; | ||
36 | |||
37 | /* True if we are operating in single-call mode. */ | ||
38 | bool single_call; | ||
39 | |||
40 | /* | ||
41 | * Absolute position relative to the beginning of the uncompressed | ||
42 | * data (in a single .xz Block). We care only about the lowest 32 | ||
43 | * bits so this doesn't need to be uint64_t even with big files. | ||
44 | */ | ||
45 | uint32_t pos; | ||
46 | |||
47 | /* x86 filter state */ | ||
48 | uint32_t x86_prev_mask; | ||
49 | |||
50 | /* Temporary space to hold the variables from struct xz_buf */ | ||
51 | uint8_t *out; | ||
52 | size_t out_pos; | ||
53 | size_t out_size; | ||
54 | |||
55 | struct { | ||
56 | /* Amount of already filtered data in the beginning of buf */ | ||
57 | size_t filtered; | ||
58 | |||
59 | /* Total amount of data currently stored in buf */ | ||
60 | size_t size; | ||
61 | |||
62 | /* | ||
63 | * Buffer to hold a mix of filtered and unfiltered data. This | ||
64 | * needs to be big enough to hold Alignment + 2 * Look-ahead: | ||
65 | * | ||
66 | * Type Alignment Look-ahead | ||
67 | * x86 1 4 | ||
68 | * PowerPC 4 0 | ||
69 | * IA-64 16 0 | ||
70 | * ARM 4 0 | ||
71 | * ARM-Thumb 2 2 | ||
72 | * SPARC 4 0 | ||
73 | */ | ||
74 | uint8_t buf[16]; | ||
75 | } temp; | ||
76 | }; | ||
77 | |||
78 | #ifdef XZ_DEC_X86 | ||
79 | /* | ||
80 | * This is used to test the most significant byte of a memory address | ||
81 | * in an x86 instruction. | ||
82 | */ | ||
83 | static inline int bcj_x86_test_msbyte(uint8_t b) | ||
84 | { | ||
85 | return b == 0x00 || b == 0xFF; | ||
86 | } | ||
87 | |||
88 | static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size) | ||
89 | { | ||
90 | static const bool mask_to_allowed_status[8] | ||
91 | = { true, true, true, false, true, false, false, false }; | ||
92 | |||
93 | static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 }; | ||
94 | |||
95 | size_t i; | ||
96 | size_t prev_pos = (size_t)-1; | ||
97 | uint32_t prev_mask = s->x86_prev_mask; | ||
98 | uint32_t src; | ||
99 | uint32_t dest; | ||
100 | uint32_t j; | ||
101 | uint8_t b; | ||
102 | |||
103 | if (size <= 4) | ||
104 | return 0; | ||
105 | |||
106 | size -= 4; | ||
107 | for (i = 0; i < size; ++i) { | ||
108 | if ((buf[i] & 0xFE) != 0xE8) | ||
109 | continue; | ||
110 | |||
111 | prev_pos = i - prev_pos; | ||
112 | if (prev_pos > 3) { | ||
113 | prev_mask = 0; | ||
114 | } else { | ||
115 | prev_mask = (prev_mask << (prev_pos - 1)) & 7; | ||
116 | if (prev_mask != 0) { | ||
117 | b = buf[i + 4 - mask_to_bit_num[prev_mask]]; | ||
118 | if (!mask_to_allowed_status[prev_mask] | ||
119 | || bcj_x86_test_msbyte(b)) { | ||
120 | prev_pos = i; | ||
121 | prev_mask = (prev_mask << 1) | 1; | ||
122 | continue; | ||
123 | } | ||
124 | } | ||
125 | } | ||
126 | |||
127 | prev_pos = i; | ||
128 | |||
129 | if (bcj_x86_test_msbyte(buf[i + 4])) { | ||
130 | src = get_unaligned_le32(buf + i + 1); | ||
131 | while (true) { | ||
132 | dest = src - (s->pos + (uint32_t)i + 5); | ||
133 | if (prev_mask == 0) | ||
134 | break; | ||
135 | |||
136 | j = mask_to_bit_num[prev_mask] * 8; | ||
137 | b = (uint8_t)(dest >> (24 - j)); | ||
138 | if (!bcj_x86_test_msbyte(b)) | ||
139 | break; | ||
140 | |||
141 | src = dest ^ (((uint32_t)1 << (32 - j)) - 1); | ||
142 | } | ||
143 | |||
144 | dest &= 0x01FFFFFF; | ||
145 | dest |= (uint32_t)0 - (dest & 0x01000000); | ||
146 | put_unaligned_le32(dest, buf + i + 1); | ||
147 | i += 4; | ||
148 | } else { | ||
149 | prev_mask = (prev_mask << 1) | 1; | ||
150 | } | ||
151 | } | ||
152 | |||
153 | prev_pos = i - prev_pos; | ||
154 | s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1); | ||
155 | return i; | ||
156 | } | ||
157 | #endif | ||
158 | |||
159 | #ifdef XZ_DEC_POWERPC | ||
160 | static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size) | ||
161 | { | ||
162 | size_t i; | ||
163 | uint32_t instr; | ||
164 | |||
165 | for (i = 0; i + 4 <= size; i += 4) { | ||
166 | instr = get_unaligned_be32(buf + i); | ||
167 | if ((instr & 0xFC000003) == 0x48000001) { | ||
168 | instr &= 0x03FFFFFC; | ||
169 | instr -= s->pos + (uint32_t)i; | ||
170 | instr &= 0x03FFFFFC; | ||
171 | instr |= 0x48000001; | ||
172 | put_unaligned_be32(instr, buf + i); | ||
173 | } | ||
174 | } | ||
175 | |||
176 | return i; | ||
177 | } | ||
178 | #endif | ||
179 | |||
180 | #ifdef XZ_DEC_IA64 | ||
181 | static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size) | ||
182 | { | ||
183 | static const uint8_t branch_table[32] = { | ||
184 | 0, 0, 0, 0, 0, 0, 0, 0, | ||
185 | 0, 0, 0, 0, 0, 0, 0, 0, | ||
186 | 4, 4, 6, 6, 0, 0, 7, 7, | ||
187 | 4, 4, 0, 0, 4, 4, 0, 0 | ||
188 | }; | ||
189 | |||
190 | /* | ||
191 | * The local variables take a little bit stack space, but it's less | ||
192 | * than what LZMA2 decoder takes, so it doesn't make sense to reduce | ||
193 | * stack usage here without doing that for the LZMA2 decoder too. | ||
194 | */ | ||
195 | |||
196 | /* Loop counters */ | ||
197 | size_t i; | ||
198 | size_t j; | ||
199 | |||
200 | /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */ | ||
201 | uint32_t slot; | ||
202 | |||
203 | /* Bitwise offset of the instruction indicated by slot */ | ||
204 | uint32_t bit_pos; | ||
205 | |||
206 | /* bit_pos split into byte and bit parts */ | ||
207 | uint32_t byte_pos; | ||
208 | uint32_t bit_res; | ||
209 | |||
210 | /* Address part of an instruction */ | ||
211 | uint32_t addr; | ||
212 | |||
213 | /* Mask used to detect which instructions to convert */ | ||
214 | uint32_t mask; | ||
215 | |||
216 | /* 41-bit instruction stored somewhere in the lowest 48 bits */ | ||
217 | uint64_t instr; | ||
218 | |||
219 | /* Instruction normalized with bit_res for easier manipulation */ | ||
220 | uint64_t norm; | ||
221 | |||
222 | for (i = 0; i + 16 <= size; i += 16) { | ||
223 | mask = branch_table[buf[i] & 0x1F]; | ||
224 | for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) { | ||
225 | if (((mask >> slot) & 1) == 0) | ||
226 | continue; | ||
227 | |||
228 | byte_pos = bit_pos >> 3; | ||
229 | bit_res = bit_pos & 7; | ||
230 | instr = 0; | ||
231 | for (j = 0; j < 6; ++j) | ||
232 | instr |= (uint64_t)(buf[i + j + byte_pos]) | ||
233 | << (8 * j); | ||
234 | |||
235 | norm = instr >> bit_res; | ||
236 | |||
237 | if (((norm >> 37) & 0x0F) == 0x05 | ||
238 | && ((norm >> 9) & 0x07) == 0) { | ||
239 | addr = (norm >> 13) & 0x0FFFFF; | ||
240 | addr |= ((uint32_t)(norm >> 36) & 1) << 20; | ||
241 | addr <<= 4; | ||
242 | addr -= s->pos + (uint32_t)i; | ||
243 | addr >>= 4; | ||
244 | |||
245 | norm &= ~((uint64_t)0x8FFFFF << 13); | ||
246 | norm |= (uint64_t)(addr & 0x0FFFFF) << 13; | ||
247 | norm |= (uint64_t)(addr & 0x100000) | ||
248 | << (36 - 20); | ||
249 | |||
250 | instr &= (1 << bit_res) - 1; | ||
251 | instr |= norm << bit_res; | ||
252 | |||
253 | for (j = 0; j < 6; j++) | ||
254 | buf[i + j + byte_pos] | ||
255 | = (uint8_t)(instr >> (8 * j)); | ||
256 | } | ||
257 | } | ||
258 | } | ||
259 | |||
260 | return i; | ||
261 | } | ||
262 | #endif | ||
263 | |||
264 | #ifdef XZ_DEC_ARM | ||
265 | static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size) | ||
266 | { | ||
267 | size_t i; | ||
268 | uint32_t addr; | ||
269 | |||
270 | for (i = 0; i + 4 <= size; i += 4) { | ||
271 | if (buf[i + 3] == 0xEB) { | ||
272 | addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8) | ||
273 | | ((uint32_t)buf[i + 2] << 16); | ||
274 | addr <<= 2; | ||
275 | addr -= s->pos + (uint32_t)i + 8; | ||
276 | addr >>= 2; | ||
277 | buf[i] = (uint8_t)addr; | ||
278 | buf[i + 1] = (uint8_t)(addr >> 8); | ||
279 | buf[i + 2] = (uint8_t)(addr >> 16); | ||
280 | } | ||
281 | } | ||
282 | |||
283 | return i; | ||
284 | } | ||
285 | #endif | ||
286 | |||
287 | #ifdef XZ_DEC_ARMTHUMB | ||
288 | static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size) | ||
289 | { | ||
290 | size_t i; | ||
291 | uint32_t addr; | ||
292 | |||
293 | for (i = 0; i + 4 <= size; i += 2) { | ||
294 | if ((buf[i + 1] & 0xF8) == 0xF0 | ||
295 | && (buf[i + 3] & 0xF8) == 0xF8) { | ||
296 | addr = (((uint32_t)buf[i + 1] & 0x07) << 19) | ||
297 | | ((uint32_t)buf[i] << 11) | ||
298 | | (((uint32_t)buf[i + 3] & 0x07) << 8) | ||
299 | | (uint32_t)buf[i + 2]; | ||
300 | addr <<= 1; | ||
301 | addr -= s->pos + (uint32_t)i + 4; | ||
302 | addr >>= 1; | ||
303 | buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07)); | ||
304 | buf[i] = (uint8_t)(addr >> 11); | ||
305 | buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07)); | ||
306 | buf[i + 2] = (uint8_t)addr; | ||
307 | i += 2; | ||
308 | } | ||
309 | } | ||
310 | |||
311 | return i; | ||
312 | } | ||
313 | #endif | ||
314 | |||
315 | #ifdef XZ_DEC_SPARC | ||
316 | static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size) | ||
317 | { | ||
318 | size_t i; | ||
319 | uint32_t instr; | ||
320 | |||
321 | for (i = 0; i + 4 <= size; i += 4) { | ||
322 | instr = get_unaligned_be32(buf + i); | ||
323 | if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) { | ||
324 | instr <<= 2; | ||
325 | instr -= s->pos + (uint32_t)i; | ||
326 | instr >>= 2; | ||
327 | instr = ((uint32_t)0x40000000 - (instr & 0x400000)) | ||
328 | | 0x40000000 | (instr & 0x3FFFFF); | ||
329 | put_unaligned_be32(instr, buf + i); | ||
330 | } | ||
331 | } | ||
332 | |||
333 | return i; | ||
334 | } | ||
335 | #endif | ||
336 | |||
337 | /* | ||
338 | * Apply the selected BCJ filter. Update *pos and s->pos to match the amount | ||
339 | * of data that got filtered. | ||
340 | * | ||
341 | * NOTE: This is implemented as a switch statement to avoid using function | ||
342 | * pointers, which could be problematic in the kernel boot code, which must | ||
343 | * avoid pointers to static data (at least on x86). | ||
344 | */ | ||
345 | static void bcj_apply(struct xz_dec_bcj *s, | ||
346 | uint8_t *buf, size_t *pos, size_t size) | ||
347 | { | ||
348 | size_t filtered; | ||
349 | |||
350 | buf += *pos; | ||
351 | size -= *pos; | ||
352 | |||
353 | switch (s->type) { | ||
354 | #ifdef XZ_DEC_X86 | ||
355 | case BCJ_X86: | ||
356 | filtered = bcj_x86(s, buf, size); | ||
357 | break; | ||
358 | #endif | ||
359 | #ifdef XZ_DEC_POWERPC | ||
360 | case BCJ_POWERPC: | ||
361 | filtered = bcj_powerpc(s, buf, size); | ||
362 | break; | ||
363 | #endif | ||
364 | #ifdef XZ_DEC_IA64 | ||
365 | case BCJ_IA64: | ||
366 | filtered = bcj_ia64(s, buf, size); | ||
367 | break; | ||
368 | #endif | ||
369 | #ifdef XZ_DEC_ARM | ||
370 | case BCJ_ARM: | ||
371 | filtered = bcj_arm(s, buf, size); | ||
372 | break; | ||
373 | #endif | ||
374 | #ifdef XZ_DEC_ARMTHUMB | ||
375 | case BCJ_ARMTHUMB: | ||
376 | filtered = bcj_armthumb(s, buf, size); | ||
377 | break; | ||
378 | #endif | ||
379 | #ifdef XZ_DEC_SPARC | ||
380 | case BCJ_SPARC: | ||
381 | filtered = bcj_sparc(s, buf, size); | ||
382 | break; | ||
383 | #endif | ||
384 | default: | ||
385 | /* Never reached but silence compiler warnings. */ | ||
386 | filtered = 0; | ||
387 | break; | ||
388 | } | ||
389 | |||
390 | *pos += filtered; | ||
391 | s->pos += filtered; | ||
392 | } | ||
393 | |||
394 | /* | ||
395 | * Flush pending filtered data from temp to the output buffer. | ||
396 | * Move the remaining mixture of possibly filtered and unfiltered | ||
397 | * data to the beginning of temp. | ||
398 | */ | ||
399 | static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b) | ||
400 | { | ||
401 | size_t copy_size; | ||
402 | |||
403 | copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos); | ||
404 | memcpy(b->out + b->out_pos, s->temp.buf, copy_size); | ||
405 | b->out_pos += copy_size; | ||
406 | |||
407 | s->temp.filtered -= copy_size; | ||
408 | s->temp.size -= copy_size; | ||
409 | memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size); | ||
410 | } | ||
411 | |||
412 | /* | ||
413 | * The BCJ filter functions are primitive in sense that they process the | ||
414 | * data in chunks of 1-16 bytes. To hide this issue, this function does | ||
415 | * some buffering. | ||
416 | */ | ||
417 | XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s, | ||
418 | struct xz_dec_lzma2 *lzma2, | ||
419 | struct xz_buf *b) | ||
420 | { | ||
421 | size_t out_start; | ||
422 | |||
423 | /* | ||
424 | * Flush pending already filtered data to the output buffer. Return | ||
425 | * immediatelly if we couldn't flush everything, or if the next | ||
426 | * filter in the chain had already returned XZ_STREAM_END. | ||
427 | */ | ||
428 | if (s->temp.filtered > 0) { | ||
429 | bcj_flush(s, b); | ||
430 | if (s->temp.filtered > 0) | ||
431 | return XZ_OK; | ||
432 | |||
433 | if (s->ret == XZ_STREAM_END) | ||
434 | return XZ_STREAM_END; | ||
435 | } | ||
436 | |||
437 | /* | ||
438 | * If we have more output space than what is currently pending in | ||
439 | * temp, copy the unfiltered data from temp to the output buffer | ||
440 | * and try to fill the output buffer by decoding more data from the | ||
441 | * next filter in the chain. Apply the BCJ filter on the new data | ||
442 | * in the output buffer. If everything cannot be filtered, copy it | ||
443 | * to temp and rewind the output buffer position accordingly. | ||
444 | */ | ||
445 | if (s->temp.size < b->out_size - b->out_pos) { | ||
446 | out_start = b->out_pos; | ||
447 | memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size); | ||
448 | b->out_pos += s->temp.size; | ||
449 | |||
450 | s->ret = xz_dec_lzma2_run(lzma2, b); | ||
451 | if (s->ret != XZ_STREAM_END | ||
452 | && (s->ret != XZ_OK || s->single_call)) | ||
453 | return s->ret; | ||
454 | |||
455 | bcj_apply(s, b->out, &out_start, b->out_pos); | ||
456 | |||
457 | /* | ||
458 | * As an exception, if the next filter returned XZ_STREAM_END, | ||
459 | * we can do that too, since the last few bytes that remain | ||
460 | * unfiltered are meant to remain unfiltered. | ||
461 | */ | ||
462 | if (s->ret == XZ_STREAM_END) | ||
463 | return XZ_STREAM_END; | ||
464 | |||
465 | s->temp.size = b->out_pos - out_start; | ||
466 | b->out_pos -= s->temp.size; | ||
467 | memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size); | ||
468 | } | ||
469 | |||
470 | /* | ||
471 | * If we have unfiltered data in temp, try to fill by decoding more | ||
472 | * data from the next filter. Apply the BCJ filter on temp. Then we | ||
473 | * hopefully can fill the actual output buffer by copying filtered | ||
474 | * data from temp. A mix of filtered and unfiltered data may be left | ||
475 | * in temp; it will be taken care on the next call to this function. | ||
476 | */ | ||
477 | if (s->temp.size > 0) { | ||
478 | /* Make b->out{,_pos,_size} temporarily point to s->temp. */ | ||
479 | s->out = b->out; | ||
480 | s->out_pos = b->out_pos; | ||
481 | s->out_size = b->out_size; | ||
482 | b->out = s->temp.buf; | ||
483 | b->out_pos = s->temp.size; | ||
484 | b->out_size = sizeof(s->temp.buf); | ||
485 | |||
486 | s->ret = xz_dec_lzma2_run(lzma2, b); | ||
487 | |||
488 | s->temp.size = b->out_pos; | ||
489 | b->out = s->out; | ||
490 | b->out_pos = s->out_pos; | ||
491 | b->out_size = s->out_size; | ||
492 | |||
493 | if (s->ret != XZ_OK && s->ret != XZ_STREAM_END) | ||
494 | return s->ret; | ||
495 | |||
496 | bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size); | ||
497 | |||
498 | /* | ||
499 | * If the next filter returned XZ_STREAM_END, we mark that | ||
500 | * everything is filtered, since the last unfiltered bytes | ||
501 | * of the stream are meant to be left as is. | ||
502 | */ | ||
503 | if (s->ret == XZ_STREAM_END) | ||
504 | s->temp.filtered = s->temp.size; | ||
505 | |||
506 | bcj_flush(s, b); | ||
507 | if (s->temp.filtered > 0) | ||
508 | return XZ_OK; | ||
509 | } | ||
510 | |||
511 | return s->ret; | ||
512 | } | ||
513 | |||
514 | XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool single_call) | ||
515 | { | ||
516 | struct xz_dec_bcj *s = kmalloc(sizeof(*s), GFP_KERNEL); | ||
517 | if (s != NULL) | ||
518 | s->single_call = single_call; | ||
519 | |||
520 | return s; | ||
521 | } | ||
522 | |||
523 | XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id) | ||
524 | { | ||
525 | switch (id) { | ||
526 | #ifdef XZ_DEC_X86 | ||
527 | case BCJ_X86: | ||
528 | #endif | ||
529 | #ifdef XZ_DEC_POWERPC | ||
530 | case BCJ_POWERPC: | ||
531 | #endif | ||
532 | #ifdef XZ_DEC_IA64 | ||
533 | case BCJ_IA64: | ||
534 | #endif | ||
535 | #ifdef XZ_DEC_ARM | ||
536 | case BCJ_ARM: | ||
537 | #endif | ||
538 | #ifdef XZ_DEC_ARMTHUMB | ||
539 | case BCJ_ARMTHUMB: | ||
540 | #endif | ||
541 | #ifdef XZ_DEC_SPARC | ||
542 | case BCJ_SPARC: | ||
543 | #endif | ||
544 | break; | ||
545 | |||
546 | default: | ||
547 | /* Unsupported Filter ID */ | ||
548 | return XZ_OPTIONS_ERROR; | ||
549 | } | ||
550 | |||
551 | s->type = id; | ||
552 | s->ret = XZ_OK; | ||
553 | s->pos = 0; | ||
554 | s->x86_prev_mask = 0; | ||
555 | s->temp.filtered = 0; | ||
556 | s->temp.size = 0; | ||
557 | |||
558 | return XZ_OK; | ||
559 | } | ||
560 | |||
561 | #endif | ||