diff options
Diffstat (limited to 'drivers/scsi/cyberstormII.c')
-rw-r--r-- | drivers/scsi/cyberstormII.c | 314 |
1 files changed, 0 insertions, 314 deletions
diff --git a/drivers/scsi/cyberstormII.c b/drivers/scsi/cyberstormII.c deleted file mode 100644 index e336e853e66f..000000000000 --- a/drivers/scsi/cyberstormII.c +++ /dev/null | |||
@@ -1,314 +0,0 @@ | |||
1 | /* cyberstormII.c: Driver for CyberStorm SCSI Mk II | ||
2 | * | ||
3 | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) | ||
4 | * | ||
5 | * This driver is based on cyberstorm.c | ||
6 | */ | ||
7 | |||
8 | /* TODO: | ||
9 | * | ||
10 | * 1) Figure out how to make a cleaner merge with the sparc driver with regard | ||
11 | * to the caches and the Sparc MMU mapping. | ||
12 | * 2) Make as few routines required outside the generic driver. A lot of the | ||
13 | * routines in this file used to be inline! | ||
14 | */ | ||
15 | |||
16 | #include <linux/module.h> | ||
17 | |||
18 | #include <linux/init.h> | ||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/delay.h> | ||
21 | #include <linux/types.h> | ||
22 | #include <linux/string.h> | ||
23 | #include <linux/slab.h> | ||
24 | #include <linux/blkdev.h> | ||
25 | #include <linux/proc_fs.h> | ||
26 | #include <linux/stat.h> | ||
27 | #include <linux/interrupt.h> | ||
28 | |||
29 | #include "scsi.h" | ||
30 | #include <scsi/scsi_host.h> | ||
31 | #include "NCR53C9x.h" | ||
32 | |||
33 | #include <linux/zorro.h> | ||
34 | #include <asm/irq.h> | ||
35 | #include <asm/amigaints.h> | ||
36 | #include <asm/amigahw.h> | ||
37 | |||
38 | #include <asm/pgtable.h> | ||
39 | |||
40 | /* The controller registers can be found in the Z2 config area at these | ||
41 | * offsets: | ||
42 | */ | ||
43 | #define CYBERII_ESP_ADDR 0x1ff03 | ||
44 | #define CYBERII_DMA_ADDR 0x1ff43 | ||
45 | |||
46 | |||
47 | /* The CyberStorm II DMA interface */ | ||
48 | struct cyberII_dma_registers { | ||
49 | volatile unsigned char cond_reg; /* DMA cond (ro) [0x000] */ | ||
50 | #define ctrl_reg cond_reg /* DMA control (wo) [0x000] */ | ||
51 | unsigned char dmapad4[0x3f]; | ||
52 | volatile unsigned char dma_addr0; /* DMA address (MSB) [0x040] */ | ||
53 | unsigned char dmapad1[3]; | ||
54 | volatile unsigned char dma_addr1; /* DMA address [0x044] */ | ||
55 | unsigned char dmapad2[3]; | ||
56 | volatile unsigned char dma_addr2; /* DMA address [0x048] */ | ||
57 | unsigned char dmapad3[3]; | ||
58 | volatile unsigned char dma_addr3; /* DMA address (LSB) [0x04c] */ | ||
59 | }; | ||
60 | |||
61 | /* DMA control bits */ | ||
62 | #define CYBERII_DMA_LED 0x02 /* HD led control 1 = on */ | ||
63 | |||
64 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); | ||
65 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); | ||
66 | static void dma_dump_state(struct NCR_ESP *esp); | ||
67 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); | ||
68 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); | ||
69 | static void dma_ints_off(struct NCR_ESP *esp); | ||
70 | static void dma_ints_on(struct NCR_ESP *esp); | ||
71 | static int dma_irq_p(struct NCR_ESP *esp); | ||
72 | static void dma_led_off(struct NCR_ESP *esp); | ||
73 | static void dma_led_on(struct NCR_ESP *esp); | ||
74 | static int dma_ports_p(struct NCR_ESP *esp); | ||
75 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); | ||
76 | |||
77 | static volatile unsigned char cmd_buffer[16]; | ||
78 | /* This is where all commands are put | ||
79 | * before they are transferred to the ESP chip | ||
80 | * via PIO. | ||
81 | */ | ||
82 | |||
83 | /***************************************************************** Detection */ | ||
84 | int __init cyberII_esp_detect(struct scsi_host_template *tpnt) | ||
85 | { | ||
86 | struct NCR_ESP *esp; | ||
87 | struct zorro_dev *z = NULL; | ||
88 | unsigned long address; | ||
89 | struct ESP_regs *eregs; | ||
90 | |||
91 | if ((z = zorro_find_device(ZORRO_PROD_PHASE5_CYBERSTORM_MK_II, z))) { | ||
92 | unsigned long board = z->resource.start; | ||
93 | if (request_mem_region(board+CYBERII_ESP_ADDR, | ||
94 | sizeof(struct ESP_regs), "NCR53C9x")) { | ||
95 | /* Do some magic to figure out if the CyberStorm Mk II | ||
96 | * is equipped with a SCSI controller | ||
97 | */ | ||
98 | address = (unsigned long)ZTWO_VADDR(board); | ||
99 | eregs = (struct ESP_regs *)(address + CYBERII_ESP_ADDR); | ||
100 | |||
101 | esp = esp_allocate(tpnt, (void *)board + CYBERII_ESP_ADDR, 0); | ||
102 | |||
103 | esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7)); | ||
104 | udelay(5); | ||
105 | if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7)) { | ||
106 | esp_deallocate(esp); | ||
107 | scsi_unregister(esp->ehost); | ||
108 | release_mem_region(board+CYBERII_ESP_ADDR, | ||
109 | sizeof(struct ESP_regs)); | ||
110 | return 0; /* Bail out if address did not hold data */ | ||
111 | } | ||
112 | |||
113 | /* Do command transfer with programmed I/O */ | ||
114 | esp->do_pio_cmds = 1; | ||
115 | |||
116 | /* Required functions */ | ||
117 | esp->dma_bytes_sent = &dma_bytes_sent; | ||
118 | esp->dma_can_transfer = &dma_can_transfer; | ||
119 | esp->dma_dump_state = &dma_dump_state; | ||
120 | esp->dma_init_read = &dma_init_read; | ||
121 | esp->dma_init_write = &dma_init_write; | ||
122 | esp->dma_ints_off = &dma_ints_off; | ||
123 | esp->dma_ints_on = &dma_ints_on; | ||
124 | esp->dma_irq_p = &dma_irq_p; | ||
125 | esp->dma_ports_p = &dma_ports_p; | ||
126 | esp->dma_setup = &dma_setup; | ||
127 | |||
128 | /* Optional functions */ | ||
129 | esp->dma_barrier = 0; | ||
130 | esp->dma_drain = 0; | ||
131 | esp->dma_invalidate = 0; | ||
132 | esp->dma_irq_entry = 0; | ||
133 | esp->dma_irq_exit = 0; | ||
134 | esp->dma_led_on = &dma_led_on; | ||
135 | esp->dma_led_off = &dma_led_off; | ||
136 | esp->dma_poll = 0; | ||
137 | esp->dma_reset = 0; | ||
138 | |||
139 | /* SCSI chip speed */ | ||
140 | esp->cfreq = 40000000; | ||
141 | |||
142 | /* The DMA registers on the CyberStorm are mapped | ||
143 | * relative to the device (i.e. in the same Zorro | ||
144 | * I/O block). | ||
145 | */ | ||
146 | esp->dregs = (void *)(address + CYBERII_DMA_ADDR); | ||
147 | |||
148 | /* ESP register base */ | ||
149 | esp->eregs = eregs; | ||
150 | |||
151 | /* Set the command buffer */ | ||
152 | esp->esp_command = cmd_buffer; | ||
153 | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); | ||
154 | |||
155 | esp->irq = IRQ_AMIGA_PORTS; | ||
156 | request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, | ||
157 | "CyberStorm SCSI Mk II", esp->ehost); | ||
158 | |||
159 | /* Figure out our scsi ID on the bus */ | ||
160 | esp->scsi_id = 7; | ||
161 | |||
162 | /* We don't have a differential SCSI-bus. */ | ||
163 | esp->diff = 0; | ||
164 | |||
165 | esp_initialize(esp); | ||
166 | |||
167 | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); | ||
168 | esps_running = esps_in_use; | ||
169 | return esps_in_use; | ||
170 | } | ||
171 | } | ||
172 | return 0; | ||
173 | } | ||
174 | |||
175 | /************************************************************* DMA Functions */ | ||
176 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) | ||
177 | { | ||
178 | /* Since the CyberStorm DMA is fully dedicated to the ESP chip, | ||
179 | * the number of bytes sent (to the ESP chip) equals the number | ||
180 | * of bytes in the FIFO - there is no buffering in the DMA controller. | ||
181 | * XXXX Do I read this right? It is from host to ESP, right? | ||
182 | */ | ||
183 | return fifo_count; | ||
184 | } | ||
185 | |||
186 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
187 | { | ||
188 | /* I don't think there's any limit on the CyberDMA. So we use what | ||
189 | * the ESP chip can handle (24 bit). | ||
190 | */ | ||
191 | unsigned long sz = sp->SCp.this_residual; | ||
192 | if(sz > 0x1000000) | ||
193 | sz = 0x1000000; | ||
194 | return sz; | ||
195 | } | ||
196 | |||
197 | static void dma_dump_state(struct NCR_ESP *esp) | ||
198 | { | ||
199 | ESPLOG(("esp%d: dma -- cond_reg<%02x>\n", | ||
200 | esp->esp_id, ((struct cyberII_dma_registers *) | ||
201 | (esp->dregs))->cond_reg)); | ||
202 | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", | ||
203 | amiga_custom.intreqr, amiga_custom.intenar)); | ||
204 | } | ||
205 | |||
206 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) | ||
207 | { | ||
208 | struct cyberII_dma_registers *dregs = | ||
209 | (struct cyberII_dma_registers *) esp->dregs; | ||
210 | |||
211 | cache_clear(addr, length); | ||
212 | |||
213 | addr &= ~(1); | ||
214 | dregs->dma_addr0 = (addr >> 24) & 0xff; | ||
215 | dregs->dma_addr1 = (addr >> 16) & 0xff; | ||
216 | dregs->dma_addr2 = (addr >> 8) & 0xff; | ||
217 | dregs->dma_addr3 = (addr ) & 0xff; | ||
218 | } | ||
219 | |||
220 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) | ||
221 | { | ||
222 | struct cyberII_dma_registers *dregs = | ||
223 | (struct cyberII_dma_registers *) esp->dregs; | ||
224 | |||
225 | cache_push(addr, length); | ||
226 | |||
227 | addr |= 1; | ||
228 | dregs->dma_addr0 = (addr >> 24) & 0xff; | ||
229 | dregs->dma_addr1 = (addr >> 16) & 0xff; | ||
230 | dregs->dma_addr2 = (addr >> 8) & 0xff; | ||
231 | dregs->dma_addr3 = (addr ) & 0xff; | ||
232 | } | ||
233 | |||
234 | static void dma_ints_off(struct NCR_ESP *esp) | ||
235 | { | ||
236 | disable_irq(esp->irq); | ||
237 | } | ||
238 | |||
239 | static void dma_ints_on(struct NCR_ESP *esp) | ||
240 | { | ||
241 | enable_irq(esp->irq); | ||
242 | } | ||
243 | |||
244 | static int dma_irq_p(struct NCR_ESP *esp) | ||
245 | { | ||
246 | /* It's important to check the DMA IRQ bit in the correct way! */ | ||
247 | return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); | ||
248 | } | ||
249 | |||
250 | static void dma_led_off(struct NCR_ESP *esp) | ||
251 | { | ||
252 | ((struct cyberII_dma_registers *)(esp->dregs))->ctrl_reg &= ~CYBERII_DMA_LED; | ||
253 | } | ||
254 | |||
255 | static void dma_led_on(struct NCR_ESP *esp) | ||
256 | { | ||
257 | ((struct cyberII_dma_registers *)(esp->dregs))->ctrl_reg |= CYBERII_DMA_LED; | ||
258 | } | ||
259 | |||
260 | static int dma_ports_p(struct NCR_ESP *esp) | ||
261 | { | ||
262 | return ((amiga_custom.intenar) & IF_PORTS); | ||
263 | } | ||
264 | |||
265 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) | ||
266 | { | ||
267 | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" | ||
268 | * so when (write) is true, it actually means READ! | ||
269 | */ | ||
270 | if(write){ | ||
271 | dma_init_read(esp, addr, count); | ||
272 | } else { | ||
273 | dma_init_write(esp, addr, count); | ||
274 | } | ||
275 | } | ||
276 | |||
277 | #define HOSTS_C | ||
278 | |||
279 | int cyberII_esp_release(struct Scsi_Host *instance) | ||
280 | { | ||
281 | #ifdef MODULE | ||
282 | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; | ||
283 | |||
284 | esp_deallocate((struct NCR_ESP *)instance->hostdata); | ||
285 | esp_release(); | ||
286 | release_mem_region(address, sizeof(struct ESP_regs)); | ||
287 | free_irq(IRQ_AMIGA_PORTS, esp_intr); | ||
288 | #endif | ||
289 | return 1; | ||
290 | } | ||
291 | |||
292 | |||
293 | static struct scsi_host_template driver_template = { | ||
294 | .proc_name = "esp-cyberstormII", | ||
295 | .proc_info = esp_proc_info, | ||
296 | .name = "CyberStorm Mk II SCSI", | ||
297 | .detect = cyberII_esp_detect, | ||
298 | .slave_alloc = esp_slave_alloc, | ||
299 | .slave_destroy = esp_slave_destroy, | ||
300 | .release = cyberII_esp_release, | ||
301 | .queuecommand = esp_queue, | ||
302 | .eh_abort_handler = esp_abort, | ||
303 | .eh_bus_reset_handler = esp_reset, | ||
304 | .can_queue = 7, | ||
305 | .this_id = 7, | ||
306 | .sg_tablesize = SG_ALL, | ||
307 | .cmd_per_lun = 1, | ||
308 | .use_clustering = ENABLE_CLUSTERING | ||
309 | }; | ||
310 | |||
311 | |||
312 | #include "scsi_module.c" | ||
313 | |||
314 | MODULE_LICENSE("GPL"); | ||