aboutsummaryrefslogtreecommitdiffstats
path: root/arch/arm/plat-omap/include/mach/omap-pm.h
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm/plat-omap/include/mach/omap-pm.h')
-rw-r--r--arch/arm/plat-omap/include/mach/omap-pm.h301
1 files changed, 301 insertions, 0 deletions
diff --git a/arch/arm/plat-omap/include/mach/omap-pm.h b/arch/arm/plat-omap/include/mach/omap-pm.h
new file mode 100644
index 000000000000..3ee41d711492
--- /dev/null
+++ b/arch/arm/plat-omap/include/mach/omap-pm.h
@@ -0,0 +1,301 @@
1/*
2 * omap-pm.h - OMAP power management interface
3 *
4 * Copyright (C) 2008-2009 Texas Instruments, Inc.
5 * Copyright (C) 2008-2009 Nokia Corporation
6 * Paul Walmsley
7 *
8 * Interface developed by (in alphabetical order): Karthik Dasu, Jouni
9 * Högander, Tony Lindgren, Rajendra Nayak, Sakari Poussa,
10 * Veeramanikandan Raju, Anand Sawant, Igor Stoppa, Paul Walmsley,
11 * Richard Woodruff
12 */
13
14#ifndef ASM_ARM_ARCH_OMAP_OMAP_PM_H
15#define ASM_ARM_ARCH_OMAP_OMAP_PM_H
16
17#include <linux/device.h>
18#include <linux/cpufreq.h>
19
20#include "powerdomain.h"
21
22/**
23 * struct omap_opp - clock frequency-to-OPP ID table for DSP, MPU
24 * @rate: target clock rate
25 * @opp_id: OPP ID
26 * @min_vdd: minimum VDD1 voltage (in millivolts) for this OPP
27 *
28 * Operating performance point data. Can vary by OMAP chip and board.
29 */
30struct omap_opp {
31 unsigned long rate;
32 u8 opp_id;
33 u16 min_vdd;
34};
35
36extern struct omap_opp *mpu_opps;
37extern struct omap_opp *dsp_opps;
38extern struct omap_opp *l3_opps;
39
40/*
41 * agent_id values for use with omap_pm_set_min_bus_tput():
42 *
43 * OCP_INITIATOR_AGENT is only valid for devices that can act as
44 * initiators -- it represents the device's L3 interconnect
45 * connection. OCP_TARGET_AGENT represents the device's L4
46 * interconnect connection.
47 */
48#define OCP_TARGET_AGENT 1
49#define OCP_INITIATOR_AGENT 2
50
51/**
52 * omap_pm_if_early_init - OMAP PM init code called before clock fw init
53 * @mpu_opp_table: array ptr to struct omap_opp for MPU
54 * @dsp_opp_table: array ptr to struct omap_opp for DSP
55 * @l3_opp_table : array ptr to struct omap_opp for CORE
56 *
57 * Initialize anything that must be configured before the clock
58 * framework starts. The "_if_" is to avoid name collisions with the
59 * PM idle-loop code.
60 */
61int __init omap_pm_if_early_init(struct omap_opp *mpu_opp_table,
62 struct omap_opp *dsp_opp_table,
63 struct omap_opp *l3_opp_table);
64
65/**
66 * omap_pm_if_init - OMAP PM init code called after clock fw init
67 *
68 * The main initialization code. OPP tables are passed in here. The
69 * "_if_" is to avoid name collisions with the PM idle-loop code.
70 */
71int __init omap_pm_if_init(void);
72
73/**
74 * omap_pm_if_exit - OMAP PM exit code
75 *
76 * Exit code; currently unused. The "_if_" is to avoid name
77 * collisions with the PM idle-loop code.
78 */
79void omap_pm_if_exit(void);
80
81/*
82 * Device-driver-originated constraints (via board-*.c files, platform_data)
83 */
84
85
86/**
87 * omap_pm_set_max_mpu_wakeup_lat - set the maximum MPU wakeup latency
88 * @dev: struct device * requesting the constraint
89 * @t: maximum MPU wakeup latency in microseconds
90 *
91 * Request that the maximum interrupt latency for the MPU to be no
92 * greater than 't' microseconds. "Interrupt latency" in this case is
93 * defined as the elapsed time from the occurrence of a hardware or
94 * timer interrupt to the time when the device driver's interrupt
95 * service routine has been entered by the MPU.
96 *
97 * It is intended that underlying PM code will use this information to
98 * determine what power state to put the MPU powerdomain into, and
99 * possibly the CORE powerdomain as well, since interrupt handling
100 * code currently runs from SDRAM. Advanced PM or board*.c code may
101 * also configure interrupt controller priorities, OCP bus priorities,
102 * CPU speed(s), etc.
103 *
104 * This function will not affect device wakeup latency, e.g., time
105 * elapsed from when a device driver enables a hardware device with
106 * clk_enable(), to when the device is ready for register access or
107 * other use. To control this device wakeup latency, use
108 * set_max_dev_wakeup_lat()
109 *
110 * Multiple calls to set_max_mpu_wakeup_lat() will replace the
111 * previous t value. To remove the latency target for the MPU, call
112 * with t = -1.
113 *
114 * No return value.
115 */
116void omap_pm_set_max_mpu_wakeup_lat(struct device *dev, long t);
117
118
119/**
120 * omap_pm_set_min_bus_tput - set minimum bus throughput needed by device
121 * @dev: struct device * requesting the constraint
122 * @tbus_id: interconnect to operate on (OCP_{INITIATOR,TARGET}_AGENT)
123 * @r: minimum throughput (in KiB/s)
124 *
125 * Request that the minimum data throughput on the OCP interconnect
126 * attached to device 'dev' interconnect agent 'tbus_id' be no less
127 * than 'r' KiB/s.
128 *
129 * It is expected that the OMAP PM or bus code will use this
130 * information to set the interconnect clock to run at the lowest
131 * possible speed that satisfies all current system users. The PM or
132 * bus code will adjust the estimate based on its model of the bus, so
133 * device driver authors should attempt to specify an accurate
134 * quantity for their device use case, and let the PM or bus code
135 * overestimate the numbers as necessary to handle request/response
136 * latency, other competing users on the system, etc. On OMAP2/3, if
137 * a driver requests a minimum L4 interconnect speed constraint, the
138 * code will also need to add an minimum L3 interconnect speed
139 * constraint,
140 *
141 * Multiple calls to set_min_bus_tput() will replace the previous rate
142 * value for this device. To remove the interconnect throughput
143 * restriction for this device, call with r = 0.
144 *
145 * No return value.
146 */
147void omap_pm_set_min_bus_tput(struct device *dev, u8 agent_id, unsigned long r);
148
149
150/**
151 * omap_pm_set_max_dev_wakeup_lat - set the maximum device enable latency
152 * @dev: struct device *
153 * @t: maximum device wakeup latency in microseconds
154 *
155 * Request that the maximum amount of time necessary for a device to
156 * become accessible after its clocks are enabled should be no greater
157 * than 't' microseconds. Specifically, this represents the time from
158 * when a device driver enables device clocks with clk_enable(), to
159 * when the register reads and writes on the device will succeed.
160 * This function should be called before clk_disable() is called,
161 * since the power state transition decision may be made during
162 * clk_disable().
163 *
164 * It is intended that underlying PM code will use this information to
165 * determine what power state to put the powerdomain enclosing this
166 * device into.
167 *
168 * Multiple calls to set_max_dev_wakeup_lat() will replace the
169 * previous wakeup latency values for this device. To remove the wakeup
170 * latency restriction for this device, call with t = -1.
171 *
172 * No return value.
173 */
174void omap_pm_set_max_dev_wakeup_lat(struct device *dev, long t);
175
176
177/**
178 * omap_pm_set_max_sdma_lat - set the maximum system DMA transfer start latency
179 * @dev: struct device *
180 * @t: maximum DMA transfer start latency in microseconds
181 *
182 * Request that the maximum system DMA transfer start latency for this
183 * device 'dev' should be no greater than 't' microseconds. "DMA
184 * transfer start latency" here is defined as the elapsed time from
185 * when a device (e.g., McBSP) requests that a system DMA transfer
186 * start or continue, to the time at which data starts to flow into
187 * that device from the system DMA controller.
188 *
189 * It is intended that underlying PM code will use this information to
190 * determine what power state to put the CORE powerdomain into.
191 *
192 * Since system DMA transfers may not involve the MPU, this function
193 * will not affect MPU wakeup latency. Use set_max_cpu_lat() to do
194 * so. Similarly, this function will not affect device wakeup latency
195 * -- use set_max_dev_wakeup_lat() to affect that.
196 *
197 * Multiple calls to set_max_sdma_lat() will replace the previous t
198 * value for this device. To remove the maximum DMA latency for this
199 * device, call with t = -1.
200 *
201 * No return value.
202 */
203void omap_pm_set_max_sdma_lat(struct device *dev, long t);
204
205
206/*
207 * DSP Bridge-specific constraints
208 */
209
210/**
211 * omap_pm_dsp_get_opp_table - get OPP->DSP clock frequency table
212 *
213 * Intended for use by DSPBridge. Returns an array of OPP->DSP clock
214 * frequency entries. The final item in the array should have .rate =
215 * .opp_id = 0.
216 */
217const struct omap_opp *omap_pm_dsp_get_opp_table(void);
218
219/**
220 * omap_pm_dsp_set_min_opp - receive desired OPP target ID from DSP Bridge
221 * @opp_id: target DSP OPP ID
222 *
223 * Set a minimum OPP ID for the DSP. This is intended to be called
224 * only from the DSP Bridge MPU-side driver. Unfortunately, the only
225 * information that code receives from the DSP/BIOS load estimator is the
226 * target OPP ID; hence, this interface. No return value.
227 */
228void omap_pm_dsp_set_min_opp(u8 opp_id);
229
230/**
231 * omap_pm_dsp_get_opp - report the current DSP OPP ID
232 *
233 * Report the current OPP for the DSP. Since on OMAP3, the DSP and
234 * MPU share a single voltage domain, the OPP ID returned back may
235 * represent a higher DSP speed than the OPP requested via
236 * omap_pm_dsp_set_min_opp().
237 *
238 * Returns the current VDD1 OPP ID, or 0 upon error.
239 */
240u8 omap_pm_dsp_get_opp(void);
241
242
243/*
244 * CPUFreq-originated constraint
245 *
246 * In the future, this should be handled by custom OPP clocktype
247 * functions.
248 */
249
250/**
251 * omap_pm_cpu_get_freq_table - return a cpufreq_frequency_table array ptr
252 *
253 * Provide a frequency table usable by CPUFreq for the current chip/board.
254 * Returns a pointer to a struct cpufreq_frequency_table array or NULL
255 * upon error.
256 */
257struct cpufreq_frequency_table **omap_pm_cpu_get_freq_table(void);
258
259/**
260 * omap_pm_cpu_set_freq - set the current minimum MPU frequency
261 * @f: MPU frequency in Hz
262 *
263 * Set the current minimum CPU frequency. The actual CPU frequency
264 * used could end up higher if the DSP requested a higher OPP.
265 * Intended to be called by plat-omap/cpu_omap.c:omap_target(). No
266 * return value.
267 */
268void omap_pm_cpu_set_freq(unsigned long f);
269
270/**
271 * omap_pm_cpu_get_freq - report the current CPU frequency
272 *
273 * Returns the current MPU frequency, or 0 upon error.
274 */
275unsigned long omap_pm_cpu_get_freq(void);
276
277
278/*
279 * Device context loss tracking
280 */
281
282/**
283 * omap_pm_get_dev_context_loss_count - return count of times dev has lost ctx
284 * @dev: struct device *
285 *
286 * This function returns the number of times that the device @dev has
287 * lost its internal context. This generally occurs on a powerdomain
288 * transition to OFF. Drivers use this as an optimization to avoid restoring
289 * context if the device hasn't lost it. To use, drivers should initially
290 * call this in their context save functions and store the result. Early in
291 * the driver's context restore function, the driver should call this function
292 * again, and compare the result to the stored counter. If they differ, the
293 * driver must restore device context. If the number of context losses
294 * exceeds the maximum positive integer, the function will wrap to 0 and
295 * continue counting. Returns the number of context losses for this device,
296 * or -EINVAL upon error.
297 */
298int omap_pm_get_dev_context_loss_count(struct device *dev);
299
300
301#endif