diff options
Diffstat (limited to 'drivers/net/wireless/ath/ath5k/phy.c')
-rw-r--r-- | drivers/net/wireless/ath/ath5k/phy.c | 2599 |
1 files changed, 2599 insertions, 0 deletions
diff --git a/drivers/net/wireless/ath/ath5k/phy.c b/drivers/net/wireless/ath/ath5k/phy.c new file mode 100644 index 000000000000..9e2faae5ae94 --- /dev/null +++ b/drivers/net/wireless/ath/ath5k/phy.c | |||
@@ -0,0 +1,2599 @@ | |||
1 | /* | ||
2 | * PHY functions | ||
3 | * | ||
4 | * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> | ||
5 | * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> | ||
6 | * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> | ||
7 | * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> | ||
8 | * | ||
9 | * Permission to use, copy, modify, and distribute this software for any | ||
10 | * purpose with or without fee is hereby granted, provided that the above | ||
11 | * copyright notice and this permission notice appear in all copies. | ||
12 | * | ||
13 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
14 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
15 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
16 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
17 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
18 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
19 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
20 | * | ||
21 | */ | ||
22 | |||
23 | #define _ATH5K_PHY | ||
24 | |||
25 | #include <linux/delay.h> | ||
26 | |||
27 | #include "ath5k.h" | ||
28 | #include "reg.h" | ||
29 | #include "base.h" | ||
30 | #include "rfbuffer.h" | ||
31 | #include "rfgain.h" | ||
32 | |||
33 | /* | ||
34 | * Used to modify RF Banks before writing them to AR5K_RF_BUFFER | ||
35 | */ | ||
36 | static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah, | ||
37 | const struct ath5k_rf_reg *rf_regs, | ||
38 | u32 val, u8 reg_id, bool set) | ||
39 | { | ||
40 | const struct ath5k_rf_reg *rfreg = NULL; | ||
41 | u8 offset, bank, num_bits, col, position; | ||
42 | u16 entry; | ||
43 | u32 mask, data, last_bit, bits_shifted, first_bit; | ||
44 | u32 *rfb; | ||
45 | s32 bits_left; | ||
46 | int i; | ||
47 | |||
48 | data = 0; | ||
49 | rfb = ah->ah_rf_banks; | ||
50 | |||
51 | for (i = 0; i < ah->ah_rf_regs_count; i++) { | ||
52 | if (rf_regs[i].index == reg_id) { | ||
53 | rfreg = &rf_regs[i]; | ||
54 | break; | ||
55 | } | ||
56 | } | ||
57 | |||
58 | if (rfb == NULL || rfreg == NULL) { | ||
59 | ATH5K_PRINTF("Rf register not found!\n"); | ||
60 | /* should not happen */ | ||
61 | return 0; | ||
62 | } | ||
63 | |||
64 | bank = rfreg->bank; | ||
65 | num_bits = rfreg->field.len; | ||
66 | first_bit = rfreg->field.pos; | ||
67 | col = rfreg->field.col; | ||
68 | |||
69 | /* first_bit is an offset from bank's | ||
70 | * start. Since we have all banks on | ||
71 | * the same array, we use this offset | ||
72 | * to mark each bank's start */ | ||
73 | offset = ah->ah_offset[bank]; | ||
74 | |||
75 | /* Boundary check */ | ||
76 | if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) { | ||
77 | ATH5K_PRINTF("invalid values at offset %u\n", offset); | ||
78 | return 0; | ||
79 | } | ||
80 | |||
81 | entry = ((first_bit - 1) / 8) + offset; | ||
82 | position = (first_bit - 1) % 8; | ||
83 | |||
84 | if (set) | ||
85 | data = ath5k_hw_bitswap(val, num_bits); | ||
86 | |||
87 | for (bits_shifted = 0, bits_left = num_bits; bits_left > 0; | ||
88 | position = 0, entry++) { | ||
89 | |||
90 | last_bit = (position + bits_left > 8) ? 8 : | ||
91 | position + bits_left; | ||
92 | |||
93 | mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) << | ||
94 | (col * 8); | ||
95 | |||
96 | if (set) { | ||
97 | rfb[entry] &= ~mask; | ||
98 | rfb[entry] |= ((data << position) << (col * 8)) & mask; | ||
99 | data >>= (8 - position); | ||
100 | } else { | ||
101 | data |= (((rfb[entry] & mask) >> (col * 8)) >> position) | ||
102 | << bits_shifted; | ||
103 | bits_shifted += last_bit - position; | ||
104 | } | ||
105 | |||
106 | bits_left -= 8 - position; | ||
107 | } | ||
108 | |||
109 | data = set ? 1 : ath5k_hw_bitswap(data, num_bits); | ||
110 | |||
111 | return data; | ||
112 | } | ||
113 | |||
114 | /**********************\ | ||
115 | * RF Gain optimization * | ||
116 | \**********************/ | ||
117 | |||
118 | /* | ||
119 | * This code is used to optimize rf gain on different environments | ||
120 | * (temprature mostly) based on feedback from a power detector. | ||
121 | * | ||
122 | * It's only used on RF5111 and RF5112, later RF chips seem to have | ||
123 | * auto adjustment on hw -notice they have a much smaller BANK 7 and | ||
124 | * no gain optimization ladder-. | ||
125 | * | ||
126 | * For more infos check out this patent doc | ||
127 | * http://www.freepatentsonline.com/7400691.html | ||
128 | * | ||
129 | * This paper describes power drops as seen on the receiver due to | ||
130 | * probe packets | ||
131 | * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues | ||
132 | * %20of%20Power%20Control.pdf | ||
133 | * | ||
134 | * And this is the MadWiFi bug entry related to the above | ||
135 | * http://madwifi-project.org/ticket/1659 | ||
136 | * with various measurements and diagrams | ||
137 | * | ||
138 | * TODO: Deal with power drops due to probes by setting an apropriate | ||
139 | * tx power on the probe packets ! Make this part of the calibration process. | ||
140 | */ | ||
141 | |||
142 | /* Initialize ah_gain durring attach */ | ||
143 | int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) | ||
144 | { | ||
145 | /* Initialize the gain optimization values */ | ||
146 | switch (ah->ah_radio) { | ||
147 | case AR5K_RF5111: | ||
148 | ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; | ||
149 | ah->ah_gain.g_low = 20; | ||
150 | ah->ah_gain.g_high = 35; | ||
151 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | ||
152 | break; | ||
153 | case AR5K_RF5112: | ||
154 | ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default; | ||
155 | ah->ah_gain.g_low = 20; | ||
156 | ah->ah_gain.g_high = 85; | ||
157 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | ||
158 | break; | ||
159 | default: | ||
160 | return -EINVAL; | ||
161 | } | ||
162 | |||
163 | return 0; | ||
164 | } | ||
165 | |||
166 | /* Schedule a gain probe check on the next transmited packet. | ||
167 | * That means our next packet is going to be sent with lower | ||
168 | * tx power and a Peak to Average Power Detector (PAPD) will try | ||
169 | * to measure the gain. | ||
170 | * | ||
171 | * TODO: Use propper tx power setting for the probe packet so | ||
172 | * that we don't observe a serious power drop on the receiver | ||
173 | * | ||
174 | * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc) | ||
175 | * just after we enable the probe so that we don't mess with | ||
176 | * standard traffic ? Maybe it's time to use sw interrupts and | ||
177 | * a probe tasklet !!! | ||
178 | */ | ||
179 | static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) | ||
180 | { | ||
181 | |||
182 | /* Skip if gain calibration is inactive or | ||
183 | * we already handle a probe request */ | ||
184 | if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) | ||
185 | return; | ||
186 | |||
187 | /* Send the packet with 2dB below max power as | ||
188 | * patent doc suggest */ | ||
189 | ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4, | ||
190 | AR5K_PHY_PAPD_PROBE_TXPOWER) | | ||
191 | AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); | ||
192 | |||
193 | ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; | ||
194 | |||
195 | } | ||
196 | |||
197 | /* Calculate gain_F measurement correction | ||
198 | * based on the current step for RF5112 rev. 2 */ | ||
199 | static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) | ||
200 | { | ||
201 | u32 mix, step; | ||
202 | u32 *rf; | ||
203 | const struct ath5k_gain_opt *go; | ||
204 | const struct ath5k_gain_opt_step *g_step; | ||
205 | const struct ath5k_rf_reg *rf_regs; | ||
206 | |||
207 | /* Only RF5112 Rev. 2 supports it */ | ||
208 | if ((ah->ah_radio != AR5K_RF5112) || | ||
209 | (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A)) | ||
210 | return 0; | ||
211 | |||
212 | go = &rfgain_opt_5112; | ||
213 | rf_regs = rf_regs_5112a; | ||
214 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); | ||
215 | |||
216 | g_step = &go->go_step[ah->ah_gain.g_step_idx]; | ||
217 | |||
218 | if (ah->ah_rf_banks == NULL) | ||
219 | return 0; | ||
220 | |||
221 | rf = ah->ah_rf_banks; | ||
222 | ah->ah_gain.g_f_corr = 0; | ||
223 | |||
224 | /* No VGA (Variable Gain Amplifier) override, skip */ | ||
225 | if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1) | ||
226 | return 0; | ||
227 | |||
228 | /* Mix gain stepping */ | ||
229 | step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false); | ||
230 | |||
231 | /* Mix gain override */ | ||
232 | mix = g_step->gos_param[0]; | ||
233 | |||
234 | switch (mix) { | ||
235 | case 3: | ||
236 | ah->ah_gain.g_f_corr = step * 2; | ||
237 | break; | ||
238 | case 2: | ||
239 | ah->ah_gain.g_f_corr = (step - 5) * 2; | ||
240 | break; | ||
241 | case 1: | ||
242 | ah->ah_gain.g_f_corr = step; | ||
243 | break; | ||
244 | default: | ||
245 | ah->ah_gain.g_f_corr = 0; | ||
246 | break; | ||
247 | } | ||
248 | |||
249 | return ah->ah_gain.g_f_corr; | ||
250 | } | ||
251 | |||
252 | /* Check if current gain_F measurement is in the range of our | ||
253 | * power detector windows. If we get a measurement outside range | ||
254 | * we know it's not accurate (detectors can't measure anything outside | ||
255 | * their detection window) so we must ignore it */ | ||
256 | static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) | ||
257 | { | ||
258 | const struct ath5k_rf_reg *rf_regs; | ||
259 | u32 step, mix_ovr, level[4]; | ||
260 | u32 *rf; | ||
261 | |||
262 | if (ah->ah_rf_banks == NULL) | ||
263 | return false; | ||
264 | |||
265 | rf = ah->ah_rf_banks; | ||
266 | |||
267 | if (ah->ah_radio == AR5K_RF5111) { | ||
268 | |||
269 | rf_regs = rf_regs_5111; | ||
270 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); | ||
271 | |||
272 | step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP, | ||
273 | false); | ||
274 | |||
275 | level[0] = 0; | ||
276 | level[1] = (step == 63) ? 50 : step + 4; | ||
277 | level[2] = (step != 63) ? 64 : level[0]; | ||
278 | level[3] = level[2] + 50 ; | ||
279 | |||
280 | ah->ah_gain.g_high = level[3] - | ||
281 | (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5); | ||
282 | ah->ah_gain.g_low = level[0] + | ||
283 | (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0); | ||
284 | } else { | ||
285 | |||
286 | rf_regs = rf_regs_5112; | ||
287 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); | ||
288 | |||
289 | mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, | ||
290 | false); | ||
291 | |||
292 | level[0] = level[2] = 0; | ||
293 | |||
294 | if (mix_ovr == 1) { | ||
295 | level[1] = level[3] = 83; | ||
296 | } else { | ||
297 | level[1] = level[3] = 107; | ||
298 | ah->ah_gain.g_high = 55; | ||
299 | } | ||
300 | } | ||
301 | |||
302 | return (ah->ah_gain.g_current >= level[0] && | ||
303 | ah->ah_gain.g_current <= level[1]) || | ||
304 | (ah->ah_gain.g_current >= level[2] && | ||
305 | ah->ah_gain.g_current <= level[3]); | ||
306 | } | ||
307 | |||
308 | /* Perform gain_F adjustment by choosing the right set | ||
309 | * of parameters from rf gain optimization ladder */ | ||
310 | static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) | ||
311 | { | ||
312 | const struct ath5k_gain_opt *go; | ||
313 | const struct ath5k_gain_opt_step *g_step; | ||
314 | int ret = 0; | ||
315 | |||
316 | switch (ah->ah_radio) { | ||
317 | case AR5K_RF5111: | ||
318 | go = &rfgain_opt_5111; | ||
319 | break; | ||
320 | case AR5K_RF5112: | ||
321 | go = &rfgain_opt_5112; | ||
322 | break; | ||
323 | default: | ||
324 | return 0; | ||
325 | } | ||
326 | |||
327 | g_step = &go->go_step[ah->ah_gain.g_step_idx]; | ||
328 | |||
329 | if (ah->ah_gain.g_current >= ah->ah_gain.g_high) { | ||
330 | |||
331 | /* Reached maximum */ | ||
332 | if (ah->ah_gain.g_step_idx == 0) | ||
333 | return -1; | ||
334 | |||
335 | for (ah->ah_gain.g_target = ah->ah_gain.g_current; | ||
336 | ah->ah_gain.g_target >= ah->ah_gain.g_high && | ||
337 | ah->ah_gain.g_step_idx > 0; | ||
338 | g_step = &go->go_step[ah->ah_gain.g_step_idx]) | ||
339 | ah->ah_gain.g_target -= 2 * | ||
340 | (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain - | ||
341 | g_step->gos_gain); | ||
342 | |||
343 | ret = 1; | ||
344 | goto done; | ||
345 | } | ||
346 | |||
347 | if (ah->ah_gain.g_current <= ah->ah_gain.g_low) { | ||
348 | |||
349 | /* Reached minimum */ | ||
350 | if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1)) | ||
351 | return -2; | ||
352 | |||
353 | for (ah->ah_gain.g_target = ah->ah_gain.g_current; | ||
354 | ah->ah_gain.g_target <= ah->ah_gain.g_low && | ||
355 | ah->ah_gain.g_step_idx < go->go_steps_count-1; | ||
356 | g_step = &go->go_step[ah->ah_gain.g_step_idx]) | ||
357 | ah->ah_gain.g_target -= 2 * | ||
358 | (go->go_step[++ah->ah_gain.g_step_idx].gos_gain - | ||
359 | g_step->gos_gain); | ||
360 | |||
361 | ret = 2; | ||
362 | goto done; | ||
363 | } | ||
364 | |||
365 | done: | ||
366 | ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE, | ||
367 | "ret %d, gain step %u, current gain %u, target gain %u\n", | ||
368 | ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current, | ||
369 | ah->ah_gain.g_target); | ||
370 | |||
371 | return ret; | ||
372 | } | ||
373 | |||
374 | /* Main callback for thermal rf gain calibration engine | ||
375 | * Check for a new gain reading and schedule an adjustment | ||
376 | * if needed. | ||
377 | * | ||
378 | * TODO: Use sw interrupt to schedule reset if gain_F needs | ||
379 | * adjustment */ | ||
380 | enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) | ||
381 | { | ||
382 | u32 data, type; | ||
383 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | ||
384 | |||
385 | ATH5K_TRACE(ah->ah_sc); | ||
386 | |||
387 | if (ah->ah_rf_banks == NULL || | ||
388 | ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) | ||
389 | return AR5K_RFGAIN_INACTIVE; | ||
390 | |||
391 | /* No check requested, either engine is inactive | ||
392 | * or an adjustment is already requested */ | ||
393 | if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED) | ||
394 | goto done; | ||
395 | |||
396 | /* Read the PAPD (Peak to Average Power Detector) | ||
397 | * register */ | ||
398 | data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE); | ||
399 | |||
400 | /* No probe is scheduled, read gain_F measurement */ | ||
401 | if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) { | ||
402 | ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S; | ||
403 | type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE); | ||
404 | |||
405 | /* If tx packet is CCK correct the gain_F measurement | ||
406 | * by cck ofdm gain delta */ | ||
407 | if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) { | ||
408 | if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) | ||
409 | ah->ah_gain.g_current += | ||
410 | ee->ee_cck_ofdm_gain_delta; | ||
411 | else | ||
412 | ah->ah_gain.g_current += | ||
413 | AR5K_GAIN_CCK_PROBE_CORR; | ||
414 | } | ||
415 | |||
416 | /* Further correct gain_F measurement for | ||
417 | * RF5112A radios */ | ||
418 | if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { | ||
419 | ath5k_hw_rf_gainf_corr(ah); | ||
420 | ah->ah_gain.g_current = | ||
421 | ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ? | ||
422 | (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) : | ||
423 | 0; | ||
424 | } | ||
425 | |||
426 | /* Check if measurement is ok and if we need | ||
427 | * to adjust gain, schedule a gain adjustment, | ||
428 | * else switch back to the acive state */ | ||
429 | if (ath5k_hw_rf_check_gainf_readback(ah) && | ||
430 | AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) && | ||
431 | ath5k_hw_rf_gainf_adjust(ah)) { | ||
432 | ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE; | ||
433 | } else { | ||
434 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | ||
435 | } | ||
436 | } | ||
437 | |||
438 | done: | ||
439 | return ah->ah_gain.g_state; | ||
440 | } | ||
441 | |||
442 | /* Write initial rf gain table to set the RF sensitivity | ||
443 | * this one works on all RF chips and has nothing to do | ||
444 | * with gain_F calibration */ | ||
445 | int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq) | ||
446 | { | ||
447 | const struct ath5k_ini_rfgain *ath5k_rfg; | ||
448 | unsigned int i, size; | ||
449 | |||
450 | switch (ah->ah_radio) { | ||
451 | case AR5K_RF5111: | ||
452 | ath5k_rfg = rfgain_5111; | ||
453 | size = ARRAY_SIZE(rfgain_5111); | ||
454 | break; | ||
455 | case AR5K_RF5112: | ||
456 | ath5k_rfg = rfgain_5112; | ||
457 | size = ARRAY_SIZE(rfgain_5112); | ||
458 | break; | ||
459 | case AR5K_RF2413: | ||
460 | ath5k_rfg = rfgain_2413; | ||
461 | size = ARRAY_SIZE(rfgain_2413); | ||
462 | break; | ||
463 | case AR5K_RF2316: | ||
464 | ath5k_rfg = rfgain_2316; | ||
465 | size = ARRAY_SIZE(rfgain_2316); | ||
466 | break; | ||
467 | case AR5K_RF5413: | ||
468 | ath5k_rfg = rfgain_5413; | ||
469 | size = ARRAY_SIZE(rfgain_5413); | ||
470 | break; | ||
471 | case AR5K_RF2317: | ||
472 | case AR5K_RF2425: | ||
473 | ath5k_rfg = rfgain_2425; | ||
474 | size = ARRAY_SIZE(rfgain_2425); | ||
475 | break; | ||
476 | default: | ||
477 | return -EINVAL; | ||
478 | } | ||
479 | |||
480 | switch (freq) { | ||
481 | case AR5K_INI_RFGAIN_2GHZ: | ||
482 | case AR5K_INI_RFGAIN_5GHZ: | ||
483 | break; | ||
484 | default: | ||
485 | return -EINVAL; | ||
486 | } | ||
487 | |||
488 | for (i = 0; i < size; i++) { | ||
489 | AR5K_REG_WAIT(i); | ||
490 | ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq], | ||
491 | (u32)ath5k_rfg[i].rfg_register); | ||
492 | } | ||
493 | |||
494 | return 0; | ||
495 | } | ||
496 | |||
497 | |||
498 | |||
499 | /********************\ | ||
500 | * RF Registers setup * | ||
501 | \********************/ | ||
502 | |||
503 | |||
504 | /* | ||
505 | * Setup RF registers by writing rf buffer on hw | ||
506 | */ | ||
507 | int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, | ||
508 | unsigned int mode) | ||
509 | { | ||
510 | const struct ath5k_rf_reg *rf_regs; | ||
511 | const struct ath5k_ini_rfbuffer *ini_rfb; | ||
512 | const struct ath5k_gain_opt *go = NULL; | ||
513 | const struct ath5k_gain_opt_step *g_step; | ||
514 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | ||
515 | u8 ee_mode = 0; | ||
516 | u32 *rfb; | ||
517 | int i, obdb = -1, bank = -1; | ||
518 | |||
519 | switch (ah->ah_radio) { | ||
520 | case AR5K_RF5111: | ||
521 | rf_regs = rf_regs_5111; | ||
522 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); | ||
523 | ini_rfb = rfb_5111; | ||
524 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111); | ||
525 | go = &rfgain_opt_5111; | ||
526 | break; | ||
527 | case AR5K_RF5112: | ||
528 | if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { | ||
529 | rf_regs = rf_regs_5112a; | ||
530 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); | ||
531 | ini_rfb = rfb_5112a; | ||
532 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a); | ||
533 | } else { | ||
534 | rf_regs = rf_regs_5112; | ||
535 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); | ||
536 | ini_rfb = rfb_5112; | ||
537 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112); | ||
538 | } | ||
539 | go = &rfgain_opt_5112; | ||
540 | break; | ||
541 | case AR5K_RF2413: | ||
542 | rf_regs = rf_regs_2413; | ||
543 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413); | ||
544 | ini_rfb = rfb_2413; | ||
545 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413); | ||
546 | break; | ||
547 | case AR5K_RF2316: | ||
548 | rf_regs = rf_regs_2316; | ||
549 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316); | ||
550 | ini_rfb = rfb_2316; | ||
551 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316); | ||
552 | break; | ||
553 | case AR5K_RF5413: | ||
554 | rf_regs = rf_regs_5413; | ||
555 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413); | ||
556 | ini_rfb = rfb_5413; | ||
557 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413); | ||
558 | break; | ||
559 | case AR5K_RF2317: | ||
560 | rf_regs = rf_regs_2425; | ||
561 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); | ||
562 | ini_rfb = rfb_2317; | ||
563 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317); | ||
564 | break; | ||
565 | case AR5K_RF2425: | ||
566 | rf_regs = rf_regs_2425; | ||
567 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); | ||
568 | if (ah->ah_mac_srev < AR5K_SREV_AR2417) { | ||
569 | ini_rfb = rfb_2425; | ||
570 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425); | ||
571 | } else { | ||
572 | ini_rfb = rfb_2417; | ||
573 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417); | ||
574 | } | ||
575 | break; | ||
576 | default: | ||
577 | return -EINVAL; | ||
578 | } | ||
579 | |||
580 | /* If it's the first time we set rf buffer, allocate | ||
581 | * ah->ah_rf_banks based on ah->ah_rf_banks_size | ||
582 | * we set above */ | ||
583 | if (ah->ah_rf_banks == NULL) { | ||
584 | ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size, | ||
585 | GFP_KERNEL); | ||
586 | if (ah->ah_rf_banks == NULL) { | ||
587 | ATH5K_ERR(ah->ah_sc, "out of memory\n"); | ||
588 | return -ENOMEM; | ||
589 | } | ||
590 | } | ||
591 | |||
592 | /* Copy values to modify them */ | ||
593 | rfb = ah->ah_rf_banks; | ||
594 | |||
595 | for (i = 0; i < ah->ah_rf_banks_size; i++) { | ||
596 | if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) { | ||
597 | ATH5K_ERR(ah->ah_sc, "invalid bank\n"); | ||
598 | return -EINVAL; | ||
599 | } | ||
600 | |||
601 | /* Bank changed, write down the offset */ | ||
602 | if (bank != ini_rfb[i].rfb_bank) { | ||
603 | bank = ini_rfb[i].rfb_bank; | ||
604 | ah->ah_offset[bank] = i; | ||
605 | } | ||
606 | |||
607 | rfb[i] = ini_rfb[i].rfb_mode_data[mode]; | ||
608 | } | ||
609 | |||
610 | /* Set Output and Driver bias current (OB/DB) */ | ||
611 | if (channel->hw_value & CHANNEL_2GHZ) { | ||
612 | |||
613 | if (channel->hw_value & CHANNEL_CCK) | ||
614 | ee_mode = AR5K_EEPROM_MODE_11B; | ||
615 | else | ||
616 | ee_mode = AR5K_EEPROM_MODE_11G; | ||
617 | |||
618 | /* For RF511X/RF211X combination we | ||
619 | * use b_OB and b_DB parameters stored | ||
620 | * in eeprom on ee->ee_ob[ee_mode][0] | ||
621 | * | ||
622 | * For all other chips we use OB/DB for 2Ghz | ||
623 | * stored in the b/g modal section just like | ||
624 | * 802.11a on ee->ee_ob[ee_mode][1] */ | ||
625 | if ((ah->ah_radio == AR5K_RF5111) || | ||
626 | (ah->ah_radio == AR5K_RF5112)) | ||
627 | obdb = 0; | ||
628 | else | ||
629 | obdb = 1; | ||
630 | |||
631 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], | ||
632 | AR5K_RF_OB_2GHZ, true); | ||
633 | |||
634 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], | ||
635 | AR5K_RF_DB_2GHZ, true); | ||
636 | |||
637 | /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */ | ||
638 | } else if ((channel->hw_value & CHANNEL_5GHZ) || | ||
639 | (ah->ah_radio == AR5K_RF5111)) { | ||
640 | |||
641 | /* For 11a, Turbo and XR we need to choose | ||
642 | * OB/DB based on frequency range */ | ||
643 | ee_mode = AR5K_EEPROM_MODE_11A; | ||
644 | obdb = channel->center_freq >= 5725 ? 3 : | ||
645 | (channel->center_freq >= 5500 ? 2 : | ||
646 | (channel->center_freq >= 5260 ? 1 : | ||
647 | (channel->center_freq > 4000 ? 0 : -1))); | ||
648 | |||
649 | if (obdb < 0) | ||
650 | return -EINVAL; | ||
651 | |||
652 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], | ||
653 | AR5K_RF_OB_5GHZ, true); | ||
654 | |||
655 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], | ||
656 | AR5K_RF_DB_5GHZ, true); | ||
657 | } | ||
658 | |||
659 | g_step = &go->go_step[ah->ah_gain.g_step_idx]; | ||
660 | |||
661 | /* Bank Modifications (chip-specific) */ | ||
662 | if (ah->ah_radio == AR5K_RF5111) { | ||
663 | |||
664 | /* Set gain_F settings according to current step */ | ||
665 | if (channel->hw_value & CHANNEL_OFDM) { | ||
666 | |||
667 | AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, | ||
668 | AR5K_PHY_FRAME_CTL_TX_CLIP, | ||
669 | g_step->gos_param[0]); | ||
670 | |||
671 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], | ||
672 | AR5K_RF_PWD_90, true); | ||
673 | |||
674 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], | ||
675 | AR5K_RF_PWD_84, true); | ||
676 | |||
677 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], | ||
678 | AR5K_RF_RFGAIN_SEL, true); | ||
679 | |||
680 | /* We programmed gain_F parameters, switch back | ||
681 | * to active state */ | ||
682 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | ||
683 | |||
684 | } | ||
685 | |||
686 | /* Bank 6/7 setup */ | ||
687 | |||
688 | ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode], | ||
689 | AR5K_RF_PWD_XPD, true); | ||
690 | |||
691 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], | ||
692 | AR5K_RF_XPD_GAIN, true); | ||
693 | |||
694 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], | ||
695 | AR5K_RF_GAIN_I, true); | ||
696 | |||
697 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], | ||
698 | AR5K_RF_PLO_SEL, true); | ||
699 | |||
700 | /* TODO: Half/quarter channel support */ | ||
701 | } | ||
702 | |||
703 | if (ah->ah_radio == AR5K_RF5112) { | ||
704 | |||
705 | /* Set gain_F settings according to current step */ | ||
706 | if (channel->hw_value & CHANNEL_OFDM) { | ||
707 | |||
708 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0], | ||
709 | AR5K_RF_MIXGAIN_OVR, true); | ||
710 | |||
711 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], | ||
712 | AR5K_RF_PWD_138, true); | ||
713 | |||
714 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], | ||
715 | AR5K_RF_PWD_137, true); | ||
716 | |||
717 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], | ||
718 | AR5K_RF_PWD_136, true); | ||
719 | |||
720 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4], | ||
721 | AR5K_RF_PWD_132, true); | ||
722 | |||
723 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5], | ||
724 | AR5K_RF_PWD_131, true); | ||
725 | |||
726 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6], | ||
727 | AR5K_RF_PWD_130, true); | ||
728 | |||
729 | /* We programmed gain_F parameters, switch back | ||
730 | * to active state */ | ||
731 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | ||
732 | } | ||
733 | |||
734 | /* Bank 6/7 setup */ | ||
735 | |||
736 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], | ||
737 | AR5K_RF_XPD_SEL, true); | ||
738 | |||
739 | if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { | ||
740 | /* Rev. 1 supports only one xpd */ | ||
741 | ath5k_hw_rfb_op(ah, rf_regs, | ||
742 | ee->ee_x_gain[ee_mode], | ||
743 | AR5K_RF_XPD_GAIN, true); | ||
744 | |||
745 | } else { | ||
746 | /* TODO: Set high and low gain bits */ | ||
747 | ath5k_hw_rfb_op(ah, rf_regs, | ||
748 | ee->ee_x_gain[ee_mode], | ||
749 | AR5K_RF_PD_GAIN_LO, true); | ||
750 | ath5k_hw_rfb_op(ah, rf_regs, | ||
751 | ee->ee_x_gain[ee_mode], | ||
752 | AR5K_RF_PD_GAIN_HI, true); | ||
753 | |||
754 | /* Lower synth voltage on Rev 2 */ | ||
755 | ath5k_hw_rfb_op(ah, rf_regs, 2, | ||
756 | AR5K_RF_HIGH_VC_CP, true); | ||
757 | |||
758 | ath5k_hw_rfb_op(ah, rf_regs, 2, | ||
759 | AR5K_RF_MID_VC_CP, true); | ||
760 | |||
761 | ath5k_hw_rfb_op(ah, rf_regs, 2, | ||
762 | AR5K_RF_LOW_VC_CP, true); | ||
763 | |||
764 | ath5k_hw_rfb_op(ah, rf_regs, 2, | ||
765 | AR5K_RF_PUSH_UP, true); | ||
766 | |||
767 | /* Decrease power consumption on 5213+ BaseBand */ | ||
768 | if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { | ||
769 | ath5k_hw_rfb_op(ah, rf_regs, 1, | ||
770 | AR5K_RF_PAD2GND, true); | ||
771 | |||
772 | ath5k_hw_rfb_op(ah, rf_regs, 1, | ||
773 | AR5K_RF_XB2_LVL, true); | ||
774 | |||
775 | ath5k_hw_rfb_op(ah, rf_regs, 1, | ||
776 | AR5K_RF_XB5_LVL, true); | ||
777 | |||
778 | ath5k_hw_rfb_op(ah, rf_regs, 1, | ||
779 | AR5K_RF_PWD_167, true); | ||
780 | |||
781 | ath5k_hw_rfb_op(ah, rf_regs, 1, | ||
782 | AR5K_RF_PWD_166, true); | ||
783 | } | ||
784 | } | ||
785 | |||
786 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], | ||
787 | AR5K_RF_GAIN_I, true); | ||
788 | |||
789 | /* TODO: Half/quarter channel support */ | ||
790 | |||
791 | } | ||
792 | |||
793 | if (ah->ah_radio == AR5K_RF5413 && | ||
794 | channel->hw_value & CHANNEL_2GHZ) { | ||
795 | |||
796 | ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE, | ||
797 | true); | ||
798 | |||
799 | /* Set optimum value for early revisions (on pci-e chips) */ | ||
800 | if (ah->ah_mac_srev >= AR5K_SREV_AR5424 && | ||
801 | ah->ah_mac_srev < AR5K_SREV_AR5413) | ||
802 | ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3), | ||
803 | AR5K_RF_PWD_ICLOBUF_2G, true); | ||
804 | |||
805 | } | ||
806 | |||
807 | /* Write RF banks on hw */ | ||
808 | for (i = 0; i < ah->ah_rf_banks_size; i++) { | ||
809 | AR5K_REG_WAIT(i); | ||
810 | ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register); | ||
811 | } | ||
812 | |||
813 | return 0; | ||
814 | } | ||
815 | |||
816 | |||
817 | /**************************\ | ||
818 | PHY/RF channel functions | ||
819 | \**************************/ | ||
820 | |||
821 | /* | ||
822 | * Check if a channel is supported | ||
823 | */ | ||
824 | bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags) | ||
825 | { | ||
826 | /* Check if the channel is in our supported range */ | ||
827 | if (flags & CHANNEL_2GHZ) { | ||
828 | if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && | ||
829 | (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) | ||
830 | return true; | ||
831 | } else if (flags & CHANNEL_5GHZ) | ||
832 | if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && | ||
833 | (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) | ||
834 | return true; | ||
835 | |||
836 | return false; | ||
837 | } | ||
838 | |||
839 | /* | ||
840 | * Convertion needed for RF5110 | ||
841 | */ | ||
842 | static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel) | ||
843 | { | ||
844 | u32 athchan; | ||
845 | |||
846 | /* | ||
847 | * Convert IEEE channel/MHz to an internal channel value used | ||
848 | * by the AR5210 chipset. This has not been verified with | ||
849 | * newer chipsets like the AR5212A who have a completely | ||
850 | * different RF/PHY part. | ||
851 | */ | ||
852 | athchan = (ath5k_hw_bitswap( | ||
853 | (ieee80211_frequency_to_channel( | ||
854 | channel->center_freq) - 24) / 2, 5) | ||
855 | << 1) | (1 << 6) | 0x1; | ||
856 | return athchan; | ||
857 | } | ||
858 | |||
859 | /* | ||
860 | * Set channel on RF5110 | ||
861 | */ | ||
862 | static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah, | ||
863 | struct ieee80211_channel *channel) | ||
864 | { | ||
865 | u32 data; | ||
866 | |||
867 | /* | ||
868 | * Set the channel and wait | ||
869 | */ | ||
870 | data = ath5k_hw_rf5110_chan2athchan(channel); | ||
871 | ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); | ||
872 | ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); | ||
873 | mdelay(1); | ||
874 | |||
875 | return 0; | ||
876 | } | ||
877 | |||
878 | /* | ||
879 | * Convertion needed for 5111 | ||
880 | */ | ||
881 | static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee, | ||
882 | struct ath5k_athchan_2ghz *athchan) | ||
883 | { | ||
884 | int channel; | ||
885 | |||
886 | /* Cast this value to catch negative channel numbers (>= -19) */ | ||
887 | channel = (int)ieee; | ||
888 | |||
889 | /* | ||
890 | * Map 2GHz IEEE channel to 5GHz Atheros channel | ||
891 | */ | ||
892 | if (channel <= 13) { | ||
893 | athchan->a2_athchan = 115 + channel; | ||
894 | athchan->a2_flags = 0x46; | ||
895 | } else if (channel == 14) { | ||
896 | athchan->a2_athchan = 124; | ||
897 | athchan->a2_flags = 0x44; | ||
898 | } else if (channel >= 15 && channel <= 26) { | ||
899 | athchan->a2_athchan = ((channel - 14) * 4) + 132; | ||
900 | athchan->a2_flags = 0x46; | ||
901 | } else | ||
902 | return -EINVAL; | ||
903 | |||
904 | return 0; | ||
905 | } | ||
906 | |||
907 | /* | ||
908 | * Set channel on 5111 | ||
909 | */ | ||
910 | static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah, | ||
911 | struct ieee80211_channel *channel) | ||
912 | { | ||
913 | struct ath5k_athchan_2ghz ath5k_channel_2ghz; | ||
914 | unsigned int ath5k_channel = | ||
915 | ieee80211_frequency_to_channel(channel->center_freq); | ||
916 | u32 data0, data1, clock; | ||
917 | int ret; | ||
918 | |||
919 | /* | ||
920 | * Set the channel on the RF5111 radio | ||
921 | */ | ||
922 | data0 = data1 = 0; | ||
923 | |||
924 | if (channel->hw_value & CHANNEL_2GHZ) { | ||
925 | /* Map 2GHz channel to 5GHz Atheros channel ID */ | ||
926 | ret = ath5k_hw_rf5111_chan2athchan( | ||
927 | ieee80211_frequency_to_channel(channel->center_freq), | ||
928 | &ath5k_channel_2ghz); | ||
929 | if (ret) | ||
930 | return ret; | ||
931 | |||
932 | ath5k_channel = ath5k_channel_2ghz.a2_athchan; | ||
933 | data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff) | ||
934 | << 5) | (1 << 4); | ||
935 | } | ||
936 | |||
937 | if (ath5k_channel < 145 || !(ath5k_channel & 1)) { | ||
938 | clock = 1; | ||
939 | data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) | | ||
940 | (clock << 1) | (1 << 10) | 1; | ||
941 | } else { | ||
942 | clock = 0; | ||
943 | data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff) | ||
944 | << 2) | (clock << 1) | (1 << 10) | 1; | ||
945 | } | ||
946 | |||
947 | ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), | ||
948 | AR5K_RF_BUFFER); | ||
949 | ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), | ||
950 | AR5K_RF_BUFFER_CONTROL_3); | ||
951 | |||
952 | return 0; | ||
953 | } | ||
954 | |||
955 | /* | ||
956 | * Set channel on 5112 and newer | ||
957 | */ | ||
958 | static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah, | ||
959 | struct ieee80211_channel *channel) | ||
960 | { | ||
961 | u32 data, data0, data1, data2; | ||
962 | u16 c; | ||
963 | |||
964 | data = data0 = data1 = data2 = 0; | ||
965 | c = channel->center_freq; | ||
966 | |||
967 | if (c < 4800) { | ||
968 | if (!((c - 2224) % 5)) { | ||
969 | data0 = ((2 * (c - 704)) - 3040) / 10; | ||
970 | data1 = 1; | ||
971 | } else if (!((c - 2192) % 5)) { | ||
972 | data0 = ((2 * (c - 672)) - 3040) / 10; | ||
973 | data1 = 0; | ||
974 | } else | ||
975 | return -EINVAL; | ||
976 | |||
977 | data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); | ||
978 | } else if ((c - (c % 5)) != 2 || c > 5435) { | ||
979 | if (!(c % 20) && c >= 5120) { | ||
980 | data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); | ||
981 | data2 = ath5k_hw_bitswap(3, 2); | ||
982 | } else if (!(c % 10)) { | ||
983 | data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); | ||
984 | data2 = ath5k_hw_bitswap(2, 2); | ||
985 | } else if (!(c % 5)) { | ||
986 | data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); | ||
987 | data2 = ath5k_hw_bitswap(1, 2); | ||
988 | } else | ||
989 | return -EINVAL; | ||
990 | } else { | ||
991 | data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8); | ||
992 | data2 = ath5k_hw_bitswap(0, 2); | ||
993 | } | ||
994 | |||
995 | data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; | ||
996 | |||
997 | ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); | ||
998 | ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); | ||
999 | |||
1000 | return 0; | ||
1001 | } | ||
1002 | |||
1003 | /* | ||
1004 | * Set the channel on the RF2425 | ||
1005 | */ | ||
1006 | static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah, | ||
1007 | struct ieee80211_channel *channel) | ||
1008 | { | ||
1009 | u32 data, data0, data2; | ||
1010 | u16 c; | ||
1011 | |||
1012 | data = data0 = data2 = 0; | ||
1013 | c = channel->center_freq; | ||
1014 | |||
1015 | if (c < 4800) { | ||
1016 | data0 = ath5k_hw_bitswap((c - 2272), 8); | ||
1017 | data2 = 0; | ||
1018 | /* ? 5GHz ? */ | ||
1019 | } else if ((c - (c % 5)) != 2 || c > 5435) { | ||
1020 | if (!(c % 20) && c < 5120) | ||
1021 | data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); | ||
1022 | else if (!(c % 10)) | ||
1023 | data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); | ||
1024 | else if (!(c % 5)) | ||
1025 | data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); | ||
1026 | else | ||
1027 | return -EINVAL; | ||
1028 | data2 = ath5k_hw_bitswap(1, 2); | ||
1029 | } else { | ||
1030 | data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8); | ||
1031 | data2 = ath5k_hw_bitswap(0, 2); | ||
1032 | } | ||
1033 | |||
1034 | data = (data0 << 4) | data2 << 2 | 0x1001; | ||
1035 | |||
1036 | ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); | ||
1037 | ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); | ||
1038 | |||
1039 | return 0; | ||
1040 | } | ||
1041 | |||
1042 | /* | ||
1043 | * Set a channel on the radio chip | ||
1044 | */ | ||
1045 | int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel) | ||
1046 | { | ||
1047 | int ret; | ||
1048 | /* | ||
1049 | * Check bounds supported by the PHY (we don't care about regultory | ||
1050 | * restrictions at this point). Note: hw_value already has the band | ||
1051 | * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok() | ||
1052 | * of the band by that */ | ||
1053 | if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) { | ||
1054 | ATH5K_ERR(ah->ah_sc, | ||
1055 | "channel frequency (%u MHz) out of supported " | ||
1056 | "band range\n", | ||
1057 | channel->center_freq); | ||
1058 | return -EINVAL; | ||
1059 | } | ||
1060 | |||
1061 | /* | ||
1062 | * Set the channel and wait | ||
1063 | */ | ||
1064 | switch (ah->ah_radio) { | ||
1065 | case AR5K_RF5110: | ||
1066 | ret = ath5k_hw_rf5110_channel(ah, channel); | ||
1067 | break; | ||
1068 | case AR5K_RF5111: | ||
1069 | ret = ath5k_hw_rf5111_channel(ah, channel); | ||
1070 | break; | ||
1071 | case AR5K_RF2425: | ||
1072 | ret = ath5k_hw_rf2425_channel(ah, channel); | ||
1073 | break; | ||
1074 | default: | ||
1075 | ret = ath5k_hw_rf5112_channel(ah, channel); | ||
1076 | break; | ||
1077 | } | ||
1078 | |||
1079 | if (ret) | ||
1080 | return ret; | ||
1081 | |||
1082 | /* Set JAPAN setting for channel 14 */ | ||
1083 | if (channel->center_freq == 2484) { | ||
1084 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, | ||
1085 | AR5K_PHY_CCKTXCTL_JAPAN); | ||
1086 | } else { | ||
1087 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, | ||
1088 | AR5K_PHY_CCKTXCTL_WORLD); | ||
1089 | } | ||
1090 | |||
1091 | ah->ah_current_channel.center_freq = channel->center_freq; | ||
1092 | ah->ah_current_channel.hw_value = channel->hw_value; | ||
1093 | ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false; | ||
1094 | |||
1095 | return 0; | ||
1096 | } | ||
1097 | |||
1098 | /*****************\ | ||
1099 | PHY calibration | ||
1100 | \*****************/ | ||
1101 | |||
1102 | /** | ||
1103 | * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration | ||
1104 | * | ||
1105 | * @ah: struct ath5k_hw pointer we are operating on | ||
1106 | * @freq: the channel frequency, just used for error logging | ||
1107 | * | ||
1108 | * This function performs a noise floor calibration of the PHY and waits for | ||
1109 | * it to complete. Then the noise floor value is compared to some maximum | ||
1110 | * noise floor we consider valid. | ||
1111 | * | ||
1112 | * Note that this is different from what the madwifi HAL does: it reads the | ||
1113 | * noise floor and afterwards initiates the calibration. Since the noise floor | ||
1114 | * calibration can take some time to finish, depending on the current channel | ||
1115 | * use, that avoids the occasional timeout warnings we are seeing now. | ||
1116 | * | ||
1117 | * See the following link for an Atheros patent on noise floor calibration: | ||
1118 | * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \ | ||
1119 | * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7 | ||
1120 | * | ||
1121 | * XXX: Since during noise floor calibration antennas are detached according to | ||
1122 | * the patent, we should stop tx queues here. | ||
1123 | */ | ||
1124 | int | ||
1125 | ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq) | ||
1126 | { | ||
1127 | int ret; | ||
1128 | unsigned int i; | ||
1129 | s32 noise_floor; | ||
1130 | |||
1131 | /* | ||
1132 | * Enable noise floor calibration | ||
1133 | */ | ||
1134 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, | ||
1135 | AR5K_PHY_AGCCTL_NF); | ||
1136 | |||
1137 | ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, | ||
1138 | AR5K_PHY_AGCCTL_NF, 0, false); | ||
1139 | if (ret) { | ||
1140 | ATH5K_ERR(ah->ah_sc, | ||
1141 | "noise floor calibration timeout (%uMHz)\n", freq); | ||
1142 | return -EAGAIN; | ||
1143 | } | ||
1144 | |||
1145 | /* Wait until the noise floor is calibrated and read the value */ | ||
1146 | for (i = 20; i > 0; i--) { | ||
1147 | mdelay(1); | ||
1148 | noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF); | ||
1149 | noise_floor = AR5K_PHY_NF_RVAL(noise_floor); | ||
1150 | if (noise_floor & AR5K_PHY_NF_ACTIVE) { | ||
1151 | noise_floor = AR5K_PHY_NF_AVAL(noise_floor); | ||
1152 | |||
1153 | if (noise_floor <= AR5K_TUNE_NOISE_FLOOR) | ||
1154 | break; | ||
1155 | } | ||
1156 | } | ||
1157 | |||
1158 | ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE, | ||
1159 | "noise floor %d\n", noise_floor); | ||
1160 | |||
1161 | if (noise_floor > AR5K_TUNE_NOISE_FLOOR) { | ||
1162 | ATH5K_ERR(ah->ah_sc, | ||
1163 | "noise floor calibration failed (%uMHz)\n", freq); | ||
1164 | return -EAGAIN; | ||
1165 | } | ||
1166 | |||
1167 | ah->ah_noise_floor = noise_floor; | ||
1168 | |||
1169 | return 0; | ||
1170 | } | ||
1171 | |||
1172 | /* | ||
1173 | * Perform a PHY calibration on RF5110 | ||
1174 | * -Fix BPSK/QAM Constellation (I/Q correction) | ||
1175 | * -Calculate Noise Floor | ||
1176 | */ | ||
1177 | static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, | ||
1178 | struct ieee80211_channel *channel) | ||
1179 | { | ||
1180 | u32 phy_sig, phy_agc, phy_sat, beacon; | ||
1181 | int ret; | ||
1182 | |||
1183 | /* | ||
1184 | * Disable beacons and RX/TX queues, wait | ||
1185 | */ | ||
1186 | AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210, | ||
1187 | AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210); | ||
1188 | beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210); | ||
1189 | ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210); | ||
1190 | |||
1191 | mdelay(2); | ||
1192 | |||
1193 | /* | ||
1194 | * Set the channel (with AGC turned off) | ||
1195 | */ | ||
1196 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); | ||
1197 | udelay(10); | ||
1198 | ret = ath5k_hw_channel(ah, channel); | ||
1199 | |||
1200 | /* | ||
1201 | * Activate PHY and wait | ||
1202 | */ | ||
1203 | ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); | ||
1204 | mdelay(1); | ||
1205 | |||
1206 | AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); | ||
1207 | |||
1208 | if (ret) | ||
1209 | return ret; | ||
1210 | |||
1211 | /* | ||
1212 | * Calibrate the radio chip | ||
1213 | */ | ||
1214 | |||
1215 | /* Remember normal state */ | ||
1216 | phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG); | ||
1217 | phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE); | ||
1218 | phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT); | ||
1219 | |||
1220 | /* Update radio registers */ | ||
1221 | ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) | | ||
1222 | AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG); | ||
1223 | |||
1224 | ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI | | ||
1225 | AR5K_PHY_AGCCOARSE_LO)) | | ||
1226 | AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) | | ||
1227 | AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE); | ||
1228 | |||
1229 | ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT | | ||
1230 | AR5K_PHY_ADCSAT_THR)) | | ||
1231 | AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) | | ||
1232 | AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT); | ||
1233 | |||
1234 | udelay(20); | ||
1235 | |||
1236 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); | ||
1237 | udelay(10); | ||
1238 | ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG); | ||
1239 | AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); | ||
1240 | |||
1241 | mdelay(1); | ||
1242 | |||
1243 | /* | ||
1244 | * Enable calibration and wait until completion | ||
1245 | */ | ||
1246 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); | ||
1247 | |||
1248 | ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, | ||
1249 | AR5K_PHY_AGCCTL_CAL, 0, false); | ||
1250 | |||
1251 | /* Reset to normal state */ | ||
1252 | ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG); | ||
1253 | ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE); | ||
1254 | ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT); | ||
1255 | |||
1256 | if (ret) { | ||
1257 | ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n", | ||
1258 | channel->center_freq); | ||
1259 | return ret; | ||
1260 | } | ||
1261 | |||
1262 | ath5k_hw_noise_floor_calibration(ah, channel->center_freq); | ||
1263 | |||
1264 | /* | ||
1265 | * Re-enable RX/TX and beacons | ||
1266 | */ | ||
1267 | AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, | ||
1268 | AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210); | ||
1269 | ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); | ||
1270 | |||
1271 | return 0; | ||
1272 | } | ||
1273 | |||
1274 | /* | ||
1275 | * Perform a PHY calibration on RF5111/5112 and newer chips | ||
1276 | */ | ||
1277 | static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah, | ||
1278 | struct ieee80211_channel *channel) | ||
1279 | { | ||
1280 | u32 i_pwr, q_pwr; | ||
1281 | s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; | ||
1282 | int i; | ||
1283 | ATH5K_TRACE(ah->ah_sc); | ||
1284 | |||
1285 | if (!ah->ah_calibration || | ||
1286 | ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) | ||
1287 | goto done; | ||
1288 | |||
1289 | /* Calibration has finished, get the results and re-run */ | ||
1290 | for (i = 0; i <= 10; i++) { | ||
1291 | iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR); | ||
1292 | i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I); | ||
1293 | q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q); | ||
1294 | } | ||
1295 | |||
1296 | i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; | ||
1297 | q_coffd = q_pwr >> 7; | ||
1298 | |||
1299 | /* No correction */ | ||
1300 | if (i_coffd == 0 || q_coffd == 0) | ||
1301 | goto done; | ||
1302 | |||
1303 | i_coff = ((-iq_corr) / i_coffd) & 0x3f; | ||
1304 | |||
1305 | /* Boundary check */ | ||
1306 | if (i_coff > 31) | ||
1307 | i_coff = 31; | ||
1308 | if (i_coff < -32) | ||
1309 | i_coff = -32; | ||
1310 | |||
1311 | q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f; | ||
1312 | |||
1313 | /* Boundary check */ | ||
1314 | if (q_coff > 15) | ||
1315 | q_coff = 15; | ||
1316 | if (q_coff < -16) | ||
1317 | q_coff = -16; | ||
1318 | |||
1319 | /* Commit new I/Q value */ | ||
1320 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE | | ||
1321 | ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S)); | ||
1322 | |||
1323 | /* Re-enable calibration -if we don't we'll commit | ||
1324 | * the same values again and again */ | ||
1325 | AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, | ||
1326 | AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); | ||
1327 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); | ||
1328 | |||
1329 | done: | ||
1330 | |||
1331 | /* TODO: Separate noise floor calibration from I/Q calibration | ||
1332 | * since noise floor calibration interrupts rx path while I/Q | ||
1333 | * calibration doesn't. We don't need to run noise floor calibration | ||
1334 | * as often as I/Q calibration.*/ | ||
1335 | ath5k_hw_noise_floor_calibration(ah, channel->center_freq); | ||
1336 | |||
1337 | /* Initiate a gain_F calibration */ | ||
1338 | ath5k_hw_request_rfgain_probe(ah); | ||
1339 | |||
1340 | return 0; | ||
1341 | } | ||
1342 | |||
1343 | /* | ||
1344 | * Perform a PHY calibration | ||
1345 | */ | ||
1346 | int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, | ||
1347 | struct ieee80211_channel *channel) | ||
1348 | { | ||
1349 | int ret; | ||
1350 | |||
1351 | if (ah->ah_radio == AR5K_RF5110) | ||
1352 | ret = ath5k_hw_rf5110_calibrate(ah, channel); | ||
1353 | else | ||
1354 | ret = ath5k_hw_rf511x_calibrate(ah, channel); | ||
1355 | |||
1356 | return ret; | ||
1357 | } | ||
1358 | |||
1359 | int ath5k_hw_phy_disable(struct ath5k_hw *ah) | ||
1360 | { | ||
1361 | ATH5K_TRACE(ah->ah_sc); | ||
1362 | /*Just a try M.F.*/ | ||
1363 | ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); | ||
1364 | |||
1365 | return 0; | ||
1366 | } | ||
1367 | |||
1368 | /********************\ | ||
1369 | Misc PHY functions | ||
1370 | \********************/ | ||
1371 | |||
1372 | /* | ||
1373 | * Get the PHY Chip revision | ||
1374 | */ | ||
1375 | u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan) | ||
1376 | { | ||
1377 | unsigned int i; | ||
1378 | u32 srev; | ||
1379 | u16 ret; | ||
1380 | |||
1381 | ATH5K_TRACE(ah->ah_sc); | ||
1382 | |||
1383 | /* | ||
1384 | * Set the radio chip access register | ||
1385 | */ | ||
1386 | switch (chan) { | ||
1387 | case CHANNEL_2GHZ: | ||
1388 | ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0)); | ||
1389 | break; | ||
1390 | case CHANNEL_5GHZ: | ||
1391 | ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); | ||
1392 | break; | ||
1393 | default: | ||
1394 | return 0; | ||
1395 | } | ||
1396 | |||
1397 | mdelay(2); | ||
1398 | |||
1399 | /* ...wait until PHY is ready and read the selected radio revision */ | ||
1400 | ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34)); | ||
1401 | |||
1402 | for (i = 0; i < 8; i++) | ||
1403 | ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20)); | ||
1404 | |||
1405 | if (ah->ah_version == AR5K_AR5210) { | ||
1406 | srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf; | ||
1407 | ret = (u16)ath5k_hw_bitswap(srev, 4) + 1; | ||
1408 | } else { | ||
1409 | srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff; | ||
1410 | ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) | | ||
1411 | ((srev & 0x0f) << 4), 8); | ||
1412 | } | ||
1413 | |||
1414 | /* Reset to the 5GHz mode */ | ||
1415 | ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); | ||
1416 | |||
1417 | return ret; | ||
1418 | } | ||
1419 | |||
1420 | void /*TODO:Boundary check*/ | ||
1421 | ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant) | ||
1422 | { | ||
1423 | ATH5K_TRACE(ah->ah_sc); | ||
1424 | /*Just a try M.F.*/ | ||
1425 | if (ah->ah_version != AR5K_AR5210) | ||
1426 | ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA); | ||
1427 | } | ||
1428 | |||
1429 | unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah) | ||
1430 | { | ||
1431 | ATH5K_TRACE(ah->ah_sc); | ||
1432 | /*Just a try M.F.*/ | ||
1433 | if (ah->ah_version != AR5K_AR5210) | ||
1434 | return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA); | ||
1435 | |||
1436 | return false; /*XXX: What do we return for 5210 ?*/ | ||
1437 | } | ||
1438 | |||
1439 | |||
1440 | /****************\ | ||
1441 | * TX power setup * | ||
1442 | \****************/ | ||
1443 | |||
1444 | /* | ||
1445 | * Helper functions | ||
1446 | */ | ||
1447 | |||
1448 | /* | ||
1449 | * Do linear interpolation between two given (x, y) points | ||
1450 | */ | ||
1451 | static s16 | ||
1452 | ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, | ||
1453 | s16 y_left, s16 y_right) | ||
1454 | { | ||
1455 | s16 ratio, result; | ||
1456 | |||
1457 | /* Avoid divide by zero and skip interpolation | ||
1458 | * if we have the same point */ | ||
1459 | if ((x_left == x_right) || (y_left == y_right)) | ||
1460 | return y_left; | ||
1461 | |||
1462 | /* | ||
1463 | * Since we use ints and not fps, we need to scale up in | ||
1464 | * order to get a sane ratio value (or else we 'll eg. get | ||
1465 | * always 1 instead of 1.25, 1.75 etc). We scale up by 100 | ||
1466 | * to have some accuracy both for 0.5 and 0.25 steps. | ||
1467 | */ | ||
1468 | ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left)); | ||
1469 | |||
1470 | /* Now scale down to be in range */ | ||
1471 | result = y_left + (ratio * (target - x_left) / 100); | ||
1472 | |||
1473 | return result; | ||
1474 | } | ||
1475 | |||
1476 | /* | ||
1477 | * Find vertical boundary (min pwr) for the linear PCDAC curve. | ||
1478 | * | ||
1479 | * Since we have the top of the curve and we draw the line below | ||
1480 | * until we reach 1 (1 pcdac step) we need to know which point | ||
1481 | * (x value) that is so that we don't go below y axis and have negative | ||
1482 | * pcdac values when creating the curve, or fill the table with zeroes. | ||
1483 | */ | ||
1484 | static s16 | ||
1485 | ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, | ||
1486 | const s16 *pwrL, const s16 *pwrR) | ||
1487 | { | ||
1488 | s8 tmp; | ||
1489 | s16 min_pwrL, min_pwrR; | ||
1490 | s16 pwr_i = pwrL[0]; | ||
1491 | |||
1492 | do { | ||
1493 | pwr_i--; | ||
1494 | tmp = (s8) ath5k_get_interpolated_value(pwr_i, | ||
1495 | pwrL[0], pwrL[1], | ||
1496 | stepL[0], stepL[1]); | ||
1497 | |||
1498 | } while (tmp > 1); | ||
1499 | |||
1500 | min_pwrL = pwr_i; | ||
1501 | |||
1502 | pwr_i = pwrR[0]; | ||
1503 | do { | ||
1504 | pwr_i--; | ||
1505 | tmp = (s8) ath5k_get_interpolated_value(pwr_i, | ||
1506 | pwrR[0], pwrR[1], | ||
1507 | stepR[0], stepR[1]); | ||
1508 | |||
1509 | } while (tmp > 1); | ||
1510 | |||
1511 | min_pwrR = pwr_i; | ||
1512 | |||
1513 | /* Keep the right boundary so that it works for both curves */ | ||
1514 | return max(min_pwrL, min_pwrR); | ||
1515 | } | ||
1516 | |||
1517 | /* | ||
1518 | * Interpolate (pwr,vpd) points to create a Power to PDADC or a | ||
1519 | * Power to PCDAC curve. | ||
1520 | * | ||
1521 | * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC | ||
1522 | * steps (offsets) on y axis. Power can go up to 31.5dB and max | ||
1523 | * PCDAC/PDADC step for each curve is 64 but we can write more than | ||
1524 | * one curves on hw so we can go up to 128 (which is the max step we | ||
1525 | * can write on the final table). | ||
1526 | * | ||
1527 | * We write y values (PCDAC/PDADC steps) on hw. | ||
1528 | */ | ||
1529 | static void | ||
1530 | ath5k_create_power_curve(s16 pmin, s16 pmax, | ||
1531 | const s16 *pwr, const u8 *vpd, | ||
1532 | u8 num_points, | ||
1533 | u8 *vpd_table, u8 type) | ||
1534 | { | ||
1535 | u8 idx[2] = { 0, 1 }; | ||
1536 | s16 pwr_i = 2*pmin; | ||
1537 | int i; | ||
1538 | |||
1539 | if (num_points < 2) | ||
1540 | return; | ||
1541 | |||
1542 | /* We want the whole line, so adjust boundaries | ||
1543 | * to cover the entire power range. Note that | ||
1544 | * power values are already 0.25dB so no need | ||
1545 | * to multiply pwr_i by 2 */ | ||
1546 | if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { | ||
1547 | pwr_i = pmin; | ||
1548 | pmin = 0; | ||
1549 | pmax = 63; | ||
1550 | } | ||
1551 | |||
1552 | /* Find surrounding turning points (TPs) | ||
1553 | * and interpolate between them */ | ||
1554 | for (i = 0; (i <= (u16) (pmax - pmin)) && | ||
1555 | (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { | ||
1556 | |||
1557 | /* We passed the right TP, move to the next set of TPs | ||
1558 | * if we pass the last TP, extrapolate above using the last | ||
1559 | * two TPs for ratio */ | ||
1560 | if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { | ||
1561 | idx[0]++; | ||
1562 | idx[1]++; | ||
1563 | } | ||
1564 | |||
1565 | vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, | ||
1566 | pwr[idx[0]], pwr[idx[1]], | ||
1567 | vpd[idx[0]], vpd[idx[1]]); | ||
1568 | |||
1569 | /* Increase by 0.5dB | ||
1570 | * (0.25 dB units) */ | ||
1571 | pwr_i += 2; | ||
1572 | } | ||
1573 | } | ||
1574 | |||
1575 | /* | ||
1576 | * Get the surrounding per-channel power calibration piers | ||
1577 | * for a given frequency so that we can interpolate between | ||
1578 | * them and come up with an apropriate dataset for our current | ||
1579 | * channel. | ||
1580 | */ | ||
1581 | static void | ||
1582 | ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, | ||
1583 | struct ieee80211_channel *channel, | ||
1584 | struct ath5k_chan_pcal_info **pcinfo_l, | ||
1585 | struct ath5k_chan_pcal_info **pcinfo_r) | ||
1586 | { | ||
1587 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | ||
1588 | struct ath5k_chan_pcal_info *pcinfo; | ||
1589 | u8 idx_l, idx_r; | ||
1590 | u8 mode, max, i; | ||
1591 | u32 target = channel->center_freq; | ||
1592 | |||
1593 | idx_l = 0; | ||
1594 | idx_r = 0; | ||
1595 | |||
1596 | if (!(channel->hw_value & CHANNEL_OFDM)) { | ||
1597 | pcinfo = ee->ee_pwr_cal_b; | ||
1598 | mode = AR5K_EEPROM_MODE_11B; | ||
1599 | } else if (channel->hw_value & CHANNEL_2GHZ) { | ||
1600 | pcinfo = ee->ee_pwr_cal_g; | ||
1601 | mode = AR5K_EEPROM_MODE_11G; | ||
1602 | } else { | ||
1603 | pcinfo = ee->ee_pwr_cal_a; | ||
1604 | mode = AR5K_EEPROM_MODE_11A; | ||
1605 | } | ||
1606 | max = ee->ee_n_piers[mode] - 1; | ||
1607 | |||
1608 | /* Frequency is below our calibrated | ||
1609 | * range. Use the lowest power curve | ||
1610 | * we have */ | ||
1611 | if (target < pcinfo[0].freq) { | ||
1612 | idx_l = idx_r = 0; | ||
1613 | goto done; | ||
1614 | } | ||
1615 | |||
1616 | /* Frequency is above our calibrated | ||
1617 | * range. Use the highest power curve | ||
1618 | * we have */ | ||
1619 | if (target > pcinfo[max].freq) { | ||
1620 | idx_l = idx_r = max; | ||
1621 | goto done; | ||
1622 | } | ||
1623 | |||
1624 | /* Frequency is inside our calibrated | ||
1625 | * channel range. Pick the surrounding | ||
1626 | * calibration piers so that we can | ||
1627 | * interpolate */ | ||
1628 | for (i = 0; i <= max; i++) { | ||
1629 | |||
1630 | /* Frequency matches one of our calibration | ||
1631 | * piers, no need to interpolate, just use | ||
1632 | * that calibration pier */ | ||
1633 | if (pcinfo[i].freq == target) { | ||
1634 | idx_l = idx_r = i; | ||
1635 | goto done; | ||
1636 | } | ||
1637 | |||
1638 | /* We found a calibration pier that's above | ||
1639 | * frequency, use this pier and the previous | ||
1640 | * one to interpolate */ | ||
1641 | if (target < pcinfo[i].freq) { | ||
1642 | idx_r = i; | ||
1643 | idx_l = idx_r - 1; | ||
1644 | goto done; | ||
1645 | } | ||
1646 | } | ||
1647 | |||
1648 | done: | ||
1649 | *pcinfo_l = &pcinfo[idx_l]; | ||
1650 | *pcinfo_r = &pcinfo[idx_r]; | ||
1651 | |||
1652 | return; | ||
1653 | } | ||
1654 | |||
1655 | /* | ||
1656 | * Get the surrounding per-rate power calibration data | ||
1657 | * for a given frequency and interpolate between power | ||
1658 | * values to set max target power supported by hw for | ||
1659 | * each rate. | ||
1660 | */ | ||
1661 | static void | ||
1662 | ath5k_get_rate_pcal_data(struct ath5k_hw *ah, | ||
1663 | struct ieee80211_channel *channel, | ||
1664 | struct ath5k_rate_pcal_info *rates) | ||
1665 | { | ||
1666 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | ||
1667 | struct ath5k_rate_pcal_info *rpinfo; | ||
1668 | u8 idx_l, idx_r; | ||
1669 | u8 mode, max, i; | ||
1670 | u32 target = channel->center_freq; | ||
1671 | |||
1672 | idx_l = 0; | ||
1673 | idx_r = 0; | ||
1674 | |||
1675 | if (!(channel->hw_value & CHANNEL_OFDM)) { | ||
1676 | rpinfo = ee->ee_rate_tpwr_b; | ||
1677 | mode = AR5K_EEPROM_MODE_11B; | ||
1678 | } else if (channel->hw_value & CHANNEL_2GHZ) { | ||
1679 | rpinfo = ee->ee_rate_tpwr_g; | ||
1680 | mode = AR5K_EEPROM_MODE_11G; | ||
1681 | } else { | ||
1682 | rpinfo = ee->ee_rate_tpwr_a; | ||
1683 | mode = AR5K_EEPROM_MODE_11A; | ||
1684 | } | ||
1685 | max = ee->ee_rate_target_pwr_num[mode] - 1; | ||
1686 | |||
1687 | /* Get the surrounding calibration | ||
1688 | * piers - same as above */ | ||
1689 | if (target < rpinfo[0].freq) { | ||
1690 | idx_l = idx_r = 0; | ||
1691 | goto done; | ||
1692 | } | ||
1693 | |||
1694 | if (target > rpinfo[max].freq) { | ||
1695 | idx_l = idx_r = max; | ||
1696 | goto done; | ||
1697 | } | ||
1698 | |||
1699 | for (i = 0; i <= max; i++) { | ||
1700 | |||
1701 | if (rpinfo[i].freq == target) { | ||
1702 | idx_l = idx_r = i; | ||
1703 | goto done; | ||
1704 | } | ||
1705 | |||
1706 | if (target < rpinfo[i].freq) { | ||
1707 | idx_r = i; | ||
1708 | idx_l = idx_r - 1; | ||
1709 | goto done; | ||
1710 | } | ||
1711 | } | ||
1712 | |||
1713 | done: | ||
1714 | /* Now interpolate power value, based on the frequency */ | ||
1715 | rates->freq = target; | ||
1716 | |||
1717 | rates->target_power_6to24 = | ||
1718 | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, | ||
1719 | rpinfo[idx_r].freq, | ||
1720 | rpinfo[idx_l].target_power_6to24, | ||
1721 | rpinfo[idx_r].target_power_6to24); | ||
1722 | |||
1723 | rates->target_power_36 = | ||
1724 | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, | ||
1725 | rpinfo[idx_r].freq, | ||
1726 | rpinfo[idx_l].target_power_36, | ||
1727 | rpinfo[idx_r].target_power_36); | ||
1728 | |||
1729 | rates->target_power_48 = | ||
1730 | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, | ||
1731 | rpinfo[idx_r].freq, | ||
1732 | rpinfo[idx_l].target_power_48, | ||
1733 | rpinfo[idx_r].target_power_48); | ||
1734 | |||
1735 | rates->target_power_54 = | ||
1736 | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, | ||
1737 | rpinfo[idx_r].freq, | ||
1738 | rpinfo[idx_l].target_power_54, | ||
1739 | rpinfo[idx_r].target_power_54); | ||
1740 | } | ||
1741 | |||
1742 | /* | ||
1743 | * Get the max edge power for this channel if | ||
1744 | * we have such data from EEPROM's Conformance Test | ||
1745 | * Limits (CTL), and limit max power if needed. | ||
1746 | * | ||
1747 | * FIXME: Only works for world regulatory domains | ||
1748 | */ | ||
1749 | static void | ||
1750 | ath5k_get_max_ctl_power(struct ath5k_hw *ah, | ||
1751 | struct ieee80211_channel *channel) | ||
1752 | { | ||
1753 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | ||
1754 | struct ath5k_edge_power *rep = ee->ee_ctl_pwr; | ||
1755 | u8 *ctl_val = ee->ee_ctl; | ||
1756 | s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; | ||
1757 | s16 edge_pwr = 0; | ||
1758 | u8 rep_idx; | ||
1759 | u8 i, ctl_mode; | ||
1760 | u8 ctl_idx = 0xFF; | ||
1761 | u32 target = channel->center_freq; | ||
1762 | |||
1763 | /* Find out a CTL for our mode that's not mapped | ||
1764 | * on a specific reg domain. | ||
1765 | * | ||
1766 | * TODO: Map our current reg domain to one of the 3 available | ||
1767 | * reg domain ids so that we can support more CTLs. */ | ||
1768 | switch (channel->hw_value & CHANNEL_MODES) { | ||
1769 | case CHANNEL_A: | ||
1770 | ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN; | ||
1771 | break; | ||
1772 | case CHANNEL_G: | ||
1773 | ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN; | ||
1774 | break; | ||
1775 | case CHANNEL_B: | ||
1776 | ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN; | ||
1777 | break; | ||
1778 | case CHANNEL_T: | ||
1779 | ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN; | ||
1780 | break; | ||
1781 | case CHANNEL_TG: | ||
1782 | ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN; | ||
1783 | break; | ||
1784 | case CHANNEL_XR: | ||
1785 | /* Fall through */ | ||
1786 | default: | ||
1787 | return; | ||
1788 | } | ||
1789 | |||
1790 | for (i = 0; i < ee->ee_ctls; i++) { | ||
1791 | if (ctl_val[i] == ctl_mode) { | ||
1792 | ctl_idx = i; | ||
1793 | break; | ||
1794 | } | ||
1795 | } | ||
1796 | |||
1797 | /* If we have a CTL dataset available grab it and find the | ||
1798 | * edge power for our frequency */ | ||
1799 | if (ctl_idx == 0xFF) | ||
1800 | return; | ||
1801 | |||
1802 | /* Edge powers are sorted by frequency from lower | ||
1803 | * to higher. Each CTL corresponds to 8 edge power | ||
1804 | * measurements. */ | ||
1805 | rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; | ||
1806 | |||
1807 | /* Don't do boundaries check because we | ||
1808 | * might have more that one bands defined | ||
1809 | * for this mode */ | ||
1810 | |||
1811 | /* Get the edge power that's closer to our | ||
1812 | * frequency */ | ||
1813 | for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { | ||
1814 | rep_idx += i; | ||
1815 | if (target <= rep[rep_idx].freq) | ||
1816 | edge_pwr = (s16) rep[rep_idx].edge; | ||
1817 | } | ||
1818 | |||
1819 | if (edge_pwr) | ||
1820 | ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr); | ||
1821 | } | ||
1822 | |||
1823 | |||
1824 | /* | ||
1825 | * Power to PCDAC table functions | ||
1826 | */ | ||
1827 | |||
1828 | /* | ||
1829 | * Fill Power to PCDAC table on RF5111 | ||
1830 | * | ||
1831 | * No further processing is needed for RF5111, the only thing we have to | ||
1832 | * do is fill the values below and above calibration range since eeprom data | ||
1833 | * may not cover the entire PCDAC table. | ||
1834 | */ | ||
1835 | static void | ||
1836 | ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, | ||
1837 | s16 *table_max) | ||
1838 | { | ||
1839 | u8 *pcdac_out = ah->ah_txpower.txp_pd_table; | ||
1840 | u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; | ||
1841 | u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; | ||
1842 | s16 min_pwr, max_pwr; | ||
1843 | |||
1844 | /* Get table boundaries */ | ||
1845 | min_pwr = table_min[0]; | ||
1846 | pcdac_0 = pcdac_tmp[0]; | ||
1847 | |||
1848 | max_pwr = table_max[0]; | ||
1849 | pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; | ||
1850 | |||
1851 | /* Extrapolate below minimum using pcdac_0 */ | ||
1852 | pcdac_i = 0; | ||
1853 | for (i = 0; i < min_pwr; i++) | ||
1854 | pcdac_out[pcdac_i++] = pcdac_0; | ||
1855 | |||
1856 | /* Copy values from pcdac_tmp */ | ||
1857 | pwr_idx = min_pwr; | ||
1858 | for (i = 0 ; pwr_idx <= max_pwr && | ||
1859 | pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { | ||
1860 | pcdac_out[pcdac_i++] = pcdac_tmp[i]; | ||
1861 | pwr_idx++; | ||
1862 | } | ||
1863 | |||
1864 | /* Extrapolate above maximum */ | ||
1865 | while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) | ||
1866 | pcdac_out[pcdac_i++] = pcdac_n; | ||
1867 | |||
1868 | } | ||
1869 | |||
1870 | /* | ||
1871 | * Combine available XPD Curves and fill Linear Power to PCDAC table | ||
1872 | * on RF5112 | ||
1873 | * | ||
1874 | * RFX112 can have up to 2 curves (one for low txpower range and one for | ||
1875 | * higher txpower range). We need to put them both on pcdac_out and place | ||
1876 | * them in the correct location. In case we only have one curve available | ||
1877 | * just fit it on pcdac_out (it's supposed to cover the entire range of | ||
1878 | * available pwr levels since it's always the higher power curve). Extrapolate | ||
1879 | * below and above final table if needed. | ||
1880 | */ | ||
1881 | static void | ||
1882 | ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, | ||
1883 | s16 *table_max, u8 pdcurves) | ||
1884 | { | ||
1885 | u8 *pcdac_out = ah->ah_txpower.txp_pd_table; | ||
1886 | u8 *pcdac_low_pwr; | ||
1887 | u8 *pcdac_high_pwr; | ||
1888 | u8 *pcdac_tmp; | ||
1889 | u8 pwr; | ||
1890 | s16 max_pwr_idx; | ||
1891 | s16 min_pwr_idx; | ||
1892 | s16 mid_pwr_idx = 0; | ||
1893 | /* Edge flag turs on the 7nth bit on the PCDAC | ||
1894 | * to delcare the higher power curve (force values | ||
1895 | * to be greater than 64). If we only have one curve | ||
1896 | * we don't need to set this, if we have 2 curves and | ||
1897 | * fill the table backwards this can also be used to | ||
1898 | * switch from higher power curve to lower power curve */ | ||
1899 | u8 edge_flag; | ||
1900 | int i; | ||
1901 | |||
1902 | /* When we have only one curve available | ||
1903 | * that's the higher power curve. If we have | ||
1904 | * two curves the first is the high power curve | ||
1905 | * and the next is the low power curve. */ | ||
1906 | if (pdcurves > 1) { | ||
1907 | pcdac_low_pwr = ah->ah_txpower.tmpL[1]; | ||
1908 | pcdac_high_pwr = ah->ah_txpower.tmpL[0]; | ||
1909 | mid_pwr_idx = table_max[1] - table_min[1] - 1; | ||
1910 | max_pwr_idx = (table_max[0] - table_min[0]) / 2; | ||
1911 | |||
1912 | /* If table size goes beyond 31.5dB, keep the | ||
1913 | * upper 31.5dB range when setting tx power. | ||
1914 | * Note: 126 = 31.5 dB in quarter dB steps */ | ||
1915 | if (table_max[0] - table_min[1] > 126) | ||
1916 | min_pwr_idx = table_max[0] - 126; | ||
1917 | else | ||
1918 | min_pwr_idx = table_min[1]; | ||
1919 | |||
1920 | /* Since we fill table backwards | ||
1921 | * start from high power curve */ | ||
1922 | pcdac_tmp = pcdac_high_pwr; | ||
1923 | |||
1924 | edge_flag = 0x40; | ||
1925 | #if 0 | ||
1926 | /* If both min and max power limits are in lower | ||
1927 | * power curve's range, only use the low power curve. | ||
1928 | * TODO: min/max levels are related to target | ||
1929 | * power values requested from driver/user | ||
1930 | * XXX: Is this really needed ? */ | ||
1931 | if (min_pwr < table_max[1] && | ||
1932 | max_pwr < table_max[1]) { | ||
1933 | edge_flag = 0; | ||
1934 | pcdac_tmp = pcdac_low_pwr; | ||
1935 | max_pwr_idx = (table_max[1] - table_min[1])/2; | ||
1936 | } | ||
1937 | #endif | ||
1938 | } else { | ||
1939 | pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ | ||
1940 | pcdac_high_pwr = ah->ah_txpower.tmpL[0]; | ||
1941 | min_pwr_idx = table_min[0]; | ||
1942 | max_pwr_idx = (table_max[0] - table_min[0]) / 2; | ||
1943 | pcdac_tmp = pcdac_high_pwr; | ||
1944 | edge_flag = 0; | ||
1945 | } | ||
1946 | |||
1947 | /* This is used when setting tx power*/ | ||
1948 | ah->ah_txpower.txp_min_idx = min_pwr_idx/2; | ||
1949 | |||
1950 | /* Fill Power to PCDAC table backwards */ | ||
1951 | pwr = max_pwr_idx; | ||
1952 | for (i = 63; i >= 0; i--) { | ||
1953 | /* Entering lower power range, reset | ||
1954 | * edge flag and set pcdac_tmp to lower | ||
1955 | * power curve.*/ | ||
1956 | if (edge_flag == 0x40 && | ||
1957 | (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { | ||
1958 | edge_flag = 0x00; | ||
1959 | pcdac_tmp = pcdac_low_pwr; | ||
1960 | pwr = mid_pwr_idx/2; | ||
1961 | } | ||
1962 | |||
1963 | /* Don't go below 1, extrapolate below if we have | ||
1964 | * already swithced to the lower power curve -or | ||
1965 | * we only have one curve and edge_flag is zero | ||
1966 | * anyway */ | ||
1967 | if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { | ||
1968 | while (i >= 0) { | ||
1969 | pcdac_out[i] = pcdac_out[i + 1]; | ||
1970 | i--; | ||
1971 | } | ||
1972 | break; | ||
1973 | } | ||
1974 | |||
1975 | pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; | ||
1976 | |||
1977 | /* Extrapolate above if pcdac is greater than | ||
1978 | * 126 -this can happen because we OR pcdac_out | ||
1979 | * value with edge_flag on high power curve */ | ||
1980 | if (pcdac_out[i] > 126) | ||
1981 | pcdac_out[i] = 126; | ||
1982 | |||
1983 | /* Decrease by a 0.5dB step */ | ||
1984 | pwr--; | ||
1985 | } | ||
1986 | } | ||
1987 | |||
1988 | /* Write PCDAC values on hw */ | ||
1989 | static void | ||
1990 | ath5k_setup_pcdac_table(struct ath5k_hw *ah) | ||
1991 | { | ||
1992 | u8 *pcdac_out = ah->ah_txpower.txp_pd_table; | ||
1993 | int i; | ||
1994 | |||
1995 | /* | ||
1996 | * Write TX power values | ||
1997 | */ | ||
1998 | for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { | ||
1999 | ath5k_hw_reg_write(ah, | ||
2000 | (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) | | ||
2001 | (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16), | ||
2002 | AR5K_PHY_PCDAC_TXPOWER(i)); | ||
2003 | } | ||
2004 | } | ||
2005 | |||
2006 | |||
2007 | /* | ||
2008 | * Power to PDADC table functions | ||
2009 | */ | ||
2010 | |||
2011 | /* | ||
2012 | * Set the gain boundaries and create final Power to PDADC table | ||
2013 | * | ||
2014 | * We can have up to 4 pd curves, we need to do a simmilar process | ||
2015 | * as we do for RF5112. This time we don't have an edge_flag but we | ||
2016 | * set the gain boundaries on a separate register. | ||
2017 | */ | ||
2018 | static void | ||
2019 | ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, | ||
2020 | s16 *pwr_min, s16 *pwr_max, u8 pdcurves) | ||
2021 | { | ||
2022 | u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; | ||
2023 | u8 *pdadc_out = ah->ah_txpower.txp_pd_table; | ||
2024 | u8 *pdadc_tmp; | ||
2025 | s16 pdadc_0; | ||
2026 | u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; | ||
2027 | u8 pd_gain_overlap; | ||
2028 | |||
2029 | /* Note: Register value is initialized on initvals | ||
2030 | * there is no feedback from hw. | ||
2031 | * XXX: What about pd_gain_overlap from EEPROM ? */ | ||
2032 | pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & | ||
2033 | AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; | ||
2034 | |||
2035 | /* Create final PDADC table */ | ||
2036 | for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { | ||
2037 | pdadc_tmp = ah->ah_txpower.tmpL[pdg]; | ||
2038 | |||
2039 | if (pdg == pdcurves - 1) | ||
2040 | /* 2 dB boundary stretch for last | ||
2041 | * (higher power) curve */ | ||
2042 | gain_boundaries[pdg] = pwr_max[pdg] + 4; | ||
2043 | else | ||
2044 | /* Set gain boundary in the middle | ||
2045 | * between this curve and the next one */ | ||
2046 | gain_boundaries[pdg] = | ||
2047 | (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; | ||
2048 | |||
2049 | /* Sanity check in case our 2 db stretch got out of | ||
2050 | * range. */ | ||
2051 | if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) | ||
2052 | gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; | ||
2053 | |||
2054 | /* For the first curve (lower power) | ||
2055 | * start from 0 dB */ | ||
2056 | if (pdg == 0) | ||
2057 | pdadc_0 = 0; | ||
2058 | else | ||
2059 | /* For the other curves use the gain overlap */ | ||
2060 | pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - | ||
2061 | pd_gain_overlap; | ||
2062 | |||
2063 | /* Force each power step to be at least 0.5 dB */ | ||
2064 | if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) | ||
2065 | pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; | ||
2066 | else | ||
2067 | pwr_step = 1; | ||
2068 | |||
2069 | /* If pdadc_0 is negative, we need to extrapolate | ||
2070 | * below this pdgain by a number of pwr_steps */ | ||
2071 | while ((pdadc_0 < 0) && (pdadc_i < 128)) { | ||
2072 | s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; | ||
2073 | pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; | ||
2074 | pdadc_0++; | ||
2075 | } | ||
2076 | |||
2077 | /* Set last pwr level, using gain boundaries */ | ||
2078 | pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; | ||
2079 | /* Limit it to be inside pwr range */ | ||
2080 | table_size = pwr_max[pdg] - pwr_min[pdg]; | ||
2081 | max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; | ||
2082 | |||
2083 | /* Fill pdadc_out table */ | ||
2084 | while (pdadc_0 < max_idx) | ||
2085 | pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; | ||
2086 | |||
2087 | /* Need to extrapolate above this pdgain? */ | ||
2088 | if (pdadc_n <= max_idx) | ||
2089 | continue; | ||
2090 | |||
2091 | /* Force each power step to be at least 0.5 dB */ | ||
2092 | if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) | ||
2093 | pwr_step = pdadc_tmp[table_size - 1] - | ||
2094 | pdadc_tmp[table_size - 2]; | ||
2095 | else | ||
2096 | pwr_step = 1; | ||
2097 | |||
2098 | /* Extrapolate above */ | ||
2099 | while ((pdadc_0 < (s16) pdadc_n) && | ||
2100 | (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { | ||
2101 | s16 tmp = pdadc_tmp[table_size - 1] + | ||
2102 | (pdadc_0 - max_idx) * pwr_step; | ||
2103 | pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; | ||
2104 | pdadc_0++; | ||
2105 | } | ||
2106 | } | ||
2107 | |||
2108 | while (pdg < AR5K_EEPROM_N_PD_GAINS) { | ||
2109 | gain_boundaries[pdg] = gain_boundaries[pdg - 1]; | ||
2110 | pdg++; | ||
2111 | } | ||
2112 | |||
2113 | while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { | ||
2114 | pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; | ||
2115 | pdadc_i++; | ||
2116 | } | ||
2117 | |||
2118 | /* Set gain boundaries */ | ||
2119 | ath5k_hw_reg_write(ah, | ||
2120 | AR5K_REG_SM(pd_gain_overlap, | ||
2121 | AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | | ||
2122 | AR5K_REG_SM(gain_boundaries[0], | ||
2123 | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | | ||
2124 | AR5K_REG_SM(gain_boundaries[1], | ||
2125 | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | | ||
2126 | AR5K_REG_SM(gain_boundaries[2], | ||
2127 | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | | ||
2128 | AR5K_REG_SM(gain_boundaries[3], | ||
2129 | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), | ||
2130 | AR5K_PHY_TPC_RG5); | ||
2131 | |||
2132 | /* Used for setting rate power table */ | ||
2133 | ah->ah_txpower.txp_min_idx = pwr_min[0]; | ||
2134 | |||
2135 | } | ||
2136 | |||
2137 | /* Write PDADC values on hw */ | ||
2138 | static void | ||
2139 | ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah, | ||
2140 | u8 pdcurves, u8 *pdg_to_idx) | ||
2141 | { | ||
2142 | u8 *pdadc_out = ah->ah_txpower.txp_pd_table; | ||
2143 | u32 reg; | ||
2144 | u8 i; | ||
2145 | |||
2146 | /* Select the right pdgain curves */ | ||
2147 | |||
2148 | /* Clear current settings */ | ||
2149 | reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); | ||
2150 | reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | | ||
2151 | AR5K_PHY_TPC_RG1_PDGAIN_2 | | ||
2152 | AR5K_PHY_TPC_RG1_PDGAIN_3 | | ||
2153 | AR5K_PHY_TPC_RG1_NUM_PD_GAIN); | ||
2154 | |||
2155 | /* | ||
2156 | * Use pd_gains curve from eeprom | ||
2157 | * | ||
2158 | * This overrides the default setting from initvals | ||
2159 | * in case some vendors (e.g. Zcomax) don't use the default | ||
2160 | * curves. If we don't honor their settings we 'll get a | ||
2161 | * 5dB (1 * gain overlap ?) drop. | ||
2162 | */ | ||
2163 | reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); | ||
2164 | |||
2165 | switch (pdcurves) { | ||
2166 | case 3: | ||
2167 | reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); | ||
2168 | /* Fall through */ | ||
2169 | case 2: | ||
2170 | reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); | ||
2171 | /* Fall through */ | ||
2172 | case 1: | ||
2173 | reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); | ||
2174 | break; | ||
2175 | } | ||
2176 | ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); | ||
2177 | |||
2178 | /* | ||
2179 | * Write TX power values | ||
2180 | */ | ||
2181 | for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { | ||
2182 | ath5k_hw_reg_write(ah, | ||
2183 | ((pdadc_out[4*i + 0] & 0xff) << 0) | | ||
2184 | ((pdadc_out[4*i + 1] & 0xff) << 8) | | ||
2185 | ((pdadc_out[4*i + 2] & 0xff) << 16) | | ||
2186 | ((pdadc_out[4*i + 3] & 0xff) << 24), | ||
2187 | AR5K_PHY_PDADC_TXPOWER(i)); | ||
2188 | } | ||
2189 | } | ||
2190 | |||
2191 | |||
2192 | /* | ||
2193 | * Common code for PCDAC/PDADC tables | ||
2194 | */ | ||
2195 | |||
2196 | /* | ||
2197 | * This is the main function that uses all of the above | ||
2198 | * to set PCDAC/PDADC table on hw for the current channel. | ||
2199 | * This table is used for tx power calibration on the basband, | ||
2200 | * without it we get weird tx power levels and in some cases | ||
2201 | * distorted spectral mask | ||
2202 | */ | ||
2203 | static int | ||
2204 | ath5k_setup_channel_powertable(struct ath5k_hw *ah, | ||
2205 | struct ieee80211_channel *channel, | ||
2206 | u8 ee_mode, u8 type) | ||
2207 | { | ||
2208 | struct ath5k_pdgain_info *pdg_L, *pdg_R; | ||
2209 | struct ath5k_chan_pcal_info *pcinfo_L; | ||
2210 | struct ath5k_chan_pcal_info *pcinfo_R; | ||
2211 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | ||
2212 | u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; | ||
2213 | s16 table_min[AR5K_EEPROM_N_PD_GAINS]; | ||
2214 | s16 table_max[AR5K_EEPROM_N_PD_GAINS]; | ||
2215 | u8 *tmpL; | ||
2216 | u8 *tmpR; | ||
2217 | u32 target = channel->center_freq; | ||
2218 | int pdg, i; | ||
2219 | |||
2220 | /* Get surounding freq piers for this channel */ | ||
2221 | ath5k_get_chan_pcal_surrounding_piers(ah, channel, | ||
2222 | &pcinfo_L, | ||
2223 | &pcinfo_R); | ||
2224 | |||
2225 | /* Loop over pd gain curves on | ||
2226 | * surounding freq piers by index */ | ||
2227 | for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { | ||
2228 | |||
2229 | /* Fill curves in reverse order | ||
2230 | * from lower power (max gain) | ||
2231 | * to higher power. Use curve -> idx | ||
2232 | * backmaping we did on eeprom init */ | ||
2233 | u8 idx = pdg_curve_to_idx[pdg]; | ||
2234 | |||
2235 | /* Grab the needed curves by index */ | ||
2236 | pdg_L = &pcinfo_L->pd_curves[idx]; | ||
2237 | pdg_R = &pcinfo_R->pd_curves[idx]; | ||
2238 | |||
2239 | /* Initialize the temp tables */ | ||
2240 | tmpL = ah->ah_txpower.tmpL[pdg]; | ||
2241 | tmpR = ah->ah_txpower.tmpR[pdg]; | ||
2242 | |||
2243 | /* Set curve's x boundaries and create | ||
2244 | * curves so that they cover the same | ||
2245 | * range (if we don't do that one table | ||
2246 | * will have values on some range and the | ||
2247 | * other one won't have any so interpolation | ||
2248 | * will fail) */ | ||
2249 | table_min[pdg] = min(pdg_L->pd_pwr[0], | ||
2250 | pdg_R->pd_pwr[0]) / 2; | ||
2251 | |||
2252 | table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], | ||
2253 | pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; | ||
2254 | |||
2255 | /* Now create the curves on surrounding channels | ||
2256 | * and interpolate if needed to get the final | ||
2257 | * curve for this gain on this channel */ | ||
2258 | switch (type) { | ||
2259 | case AR5K_PWRTABLE_LINEAR_PCDAC: | ||
2260 | /* Override min/max so that we don't loose | ||
2261 | * accuracy (don't divide by 2) */ | ||
2262 | table_min[pdg] = min(pdg_L->pd_pwr[0], | ||
2263 | pdg_R->pd_pwr[0]); | ||
2264 | |||
2265 | table_max[pdg] = | ||
2266 | max(pdg_L->pd_pwr[pdg_L->pd_points - 1], | ||
2267 | pdg_R->pd_pwr[pdg_R->pd_points - 1]); | ||
2268 | |||
2269 | /* Override minimum so that we don't get | ||
2270 | * out of bounds while extrapolating | ||
2271 | * below. Don't do this when we have 2 | ||
2272 | * curves and we are on the high power curve | ||
2273 | * because table_min is ok in this case */ | ||
2274 | if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { | ||
2275 | |||
2276 | table_min[pdg] = | ||
2277 | ath5k_get_linear_pcdac_min(pdg_L->pd_step, | ||
2278 | pdg_R->pd_step, | ||
2279 | pdg_L->pd_pwr, | ||
2280 | pdg_R->pd_pwr); | ||
2281 | |||
2282 | /* Don't go too low because we will | ||
2283 | * miss the upper part of the curve. | ||
2284 | * Note: 126 = 31.5dB (max power supported) | ||
2285 | * in 0.25dB units */ | ||
2286 | if (table_max[pdg] - table_min[pdg] > 126) | ||
2287 | table_min[pdg] = table_max[pdg] - 126; | ||
2288 | } | ||
2289 | |||
2290 | /* Fall through */ | ||
2291 | case AR5K_PWRTABLE_PWR_TO_PCDAC: | ||
2292 | case AR5K_PWRTABLE_PWR_TO_PDADC: | ||
2293 | |||
2294 | ath5k_create_power_curve(table_min[pdg], | ||
2295 | table_max[pdg], | ||
2296 | pdg_L->pd_pwr, | ||
2297 | pdg_L->pd_step, | ||
2298 | pdg_L->pd_points, tmpL, type); | ||
2299 | |||
2300 | /* We are in a calibration | ||
2301 | * pier, no need to interpolate | ||
2302 | * between freq piers */ | ||
2303 | if (pcinfo_L == pcinfo_R) | ||
2304 | continue; | ||
2305 | |||
2306 | ath5k_create_power_curve(table_min[pdg], | ||
2307 | table_max[pdg], | ||
2308 | pdg_R->pd_pwr, | ||
2309 | pdg_R->pd_step, | ||
2310 | pdg_R->pd_points, tmpR, type); | ||
2311 | break; | ||
2312 | default: | ||
2313 | return -EINVAL; | ||
2314 | } | ||
2315 | |||
2316 | /* Interpolate between curves | ||
2317 | * of surounding freq piers to | ||
2318 | * get the final curve for this | ||
2319 | * pd gain. Re-use tmpL for interpolation | ||
2320 | * output */ | ||
2321 | for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && | ||
2322 | (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { | ||
2323 | tmpL[i] = (u8) ath5k_get_interpolated_value(target, | ||
2324 | (s16) pcinfo_L->freq, | ||
2325 | (s16) pcinfo_R->freq, | ||
2326 | (s16) tmpL[i], | ||
2327 | (s16) tmpR[i]); | ||
2328 | } | ||
2329 | } | ||
2330 | |||
2331 | /* Now we have a set of curves for this | ||
2332 | * channel on tmpL (x range is table_max - table_min | ||
2333 | * and y values are tmpL[pdg][]) sorted in the same | ||
2334 | * order as EEPROM (because we've used the backmaping). | ||
2335 | * So for RF5112 it's from higher power to lower power | ||
2336 | * and for RF2413 it's from lower power to higher power. | ||
2337 | * For RF5111 we only have one curve. */ | ||
2338 | |||
2339 | /* Fill min and max power levels for this | ||
2340 | * channel by interpolating the values on | ||
2341 | * surounding channels to complete the dataset */ | ||
2342 | ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, | ||
2343 | (s16) pcinfo_L->freq, | ||
2344 | (s16) pcinfo_R->freq, | ||
2345 | pcinfo_L->min_pwr, pcinfo_R->min_pwr); | ||
2346 | |||
2347 | ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, | ||
2348 | (s16) pcinfo_L->freq, | ||
2349 | (s16) pcinfo_R->freq, | ||
2350 | pcinfo_L->max_pwr, pcinfo_R->max_pwr); | ||
2351 | |||
2352 | /* We are ready to go, fill PCDAC/PDADC | ||
2353 | * table and write settings on hardware */ | ||
2354 | switch (type) { | ||
2355 | case AR5K_PWRTABLE_LINEAR_PCDAC: | ||
2356 | /* For RF5112 we can have one or two curves | ||
2357 | * and each curve covers a certain power lvl | ||
2358 | * range so we need to do some more processing */ | ||
2359 | ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, | ||
2360 | ee->ee_pd_gains[ee_mode]); | ||
2361 | |||
2362 | /* Set txp.offset so that we can | ||
2363 | * match max power value with max | ||
2364 | * table index */ | ||
2365 | ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); | ||
2366 | |||
2367 | /* Write settings on hw */ | ||
2368 | ath5k_setup_pcdac_table(ah); | ||
2369 | break; | ||
2370 | case AR5K_PWRTABLE_PWR_TO_PCDAC: | ||
2371 | /* We are done for RF5111 since it has only | ||
2372 | * one curve, just fit the curve on the table */ | ||
2373 | ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); | ||
2374 | |||
2375 | /* No rate powertable adjustment for RF5111 */ | ||
2376 | ah->ah_txpower.txp_min_idx = 0; | ||
2377 | ah->ah_txpower.txp_offset = 0; | ||
2378 | |||
2379 | /* Write settings on hw */ | ||
2380 | ath5k_setup_pcdac_table(ah); | ||
2381 | break; | ||
2382 | case AR5K_PWRTABLE_PWR_TO_PDADC: | ||
2383 | /* Set PDADC boundaries and fill | ||
2384 | * final PDADC table */ | ||
2385 | ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, | ||
2386 | ee->ee_pd_gains[ee_mode]); | ||
2387 | |||
2388 | /* Write settings on hw */ | ||
2389 | ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx); | ||
2390 | |||
2391 | /* Set txp.offset, note that table_min | ||
2392 | * can be negative */ | ||
2393 | ah->ah_txpower.txp_offset = table_min[0]; | ||
2394 | break; | ||
2395 | default: | ||
2396 | return -EINVAL; | ||
2397 | } | ||
2398 | |||
2399 | return 0; | ||
2400 | } | ||
2401 | |||
2402 | |||
2403 | /* | ||
2404 | * Per-rate tx power setting | ||
2405 | * | ||
2406 | * This is the code that sets the desired tx power (below | ||
2407 | * maximum) on hw for each rate (we also have TPC that sets | ||
2408 | * power per packet). We do that by providing an index on the | ||
2409 | * PCDAC/PDADC table we set up. | ||
2410 | */ | ||
2411 | |||
2412 | /* | ||
2413 | * Set rate power table | ||
2414 | * | ||
2415 | * For now we only limit txpower based on maximum tx power | ||
2416 | * supported by hw (what's inside rate_info). We need to limit | ||
2417 | * this even more, based on regulatory domain etc. | ||
2418 | * | ||
2419 | * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps) | ||
2420 | * and is indexed as follows: | ||
2421 | * rates[0] - rates[7] -> OFDM rates | ||
2422 | * rates[8] - rates[14] -> CCK rates | ||
2423 | * rates[15] -> XR rates (they all have the same power) | ||
2424 | */ | ||
2425 | static void | ||
2426 | ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, | ||
2427 | struct ath5k_rate_pcal_info *rate_info, | ||
2428 | u8 ee_mode) | ||
2429 | { | ||
2430 | unsigned int i; | ||
2431 | u16 *rates; | ||
2432 | |||
2433 | /* max_pwr is power level we got from driver/user in 0.5dB | ||
2434 | * units, switch to 0.25dB units so we can compare */ | ||
2435 | max_pwr *= 2; | ||
2436 | max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; | ||
2437 | |||
2438 | /* apply rate limits */ | ||
2439 | rates = ah->ah_txpower.txp_rates_power_table; | ||
2440 | |||
2441 | /* OFDM rates 6 to 24Mb/s */ | ||
2442 | for (i = 0; i < 5; i++) | ||
2443 | rates[i] = min(max_pwr, rate_info->target_power_6to24); | ||
2444 | |||
2445 | /* Rest OFDM rates */ | ||
2446 | rates[5] = min(rates[0], rate_info->target_power_36); | ||
2447 | rates[6] = min(rates[0], rate_info->target_power_48); | ||
2448 | rates[7] = min(rates[0], rate_info->target_power_54); | ||
2449 | |||
2450 | /* CCK rates */ | ||
2451 | /* 1L */ | ||
2452 | rates[8] = min(rates[0], rate_info->target_power_6to24); | ||
2453 | /* 2L */ | ||
2454 | rates[9] = min(rates[0], rate_info->target_power_36); | ||
2455 | /* 2S */ | ||
2456 | rates[10] = min(rates[0], rate_info->target_power_36); | ||
2457 | /* 5L */ | ||
2458 | rates[11] = min(rates[0], rate_info->target_power_48); | ||
2459 | /* 5S */ | ||
2460 | rates[12] = min(rates[0], rate_info->target_power_48); | ||
2461 | /* 11L */ | ||
2462 | rates[13] = min(rates[0], rate_info->target_power_54); | ||
2463 | /* 11S */ | ||
2464 | rates[14] = min(rates[0], rate_info->target_power_54); | ||
2465 | |||
2466 | /* XR rates */ | ||
2467 | rates[15] = min(rates[0], rate_info->target_power_6to24); | ||
2468 | |||
2469 | /* CCK rates have different peak to average ratio | ||
2470 | * so we have to tweak their power so that gainf | ||
2471 | * correction works ok. For this we use OFDM to | ||
2472 | * CCK delta from eeprom */ | ||
2473 | if ((ee_mode == AR5K_EEPROM_MODE_11G) && | ||
2474 | (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) | ||
2475 | for (i = 8; i <= 15; i++) | ||
2476 | rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; | ||
2477 | |||
2478 | ah->ah_txpower.txp_min_pwr = rates[7]; | ||
2479 | ah->ah_txpower.txp_max_pwr = rates[0]; | ||
2480 | ah->ah_txpower.txp_ofdm = rates[7]; | ||
2481 | } | ||
2482 | |||
2483 | |||
2484 | /* | ||
2485 | * Set transmition power | ||
2486 | */ | ||
2487 | int | ||
2488 | ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, | ||
2489 | u8 ee_mode, u8 txpower) | ||
2490 | { | ||
2491 | struct ath5k_rate_pcal_info rate_info; | ||
2492 | u8 type; | ||
2493 | int ret; | ||
2494 | |||
2495 | ATH5K_TRACE(ah->ah_sc); | ||
2496 | if (txpower > AR5K_TUNE_MAX_TXPOWER) { | ||
2497 | ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower); | ||
2498 | return -EINVAL; | ||
2499 | } | ||
2500 | if (txpower == 0) | ||
2501 | txpower = AR5K_TUNE_DEFAULT_TXPOWER; | ||
2502 | |||
2503 | /* Reset TX power values */ | ||
2504 | memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); | ||
2505 | ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; | ||
2506 | ah->ah_txpower.txp_min_pwr = 0; | ||
2507 | ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER; | ||
2508 | |||
2509 | /* Initialize TX power table */ | ||
2510 | switch (ah->ah_radio) { | ||
2511 | case AR5K_RF5111: | ||
2512 | type = AR5K_PWRTABLE_PWR_TO_PCDAC; | ||
2513 | break; | ||
2514 | case AR5K_RF5112: | ||
2515 | type = AR5K_PWRTABLE_LINEAR_PCDAC; | ||
2516 | break; | ||
2517 | case AR5K_RF2413: | ||
2518 | case AR5K_RF5413: | ||
2519 | case AR5K_RF2316: | ||
2520 | case AR5K_RF2317: | ||
2521 | case AR5K_RF2425: | ||
2522 | type = AR5K_PWRTABLE_PWR_TO_PDADC; | ||
2523 | break; | ||
2524 | default: | ||
2525 | return -EINVAL; | ||
2526 | } | ||
2527 | |||
2528 | /* FIXME: Only on channel/mode change */ | ||
2529 | ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type); | ||
2530 | if (ret) | ||
2531 | return ret; | ||
2532 | |||
2533 | /* Limit max power if we have a CTL available */ | ||
2534 | ath5k_get_max_ctl_power(ah, channel); | ||
2535 | |||
2536 | /* FIXME: Tx power limit for this regdomain | ||
2537 | * XXX: Mac80211/CRDA will do that anyway ? */ | ||
2538 | |||
2539 | /* FIXME: Antenna reduction stuff */ | ||
2540 | |||
2541 | /* FIXME: Limit power on turbo modes */ | ||
2542 | |||
2543 | /* FIXME: TPC scale reduction */ | ||
2544 | |||
2545 | /* Get surounding channels for per-rate power table | ||
2546 | * calibration */ | ||
2547 | ath5k_get_rate_pcal_data(ah, channel, &rate_info); | ||
2548 | |||
2549 | /* Setup rate power table */ | ||
2550 | ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); | ||
2551 | |||
2552 | /* Write rate power table on hw */ | ||
2553 | ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | | ||
2554 | AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | | ||
2555 | AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); | ||
2556 | |||
2557 | ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) | | ||
2558 | AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) | | ||
2559 | AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2); | ||
2560 | |||
2561 | ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) | | ||
2562 | AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) | | ||
2563 | AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3); | ||
2564 | |||
2565 | ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) | | ||
2566 | AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | | ||
2567 | AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); | ||
2568 | |||
2569 | /* FIXME: TPC support */ | ||
2570 | if (ah->ah_txpower.txp_tpc) { | ||
2571 | ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | | ||
2572 | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); | ||
2573 | |||
2574 | ath5k_hw_reg_write(ah, | ||
2575 | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | | ||
2576 | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | | ||
2577 | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), | ||
2578 | AR5K_TPC); | ||
2579 | } else { | ||
2580 | ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | | ||
2581 | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); | ||
2582 | } | ||
2583 | |||
2584 | return 0; | ||
2585 | } | ||
2586 | |||
2587 | int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower) | ||
2588 | { | ||
2589 | /*Just a try M.F.*/ | ||
2590 | struct ieee80211_channel *channel = &ah->ah_current_channel; | ||
2591 | |||
2592 | ATH5K_TRACE(ah->ah_sc); | ||
2593 | ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER, | ||
2594 | "changing txpower to %d\n", txpower); | ||
2595 | |||
2596 | return ath5k_hw_txpower(ah, channel, mode, txpower); | ||
2597 | } | ||
2598 | |||
2599 | #undef _ATH5K_PHY | ||