diff options
Diffstat (limited to 'drivers/spi/spi-atmel.c')
-rw-r--r-- | drivers/spi/spi-atmel.c | 1093 |
1 files changed, 1093 insertions, 0 deletions
diff --git a/drivers/spi/spi-atmel.c b/drivers/spi/spi-atmel.c new file mode 100644 index 000000000000..82dee9a6c0de --- /dev/null +++ b/drivers/spi/spi-atmel.c | |||
@@ -0,0 +1,1093 @@ | |||
1 | /* | ||
2 | * Driver for Atmel AT32 and AT91 SPI Controllers | ||
3 | * | ||
4 | * Copyright (C) 2006 Atmel Corporation | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License version 2 as | ||
8 | * published by the Free Software Foundation. | ||
9 | */ | ||
10 | |||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/init.h> | ||
13 | #include <linux/clk.h> | ||
14 | #include <linux/module.h> | ||
15 | #include <linux/platform_device.h> | ||
16 | #include <linux/delay.h> | ||
17 | #include <linux/dma-mapping.h> | ||
18 | #include <linux/err.h> | ||
19 | #include <linux/interrupt.h> | ||
20 | #include <linux/spi/spi.h> | ||
21 | #include <linux/slab.h> | ||
22 | |||
23 | #include <asm/io.h> | ||
24 | #include <mach/board.h> | ||
25 | #include <mach/gpio.h> | ||
26 | #include <mach/cpu.h> | ||
27 | |||
28 | /* SPI register offsets */ | ||
29 | #define SPI_CR 0x0000 | ||
30 | #define SPI_MR 0x0004 | ||
31 | #define SPI_RDR 0x0008 | ||
32 | #define SPI_TDR 0x000c | ||
33 | #define SPI_SR 0x0010 | ||
34 | #define SPI_IER 0x0014 | ||
35 | #define SPI_IDR 0x0018 | ||
36 | #define SPI_IMR 0x001c | ||
37 | #define SPI_CSR0 0x0030 | ||
38 | #define SPI_CSR1 0x0034 | ||
39 | #define SPI_CSR2 0x0038 | ||
40 | #define SPI_CSR3 0x003c | ||
41 | #define SPI_RPR 0x0100 | ||
42 | #define SPI_RCR 0x0104 | ||
43 | #define SPI_TPR 0x0108 | ||
44 | #define SPI_TCR 0x010c | ||
45 | #define SPI_RNPR 0x0110 | ||
46 | #define SPI_RNCR 0x0114 | ||
47 | #define SPI_TNPR 0x0118 | ||
48 | #define SPI_TNCR 0x011c | ||
49 | #define SPI_PTCR 0x0120 | ||
50 | #define SPI_PTSR 0x0124 | ||
51 | |||
52 | /* Bitfields in CR */ | ||
53 | #define SPI_SPIEN_OFFSET 0 | ||
54 | #define SPI_SPIEN_SIZE 1 | ||
55 | #define SPI_SPIDIS_OFFSET 1 | ||
56 | #define SPI_SPIDIS_SIZE 1 | ||
57 | #define SPI_SWRST_OFFSET 7 | ||
58 | #define SPI_SWRST_SIZE 1 | ||
59 | #define SPI_LASTXFER_OFFSET 24 | ||
60 | #define SPI_LASTXFER_SIZE 1 | ||
61 | |||
62 | /* Bitfields in MR */ | ||
63 | #define SPI_MSTR_OFFSET 0 | ||
64 | #define SPI_MSTR_SIZE 1 | ||
65 | #define SPI_PS_OFFSET 1 | ||
66 | #define SPI_PS_SIZE 1 | ||
67 | #define SPI_PCSDEC_OFFSET 2 | ||
68 | #define SPI_PCSDEC_SIZE 1 | ||
69 | #define SPI_FDIV_OFFSET 3 | ||
70 | #define SPI_FDIV_SIZE 1 | ||
71 | #define SPI_MODFDIS_OFFSET 4 | ||
72 | #define SPI_MODFDIS_SIZE 1 | ||
73 | #define SPI_LLB_OFFSET 7 | ||
74 | #define SPI_LLB_SIZE 1 | ||
75 | #define SPI_PCS_OFFSET 16 | ||
76 | #define SPI_PCS_SIZE 4 | ||
77 | #define SPI_DLYBCS_OFFSET 24 | ||
78 | #define SPI_DLYBCS_SIZE 8 | ||
79 | |||
80 | /* Bitfields in RDR */ | ||
81 | #define SPI_RD_OFFSET 0 | ||
82 | #define SPI_RD_SIZE 16 | ||
83 | |||
84 | /* Bitfields in TDR */ | ||
85 | #define SPI_TD_OFFSET 0 | ||
86 | #define SPI_TD_SIZE 16 | ||
87 | |||
88 | /* Bitfields in SR */ | ||
89 | #define SPI_RDRF_OFFSET 0 | ||
90 | #define SPI_RDRF_SIZE 1 | ||
91 | #define SPI_TDRE_OFFSET 1 | ||
92 | #define SPI_TDRE_SIZE 1 | ||
93 | #define SPI_MODF_OFFSET 2 | ||
94 | #define SPI_MODF_SIZE 1 | ||
95 | #define SPI_OVRES_OFFSET 3 | ||
96 | #define SPI_OVRES_SIZE 1 | ||
97 | #define SPI_ENDRX_OFFSET 4 | ||
98 | #define SPI_ENDRX_SIZE 1 | ||
99 | #define SPI_ENDTX_OFFSET 5 | ||
100 | #define SPI_ENDTX_SIZE 1 | ||
101 | #define SPI_RXBUFF_OFFSET 6 | ||
102 | #define SPI_RXBUFF_SIZE 1 | ||
103 | #define SPI_TXBUFE_OFFSET 7 | ||
104 | #define SPI_TXBUFE_SIZE 1 | ||
105 | #define SPI_NSSR_OFFSET 8 | ||
106 | #define SPI_NSSR_SIZE 1 | ||
107 | #define SPI_TXEMPTY_OFFSET 9 | ||
108 | #define SPI_TXEMPTY_SIZE 1 | ||
109 | #define SPI_SPIENS_OFFSET 16 | ||
110 | #define SPI_SPIENS_SIZE 1 | ||
111 | |||
112 | /* Bitfields in CSR0 */ | ||
113 | #define SPI_CPOL_OFFSET 0 | ||
114 | #define SPI_CPOL_SIZE 1 | ||
115 | #define SPI_NCPHA_OFFSET 1 | ||
116 | #define SPI_NCPHA_SIZE 1 | ||
117 | #define SPI_CSAAT_OFFSET 3 | ||
118 | #define SPI_CSAAT_SIZE 1 | ||
119 | #define SPI_BITS_OFFSET 4 | ||
120 | #define SPI_BITS_SIZE 4 | ||
121 | #define SPI_SCBR_OFFSET 8 | ||
122 | #define SPI_SCBR_SIZE 8 | ||
123 | #define SPI_DLYBS_OFFSET 16 | ||
124 | #define SPI_DLYBS_SIZE 8 | ||
125 | #define SPI_DLYBCT_OFFSET 24 | ||
126 | #define SPI_DLYBCT_SIZE 8 | ||
127 | |||
128 | /* Bitfields in RCR */ | ||
129 | #define SPI_RXCTR_OFFSET 0 | ||
130 | #define SPI_RXCTR_SIZE 16 | ||
131 | |||
132 | /* Bitfields in TCR */ | ||
133 | #define SPI_TXCTR_OFFSET 0 | ||
134 | #define SPI_TXCTR_SIZE 16 | ||
135 | |||
136 | /* Bitfields in RNCR */ | ||
137 | #define SPI_RXNCR_OFFSET 0 | ||
138 | #define SPI_RXNCR_SIZE 16 | ||
139 | |||
140 | /* Bitfields in TNCR */ | ||
141 | #define SPI_TXNCR_OFFSET 0 | ||
142 | #define SPI_TXNCR_SIZE 16 | ||
143 | |||
144 | /* Bitfields in PTCR */ | ||
145 | #define SPI_RXTEN_OFFSET 0 | ||
146 | #define SPI_RXTEN_SIZE 1 | ||
147 | #define SPI_RXTDIS_OFFSET 1 | ||
148 | #define SPI_RXTDIS_SIZE 1 | ||
149 | #define SPI_TXTEN_OFFSET 8 | ||
150 | #define SPI_TXTEN_SIZE 1 | ||
151 | #define SPI_TXTDIS_OFFSET 9 | ||
152 | #define SPI_TXTDIS_SIZE 1 | ||
153 | |||
154 | /* Constants for BITS */ | ||
155 | #define SPI_BITS_8_BPT 0 | ||
156 | #define SPI_BITS_9_BPT 1 | ||
157 | #define SPI_BITS_10_BPT 2 | ||
158 | #define SPI_BITS_11_BPT 3 | ||
159 | #define SPI_BITS_12_BPT 4 | ||
160 | #define SPI_BITS_13_BPT 5 | ||
161 | #define SPI_BITS_14_BPT 6 | ||
162 | #define SPI_BITS_15_BPT 7 | ||
163 | #define SPI_BITS_16_BPT 8 | ||
164 | |||
165 | /* Bit manipulation macros */ | ||
166 | #define SPI_BIT(name) \ | ||
167 | (1 << SPI_##name##_OFFSET) | ||
168 | #define SPI_BF(name,value) \ | ||
169 | (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) | ||
170 | #define SPI_BFEXT(name,value) \ | ||
171 | (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) | ||
172 | #define SPI_BFINS(name,value,old) \ | ||
173 | ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ | ||
174 | | SPI_BF(name,value)) | ||
175 | |||
176 | /* Register access macros */ | ||
177 | #define spi_readl(port,reg) \ | ||
178 | __raw_readl((port)->regs + SPI_##reg) | ||
179 | #define spi_writel(port,reg,value) \ | ||
180 | __raw_writel((value), (port)->regs + SPI_##reg) | ||
181 | |||
182 | |||
183 | /* | ||
184 | * The core SPI transfer engine just talks to a register bank to set up | ||
185 | * DMA transfers; transfer queue progress is driven by IRQs. The clock | ||
186 | * framework provides the base clock, subdivided for each spi_device. | ||
187 | */ | ||
188 | struct atmel_spi { | ||
189 | spinlock_t lock; | ||
190 | |||
191 | void __iomem *regs; | ||
192 | int irq; | ||
193 | struct clk *clk; | ||
194 | struct platform_device *pdev; | ||
195 | struct spi_device *stay; | ||
196 | |||
197 | u8 stopping; | ||
198 | struct list_head queue; | ||
199 | struct spi_transfer *current_transfer; | ||
200 | unsigned long current_remaining_bytes; | ||
201 | struct spi_transfer *next_transfer; | ||
202 | unsigned long next_remaining_bytes; | ||
203 | |||
204 | void *buffer; | ||
205 | dma_addr_t buffer_dma; | ||
206 | }; | ||
207 | |||
208 | /* Controller-specific per-slave state */ | ||
209 | struct atmel_spi_device { | ||
210 | unsigned int npcs_pin; | ||
211 | u32 csr; | ||
212 | }; | ||
213 | |||
214 | #define BUFFER_SIZE PAGE_SIZE | ||
215 | #define INVALID_DMA_ADDRESS 0xffffffff | ||
216 | |||
217 | /* | ||
218 | * Version 2 of the SPI controller has | ||
219 | * - CR.LASTXFER | ||
220 | * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) | ||
221 | * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) | ||
222 | * - SPI_CSRx.CSAAT | ||
223 | * - SPI_CSRx.SBCR allows faster clocking | ||
224 | * | ||
225 | * We can determine the controller version by reading the VERSION | ||
226 | * register, but I haven't checked that it exists on all chips, and | ||
227 | * this is cheaper anyway. | ||
228 | */ | ||
229 | static bool atmel_spi_is_v2(void) | ||
230 | { | ||
231 | return !cpu_is_at91rm9200(); | ||
232 | } | ||
233 | |||
234 | /* | ||
235 | * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby | ||
236 | * they assume that spi slave device state will not change on deselect, so | ||
237 | * that automagic deselection is OK. ("NPCSx rises if no data is to be | ||
238 | * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer | ||
239 | * controllers have CSAAT and friends. | ||
240 | * | ||
241 | * Since the CSAAT functionality is a bit weird on newer controllers as | ||
242 | * well, we use GPIO to control nCSx pins on all controllers, updating | ||
243 | * MR.PCS to avoid confusing the controller. Using GPIOs also lets us | ||
244 | * support active-high chipselects despite the controller's belief that | ||
245 | * only active-low devices/systems exists. | ||
246 | * | ||
247 | * However, at91rm9200 has a second erratum whereby nCS0 doesn't work | ||
248 | * right when driven with GPIO. ("Mode Fault does not allow more than one | ||
249 | * Master on Chip Select 0.") No workaround exists for that ... so for | ||
250 | * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, | ||
251 | * and (c) will trigger that first erratum in some cases. | ||
252 | * | ||
253 | * TODO: Test if the atmel_spi_is_v2() branch below works on | ||
254 | * AT91RM9200 if we use some other register than CSR0. However, don't | ||
255 | * do this unconditionally since AP7000 has an errata where the BITS | ||
256 | * field in CSR0 overrides all other CSRs. | ||
257 | */ | ||
258 | |||
259 | static void cs_activate(struct atmel_spi *as, struct spi_device *spi) | ||
260 | { | ||
261 | struct atmel_spi_device *asd = spi->controller_state; | ||
262 | unsigned active = spi->mode & SPI_CS_HIGH; | ||
263 | u32 mr; | ||
264 | |||
265 | if (atmel_spi_is_v2()) { | ||
266 | /* | ||
267 | * Always use CSR0. This ensures that the clock | ||
268 | * switches to the correct idle polarity before we | ||
269 | * toggle the CS. | ||
270 | */ | ||
271 | spi_writel(as, CSR0, asd->csr); | ||
272 | spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS) | ||
273 | | SPI_BIT(MSTR)); | ||
274 | mr = spi_readl(as, MR); | ||
275 | gpio_set_value(asd->npcs_pin, active); | ||
276 | } else { | ||
277 | u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; | ||
278 | int i; | ||
279 | u32 csr; | ||
280 | |||
281 | /* Make sure clock polarity is correct */ | ||
282 | for (i = 0; i < spi->master->num_chipselect; i++) { | ||
283 | csr = spi_readl(as, CSR0 + 4 * i); | ||
284 | if ((csr ^ cpol) & SPI_BIT(CPOL)) | ||
285 | spi_writel(as, CSR0 + 4 * i, | ||
286 | csr ^ SPI_BIT(CPOL)); | ||
287 | } | ||
288 | |||
289 | mr = spi_readl(as, MR); | ||
290 | mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr); | ||
291 | if (spi->chip_select != 0) | ||
292 | gpio_set_value(asd->npcs_pin, active); | ||
293 | spi_writel(as, MR, mr); | ||
294 | } | ||
295 | |||
296 | dev_dbg(&spi->dev, "activate %u%s, mr %08x\n", | ||
297 | asd->npcs_pin, active ? " (high)" : "", | ||
298 | mr); | ||
299 | } | ||
300 | |||
301 | static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) | ||
302 | { | ||
303 | struct atmel_spi_device *asd = spi->controller_state; | ||
304 | unsigned active = spi->mode & SPI_CS_HIGH; | ||
305 | u32 mr; | ||
306 | |||
307 | /* only deactivate *this* device; sometimes transfers to | ||
308 | * another device may be active when this routine is called. | ||
309 | */ | ||
310 | mr = spi_readl(as, MR); | ||
311 | if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) { | ||
312 | mr = SPI_BFINS(PCS, 0xf, mr); | ||
313 | spi_writel(as, MR, mr); | ||
314 | } | ||
315 | |||
316 | dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n", | ||
317 | asd->npcs_pin, active ? " (low)" : "", | ||
318 | mr); | ||
319 | |||
320 | if (atmel_spi_is_v2() || spi->chip_select != 0) | ||
321 | gpio_set_value(asd->npcs_pin, !active); | ||
322 | } | ||
323 | |||
324 | static inline int atmel_spi_xfer_is_last(struct spi_message *msg, | ||
325 | struct spi_transfer *xfer) | ||
326 | { | ||
327 | return msg->transfers.prev == &xfer->transfer_list; | ||
328 | } | ||
329 | |||
330 | static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer) | ||
331 | { | ||
332 | return xfer->delay_usecs == 0 && !xfer->cs_change; | ||
333 | } | ||
334 | |||
335 | static void atmel_spi_next_xfer_data(struct spi_master *master, | ||
336 | struct spi_transfer *xfer, | ||
337 | dma_addr_t *tx_dma, | ||
338 | dma_addr_t *rx_dma, | ||
339 | u32 *plen) | ||
340 | { | ||
341 | struct atmel_spi *as = spi_master_get_devdata(master); | ||
342 | u32 len = *plen; | ||
343 | |||
344 | /* use scratch buffer only when rx or tx data is unspecified */ | ||
345 | if (xfer->rx_buf) | ||
346 | *rx_dma = xfer->rx_dma + xfer->len - *plen; | ||
347 | else { | ||
348 | *rx_dma = as->buffer_dma; | ||
349 | if (len > BUFFER_SIZE) | ||
350 | len = BUFFER_SIZE; | ||
351 | } | ||
352 | if (xfer->tx_buf) | ||
353 | *tx_dma = xfer->tx_dma + xfer->len - *plen; | ||
354 | else { | ||
355 | *tx_dma = as->buffer_dma; | ||
356 | if (len > BUFFER_SIZE) | ||
357 | len = BUFFER_SIZE; | ||
358 | memset(as->buffer, 0, len); | ||
359 | dma_sync_single_for_device(&as->pdev->dev, | ||
360 | as->buffer_dma, len, DMA_TO_DEVICE); | ||
361 | } | ||
362 | |||
363 | *plen = len; | ||
364 | } | ||
365 | |||
366 | /* | ||
367 | * Submit next transfer for DMA. | ||
368 | * lock is held, spi irq is blocked | ||
369 | */ | ||
370 | static void atmel_spi_next_xfer(struct spi_master *master, | ||
371 | struct spi_message *msg) | ||
372 | { | ||
373 | struct atmel_spi *as = spi_master_get_devdata(master); | ||
374 | struct spi_transfer *xfer; | ||
375 | u32 len, remaining; | ||
376 | u32 ieval; | ||
377 | dma_addr_t tx_dma, rx_dma; | ||
378 | |||
379 | if (!as->current_transfer) | ||
380 | xfer = list_entry(msg->transfers.next, | ||
381 | struct spi_transfer, transfer_list); | ||
382 | else if (!as->next_transfer) | ||
383 | xfer = list_entry(as->current_transfer->transfer_list.next, | ||
384 | struct spi_transfer, transfer_list); | ||
385 | else | ||
386 | xfer = NULL; | ||
387 | |||
388 | if (xfer) { | ||
389 | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); | ||
390 | |||
391 | len = xfer->len; | ||
392 | atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); | ||
393 | remaining = xfer->len - len; | ||
394 | |||
395 | spi_writel(as, RPR, rx_dma); | ||
396 | spi_writel(as, TPR, tx_dma); | ||
397 | |||
398 | if (msg->spi->bits_per_word > 8) | ||
399 | len >>= 1; | ||
400 | spi_writel(as, RCR, len); | ||
401 | spi_writel(as, TCR, len); | ||
402 | |||
403 | dev_dbg(&msg->spi->dev, | ||
404 | " start xfer %p: len %u tx %p/%08x rx %p/%08x\n", | ||
405 | xfer, xfer->len, xfer->tx_buf, xfer->tx_dma, | ||
406 | xfer->rx_buf, xfer->rx_dma); | ||
407 | } else { | ||
408 | xfer = as->next_transfer; | ||
409 | remaining = as->next_remaining_bytes; | ||
410 | } | ||
411 | |||
412 | as->current_transfer = xfer; | ||
413 | as->current_remaining_bytes = remaining; | ||
414 | |||
415 | if (remaining > 0) | ||
416 | len = remaining; | ||
417 | else if (!atmel_spi_xfer_is_last(msg, xfer) | ||
418 | && atmel_spi_xfer_can_be_chained(xfer)) { | ||
419 | xfer = list_entry(xfer->transfer_list.next, | ||
420 | struct spi_transfer, transfer_list); | ||
421 | len = xfer->len; | ||
422 | } else | ||
423 | xfer = NULL; | ||
424 | |||
425 | as->next_transfer = xfer; | ||
426 | |||
427 | if (xfer) { | ||
428 | u32 total; | ||
429 | |||
430 | total = len; | ||
431 | atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); | ||
432 | as->next_remaining_bytes = total - len; | ||
433 | |||
434 | spi_writel(as, RNPR, rx_dma); | ||
435 | spi_writel(as, TNPR, tx_dma); | ||
436 | |||
437 | if (msg->spi->bits_per_word > 8) | ||
438 | len >>= 1; | ||
439 | spi_writel(as, RNCR, len); | ||
440 | spi_writel(as, TNCR, len); | ||
441 | |||
442 | dev_dbg(&msg->spi->dev, | ||
443 | " next xfer %p: len %u tx %p/%08x rx %p/%08x\n", | ||
444 | xfer, xfer->len, xfer->tx_buf, xfer->tx_dma, | ||
445 | xfer->rx_buf, xfer->rx_dma); | ||
446 | ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES); | ||
447 | } else { | ||
448 | spi_writel(as, RNCR, 0); | ||
449 | spi_writel(as, TNCR, 0); | ||
450 | ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES); | ||
451 | } | ||
452 | |||
453 | /* REVISIT: We're waiting for ENDRX before we start the next | ||
454 | * transfer because we need to handle some difficult timing | ||
455 | * issues otherwise. If we wait for ENDTX in one transfer and | ||
456 | * then starts waiting for ENDRX in the next, it's difficult | ||
457 | * to tell the difference between the ENDRX interrupt we're | ||
458 | * actually waiting for and the ENDRX interrupt of the | ||
459 | * previous transfer. | ||
460 | * | ||
461 | * It should be doable, though. Just not now... | ||
462 | */ | ||
463 | spi_writel(as, IER, ieval); | ||
464 | spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); | ||
465 | } | ||
466 | |||
467 | static void atmel_spi_next_message(struct spi_master *master) | ||
468 | { | ||
469 | struct atmel_spi *as = spi_master_get_devdata(master); | ||
470 | struct spi_message *msg; | ||
471 | struct spi_device *spi; | ||
472 | |||
473 | BUG_ON(as->current_transfer); | ||
474 | |||
475 | msg = list_entry(as->queue.next, struct spi_message, queue); | ||
476 | spi = msg->spi; | ||
477 | |||
478 | dev_dbg(master->dev.parent, "start message %p for %s\n", | ||
479 | msg, dev_name(&spi->dev)); | ||
480 | |||
481 | /* select chip if it's not still active */ | ||
482 | if (as->stay) { | ||
483 | if (as->stay != spi) { | ||
484 | cs_deactivate(as, as->stay); | ||
485 | cs_activate(as, spi); | ||
486 | } | ||
487 | as->stay = NULL; | ||
488 | } else | ||
489 | cs_activate(as, spi); | ||
490 | |||
491 | atmel_spi_next_xfer(master, msg); | ||
492 | } | ||
493 | |||
494 | /* | ||
495 | * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: | ||
496 | * - The buffer is either valid for CPU access, else NULL | ||
497 | * - If the buffer is valid, so is its DMA address | ||
498 | * | ||
499 | * This driver manages the dma address unless message->is_dma_mapped. | ||
500 | */ | ||
501 | static int | ||
502 | atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) | ||
503 | { | ||
504 | struct device *dev = &as->pdev->dev; | ||
505 | |||
506 | xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; | ||
507 | if (xfer->tx_buf) { | ||
508 | /* tx_buf is a const void* where we need a void * for the dma | ||
509 | * mapping */ | ||
510 | void *nonconst_tx = (void *)xfer->tx_buf; | ||
511 | |||
512 | xfer->tx_dma = dma_map_single(dev, | ||
513 | nonconst_tx, xfer->len, | ||
514 | DMA_TO_DEVICE); | ||
515 | if (dma_mapping_error(dev, xfer->tx_dma)) | ||
516 | return -ENOMEM; | ||
517 | } | ||
518 | if (xfer->rx_buf) { | ||
519 | xfer->rx_dma = dma_map_single(dev, | ||
520 | xfer->rx_buf, xfer->len, | ||
521 | DMA_FROM_DEVICE); | ||
522 | if (dma_mapping_error(dev, xfer->rx_dma)) { | ||
523 | if (xfer->tx_buf) | ||
524 | dma_unmap_single(dev, | ||
525 | xfer->tx_dma, xfer->len, | ||
526 | DMA_TO_DEVICE); | ||
527 | return -ENOMEM; | ||
528 | } | ||
529 | } | ||
530 | return 0; | ||
531 | } | ||
532 | |||
533 | static void atmel_spi_dma_unmap_xfer(struct spi_master *master, | ||
534 | struct spi_transfer *xfer) | ||
535 | { | ||
536 | if (xfer->tx_dma != INVALID_DMA_ADDRESS) | ||
537 | dma_unmap_single(master->dev.parent, xfer->tx_dma, | ||
538 | xfer->len, DMA_TO_DEVICE); | ||
539 | if (xfer->rx_dma != INVALID_DMA_ADDRESS) | ||
540 | dma_unmap_single(master->dev.parent, xfer->rx_dma, | ||
541 | xfer->len, DMA_FROM_DEVICE); | ||
542 | } | ||
543 | |||
544 | static void | ||
545 | atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as, | ||
546 | struct spi_message *msg, int status, int stay) | ||
547 | { | ||
548 | if (!stay || status < 0) | ||
549 | cs_deactivate(as, msg->spi); | ||
550 | else | ||
551 | as->stay = msg->spi; | ||
552 | |||
553 | list_del(&msg->queue); | ||
554 | msg->status = status; | ||
555 | |||
556 | dev_dbg(master->dev.parent, | ||
557 | "xfer complete: %u bytes transferred\n", | ||
558 | msg->actual_length); | ||
559 | |||
560 | spin_unlock(&as->lock); | ||
561 | msg->complete(msg->context); | ||
562 | spin_lock(&as->lock); | ||
563 | |||
564 | as->current_transfer = NULL; | ||
565 | as->next_transfer = NULL; | ||
566 | |||
567 | /* continue if needed */ | ||
568 | if (list_empty(&as->queue) || as->stopping) | ||
569 | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); | ||
570 | else | ||
571 | atmel_spi_next_message(master); | ||
572 | } | ||
573 | |||
574 | static irqreturn_t | ||
575 | atmel_spi_interrupt(int irq, void *dev_id) | ||
576 | { | ||
577 | struct spi_master *master = dev_id; | ||
578 | struct atmel_spi *as = spi_master_get_devdata(master); | ||
579 | struct spi_message *msg; | ||
580 | struct spi_transfer *xfer; | ||
581 | u32 status, pending, imr; | ||
582 | int ret = IRQ_NONE; | ||
583 | |||
584 | spin_lock(&as->lock); | ||
585 | |||
586 | xfer = as->current_transfer; | ||
587 | msg = list_entry(as->queue.next, struct spi_message, queue); | ||
588 | |||
589 | imr = spi_readl(as, IMR); | ||
590 | status = spi_readl(as, SR); | ||
591 | pending = status & imr; | ||
592 | |||
593 | if (pending & SPI_BIT(OVRES)) { | ||
594 | int timeout; | ||
595 | |||
596 | ret = IRQ_HANDLED; | ||
597 | |||
598 | spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | ||
599 | | SPI_BIT(OVRES))); | ||
600 | |||
601 | /* | ||
602 | * When we get an overrun, we disregard the current | ||
603 | * transfer. Data will not be copied back from any | ||
604 | * bounce buffer and msg->actual_len will not be | ||
605 | * updated with the last xfer. | ||
606 | * | ||
607 | * We will also not process any remaning transfers in | ||
608 | * the message. | ||
609 | * | ||
610 | * First, stop the transfer and unmap the DMA buffers. | ||
611 | */ | ||
612 | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); | ||
613 | if (!msg->is_dma_mapped) | ||
614 | atmel_spi_dma_unmap_xfer(master, xfer); | ||
615 | |||
616 | /* REVISIT: udelay in irq is unfriendly */ | ||
617 | if (xfer->delay_usecs) | ||
618 | udelay(xfer->delay_usecs); | ||
619 | |||
620 | dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n", | ||
621 | spi_readl(as, TCR), spi_readl(as, RCR)); | ||
622 | |||
623 | /* | ||
624 | * Clean up DMA registers and make sure the data | ||
625 | * registers are empty. | ||
626 | */ | ||
627 | spi_writel(as, RNCR, 0); | ||
628 | spi_writel(as, TNCR, 0); | ||
629 | spi_writel(as, RCR, 0); | ||
630 | spi_writel(as, TCR, 0); | ||
631 | for (timeout = 1000; timeout; timeout--) | ||
632 | if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) | ||
633 | break; | ||
634 | if (!timeout) | ||
635 | dev_warn(master->dev.parent, | ||
636 | "timeout waiting for TXEMPTY"); | ||
637 | while (spi_readl(as, SR) & SPI_BIT(RDRF)) | ||
638 | spi_readl(as, RDR); | ||
639 | |||
640 | /* Clear any overrun happening while cleaning up */ | ||
641 | spi_readl(as, SR); | ||
642 | |||
643 | atmel_spi_msg_done(master, as, msg, -EIO, 0); | ||
644 | } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { | ||
645 | ret = IRQ_HANDLED; | ||
646 | |||
647 | spi_writel(as, IDR, pending); | ||
648 | |||
649 | if (as->current_remaining_bytes == 0) { | ||
650 | msg->actual_length += xfer->len; | ||
651 | |||
652 | if (!msg->is_dma_mapped) | ||
653 | atmel_spi_dma_unmap_xfer(master, xfer); | ||
654 | |||
655 | /* REVISIT: udelay in irq is unfriendly */ | ||
656 | if (xfer->delay_usecs) | ||
657 | udelay(xfer->delay_usecs); | ||
658 | |||
659 | if (atmel_spi_xfer_is_last(msg, xfer)) { | ||
660 | /* report completed message */ | ||
661 | atmel_spi_msg_done(master, as, msg, 0, | ||
662 | xfer->cs_change); | ||
663 | } else { | ||
664 | if (xfer->cs_change) { | ||
665 | cs_deactivate(as, msg->spi); | ||
666 | udelay(1); | ||
667 | cs_activate(as, msg->spi); | ||
668 | } | ||
669 | |||
670 | /* | ||
671 | * Not done yet. Submit the next transfer. | ||
672 | * | ||
673 | * FIXME handle protocol options for xfer | ||
674 | */ | ||
675 | atmel_spi_next_xfer(master, msg); | ||
676 | } | ||
677 | } else { | ||
678 | /* | ||
679 | * Keep going, we still have data to send in | ||
680 | * the current transfer. | ||
681 | */ | ||
682 | atmel_spi_next_xfer(master, msg); | ||
683 | } | ||
684 | } | ||
685 | |||
686 | spin_unlock(&as->lock); | ||
687 | |||
688 | return ret; | ||
689 | } | ||
690 | |||
691 | static int atmel_spi_setup(struct spi_device *spi) | ||
692 | { | ||
693 | struct atmel_spi *as; | ||
694 | struct atmel_spi_device *asd; | ||
695 | u32 scbr, csr; | ||
696 | unsigned int bits = spi->bits_per_word; | ||
697 | unsigned long bus_hz; | ||
698 | unsigned int npcs_pin; | ||
699 | int ret; | ||
700 | |||
701 | as = spi_master_get_devdata(spi->master); | ||
702 | |||
703 | if (as->stopping) | ||
704 | return -ESHUTDOWN; | ||
705 | |||
706 | if (spi->chip_select > spi->master->num_chipselect) { | ||
707 | dev_dbg(&spi->dev, | ||
708 | "setup: invalid chipselect %u (%u defined)\n", | ||
709 | spi->chip_select, spi->master->num_chipselect); | ||
710 | return -EINVAL; | ||
711 | } | ||
712 | |||
713 | if (bits < 8 || bits > 16) { | ||
714 | dev_dbg(&spi->dev, | ||
715 | "setup: invalid bits_per_word %u (8 to 16)\n", | ||
716 | bits); | ||
717 | return -EINVAL; | ||
718 | } | ||
719 | |||
720 | /* see notes above re chipselect */ | ||
721 | if (!atmel_spi_is_v2() | ||
722 | && spi->chip_select == 0 | ||
723 | && (spi->mode & SPI_CS_HIGH)) { | ||
724 | dev_dbg(&spi->dev, "setup: can't be active-high\n"); | ||
725 | return -EINVAL; | ||
726 | } | ||
727 | |||
728 | /* v1 chips start out at half the peripheral bus speed. */ | ||
729 | bus_hz = clk_get_rate(as->clk); | ||
730 | if (!atmel_spi_is_v2()) | ||
731 | bus_hz /= 2; | ||
732 | |||
733 | if (spi->max_speed_hz) { | ||
734 | /* | ||
735 | * Calculate the lowest divider that satisfies the | ||
736 | * constraint, assuming div32/fdiv/mbz == 0. | ||
737 | */ | ||
738 | scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz); | ||
739 | |||
740 | /* | ||
741 | * If the resulting divider doesn't fit into the | ||
742 | * register bitfield, we can't satisfy the constraint. | ||
743 | */ | ||
744 | if (scbr >= (1 << SPI_SCBR_SIZE)) { | ||
745 | dev_dbg(&spi->dev, | ||
746 | "setup: %d Hz too slow, scbr %u; min %ld Hz\n", | ||
747 | spi->max_speed_hz, scbr, bus_hz/255); | ||
748 | return -EINVAL; | ||
749 | } | ||
750 | } else | ||
751 | /* speed zero means "as slow as possible" */ | ||
752 | scbr = 0xff; | ||
753 | |||
754 | csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8); | ||
755 | if (spi->mode & SPI_CPOL) | ||
756 | csr |= SPI_BIT(CPOL); | ||
757 | if (!(spi->mode & SPI_CPHA)) | ||
758 | csr |= SPI_BIT(NCPHA); | ||
759 | |||
760 | /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs. | ||
761 | * | ||
762 | * DLYBCT would add delays between words, slowing down transfers. | ||
763 | * It could potentially be useful to cope with DMA bottlenecks, but | ||
764 | * in those cases it's probably best to just use a lower bitrate. | ||
765 | */ | ||
766 | csr |= SPI_BF(DLYBS, 0); | ||
767 | csr |= SPI_BF(DLYBCT, 0); | ||
768 | |||
769 | /* chipselect must have been muxed as GPIO (e.g. in board setup) */ | ||
770 | npcs_pin = (unsigned int)spi->controller_data; | ||
771 | asd = spi->controller_state; | ||
772 | if (!asd) { | ||
773 | asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); | ||
774 | if (!asd) | ||
775 | return -ENOMEM; | ||
776 | |||
777 | ret = gpio_request(npcs_pin, dev_name(&spi->dev)); | ||
778 | if (ret) { | ||
779 | kfree(asd); | ||
780 | return ret; | ||
781 | } | ||
782 | |||
783 | asd->npcs_pin = npcs_pin; | ||
784 | spi->controller_state = asd; | ||
785 | gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH)); | ||
786 | } else { | ||
787 | unsigned long flags; | ||
788 | |||
789 | spin_lock_irqsave(&as->lock, flags); | ||
790 | if (as->stay == spi) | ||
791 | as->stay = NULL; | ||
792 | cs_deactivate(as, spi); | ||
793 | spin_unlock_irqrestore(&as->lock, flags); | ||
794 | } | ||
795 | |||
796 | asd->csr = csr; | ||
797 | |||
798 | dev_dbg(&spi->dev, | ||
799 | "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n", | ||
800 | bus_hz / scbr, bits, spi->mode, spi->chip_select, csr); | ||
801 | |||
802 | if (!atmel_spi_is_v2()) | ||
803 | spi_writel(as, CSR0 + 4 * spi->chip_select, csr); | ||
804 | |||
805 | return 0; | ||
806 | } | ||
807 | |||
808 | static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg) | ||
809 | { | ||
810 | struct atmel_spi *as; | ||
811 | struct spi_transfer *xfer; | ||
812 | unsigned long flags; | ||
813 | struct device *controller = spi->master->dev.parent; | ||
814 | u8 bits; | ||
815 | struct atmel_spi_device *asd; | ||
816 | |||
817 | as = spi_master_get_devdata(spi->master); | ||
818 | |||
819 | dev_dbg(controller, "new message %p submitted for %s\n", | ||
820 | msg, dev_name(&spi->dev)); | ||
821 | |||
822 | if (unlikely(list_empty(&msg->transfers))) | ||
823 | return -EINVAL; | ||
824 | |||
825 | if (as->stopping) | ||
826 | return -ESHUTDOWN; | ||
827 | |||
828 | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | ||
829 | if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { | ||
830 | dev_dbg(&spi->dev, "missing rx or tx buf\n"); | ||
831 | return -EINVAL; | ||
832 | } | ||
833 | |||
834 | if (xfer->bits_per_word) { | ||
835 | asd = spi->controller_state; | ||
836 | bits = (asd->csr >> 4) & 0xf; | ||
837 | if (bits != xfer->bits_per_word - 8) { | ||
838 | dev_dbg(&spi->dev, "you can't yet change " | ||
839 | "bits_per_word in transfers\n"); | ||
840 | return -ENOPROTOOPT; | ||
841 | } | ||
842 | } | ||
843 | |||
844 | /* FIXME implement these protocol options!! */ | ||
845 | if (xfer->speed_hz) { | ||
846 | dev_dbg(&spi->dev, "no protocol options yet\n"); | ||
847 | return -ENOPROTOOPT; | ||
848 | } | ||
849 | |||
850 | /* | ||
851 | * DMA map early, for performance (empties dcache ASAP) and | ||
852 | * better fault reporting. This is a DMA-only driver. | ||
853 | * | ||
854 | * NOTE that if dma_unmap_single() ever starts to do work on | ||
855 | * platforms supported by this driver, we would need to clean | ||
856 | * up mappings for previously-mapped transfers. | ||
857 | */ | ||
858 | if (!msg->is_dma_mapped) { | ||
859 | if (atmel_spi_dma_map_xfer(as, xfer) < 0) | ||
860 | return -ENOMEM; | ||
861 | } | ||
862 | } | ||
863 | |||
864 | #ifdef VERBOSE | ||
865 | list_for_each_entry(xfer, &msg->transfers, transfer_list) { | ||
866 | dev_dbg(controller, | ||
867 | " xfer %p: len %u tx %p/%08x rx %p/%08x\n", | ||
868 | xfer, xfer->len, | ||
869 | xfer->tx_buf, xfer->tx_dma, | ||
870 | xfer->rx_buf, xfer->rx_dma); | ||
871 | } | ||
872 | #endif | ||
873 | |||
874 | msg->status = -EINPROGRESS; | ||
875 | msg->actual_length = 0; | ||
876 | |||
877 | spin_lock_irqsave(&as->lock, flags); | ||
878 | list_add_tail(&msg->queue, &as->queue); | ||
879 | if (!as->current_transfer) | ||
880 | atmel_spi_next_message(spi->master); | ||
881 | spin_unlock_irqrestore(&as->lock, flags); | ||
882 | |||
883 | return 0; | ||
884 | } | ||
885 | |||
886 | static void atmel_spi_cleanup(struct spi_device *spi) | ||
887 | { | ||
888 | struct atmel_spi *as = spi_master_get_devdata(spi->master); | ||
889 | struct atmel_spi_device *asd = spi->controller_state; | ||
890 | unsigned gpio = (unsigned) spi->controller_data; | ||
891 | unsigned long flags; | ||
892 | |||
893 | if (!asd) | ||
894 | return; | ||
895 | |||
896 | spin_lock_irqsave(&as->lock, flags); | ||
897 | if (as->stay == spi) { | ||
898 | as->stay = NULL; | ||
899 | cs_deactivate(as, spi); | ||
900 | } | ||
901 | spin_unlock_irqrestore(&as->lock, flags); | ||
902 | |||
903 | spi->controller_state = NULL; | ||
904 | gpio_free(gpio); | ||
905 | kfree(asd); | ||
906 | } | ||
907 | |||
908 | /*-------------------------------------------------------------------------*/ | ||
909 | |||
910 | static int __init atmel_spi_probe(struct platform_device *pdev) | ||
911 | { | ||
912 | struct resource *regs; | ||
913 | int irq; | ||
914 | struct clk *clk; | ||
915 | int ret; | ||
916 | struct spi_master *master; | ||
917 | struct atmel_spi *as; | ||
918 | |||
919 | regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); | ||
920 | if (!regs) | ||
921 | return -ENXIO; | ||
922 | |||
923 | irq = platform_get_irq(pdev, 0); | ||
924 | if (irq < 0) | ||
925 | return irq; | ||
926 | |||
927 | clk = clk_get(&pdev->dev, "spi_clk"); | ||
928 | if (IS_ERR(clk)) | ||
929 | return PTR_ERR(clk); | ||
930 | |||
931 | /* setup spi core then atmel-specific driver state */ | ||
932 | ret = -ENOMEM; | ||
933 | master = spi_alloc_master(&pdev->dev, sizeof *as); | ||
934 | if (!master) | ||
935 | goto out_free; | ||
936 | |||
937 | /* the spi->mode bits understood by this driver: */ | ||
938 | master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; | ||
939 | |||
940 | master->bus_num = pdev->id; | ||
941 | master->num_chipselect = 4; | ||
942 | master->setup = atmel_spi_setup; | ||
943 | master->transfer = atmel_spi_transfer; | ||
944 | master->cleanup = atmel_spi_cleanup; | ||
945 | platform_set_drvdata(pdev, master); | ||
946 | |||
947 | as = spi_master_get_devdata(master); | ||
948 | |||
949 | /* | ||
950 | * Scratch buffer is used for throwaway rx and tx data. | ||
951 | * It's coherent to minimize dcache pollution. | ||
952 | */ | ||
953 | as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE, | ||
954 | &as->buffer_dma, GFP_KERNEL); | ||
955 | if (!as->buffer) | ||
956 | goto out_free; | ||
957 | |||
958 | spin_lock_init(&as->lock); | ||
959 | INIT_LIST_HEAD(&as->queue); | ||
960 | as->pdev = pdev; | ||
961 | as->regs = ioremap(regs->start, resource_size(regs)); | ||
962 | if (!as->regs) | ||
963 | goto out_free_buffer; | ||
964 | as->irq = irq; | ||
965 | as->clk = clk; | ||
966 | |||
967 | ret = request_irq(irq, atmel_spi_interrupt, 0, | ||
968 | dev_name(&pdev->dev), master); | ||
969 | if (ret) | ||
970 | goto out_unmap_regs; | ||
971 | |||
972 | /* Initialize the hardware */ | ||
973 | clk_enable(clk); | ||
974 | spi_writel(as, CR, SPI_BIT(SWRST)); | ||
975 | spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ | ||
976 | spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); | ||
977 | spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); | ||
978 | spi_writel(as, CR, SPI_BIT(SPIEN)); | ||
979 | |||
980 | /* go! */ | ||
981 | dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n", | ||
982 | (unsigned long)regs->start, irq); | ||
983 | |||
984 | ret = spi_register_master(master); | ||
985 | if (ret) | ||
986 | goto out_reset_hw; | ||
987 | |||
988 | return 0; | ||
989 | |||
990 | out_reset_hw: | ||
991 | spi_writel(as, CR, SPI_BIT(SWRST)); | ||
992 | spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ | ||
993 | clk_disable(clk); | ||
994 | free_irq(irq, master); | ||
995 | out_unmap_regs: | ||
996 | iounmap(as->regs); | ||
997 | out_free_buffer: | ||
998 | dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, | ||
999 | as->buffer_dma); | ||
1000 | out_free: | ||
1001 | clk_put(clk); | ||
1002 | spi_master_put(master); | ||
1003 | return ret; | ||
1004 | } | ||
1005 | |||
1006 | static int __exit atmel_spi_remove(struct platform_device *pdev) | ||
1007 | { | ||
1008 | struct spi_master *master = platform_get_drvdata(pdev); | ||
1009 | struct atmel_spi *as = spi_master_get_devdata(master); | ||
1010 | struct spi_message *msg; | ||
1011 | |||
1012 | /* reset the hardware and block queue progress */ | ||
1013 | spin_lock_irq(&as->lock); | ||
1014 | as->stopping = 1; | ||
1015 | spi_writel(as, CR, SPI_BIT(SWRST)); | ||
1016 | spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ | ||
1017 | spi_readl(as, SR); | ||
1018 | spin_unlock_irq(&as->lock); | ||
1019 | |||
1020 | /* Terminate remaining queued transfers */ | ||
1021 | list_for_each_entry(msg, &as->queue, queue) { | ||
1022 | /* REVISIT unmapping the dma is a NOP on ARM and AVR32 | ||
1023 | * but we shouldn't depend on that... | ||
1024 | */ | ||
1025 | msg->status = -ESHUTDOWN; | ||
1026 | msg->complete(msg->context); | ||
1027 | } | ||
1028 | |||
1029 | dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, | ||
1030 | as->buffer_dma); | ||
1031 | |||
1032 | clk_disable(as->clk); | ||
1033 | clk_put(as->clk); | ||
1034 | free_irq(as->irq, master); | ||
1035 | iounmap(as->regs); | ||
1036 | |||
1037 | spi_unregister_master(master); | ||
1038 | |||
1039 | return 0; | ||
1040 | } | ||
1041 | |||
1042 | #ifdef CONFIG_PM | ||
1043 | |||
1044 | static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg) | ||
1045 | { | ||
1046 | struct spi_master *master = platform_get_drvdata(pdev); | ||
1047 | struct atmel_spi *as = spi_master_get_devdata(master); | ||
1048 | |||
1049 | clk_disable(as->clk); | ||
1050 | return 0; | ||
1051 | } | ||
1052 | |||
1053 | static int atmel_spi_resume(struct platform_device *pdev) | ||
1054 | { | ||
1055 | struct spi_master *master = platform_get_drvdata(pdev); | ||
1056 | struct atmel_spi *as = spi_master_get_devdata(master); | ||
1057 | |||
1058 | clk_enable(as->clk); | ||
1059 | return 0; | ||
1060 | } | ||
1061 | |||
1062 | #else | ||
1063 | #define atmel_spi_suspend NULL | ||
1064 | #define atmel_spi_resume NULL | ||
1065 | #endif | ||
1066 | |||
1067 | |||
1068 | static struct platform_driver atmel_spi_driver = { | ||
1069 | .driver = { | ||
1070 | .name = "atmel_spi", | ||
1071 | .owner = THIS_MODULE, | ||
1072 | }, | ||
1073 | .suspend = atmel_spi_suspend, | ||
1074 | .resume = atmel_spi_resume, | ||
1075 | .remove = __exit_p(atmel_spi_remove), | ||
1076 | }; | ||
1077 | |||
1078 | static int __init atmel_spi_init(void) | ||
1079 | { | ||
1080 | return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe); | ||
1081 | } | ||
1082 | module_init(atmel_spi_init); | ||
1083 | |||
1084 | static void __exit atmel_spi_exit(void) | ||
1085 | { | ||
1086 | platform_driver_unregister(&atmel_spi_driver); | ||
1087 | } | ||
1088 | module_exit(atmel_spi_exit); | ||
1089 | |||
1090 | MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); | ||
1091 | MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); | ||
1092 | MODULE_LICENSE("GPL"); | ||
1093 | MODULE_ALIAS("platform:atmel_spi"); | ||