diff options
Diffstat (limited to 'drivers/gpu/drm/udl/udl_transfer.c')
-rw-r--r-- | drivers/gpu/drm/udl/udl_transfer.c | 253 |
1 files changed, 253 insertions, 0 deletions
diff --git a/drivers/gpu/drm/udl/udl_transfer.c b/drivers/gpu/drm/udl/udl_transfer.c new file mode 100644 index 000000000000..b9320e2608dd --- /dev/null +++ b/drivers/gpu/drm/udl/udl_transfer.c | |||
@@ -0,0 +1,253 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2012 Red Hat | ||
3 | * based in parts on udlfb.c: | ||
4 | * Copyright (C) 2009 Roberto De Ioris <roberto@unbit.it> | ||
5 | * Copyright (C) 2009 Jaya Kumar <jayakumar.lkml@gmail.com> | ||
6 | * Copyright (C) 2009 Bernie Thompson <bernie@plugable.com> | ||
7 | * | ||
8 | * This file is subject to the terms and conditions of the GNU General Public | ||
9 | * License v2. See the file COPYING in the main directory of this archive for | ||
10 | * more details. | ||
11 | */ | ||
12 | |||
13 | #include <linux/module.h> | ||
14 | #include <linux/slab.h> | ||
15 | #include <linux/fb.h> | ||
16 | #include <linux/prefetch.h> | ||
17 | |||
18 | #include "drmP.h" | ||
19 | #include "udl_drv.h" | ||
20 | |||
21 | #define MAX_CMD_PIXELS 255 | ||
22 | |||
23 | #define RLX_HEADER_BYTES 7 | ||
24 | #define MIN_RLX_PIX_BYTES 4 | ||
25 | #define MIN_RLX_CMD_BYTES (RLX_HEADER_BYTES + MIN_RLX_PIX_BYTES) | ||
26 | |||
27 | #define RLE_HEADER_BYTES 6 | ||
28 | #define MIN_RLE_PIX_BYTES 3 | ||
29 | #define MIN_RLE_CMD_BYTES (RLE_HEADER_BYTES + MIN_RLE_PIX_BYTES) | ||
30 | |||
31 | #define RAW_HEADER_BYTES 6 | ||
32 | #define MIN_RAW_PIX_BYTES 2 | ||
33 | #define MIN_RAW_CMD_BYTES (RAW_HEADER_BYTES + MIN_RAW_PIX_BYTES) | ||
34 | |||
35 | /* | ||
36 | * Trims identical data from front and back of line | ||
37 | * Sets new front buffer address and width | ||
38 | * And returns byte count of identical pixels | ||
39 | * Assumes CPU natural alignment (unsigned long) | ||
40 | * for back and front buffer ptrs and width | ||
41 | */ | ||
42 | #if 0 | ||
43 | static int udl_trim_hline(const u8 *bback, const u8 **bfront, int *width_bytes) | ||
44 | { | ||
45 | int j, k; | ||
46 | const unsigned long *back = (const unsigned long *) bback; | ||
47 | const unsigned long *front = (const unsigned long *) *bfront; | ||
48 | const int width = *width_bytes / sizeof(unsigned long); | ||
49 | int identical = width; | ||
50 | int start = width; | ||
51 | int end = width; | ||
52 | |||
53 | prefetch((void *) front); | ||
54 | prefetch((void *) back); | ||
55 | |||
56 | for (j = 0; j < width; j++) { | ||
57 | if (back[j] != front[j]) { | ||
58 | start = j; | ||
59 | break; | ||
60 | } | ||
61 | } | ||
62 | |||
63 | for (k = width - 1; k > j; k--) { | ||
64 | if (back[k] != front[k]) { | ||
65 | end = k+1; | ||
66 | break; | ||
67 | } | ||
68 | } | ||
69 | |||
70 | identical = start + (width - end); | ||
71 | *bfront = (u8 *) &front[start]; | ||
72 | *width_bytes = (end - start) * sizeof(unsigned long); | ||
73 | |||
74 | return identical * sizeof(unsigned long); | ||
75 | } | ||
76 | #endif | ||
77 | |||
78 | static inline u16 pixel32_to_be16p(const uint8_t *pixel) | ||
79 | { | ||
80 | uint32_t pix = *(uint32_t *)pixel; | ||
81 | u16 retval; | ||
82 | |||
83 | retval = (((pix >> 3) & 0x001f) | | ||
84 | ((pix >> 5) & 0x07e0) | | ||
85 | ((pix >> 8) & 0xf800)); | ||
86 | return retval; | ||
87 | } | ||
88 | |||
89 | /* | ||
90 | * Render a command stream for an encoded horizontal line segment of pixels. | ||
91 | * | ||
92 | * A command buffer holds several commands. | ||
93 | * It always begins with a fresh command header | ||
94 | * (the protocol doesn't require this, but we enforce it to allow | ||
95 | * multiple buffers to be potentially encoded and sent in parallel). | ||
96 | * A single command encodes one contiguous horizontal line of pixels | ||
97 | * | ||
98 | * The function relies on the client to do all allocation, so that | ||
99 | * rendering can be done directly to output buffers (e.g. USB URBs). | ||
100 | * The function fills the supplied command buffer, providing information | ||
101 | * on where it left off, so the client may call in again with additional | ||
102 | * buffers if the line will take several buffers to complete. | ||
103 | * | ||
104 | * A single command can transmit a maximum of 256 pixels, | ||
105 | * regardless of the compression ratio (protocol design limit). | ||
106 | * To the hardware, 0 for a size byte means 256 | ||
107 | * | ||
108 | * Rather than 256 pixel commands which are either rl or raw encoded, | ||
109 | * the rlx command simply assumes alternating raw and rl spans within one cmd. | ||
110 | * This has a slightly larger header overhead, but produces more even results. | ||
111 | * It also processes all data (read and write) in a single pass. | ||
112 | * Performance benchmarks of common cases show it having just slightly better | ||
113 | * compression than 256 pixel raw or rle commands, with similar CPU consumpion. | ||
114 | * But for very rl friendly data, will compress not quite as well. | ||
115 | */ | ||
116 | static void udl_compress_hline16( | ||
117 | const u8 **pixel_start_ptr, | ||
118 | const u8 *const pixel_end, | ||
119 | uint32_t *device_address_ptr, | ||
120 | uint8_t **command_buffer_ptr, | ||
121 | const uint8_t *const cmd_buffer_end, int bpp) | ||
122 | { | ||
123 | const u8 *pixel = *pixel_start_ptr; | ||
124 | uint32_t dev_addr = *device_address_ptr; | ||
125 | uint8_t *cmd = *command_buffer_ptr; | ||
126 | |||
127 | while ((pixel_end > pixel) && | ||
128 | (cmd_buffer_end - MIN_RLX_CMD_BYTES > cmd)) { | ||
129 | uint8_t *raw_pixels_count_byte = 0; | ||
130 | uint8_t *cmd_pixels_count_byte = 0; | ||
131 | const u8 *raw_pixel_start = 0; | ||
132 | const u8 *cmd_pixel_start, *cmd_pixel_end = 0; | ||
133 | |||
134 | prefetchw((void *) cmd); /* pull in one cache line at least */ | ||
135 | |||
136 | *cmd++ = 0xaf; | ||
137 | *cmd++ = 0x6b; | ||
138 | *cmd++ = (uint8_t) ((dev_addr >> 16) & 0xFF); | ||
139 | *cmd++ = (uint8_t) ((dev_addr >> 8) & 0xFF); | ||
140 | *cmd++ = (uint8_t) ((dev_addr) & 0xFF); | ||
141 | |||
142 | cmd_pixels_count_byte = cmd++; /* we'll know this later */ | ||
143 | cmd_pixel_start = pixel; | ||
144 | |||
145 | raw_pixels_count_byte = cmd++; /* we'll know this later */ | ||
146 | raw_pixel_start = pixel; | ||
147 | |||
148 | cmd_pixel_end = pixel + (min(MAX_CMD_PIXELS + 1, | ||
149 | min((int)(pixel_end - pixel) / bpp, | ||
150 | (int)(cmd_buffer_end - cmd) / 2))) * bpp; | ||
151 | |||
152 | prefetch_range((void *) pixel, (cmd_pixel_end - pixel) * bpp); | ||
153 | |||
154 | while (pixel < cmd_pixel_end) { | ||
155 | const u8 * const repeating_pixel = pixel; | ||
156 | |||
157 | if (bpp == 2) | ||
158 | *(uint16_t *)cmd = cpu_to_be16p((uint16_t *)pixel); | ||
159 | else if (bpp == 4) | ||
160 | *(uint16_t *)cmd = cpu_to_be16(pixel32_to_be16p(pixel)); | ||
161 | |||
162 | cmd += 2; | ||
163 | pixel += bpp; | ||
164 | |||
165 | if (unlikely((pixel < cmd_pixel_end) && | ||
166 | (!memcmp(pixel, repeating_pixel, bpp)))) { | ||
167 | /* go back and fill in raw pixel count */ | ||
168 | *raw_pixels_count_byte = (((repeating_pixel - | ||
169 | raw_pixel_start) / bpp) + 1) & 0xFF; | ||
170 | |||
171 | while ((pixel < cmd_pixel_end) | ||
172 | && (!memcmp(pixel, repeating_pixel, bpp))) { | ||
173 | pixel += bpp; | ||
174 | } | ||
175 | |||
176 | /* immediately after raw data is repeat byte */ | ||
177 | *cmd++ = (((pixel - repeating_pixel) / bpp) - 1) & 0xFF; | ||
178 | |||
179 | /* Then start another raw pixel span */ | ||
180 | raw_pixel_start = pixel; | ||
181 | raw_pixels_count_byte = cmd++; | ||
182 | } | ||
183 | } | ||
184 | |||
185 | if (pixel > raw_pixel_start) { | ||
186 | /* finalize last RAW span */ | ||
187 | *raw_pixels_count_byte = ((pixel-raw_pixel_start) / bpp) & 0xFF; | ||
188 | } | ||
189 | |||
190 | *cmd_pixels_count_byte = ((pixel - cmd_pixel_start) / bpp) & 0xFF; | ||
191 | dev_addr += ((pixel - cmd_pixel_start) / bpp) * 2; | ||
192 | } | ||
193 | |||
194 | if (cmd_buffer_end <= MIN_RLX_CMD_BYTES + cmd) { | ||
195 | /* Fill leftover bytes with no-ops */ | ||
196 | if (cmd_buffer_end > cmd) | ||
197 | memset(cmd, 0xAF, cmd_buffer_end - cmd); | ||
198 | cmd = (uint8_t *) cmd_buffer_end; | ||
199 | } | ||
200 | |||
201 | *command_buffer_ptr = cmd; | ||
202 | *pixel_start_ptr = pixel; | ||
203 | *device_address_ptr = dev_addr; | ||
204 | |||
205 | return; | ||
206 | } | ||
207 | |||
208 | /* | ||
209 | * There are 3 copies of every pixel: The front buffer that the fbdev | ||
210 | * client renders to, the actual framebuffer across the USB bus in hardware | ||
211 | * (that we can only write to, slowly, and can never read), and (optionally) | ||
212 | * our shadow copy that tracks what's been sent to that hardware buffer. | ||
213 | */ | ||
214 | int udl_render_hline(struct drm_device *dev, int bpp, struct urb **urb_ptr, | ||
215 | const char *front, char **urb_buf_ptr, | ||
216 | u32 byte_offset, u32 byte_width, | ||
217 | int *ident_ptr, int *sent_ptr) | ||
218 | { | ||
219 | const u8 *line_start, *line_end, *next_pixel; | ||
220 | u32 base16 = 0 + (byte_offset / bpp) * 2; | ||
221 | struct urb *urb = *urb_ptr; | ||
222 | u8 *cmd = *urb_buf_ptr; | ||
223 | u8 *cmd_end = (u8 *) urb->transfer_buffer + urb->transfer_buffer_length; | ||
224 | |||
225 | line_start = (u8 *) (front + byte_offset); | ||
226 | next_pixel = line_start; | ||
227 | line_end = next_pixel + byte_width; | ||
228 | |||
229 | while (next_pixel < line_end) { | ||
230 | |||
231 | udl_compress_hline16(&next_pixel, | ||
232 | line_end, &base16, | ||
233 | (u8 **) &cmd, (u8 *) cmd_end, bpp); | ||
234 | |||
235 | if (cmd >= cmd_end) { | ||
236 | int len = cmd - (u8 *) urb->transfer_buffer; | ||
237 | if (udl_submit_urb(dev, urb, len)) | ||
238 | return 1; /* lost pixels is set */ | ||
239 | *sent_ptr += len; | ||
240 | urb = udl_get_urb(dev); | ||
241 | if (!urb) | ||
242 | return 1; /* lost_pixels is set */ | ||
243 | *urb_ptr = urb; | ||
244 | cmd = urb->transfer_buffer; | ||
245 | cmd_end = &cmd[urb->transfer_buffer_length]; | ||
246 | } | ||
247 | } | ||
248 | |||
249 | *urb_buf_ptr = cmd; | ||
250 | |||
251 | return 0; | ||
252 | } | ||
253 | |||