aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--arch/arm/mach-sa1100/generic.c25
-rw-r--r--drivers/dma/Kconfig9
-rw-r--r--drivers/dma/Makefile1
-rw-r--r--drivers/dma/sa11x0-dma.c1109
-rw-r--r--drivers/net/irda/Kconfig2
-rw-r--r--drivers/net/irda/sa1100_ir.c953
-rw-r--r--include/linux/sa11x0-dma.h24
7 files changed, 1700 insertions, 423 deletions
diff --git a/arch/arm/mach-sa1100/generic.c b/arch/arm/mach-sa1100/generic.c
index 2b33b4597468..1752686e9abc 100644
--- a/arch/arm/mach-sa1100/generic.c
+++ b/arch/arm/mach-sa1100/generic.c
@@ -14,6 +14,7 @@
14#include <linux/kernel.h> 14#include <linux/kernel.h>
15#include <linux/init.h> 15#include <linux/init.h>
16#include <linux/delay.h> 16#include <linux/delay.h>
17#include <linux/dma-mapping.h>
17#include <linux/pm.h> 18#include <linux/pm.h>
18#include <linux/cpufreq.h> 19#include <linux/cpufreq.h>
19#include <linux/ioport.h> 20#include <linux/ioport.h>
@@ -289,6 +290,29 @@ static struct platform_device sa11x0rtc_device = {
289 .id = -1, 290 .id = -1,
290}; 291};
291 292
293static struct resource sa11x0dma_resources[] = {
294 DEFINE_RES_MEM(__PREG(DDAR(0)), 6 * DMASp),
295 DEFINE_RES_IRQ(IRQ_DMA0),
296 DEFINE_RES_IRQ(IRQ_DMA1),
297 DEFINE_RES_IRQ(IRQ_DMA2),
298 DEFINE_RES_IRQ(IRQ_DMA3),
299 DEFINE_RES_IRQ(IRQ_DMA4),
300 DEFINE_RES_IRQ(IRQ_DMA5),
301};
302
303static u64 sa11x0dma_dma_mask = DMA_BIT_MASK(32);
304
305static struct platform_device sa11x0dma_device = {
306 .name = "sa11x0-dma",
307 .id = -1,
308 .dev = {
309 .dma_mask = &sa11x0dma_dma_mask,
310 .coherent_dma_mask = 0xffffffff,
311 },
312 .num_resources = ARRAY_SIZE(sa11x0dma_resources),
313 .resource = sa11x0dma_resources,
314};
315
292static struct platform_device *sa11x0_devices[] __initdata = { 316static struct platform_device *sa11x0_devices[] __initdata = {
293 &sa11x0udc_device, 317 &sa11x0udc_device,
294 &sa11x0uart1_device, 318 &sa11x0uart1_device,
@@ -297,6 +321,7 @@ static struct platform_device *sa11x0_devices[] __initdata = {
297 &sa11x0pcmcia_device, 321 &sa11x0pcmcia_device,
298 &sa11x0fb_device, 322 &sa11x0fb_device,
299 &sa11x0rtc_device, 323 &sa11x0rtc_device,
324 &sa11x0dma_device,
300}; 325};
301 326
302static int __init sa1100_init(void) 327static int __init sa1100_init(void)
diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig
index f1a274994bb1..4a6c46dea8a0 100644
--- a/drivers/dma/Kconfig
+++ b/drivers/dma/Kconfig
@@ -252,6 +252,15 @@ config EP93XX_DMA
252 help 252 help
253 Enable support for the Cirrus Logic EP93xx M2P/M2M DMA controller. 253 Enable support for the Cirrus Logic EP93xx M2P/M2M DMA controller.
254 254
255config DMA_SA11X0
256 tristate "SA-11x0 DMA support"
257 depends on ARCH_SA1100
258 select DMA_ENGINE
259 help
260 Support the DMA engine found on Intel StrongARM SA-1100 and
261 SA-1110 SoCs. This DMA engine can only be used with on-chip
262 devices.
263
255config DMA_ENGINE 264config DMA_ENGINE
256 bool 265 bool
257 266
diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile
index 009a222e8283..86b795baba98 100644
--- a/drivers/dma/Makefile
+++ b/drivers/dma/Makefile
@@ -27,3 +27,4 @@ obj-$(CONFIG_PL330_DMA) += pl330.o
27obj-$(CONFIG_PCH_DMA) += pch_dma.o 27obj-$(CONFIG_PCH_DMA) += pch_dma.o
28obj-$(CONFIG_AMBA_PL08X) += amba-pl08x.o 28obj-$(CONFIG_AMBA_PL08X) += amba-pl08x.o
29obj-$(CONFIG_EP93XX_DMA) += ep93xx_dma.o 29obj-$(CONFIG_EP93XX_DMA) += ep93xx_dma.o
30obj-$(CONFIG_DMA_SA11X0) += sa11x0-dma.o
diff --git a/drivers/dma/sa11x0-dma.c b/drivers/dma/sa11x0-dma.c
new file mode 100644
index 000000000000..16a6b48883cf
--- /dev/null
+++ b/drivers/dma/sa11x0-dma.c
@@ -0,0 +1,1109 @@
1/*
2 * SA11x0 DMAengine support
3 *
4 * Copyright (C) 2012 Russell King
5 * Derived in part from arch/arm/mach-sa1100/dma.c,
6 * Copyright (C) 2000, 2001 by Nicolas Pitre
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#include <linux/sched.h>
13#include <linux/device.h>
14#include <linux/dmaengine.h>
15#include <linux/init.h>
16#include <linux/interrupt.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/platform_device.h>
20#include <linux/sa11x0-dma.h>
21#include <linux/slab.h>
22#include <linux/spinlock.h>
23
24#define NR_PHY_CHAN 6
25#define DMA_ALIGN 3
26#define DMA_MAX_SIZE 0x1fff
27#define DMA_CHUNK_SIZE 0x1000
28
29#define DMA_DDAR 0x00
30#define DMA_DCSR_S 0x04
31#define DMA_DCSR_C 0x08
32#define DMA_DCSR_R 0x0c
33#define DMA_DBSA 0x10
34#define DMA_DBTA 0x14
35#define DMA_DBSB 0x18
36#define DMA_DBTB 0x1c
37#define DMA_SIZE 0x20
38
39#define DCSR_RUN (1 << 0)
40#define DCSR_IE (1 << 1)
41#define DCSR_ERROR (1 << 2)
42#define DCSR_DONEA (1 << 3)
43#define DCSR_STRTA (1 << 4)
44#define DCSR_DONEB (1 << 5)
45#define DCSR_STRTB (1 << 6)
46#define DCSR_BIU (1 << 7)
47
48#define DDAR_RW (1 << 0) /* 0 = W, 1 = R */
49#define DDAR_E (1 << 1) /* 0 = LE, 1 = BE */
50#define DDAR_BS (1 << 2) /* 0 = BS4, 1 = BS8 */
51#define DDAR_DW (1 << 3) /* 0 = 8b, 1 = 16b */
52#define DDAR_Ser0UDCTr (0x0 << 4)
53#define DDAR_Ser0UDCRc (0x1 << 4)
54#define DDAR_Ser1SDLCTr (0x2 << 4)
55#define DDAR_Ser1SDLCRc (0x3 << 4)
56#define DDAR_Ser1UARTTr (0x4 << 4)
57#define DDAR_Ser1UARTRc (0x5 << 4)
58#define DDAR_Ser2ICPTr (0x6 << 4)
59#define DDAR_Ser2ICPRc (0x7 << 4)
60#define DDAR_Ser3UARTTr (0x8 << 4)
61#define DDAR_Ser3UARTRc (0x9 << 4)
62#define DDAR_Ser4MCP0Tr (0xa << 4)
63#define DDAR_Ser4MCP0Rc (0xb << 4)
64#define DDAR_Ser4MCP1Tr (0xc << 4)
65#define DDAR_Ser4MCP1Rc (0xd << 4)
66#define DDAR_Ser4SSPTr (0xe << 4)
67#define DDAR_Ser4SSPRc (0xf << 4)
68
69struct sa11x0_dma_sg {
70 u32 addr;
71 u32 len;
72};
73
74struct sa11x0_dma_desc {
75 struct dma_async_tx_descriptor tx;
76 u32 ddar;
77 size_t size;
78
79 /* maybe protected by c->lock */
80 struct list_head node;
81 unsigned sglen;
82 struct sa11x0_dma_sg sg[0];
83};
84
85struct sa11x0_dma_phy;
86
87struct sa11x0_dma_chan {
88 struct dma_chan chan;
89 spinlock_t lock;
90 dma_cookie_t lc;
91
92 /* protected by c->lock */
93 struct sa11x0_dma_phy *phy;
94 enum dma_status status;
95 struct list_head desc_submitted;
96 struct list_head desc_issued;
97
98 /* protected by d->lock */
99 struct list_head node;
100
101 u32 ddar;
102 const char *name;
103};
104
105struct sa11x0_dma_phy {
106 void __iomem *base;
107 struct sa11x0_dma_dev *dev;
108 unsigned num;
109
110 struct sa11x0_dma_chan *vchan;
111
112 /* Protected by c->lock */
113 unsigned sg_load;
114 struct sa11x0_dma_desc *txd_load;
115 unsigned sg_done;
116 struct sa11x0_dma_desc *txd_done;
117#ifdef CONFIG_PM_SLEEP
118 u32 dbs[2];
119 u32 dbt[2];
120 u32 dcsr;
121#endif
122};
123
124struct sa11x0_dma_dev {
125 struct dma_device slave;
126 void __iomem *base;
127 spinlock_t lock;
128 struct tasklet_struct task;
129 struct list_head chan_pending;
130 struct list_head desc_complete;
131 struct sa11x0_dma_phy phy[NR_PHY_CHAN];
132};
133
134static struct sa11x0_dma_chan *to_sa11x0_dma_chan(struct dma_chan *chan)
135{
136 return container_of(chan, struct sa11x0_dma_chan, chan);
137}
138
139static struct sa11x0_dma_dev *to_sa11x0_dma(struct dma_device *dmadev)
140{
141 return container_of(dmadev, struct sa11x0_dma_dev, slave);
142}
143
144static struct sa11x0_dma_desc *to_sa11x0_dma_tx(struct dma_async_tx_descriptor *tx)
145{
146 return container_of(tx, struct sa11x0_dma_desc, tx);
147}
148
149static struct sa11x0_dma_desc *sa11x0_dma_next_desc(struct sa11x0_dma_chan *c)
150{
151 if (list_empty(&c->desc_issued))
152 return NULL;
153
154 return list_first_entry(&c->desc_issued, struct sa11x0_dma_desc, node);
155}
156
157static void sa11x0_dma_start_desc(struct sa11x0_dma_phy *p, struct sa11x0_dma_desc *txd)
158{
159 list_del(&txd->node);
160 p->txd_load = txd;
161 p->sg_load = 0;
162
163 dev_vdbg(p->dev->slave.dev, "pchan %u: txd %p[%x]: starting: DDAR:%x\n",
164 p->num, txd, txd->tx.cookie, txd->ddar);
165}
166
167static void noinline sa11x0_dma_start_sg(struct sa11x0_dma_phy *p,
168 struct sa11x0_dma_chan *c)
169{
170 struct sa11x0_dma_desc *txd = p->txd_load;
171 struct sa11x0_dma_sg *sg;
172 void __iomem *base = p->base;
173 unsigned dbsx, dbtx;
174 u32 dcsr;
175
176 if (!txd)
177 return;
178
179 dcsr = readl_relaxed(base + DMA_DCSR_R);
180
181 /* Don't try to load the next transfer if both buffers are started */
182 if ((dcsr & (DCSR_STRTA | DCSR_STRTB)) == (DCSR_STRTA | DCSR_STRTB))
183 return;
184
185 if (p->sg_load == txd->sglen) {
186 struct sa11x0_dma_desc *txn = sa11x0_dma_next_desc(c);
187
188 /*
189 * We have reached the end of the current descriptor.
190 * Peek at the next descriptor, and if compatible with
191 * the current, start processing it.
192 */
193 if (txn && txn->ddar == txd->ddar) {
194 txd = txn;
195 sa11x0_dma_start_desc(p, txn);
196 } else {
197 p->txd_load = NULL;
198 return;
199 }
200 }
201
202 sg = &txd->sg[p->sg_load++];
203
204 /* Select buffer to load according to channel status */
205 if (((dcsr & (DCSR_BIU | DCSR_STRTB)) == (DCSR_BIU | DCSR_STRTB)) ||
206 ((dcsr & (DCSR_BIU | DCSR_STRTA)) == 0)) {
207 dbsx = DMA_DBSA;
208 dbtx = DMA_DBTA;
209 dcsr = DCSR_STRTA | DCSR_IE | DCSR_RUN;
210 } else {
211 dbsx = DMA_DBSB;
212 dbtx = DMA_DBTB;
213 dcsr = DCSR_STRTB | DCSR_IE | DCSR_RUN;
214 }
215
216 writel_relaxed(sg->addr, base + dbsx);
217 writel_relaxed(sg->len, base + dbtx);
218 writel(dcsr, base + DMA_DCSR_S);
219
220 dev_dbg(p->dev->slave.dev, "pchan %u: load: DCSR:%02x DBS%c:%08x DBT%c:%08x\n",
221 p->num, dcsr,
222 'A' + (dbsx == DMA_DBSB), sg->addr,
223 'A' + (dbtx == DMA_DBTB), sg->len);
224}
225
226static void noinline sa11x0_dma_complete(struct sa11x0_dma_phy *p,
227 struct sa11x0_dma_chan *c)
228{
229 struct sa11x0_dma_desc *txd = p->txd_done;
230
231 if (++p->sg_done == txd->sglen) {
232 struct sa11x0_dma_dev *d = p->dev;
233
234 dev_vdbg(d->slave.dev, "pchan %u: txd %p[%x]: completed\n",
235 p->num, p->txd_done, p->txd_done->tx.cookie);
236
237 c->lc = txd->tx.cookie;
238
239 spin_lock(&d->lock);
240 list_add_tail(&txd->node, &d->desc_complete);
241 spin_unlock(&d->lock);
242
243 p->sg_done = 0;
244 p->txd_done = p->txd_load;
245
246 tasklet_schedule(&d->task);
247 }
248
249 sa11x0_dma_start_sg(p, c);
250}
251
252static irqreturn_t sa11x0_dma_irq(int irq, void *dev_id)
253{
254 struct sa11x0_dma_phy *p = dev_id;
255 struct sa11x0_dma_dev *d = p->dev;
256 struct sa11x0_dma_chan *c;
257 u32 dcsr;
258
259 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
260 if (!(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB)))
261 return IRQ_NONE;
262
263 /* Clear reported status bits */
264 writel_relaxed(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB),
265 p->base + DMA_DCSR_C);
266
267 dev_dbg(d->slave.dev, "pchan %u: irq: DCSR:%02x\n", p->num, dcsr);
268
269 if (dcsr & DCSR_ERROR) {
270 dev_err(d->slave.dev, "pchan %u: error. DCSR:%02x DDAR:%08x DBSA:%08x DBTA:%08x DBSB:%08x DBTB:%08x\n",
271 p->num, dcsr,
272 readl_relaxed(p->base + DMA_DDAR),
273 readl_relaxed(p->base + DMA_DBSA),
274 readl_relaxed(p->base + DMA_DBTA),
275 readl_relaxed(p->base + DMA_DBSB),
276 readl_relaxed(p->base + DMA_DBTB));
277 }
278
279 c = p->vchan;
280 if (c) {
281 unsigned long flags;
282
283 spin_lock_irqsave(&c->lock, flags);
284 /*
285 * Now that we're holding the lock, check that the vchan
286 * really is associated with this pchan before touching the
287 * hardware. This should always succeed, because we won't
288 * change p->vchan or c->phy while the channel is actively
289 * transferring.
290 */
291 if (c->phy == p) {
292 if (dcsr & DCSR_DONEA)
293 sa11x0_dma_complete(p, c);
294 if (dcsr & DCSR_DONEB)
295 sa11x0_dma_complete(p, c);
296 }
297 spin_unlock_irqrestore(&c->lock, flags);
298 }
299
300 return IRQ_HANDLED;
301}
302
303static void sa11x0_dma_start_txd(struct sa11x0_dma_chan *c)
304{
305 struct sa11x0_dma_desc *txd = sa11x0_dma_next_desc(c);
306
307 /* If the issued list is empty, we have no further txds to process */
308 if (txd) {
309 struct sa11x0_dma_phy *p = c->phy;
310
311 sa11x0_dma_start_desc(p, txd);
312 p->txd_done = txd;
313 p->sg_done = 0;
314
315 /* The channel should not have any transfers started */
316 WARN_ON(readl_relaxed(p->base + DMA_DCSR_R) &
317 (DCSR_STRTA | DCSR_STRTB));
318
319 /* Clear the run and start bits before changing DDAR */
320 writel_relaxed(DCSR_RUN | DCSR_STRTA | DCSR_STRTB,
321 p->base + DMA_DCSR_C);
322 writel_relaxed(txd->ddar, p->base + DMA_DDAR);
323
324 /* Try to start both buffers */
325 sa11x0_dma_start_sg(p, c);
326 sa11x0_dma_start_sg(p, c);
327 }
328}
329
330static void sa11x0_dma_tasklet(unsigned long arg)
331{
332 struct sa11x0_dma_dev *d = (struct sa11x0_dma_dev *)arg;
333 struct sa11x0_dma_phy *p;
334 struct sa11x0_dma_chan *c;
335 struct sa11x0_dma_desc *txd, *txn;
336 LIST_HEAD(head);
337 unsigned pch, pch_alloc = 0;
338
339 dev_dbg(d->slave.dev, "tasklet enter\n");
340
341 /* Get the completed tx descriptors */
342 spin_lock_irq(&d->lock);
343 list_splice_init(&d->desc_complete, &head);
344 spin_unlock_irq(&d->lock);
345
346 list_for_each_entry(txd, &head, node) {
347 c = to_sa11x0_dma_chan(txd->tx.chan);
348
349 dev_dbg(d->slave.dev, "vchan %p: txd %p[%x] completed\n",
350 c, txd, txd->tx.cookie);
351
352 spin_lock_irq(&c->lock);
353 p = c->phy;
354 if (p) {
355 if (!p->txd_done)
356 sa11x0_dma_start_txd(c);
357 if (!p->txd_done) {
358 /* No current txd associated with this channel */
359 dev_dbg(d->slave.dev, "pchan %u: free\n", p->num);
360
361 /* Mark this channel free */
362 c->phy = NULL;
363 p->vchan = NULL;
364 }
365 }
366 spin_unlock_irq(&c->lock);
367 }
368
369 spin_lock_irq(&d->lock);
370 for (pch = 0; pch < NR_PHY_CHAN; pch++) {
371 p = &d->phy[pch];
372
373 if (p->vchan == NULL && !list_empty(&d->chan_pending)) {
374 c = list_first_entry(&d->chan_pending,
375 struct sa11x0_dma_chan, node);
376 list_del_init(&c->node);
377
378 pch_alloc |= 1 << pch;
379
380 /* Mark this channel allocated */
381 p->vchan = c;
382
383 dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, c);
384 }
385 }
386 spin_unlock_irq(&d->lock);
387
388 for (pch = 0; pch < NR_PHY_CHAN; pch++) {
389 if (pch_alloc & (1 << pch)) {
390 p = &d->phy[pch];
391 c = p->vchan;
392
393 spin_lock_irq(&c->lock);
394 c->phy = p;
395
396 sa11x0_dma_start_txd(c);
397 spin_unlock_irq(&c->lock);
398 }
399 }
400
401 /* Now free the completed tx descriptor, and call their callbacks */
402 list_for_each_entry_safe(txd, txn, &head, node) {
403 dma_async_tx_callback callback = txd->tx.callback;
404 void *callback_param = txd->tx.callback_param;
405
406 dev_dbg(d->slave.dev, "txd %p[%x]: callback and free\n",
407 txd, txd->tx.cookie);
408
409 kfree(txd);
410
411 if (callback)
412 callback(callback_param);
413 }
414
415 dev_dbg(d->slave.dev, "tasklet exit\n");
416}
417
418
419static void sa11x0_dma_desc_free(struct sa11x0_dma_dev *d, struct list_head *head)
420{
421 struct sa11x0_dma_desc *txd, *txn;
422
423 list_for_each_entry_safe(txd, txn, head, node) {
424 dev_dbg(d->slave.dev, "txd %p: freeing\n", txd);
425 kfree(txd);
426 }
427}
428
429static int sa11x0_dma_alloc_chan_resources(struct dma_chan *chan)
430{
431 return 0;
432}
433
434static void sa11x0_dma_free_chan_resources(struct dma_chan *chan)
435{
436 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
437 struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
438 unsigned long flags;
439 LIST_HEAD(head);
440
441 spin_lock_irqsave(&c->lock, flags);
442 spin_lock(&d->lock);
443 list_del_init(&c->node);
444 spin_unlock(&d->lock);
445
446 list_splice_tail_init(&c->desc_submitted, &head);
447 list_splice_tail_init(&c->desc_issued, &head);
448 spin_unlock_irqrestore(&c->lock, flags);
449
450 sa11x0_dma_desc_free(d, &head);
451}
452
453static dma_addr_t sa11x0_dma_pos(struct sa11x0_dma_phy *p)
454{
455 unsigned reg;
456 u32 dcsr;
457
458 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
459
460 if ((dcsr & (DCSR_BIU | DCSR_STRTA)) == DCSR_STRTA ||
461 (dcsr & (DCSR_BIU | DCSR_STRTB)) == DCSR_BIU)
462 reg = DMA_DBSA;
463 else
464 reg = DMA_DBSB;
465
466 return readl_relaxed(p->base + reg);
467}
468
469static enum dma_status sa11x0_dma_tx_status(struct dma_chan *chan,
470 dma_cookie_t cookie, struct dma_tx_state *state)
471{
472 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
473 struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
474 struct sa11x0_dma_phy *p;
475 struct sa11x0_dma_desc *txd;
476 dma_cookie_t last_used, last_complete;
477 unsigned long flags;
478 enum dma_status ret;
479 size_t bytes = 0;
480
481 last_used = c->chan.cookie;
482 last_complete = c->lc;
483
484 ret = dma_async_is_complete(cookie, last_complete, last_used);
485 if (ret == DMA_SUCCESS) {
486 dma_set_tx_state(state, last_complete, last_used, 0);
487 return ret;
488 }
489
490 spin_lock_irqsave(&c->lock, flags);
491 p = c->phy;
492 ret = c->status;
493 if (p) {
494 dma_addr_t addr = sa11x0_dma_pos(p);
495
496 dev_vdbg(d->slave.dev, "tx_status: addr:%x\n", addr);
497
498 txd = p->txd_done;
499 if (txd) {
500 unsigned i;
501
502 for (i = 0; i < txd->sglen; i++) {
503 dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x\n",
504 i, txd->sg[i].addr, txd->sg[i].len);
505 if (addr >= txd->sg[i].addr &&
506 addr < txd->sg[i].addr + txd->sg[i].len) {
507 unsigned len;
508
509 len = txd->sg[i].len -
510 (addr - txd->sg[i].addr);
511 dev_vdbg(d->slave.dev, "tx_status: [%u] +%x\n",
512 i, len);
513 bytes += len;
514 i++;
515 break;
516 }
517 }
518 for (; i < txd->sglen; i++) {
519 dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x ++\n",
520 i, txd->sg[i].addr, txd->sg[i].len);
521 bytes += txd->sg[i].len;
522 }
523 }
524 if (txd != p->txd_load && p->txd_load)
525 bytes += p->txd_load->size;
526 }
527 list_for_each_entry(txd, &c->desc_issued, node) {
528 bytes += txd->size;
529 }
530 spin_unlock_irqrestore(&c->lock, flags);
531
532 dma_set_tx_state(state, last_complete, last_used, bytes);
533
534 dev_vdbg(d->slave.dev, "tx_status: bytes 0x%zx\n", bytes);
535
536 return ret;
537}
538
539/*
540 * Move pending txds to the issued list, and re-init pending list.
541 * If not already pending, add this channel to the list of pending
542 * channels and trigger the tasklet to run.
543 */
544static void sa11x0_dma_issue_pending(struct dma_chan *chan)
545{
546 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
547 struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
548 unsigned long flags;
549
550 spin_lock_irqsave(&c->lock, flags);
551 list_splice_tail_init(&c->desc_submitted, &c->desc_issued);
552 if (!list_empty(&c->desc_issued)) {
553 spin_lock(&d->lock);
554 if (!c->phy && list_empty(&c->node)) {
555 list_add_tail(&c->node, &d->chan_pending);
556 tasklet_schedule(&d->task);
557 dev_dbg(d->slave.dev, "vchan %p: issued\n", c);
558 }
559 spin_unlock(&d->lock);
560 } else
561 dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", c);
562 spin_unlock_irqrestore(&c->lock, flags);
563}
564
565static dma_cookie_t sa11x0_dma_tx_submit(struct dma_async_tx_descriptor *tx)
566{
567 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(tx->chan);
568 struct sa11x0_dma_desc *txd = to_sa11x0_dma_tx(tx);
569 unsigned long flags;
570
571 spin_lock_irqsave(&c->lock, flags);
572 c->chan.cookie += 1;
573 if (c->chan.cookie < 0)
574 c->chan.cookie = 1;
575 txd->tx.cookie = c->chan.cookie;
576
577 list_add_tail(&txd->node, &c->desc_submitted);
578 spin_unlock_irqrestore(&c->lock, flags);
579
580 dev_dbg(tx->chan->device->dev, "vchan %p: txd %p[%x]: submitted\n",
581 c, txd, txd->tx.cookie);
582
583 return txd->tx.cookie;
584}
585
586static struct dma_async_tx_descriptor *sa11x0_dma_prep_slave_sg(
587 struct dma_chan *chan, struct scatterlist *sg, unsigned int sglen,
588 enum dma_transfer_direction dir, unsigned long flags)
589{
590 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
591 struct sa11x0_dma_desc *txd;
592 struct scatterlist *sgent;
593 unsigned i, j = sglen;
594 size_t size = 0;
595
596 /* SA11x0 channels can only operate in their native direction */
597 if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
598 dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
599 c, c->ddar, dir);
600 return NULL;
601 }
602
603 /* Do not allow zero-sized txds */
604 if (sglen == 0)
605 return NULL;
606
607 for_each_sg(sg, sgent, sglen, i) {
608 dma_addr_t addr = sg_dma_address(sgent);
609 unsigned int len = sg_dma_len(sgent);
610
611 if (len > DMA_MAX_SIZE)
612 j += DIV_ROUND_UP(len, DMA_MAX_SIZE & ~DMA_ALIGN) - 1;
613 if (addr & DMA_ALIGN) {
614 dev_dbg(chan->device->dev, "vchan %p: bad buffer alignment: %08x\n",
615 c, addr);
616 return NULL;
617 }
618 }
619
620 txd = kzalloc(sizeof(*txd) + j * sizeof(txd->sg[0]), GFP_ATOMIC);
621 if (!txd) {
622 dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", c);
623 return NULL;
624 }
625
626 j = 0;
627 for_each_sg(sg, sgent, sglen, i) {
628 dma_addr_t addr = sg_dma_address(sgent);
629 unsigned len = sg_dma_len(sgent);
630
631 size += len;
632
633 do {
634 unsigned tlen = len;
635
636 /*
637 * Check whether the transfer will fit. If not, try
638 * to split the transfer up such that we end up with
639 * equal chunks - but make sure that we preserve the
640 * alignment. This avoids small segments.
641 */
642 if (tlen > DMA_MAX_SIZE) {
643 unsigned mult = DIV_ROUND_UP(tlen,
644 DMA_MAX_SIZE & ~DMA_ALIGN);
645
646 tlen = (tlen / mult) & ~DMA_ALIGN;
647 }
648
649 txd->sg[j].addr = addr;
650 txd->sg[j].len = tlen;
651
652 addr += tlen;
653 len -= tlen;
654 j++;
655 } while (len);
656 }
657
658 dma_async_tx_descriptor_init(&txd->tx, &c->chan);
659 txd->tx.flags = flags;
660 txd->tx.tx_submit = sa11x0_dma_tx_submit;
661 txd->ddar = c->ddar;
662 txd->size = size;
663 txd->sglen = j;
664
665 dev_dbg(chan->device->dev, "vchan %p: txd %p: size %u nr %u\n",
666 c, txd, txd->size, txd->sglen);
667
668 return &txd->tx;
669}
670
671static int sa11x0_dma_slave_config(struct sa11x0_dma_chan *c, struct dma_slave_config *cfg)
672{
673 u32 ddar = c->ddar & ((0xf << 4) | DDAR_RW);
674 dma_addr_t addr;
675 enum dma_slave_buswidth width;
676 u32 maxburst;
677
678 if (ddar & DDAR_RW) {
679 addr = cfg->src_addr;
680 width = cfg->src_addr_width;
681 maxburst = cfg->src_maxburst;
682 } else {
683 addr = cfg->dst_addr;
684 width = cfg->dst_addr_width;
685 maxburst = cfg->dst_maxburst;
686 }
687
688 if ((width != DMA_SLAVE_BUSWIDTH_1_BYTE &&
689 width != DMA_SLAVE_BUSWIDTH_2_BYTES) ||
690 (maxburst != 4 && maxburst != 8))
691 return -EINVAL;
692
693 if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
694 ddar |= DDAR_DW;
695 if (maxburst == 8)
696 ddar |= DDAR_BS;
697
698 dev_dbg(c->chan.device->dev, "vchan %p: dma_slave_config addr %x width %u burst %u\n",
699 c, addr, width, maxburst);
700
701 c->ddar = ddar | (addr & 0xf0000000) | (addr & 0x003ffffc) << 6;
702
703 return 0;
704}
705
706static int sa11x0_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
707 unsigned long arg)
708{
709 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
710 struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
711 struct sa11x0_dma_phy *p;
712 LIST_HEAD(head);
713 unsigned long flags;
714 int ret;
715
716 switch (cmd) {
717 case DMA_SLAVE_CONFIG:
718 return sa11x0_dma_slave_config(c, (struct dma_slave_config *)arg);
719
720 case DMA_TERMINATE_ALL:
721 dev_dbg(d->slave.dev, "vchan %p: terminate all\n", c);
722 /* Clear the tx descriptor lists */
723 spin_lock_irqsave(&c->lock, flags);
724 list_splice_tail_init(&c->desc_submitted, &head);
725 list_splice_tail_init(&c->desc_issued, &head);
726
727 p = c->phy;
728 if (p) {
729 struct sa11x0_dma_desc *txd, *txn;
730
731 dev_dbg(d->slave.dev, "pchan %u: terminating\n", p->num);
732 /* vchan is assigned to a pchan - stop the channel */
733 writel(DCSR_RUN | DCSR_IE |
734 DCSR_STRTA | DCSR_DONEA |
735 DCSR_STRTB | DCSR_DONEB,
736 p->base + DMA_DCSR_C);
737
738 list_for_each_entry_safe(txd, txn, &d->desc_complete, node)
739 if (txd->tx.chan == &c->chan)
740 list_move(&txd->node, &head);
741
742 if (p->txd_load) {
743 if (p->txd_load != p->txd_done)
744 list_add_tail(&p->txd_load->node, &head);
745 p->txd_load = NULL;
746 }
747 if (p->txd_done) {
748 list_add_tail(&p->txd_done->node, &head);
749 p->txd_done = NULL;
750 }
751 c->phy = NULL;
752 spin_lock(&d->lock);
753 p->vchan = NULL;
754 spin_unlock(&d->lock);
755 tasklet_schedule(&d->task);
756 }
757 spin_unlock_irqrestore(&c->lock, flags);
758 sa11x0_dma_desc_free(d, &head);
759 ret = 0;
760 break;
761
762 case DMA_PAUSE:
763 dev_dbg(d->slave.dev, "vchan %p: pause\n", c);
764 spin_lock_irqsave(&c->lock, flags);
765 if (c->status == DMA_IN_PROGRESS) {
766 c->status = DMA_PAUSED;
767
768 p = c->phy;
769 if (p) {
770 writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
771 } else {
772 spin_lock(&d->lock);
773 list_del_init(&c->node);
774 spin_unlock(&d->lock);
775 }
776 }
777 spin_unlock_irqrestore(&c->lock, flags);
778 ret = 0;
779 break;
780
781 case DMA_RESUME:
782 dev_dbg(d->slave.dev, "vchan %p: resume\n", c);
783 spin_lock_irqsave(&c->lock, flags);
784 if (c->status == DMA_PAUSED) {
785 c->status = DMA_IN_PROGRESS;
786
787 p = c->phy;
788 if (p) {
789 writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_S);
790 } else if (!list_empty(&c->desc_issued)) {
791 spin_lock(&d->lock);
792 list_add_tail(&c->node, &d->chan_pending);
793 spin_unlock(&d->lock);
794 }
795 }
796 spin_unlock_irqrestore(&c->lock, flags);
797 ret = 0;
798 break;
799
800 default:
801 ret = -ENXIO;
802 break;
803 }
804
805 return ret;
806}
807
808struct sa11x0_dma_channel_desc {
809 u32 ddar;
810 const char *name;
811};
812
813#define CD(d1, d2) { .ddar = DDAR_##d1 | d2, .name = #d1 }
814static const struct sa11x0_dma_channel_desc chan_desc[] = {
815 CD(Ser0UDCTr, 0),
816 CD(Ser0UDCRc, DDAR_RW),
817 CD(Ser1SDLCTr, 0),
818 CD(Ser1SDLCRc, DDAR_RW),
819 CD(Ser1UARTTr, 0),
820 CD(Ser1UARTRc, DDAR_RW),
821 CD(Ser2ICPTr, 0),
822 CD(Ser2ICPRc, DDAR_RW),
823 CD(Ser3UARTTr, 0),
824 CD(Ser3UARTRc, DDAR_RW),
825 CD(Ser4MCP0Tr, 0),
826 CD(Ser4MCP0Rc, DDAR_RW),
827 CD(Ser4MCP1Tr, 0),
828 CD(Ser4MCP1Rc, DDAR_RW),
829 CD(Ser4SSPTr, 0),
830 CD(Ser4SSPRc, DDAR_RW),
831};
832
833static int __devinit sa11x0_dma_init_dmadev(struct dma_device *dmadev,
834 struct device *dev)
835{
836 unsigned i;
837
838 dmadev->chancnt = ARRAY_SIZE(chan_desc);
839 INIT_LIST_HEAD(&dmadev->channels);
840 dmadev->dev = dev;
841 dmadev->device_alloc_chan_resources = sa11x0_dma_alloc_chan_resources;
842 dmadev->device_free_chan_resources = sa11x0_dma_free_chan_resources;
843 dmadev->device_control = sa11x0_dma_control;
844 dmadev->device_tx_status = sa11x0_dma_tx_status;
845 dmadev->device_issue_pending = sa11x0_dma_issue_pending;
846
847 for (i = 0; i < dmadev->chancnt; i++) {
848 struct sa11x0_dma_chan *c;
849
850 c = kzalloc(sizeof(*c), GFP_KERNEL);
851 if (!c) {
852 dev_err(dev, "no memory for channel %u\n", i);
853 return -ENOMEM;
854 }
855
856 c->chan.device = dmadev;
857 c->status = DMA_IN_PROGRESS;
858 c->ddar = chan_desc[i].ddar;
859 c->name = chan_desc[i].name;
860 spin_lock_init(&c->lock);
861 INIT_LIST_HEAD(&c->desc_submitted);
862 INIT_LIST_HEAD(&c->desc_issued);
863 INIT_LIST_HEAD(&c->node);
864 list_add_tail(&c->chan.device_node, &dmadev->channels);
865 }
866
867 return dma_async_device_register(dmadev);
868}
869
870static int sa11x0_dma_request_irq(struct platform_device *pdev, int nr,
871 void *data)
872{
873 int irq = platform_get_irq(pdev, nr);
874
875 if (irq <= 0)
876 return -ENXIO;
877
878 return request_irq(irq, sa11x0_dma_irq, 0, dev_name(&pdev->dev), data);
879}
880
881static void sa11x0_dma_free_irq(struct platform_device *pdev, int nr,
882 void *data)
883{
884 int irq = platform_get_irq(pdev, nr);
885 if (irq > 0)
886 free_irq(irq, data);
887}
888
889static void sa11x0_dma_free_channels(struct dma_device *dmadev)
890{
891 struct sa11x0_dma_chan *c, *cn;
892
893 list_for_each_entry_safe(c, cn, &dmadev->channels, chan.device_node) {
894 list_del(&c->chan.device_node);
895 kfree(c);
896 }
897}
898
899static int __devinit sa11x0_dma_probe(struct platform_device *pdev)
900{
901 struct sa11x0_dma_dev *d;
902 struct resource *res;
903 unsigned i;
904 int ret;
905
906 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
907 if (!res)
908 return -ENXIO;
909
910 d = kzalloc(sizeof(*d), GFP_KERNEL);
911 if (!d) {
912 ret = -ENOMEM;
913 goto err_alloc;
914 }
915
916 spin_lock_init(&d->lock);
917 INIT_LIST_HEAD(&d->chan_pending);
918 INIT_LIST_HEAD(&d->desc_complete);
919
920 d->base = ioremap(res->start, resource_size(res));
921 if (!d->base) {
922 ret = -ENOMEM;
923 goto err_ioremap;
924 }
925
926 tasklet_init(&d->task, sa11x0_dma_tasklet, (unsigned long)d);
927
928 for (i = 0; i < NR_PHY_CHAN; i++) {
929 struct sa11x0_dma_phy *p = &d->phy[i];
930
931 p->dev = d;
932 p->num = i;
933 p->base = d->base + i * DMA_SIZE;
934 writel_relaxed(DCSR_RUN | DCSR_IE | DCSR_ERROR |
935 DCSR_DONEA | DCSR_STRTA | DCSR_DONEB | DCSR_STRTB,
936 p->base + DMA_DCSR_C);
937 writel_relaxed(0, p->base + DMA_DDAR);
938
939 ret = sa11x0_dma_request_irq(pdev, i, p);
940 if (ret) {
941 while (i) {
942 i--;
943 sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
944 }
945 goto err_irq;
946 }
947 }
948
949 dma_cap_set(DMA_SLAVE, d->slave.cap_mask);
950 d->slave.device_prep_slave_sg = sa11x0_dma_prep_slave_sg;
951 ret = sa11x0_dma_init_dmadev(&d->slave, &pdev->dev);
952 if (ret) {
953 dev_warn(d->slave.dev, "failed to register slave async device: %d\n",
954 ret);
955 goto err_slave_reg;
956 }
957
958 platform_set_drvdata(pdev, d);
959 return 0;
960
961 err_slave_reg:
962 sa11x0_dma_free_channels(&d->slave);
963 for (i = 0; i < NR_PHY_CHAN; i++)
964 sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
965 err_irq:
966 tasklet_kill(&d->task);
967 iounmap(d->base);
968 err_ioremap:
969 kfree(d);
970 err_alloc:
971 return ret;
972}
973
974static int __devexit sa11x0_dma_remove(struct platform_device *pdev)
975{
976 struct sa11x0_dma_dev *d = platform_get_drvdata(pdev);
977 unsigned pch;
978
979 dma_async_device_unregister(&d->slave);
980
981 sa11x0_dma_free_channels(&d->slave);
982 for (pch = 0; pch < NR_PHY_CHAN; pch++)
983 sa11x0_dma_free_irq(pdev, pch, &d->phy[pch]);
984 tasklet_kill(&d->task);
985 iounmap(d->base);
986 kfree(d);
987
988 return 0;
989}
990
991#ifdef CONFIG_PM_SLEEP
992static int sa11x0_dma_suspend(struct device *dev)
993{
994 struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
995 unsigned pch;
996
997 for (pch = 0; pch < NR_PHY_CHAN; pch++) {
998 struct sa11x0_dma_phy *p = &d->phy[pch];
999 u32 dcsr, saved_dcsr;
1000
1001 dcsr = saved_dcsr = readl_relaxed(p->base + DMA_DCSR_R);
1002 if (dcsr & DCSR_RUN) {
1003 writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
1004 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
1005 }
1006
1007 saved_dcsr &= DCSR_RUN | DCSR_IE;
1008 if (dcsr & DCSR_BIU) {
1009 p->dbs[0] = readl_relaxed(p->base + DMA_DBSB);
1010 p->dbt[0] = readl_relaxed(p->base + DMA_DBTB);
1011 p->dbs[1] = readl_relaxed(p->base + DMA_DBSA);
1012 p->dbt[1] = readl_relaxed(p->base + DMA_DBTA);
1013 saved_dcsr |= (dcsr & DCSR_STRTA ? DCSR_STRTB : 0) |
1014 (dcsr & DCSR_STRTB ? DCSR_STRTA : 0);
1015 } else {
1016 p->dbs[0] = readl_relaxed(p->base + DMA_DBSA);
1017 p->dbt[0] = readl_relaxed(p->base + DMA_DBTA);
1018 p->dbs[1] = readl_relaxed(p->base + DMA_DBSB);
1019 p->dbt[1] = readl_relaxed(p->base + DMA_DBTB);
1020 saved_dcsr |= dcsr & (DCSR_STRTA | DCSR_STRTB);
1021 }
1022 p->dcsr = saved_dcsr;
1023
1024 writel(DCSR_STRTA | DCSR_STRTB, p->base + DMA_DCSR_C);
1025 }
1026
1027 return 0;
1028}
1029
1030static int sa11x0_dma_resume(struct device *dev)
1031{
1032 struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
1033 unsigned pch;
1034
1035 for (pch = 0; pch < NR_PHY_CHAN; pch++) {
1036 struct sa11x0_dma_phy *p = &d->phy[pch];
1037 struct sa11x0_dma_desc *txd = NULL;
1038 u32 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
1039
1040 WARN_ON(dcsr & (DCSR_BIU | DCSR_STRTA | DCSR_STRTB | DCSR_RUN));
1041
1042 if (p->txd_done)
1043 txd = p->txd_done;
1044 else if (p->txd_load)
1045 txd = p->txd_load;
1046
1047 if (!txd)
1048 continue;
1049
1050 writel_relaxed(txd->ddar, p->base + DMA_DDAR);
1051
1052 writel_relaxed(p->dbs[0], p->base + DMA_DBSA);
1053 writel_relaxed(p->dbt[0], p->base + DMA_DBTA);
1054 writel_relaxed(p->dbs[1], p->base + DMA_DBSB);
1055 writel_relaxed(p->dbt[1], p->base + DMA_DBTB);
1056 writel_relaxed(p->dcsr, p->base + DMA_DCSR_S);
1057 }
1058
1059 return 0;
1060}
1061#endif
1062
1063static const struct dev_pm_ops sa11x0_dma_pm_ops = {
1064 .suspend_noirq = sa11x0_dma_suspend,
1065 .resume_noirq = sa11x0_dma_resume,
1066 .freeze_noirq = sa11x0_dma_suspend,
1067 .thaw_noirq = sa11x0_dma_resume,
1068 .poweroff_noirq = sa11x0_dma_suspend,
1069 .restore_noirq = sa11x0_dma_resume,
1070};
1071
1072static struct platform_driver sa11x0_dma_driver = {
1073 .driver = {
1074 .name = "sa11x0-dma",
1075 .owner = THIS_MODULE,
1076 .pm = &sa11x0_dma_pm_ops,
1077 },
1078 .probe = sa11x0_dma_probe,
1079 .remove = __devexit_p(sa11x0_dma_remove),
1080};
1081
1082bool sa11x0_dma_filter_fn(struct dma_chan *chan, void *param)
1083{
1084 if (chan->device->dev->driver == &sa11x0_dma_driver.driver) {
1085 struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
1086 const char *p = param;
1087
1088 return !strcmp(c->name, p);
1089 }
1090 return false;
1091}
1092EXPORT_SYMBOL(sa11x0_dma_filter_fn);
1093
1094static int __init sa11x0_dma_init(void)
1095{
1096 return platform_driver_register(&sa11x0_dma_driver);
1097}
1098subsys_initcall(sa11x0_dma_init);
1099
1100static void __exit sa11x0_dma_exit(void)
1101{
1102 platform_driver_unregister(&sa11x0_dma_driver);
1103}
1104module_exit(sa11x0_dma_exit);
1105
1106MODULE_AUTHOR("Russell King");
1107MODULE_DESCRIPTION("SA-11x0 DMA driver");
1108MODULE_LICENSE("GPL v2");
1109MODULE_ALIAS("platform:sa11x0-dma");
diff --git a/drivers/net/irda/Kconfig b/drivers/net/irda/Kconfig
index e535137eb2d0..468047866c8c 100644
--- a/drivers/net/irda/Kconfig
+++ b/drivers/net/irda/Kconfig
@@ -356,7 +356,7 @@ config VLSI_FIR
356 356
357config SA1100_FIR 357config SA1100_FIR
358 tristate "SA1100 Internal IR" 358 tristate "SA1100 Internal IR"
359 depends on ARCH_SA1100 && IRDA 359 depends on ARCH_SA1100 && IRDA && DMA_SA11X0
360 360
361config VIA_FIR 361config VIA_FIR
362 tristate "VIA VT8231/VT1211 SIR/MIR/FIR" 362 tristate "VIA VT8231/VT1211 SIR/MIR/FIR"
diff --git a/drivers/net/irda/sa1100_ir.c b/drivers/net/irda/sa1100_ir.c
index da2705061a60..a0d1913a58d3 100644
--- a/drivers/net/irda/sa1100_ir.c
+++ b/drivers/net/irda/sa1100_ir.c
@@ -15,7 +15,7 @@
15 * This driver takes one kernel command line parameter, sa1100ir=, with 15 * This driver takes one kernel command line parameter, sa1100ir=, with
16 * the following options: 16 * the following options:
17 * max_rate:baudrate - set the maximum baud rate 17 * max_rate:baudrate - set the maximum baud rate
18 * power_leve:level - set the transmitter power level 18 * power_level:level - set the transmitter power level
19 * tx_lpm:0|1 - set transmit low power mode 19 * tx_lpm:0|1 - set transmit low power mode
20 */ 20 */
21#include <linux/module.h> 21#include <linux/module.h>
@@ -30,13 +30,13 @@
30#include <linux/delay.h> 30#include <linux/delay.h>
31#include <linux/platform_device.h> 31#include <linux/platform_device.h>
32#include <linux/dma-mapping.h> 32#include <linux/dma-mapping.h>
33#include <linux/dmaengine.h>
34#include <linux/sa11x0-dma.h>
33 35
34#include <net/irda/irda.h> 36#include <net/irda/irda.h>
35#include <net/irda/wrapper.h> 37#include <net/irda/wrapper.h>
36#include <net/irda/irda_device.h> 38#include <net/irda/irda_device.h>
37 39
38#include <asm/irq.h>
39#include <mach/dma.h>
40#include <mach/hardware.h> 40#include <mach/hardware.h>
41#include <asm/mach/irda.h> 41#include <asm/mach/irda.h>
42 42
@@ -44,8 +44,15 @@ static int power_level = 3;
44static int tx_lpm; 44static int tx_lpm;
45static int max_rate = 4000000; 45static int max_rate = 4000000;
46 46
47struct sa1100_buf {
48 struct device *dev;
49 struct sk_buff *skb;
50 struct scatterlist sg;
51 struct dma_chan *chan;
52 dma_cookie_t cookie;
53};
54
47struct sa1100_irda { 55struct sa1100_irda {
48 unsigned char hscr0;
49 unsigned char utcr4; 56 unsigned char utcr4;
50 unsigned char power; 57 unsigned char power;
51 unsigned char open; 58 unsigned char open;
@@ -53,12 +60,8 @@ struct sa1100_irda {
53 int speed; 60 int speed;
54 int newspeed; 61 int newspeed;
55 62
56 struct sk_buff *txskb; 63 struct sa1100_buf dma_rx;
57 struct sk_buff *rxskb; 64 struct sa1100_buf dma_tx;
58 dma_addr_t txbuf_dma;
59 dma_addr_t rxbuf_dma;
60 dma_regs_t *txdma;
61 dma_regs_t *rxdma;
62 65
63 struct device *dev; 66 struct device *dev;
64 struct irda_platform_data *pdata; 67 struct irda_platform_data *pdata;
@@ -67,23 +70,103 @@ struct sa1100_irda {
67 70
68 iobuff_t tx_buff; 71 iobuff_t tx_buff;
69 iobuff_t rx_buff; 72 iobuff_t rx_buff;
73
74 int (*tx_start)(struct sk_buff *, struct net_device *, struct sa1100_irda *);
75 irqreturn_t (*irq)(struct net_device *, struct sa1100_irda *);
70}; 76};
71 77
78static int sa1100_irda_set_speed(struct sa1100_irda *, int);
79
72#define IS_FIR(si) ((si)->speed >= 4000000) 80#define IS_FIR(si) ((si)->speed >= 4000000)
73 81
74#define HPSIR_MAX_RXLEN 2047 82#define HPSIR_MAX_RXLEN 2047
75 83
84static struct dma_slave_config sa1100_irda_sir_tx = {
85 .direction = DMA_TO_DEVICE,
86 .dst_addr = __PREG(Ser2UTDR),
87 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
88 .dst_maxburst = 4,
89};
90
91static struct dma_slave_config sa1100_irda_fir_rx = {
92 .direction = DMA_FROM_DEVICE,
93 .src_addr = __PREG(Ser2HSDR),
94 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
95 .src_maxburst = 8,
96};
97
98static struct dma_slave_config sa1100_irda_fir_tx = {
99 .direction = DMA_TO_DEVICE,
100 .dst_addr = __PREG(Ser2HSDR),
101 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
102 .dst_maxburst = 8,
103};
104
105static unsigned sa1100_irda_dma_xferred(struct sa1100_buf *buf)
106{
107 struct dma_chan *chan = buf->chan;
108 struct dma_tx_state state;
109 enum dma_status status;
110
111 status = chan->device->device_tx_status(chan, buf->cookie, &state);
112 if (status != DMA_PAUSED)
113 return 0;
114
115 return sg_dma_len(&buf->sg) - state.residue;
116}
117
118static int sa1100_irda_dma_request(struct device *dev, struct sa1100_buf *buf,
119 const char *name, struct dma_slave_config *cfg)
120{
121 dma_cap_mask_t m;
122 int ret;
123
124 dma_cap_zero(m);
125 dma_cap_set(DMA_SLAVE, m);
126
127 buf->chan = dma_request_channel(m, sa11x0_dma_filter_fn, (void *)name);
128 if (!buf->chan) {
129 dev_err(dev, "unable to request DMA channel for %s\n",
130 name);
131 return -ENOENT;
132 }
133
134 ret = dmaengine_slave_config(buf->chan, cfg);
135 if (ret)
136 dev_warn(dev, "DMA slave_config for %s returned %d\n",
137 name, ret);
138
139 buf->dev = buf->chan->device->dev;
140
141 return 0;
142}
143
144static void sa1100_irda_dma_start(struct sa1100_buf *buf,
145 enum dma_transfer_direction dir, dma_async_tx_callback cb, void *cb_p)
146{
147 struct dma_async_tx_descriptor *desc;
148 struct dma_chan *chan = buf->chan;
149
150 desc = chan->device->device_prep_slave_sg(chan, &buf->sg, 1, dir,
151 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
152 if (desc) {
153 desc->callback = cb;
154 desc->callback_param = cb_p;
155 buf->cookie = dmaengine_submit(desc);
156 dma_async_issue_pending(chan);
157 }
158}
159
76/* 160/*
77 * Allocate and map the receive buffer, unless it is already allocated. 161 * Allocate and map the receive buffer, unless it is already allocated.
78 */ 162 */
79static int sa1100_irda_rx_alloc(struct sa1100_irda *si) 163static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
80{ 164{
81 if (si->rxskb) 165 if (si->dma_rx.skb)
82 return 0; 166 return 0;
83 167
84 si->rxskb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC); 168 si->dma_rx.skb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
85 169 if (!si->dma_rx.skb) {
86 if (!si->rxskb) {
87 printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n"); 170 printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
88 return -ENOMEM; 171 return -ENOMEM;
89 } 172 }
@@ -92,11 +175,14 @@ static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
92 * Align any IP headers that may be contained 175 * Align any IP headers that may be contained
93 * within the frame. 176 * within the frame.
94 */ 177 */
95 skb_reserve(si->rxskb, 1); 178 skb_reserve(si->dma_rx.skb, 1);
179
180 sg_set_buf(&si->dma_rx.sg, si->dma_rx.skb->data, HPSIR_MAX_RXLEN);
181 if (dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE) == 0) {
182 dev_kfree_skb_any(si->dma_rx.skb);
183 return -ENOMEM;
184 }
96 185
97 si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data,
98 HPSIR_MAX_RXLEN,
99 DMA_FROM_DEVICE);
100 return 0; 186 return 0;
101} 187}
102 188
@@ -106,7 +192,7 @@ static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
106 */ 192 */
107static void sa1100_irda_rx_dma_start(struct sa1100_irda *si) 193static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
108{ 194{
109 if (!si->rxskb) { 195 if (!si->dma_rx.skb) {
110 printk(KERN_ERR "sa1100_ir: rx buffer went missing\n"); 196 printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
111 return; 197 return;
112 } 198 }
@@ -114,254 +200,87 @@ static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
114 /* 200 /*
115 * First empty receive FIFO 201 * First empty receive FIFO
116 */ 202 */
117 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP; 203 Ser2HSCR0 = HSCR0_HSSP;
118 204
119 /* 205 /*
120 * Enable the DMA, receiver and receive interrupt. 206 * Enable the DMA, receiver and receive interrupt.
121 */ 207 */
122 sa1100_clear_dma(si->rxdma); 208 dmaengine_terminate_all(si->dma_rx.chan);
123 sa1100_start_dma(si->rxdma, si->rxbuf_dma, HPSIR_MAX_RXLEN); 209 sa1100_irda_dma_start(&si->dma_rx, DMA_DEV_TO_MEM, NULL, NULL);
124 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_RXE; 210
211 Ser2HSCR0 = HSCR0_HSSP | HSCR0_RXE;
125} 212}
126 213
127/* 214static void sa1100_irda_check_speed(struct sa1100_irda *si)
128 * Set the IrDA communications speed.
129 */
130static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
131{ 215{
132 unsigned long flags; 216 if (si->newspeed) {
133 int brd, ret = -EINVAL; 217 sa1100_irda_set_speed(si, si->newspeed);
134 218 si->newspeed = 0;
135 switch (speed) {
136 case 9600: case 19200: case 38400:
137 case 57600: case 115200:
138 brd = 3686400 / (16 * speed) - 1;
139
140 /*
141 * Stop the receive DMA.
142 */
143 if (IS_FIR(si))
144 sa1100_stop_dma(si->rxdma);
145
146 local_irq_save(flags);
147
148 Ser2UTCR3 = 0;
149 Ser2HSCR0 = HSCR0_UART;
150
151 Ser2UTCR1 = brd >> 8;
152 Ser2UTCR2 = brd;
153
154 /*
155 * Clear status register
156 */
157 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
158 Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
159
160 if (si->pdata->set_speed)
161 si->pdata->set_speed(si->dev, speed);
162
163 si->speed = speed;
164
165 local_irq_restore(flags);
166 ret = 0;
167 break;
168
169 case 4000000:
170 local_irq_save(flags);
171
172 si->hscr0 = 0;
173
174 Ser2HSSR0 = 0xff;
175 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP;
176 Ser2UTCR3 = 0;
177
178 si->speed = speed;
179
180 if (si->pdata->set_speed)
181 si->pdata->set_speed(si->dev, speed);
182
183 sa1100_irda_rx_alloc(si);
184 sa1100_irda_rx_dma_start(si);
185
186 local_irq_restore(flags);
187
188 break;
189
190 default:
191 break;
192 } 219 }
193
194 return ret;
195} 220}
196 221
197/* 222/*
198 * Control the power state of the IrDA transmitter. 223 * HP-SIR format support.
199 * State:
200 * 0 - off
201 * 1 - short range, lowest power
202 * 2 - medium range, medium power
203 * 3 - maximum range, high power
204 *
205 * Currently, only assabet is known to support this.
206 */ 224 */
207static int 225static void sa1100_irda_sirtxdma_irq(void *id)
208__sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
209{ 226{
210 int ret = 0; 227 struct net_device *dev = id;
211 if (si->pdata->set_power) 228 struct sa1100_irda *si = netdev_priv(dev);
212 ret = si->pdata->set_power(si->dev, state);
213 return ret;
214}
215
216static inline int
217sa1100_set_power(struct sa1100_irda *si, unsigned int state)
218{
219 int ret;
220
221 ret = __sa1100_irda_set_power(si, state);
222 if (ret == 0)
223 si->power = state;
224 229
225 return ret; 230 dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE);
226} 231 dev_kfree_skb(si->dma_tx.skb);
232 si->dma_tx.skb = NULL;
227 233
228static int sa1100_irda_startup(struct sa1100_irda *si) 234 dev->stats.tx_packets++;
229{ 235 dev->stats.tx_bytes += sg_dma_len(&si->dma_tx.sg);
230 int ret;
231 236
232 /* 237 /* We need to ensure that the transmitter has finished. */
233 * Ensure that the ports for this device are setup correctly. 238 do
234 */ 239 rmb();
235 if (si->pdata->startup) { 240 while (Ser2UTSR1 & UTSR1_TBY);
236 ret = si->pdata->startup(si->dev);
237 if (ret)
238 return ret;
239 }
240
241 /*
242 * Configure PPC for IRDA - we want to drive TXD2 low.
243 * We also want to drive this pin low during sleep.
244 */
245 PPSR &= ~PPC_TXD2;
246 PSDR &= ~PPC_TXD2;
247 PPDR |= PPC_TXD2;
248
249 /*
250 * Enable HP-SIR modulation, and ensure that the port is disabled.
251 */
252 Ser2UTCR3 = 0;
253 Ser2HSCR0 = HSCR0_UART;
254 Ser2UTCR4 = si->utcr4;
255 Ser2UTCR0 = UTCR0_8BitData;
256 Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
257 241
258 /* 242 /*
259 * Clear status register 243 * Ok, we've finished transmitting. Now enable the receiver.
244 * Sometimes we get a receive IRQ immediately after a transmit...
260 */ 245 */
261 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID; 246 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
247 Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
262 248
263 ret = sa1100_irda_set_speed(si, si->speed = 9600); 249 sa1100_irda_check_speed(si);
264 if (ret) {
265 Ser2UTCR3 = 0;
266 Ser2HSCR0 = 0;
267
268 if (si->pdata->shutdown)
269 si->pdata->shutdown(si->dev);
270 }
271
272 return ret;
273}
274
275static void sa1100_irda_shutdown(struct sa1100_irda *si)
276{
277 /*
278 * Stop all DMA activity.
279 */
280 sa1100_stop_dma(si->rxdma);
281 sa1100_stop_dma(si->txdma);
282
283 /* Disable the port. */
284 Ser2UTCR3 = 0;
285 Ser2HSCR0 = 0;
286 250
287 if (si->pdata->shutdown) 251 /* I'm hungry! */
288 si->pdata->shutdown(si->dev); 252 netif_wake_queue(dev);
289} 253}
290 254
291#ifdef CONFIG_PM 255static int sa1100_irda_sir_tx_start(struct sk_buff *skb, struct net_device *dev,
292/* 256 struct sa1100_irda *si)
293 * Suspend the IrDA interface.
294 */
295static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
296{ 257{
297 struct net_device *dev = platform_get_drvdata(pdev); 258 si->tx_buff.data = si->tx_buff.head;
298 struct sa1100_irda *si; 259 si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data,
299 260 si->tx_buff.truesize);
300 if (!dev) 261
301 return 0; 262 si->dma_tx.skb = skb;
302 263 sg_set_buf(&si->dma_tx.sg, si->tx_buff.data, si->tx_buff.len);
303 si = netdev_priv(dev); 264 if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) {
304 if (si->open) { 265 si->dma_tx.skb = NULL;
305 /* 266 netif_wake_queue(dev);
306 * Stop the transmit queue 267 dev->stats.tx_dropped++;
307 */ 268 return NETDEV_TX_OK;
308 netif_device_detach(dev);
309 disable_irq(dev->irq);
310 sa1100_irda_shutdown(si);
311 __sa1100_irda_set_power(si, 0);
312 } 269 }
313 270
314 return 0; 271 sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_sirtxdma_irq, dev);
315}
316
317/*
318 * Resume the IrDA interface.
319 */
320static int sa1100_irda_resume(struct platform_device *pdev)
321{
322 struct net_device *dev = platform_get_drvdata(pdev);
323 struct sa1100_irda *si;
324
325 if (!dev)
326 return 0;
327 272
328 si = netdev_priv(dev); 273 /*
329 if (si->open) { 274 * The mean turn-around time is enforced by XBOF padding,
330 /* 275 * so we don't have to do anything special here.
331 * If we missed a speed change, initialise at the new speed 276 */
332 * directly. It is debatable whether this is actually 277 Ser2UTCR3 = UTCR3_TXE;
333 * required, but in the interests of continuing from where
334 * we left off it is desirable. The converse argument is
335 * that we should re-negotiate at 9600 baud again.
336 */
337 if (si->newspeed) {
338 si->speed = si->newspeed;
339 si->newspeed = 0;
340 }
341
342 sa1100_irda_startup(si);
343 __sa1100_irda_set_power(si, si->power);
344 enable_irq(dev->irq);
345
346 /*
347 * This automatically wakes up the queue
348 */
349 netif_device_attach(dev);
350 }
351 278
352 return 0; 279 return NETDEV_TX_OK;
353} 280}
354#else
355#define sa1100_irda_suspend NULL
356#define sa1100_irda_resume NULL
357#endif
358 281
359/* 282static irqreturn_t sa1100_irda_sir_irq(struct net_device *dev, struct sa1100_irda *si)
360 * HP-SIR format interrupt service routines.
361 */
362static void sa1100_irda_hpsir_irq(struct net_device *dev)
363{ 283{
364 struct sa1100_irda *si = netdev_priv(dev);
365 int status; 284 int status;
366 285
367 status = Ser2UTSR0; 286 status = Ser2UTSR0;
@@ -414,51 +333,96 @@ static void sa1100_irda_hpsir_irq(struct net_device *dev)
414 333
415 } 334 }
416 335
417 if (status & UTSR0_TFS && si->tx_buff.len) { 336 return IRQ_HANDLED;
418 /* 337}
419 * Transmitter FIFO is not full
420 */
421 do {
422 Ser2UTDR = *si->tx_buff.data++;
423 si->tx_buff.len -= 1;
424 } while (Ser2UTSR1 & UTSR1_TNF && si->tx_buff.len);
425 338
426 if (si->tx_buff.len == 0) { 339/*
427 dev->stats.tx_packets++; 340 * FIR format support.
428 dev->stats.tx_bytes += si->tx_buff.data - 341 */
429 si->tx_buff.head; 342static void sa1100_irda_firtxdma_irq(void *id)
343{
344 struct net_device *dev = id;
345 struct sa1100_irda *si = netdev_priv(dev);
346 struct sk_buff *skb;
430 347
431 /* 348 /*
432 * We need to ensure that the transmitter has 349 * Wait for the transmission to complete. Unfortunately,
433 * finished. 350 * the hardware doesn't give us an interrupt to indicate
434 */ 351 * "end of frame".
435 do 352 */
436 rmb(); 353 do
437 while (Ser2UTSR1 & UTSR1_TBY); 354 rmb();
355 while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
438 356
439 /* 357 /*
440 * Ok, we've finished transmitting. Now enable 358 * Clear the transmit underrun bit.
441 * the receiver. Sometimes we get a receive IRQ 359 */
442 * immediately after a transmit... 360 Ser2HSSR0 = HSSR0_TUR;
443 */
444 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
445 Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
446 361
447 if (si->newspeed) { 362 /*
448 sa1100_irda_set_speed(si, si->newspeed); 363 * Do we need to change speed? Note that we're lazy
449 si->newspeed = 0; 364 * here - we don't free the old dma_rx.skb. We don't need
450 } 365 * to allocate a buffer either.
366 */
367 sa1100_irda_check_speed(si);
451 368
452 /* I'm hungry! */ 369 /*
453 netif_wake_queue(dev); 370 * Start reception. This disables the transmitter for
454 } 371 * us. This will be using the existing RX buffer.
372 */
373 sa1100_irda_rx_dma_start(si);
374
375 /* Account and free the packet. */
376 skb = si->dma_tx.skb;
377 if (skb) {
378 dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1,
379 DMA_TO_DEVICE);
380 dev->stats.tx_packets ++;
381 dev->stats.tx_bytes += skb->len;
382 dev_kfree_skb_irq(skb);
383 si->dma_tx.skb = NULL;
455 } 384 }
385
386 /*
387 * Make sure that the TX queue is available for sending
388 * (for retries). TX has priority over RX at all times.
389 */
390 netif_wake_queue(dev);
391}
392
393static int sa1100_irda_fir_tx_start(struct sk_buff *skb, struct net_device *dev,
394 struct sa1100_irda *si)
395{
396 int mtt = irda_get_mtt(skb);
397
398 si->dma_tx.skb = skb;
399 sg_set_buf(&si->dma_tx.sg, skb->data, skb->len);
400 if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) {
401 si->dma_tx.skb = NULL;
402 netif_wake_queue(dev);
403 dev->stats.tx_dropped++;
404 dev_kfree_skb(skb);
405 return NETDEV_TX_OK;
406 }
407
408 sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_firtxdma_irq, dev);
409
410 /*
411 * If we have a mean turn-around time, impose the specified
412 * specified delay. We could shorten this by timing from
413 * the point we received the packet.
414 */
415 if (mtt)
416 udelay(mtt);
417
418 Ser2HSCR0 = HSCR0_HSSP | HSCR0_TXE;
419
420 return NETDEV_TX_OK;
456} 421}
457 422
458static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev) 423static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
459{ 424{
460 struct sk_buff *skb = si->rxskb; 425 struct sk_buff *skb = si->dma_rx.skb;
461 dma_addr_t dma_addr;
462 unsigned int len, stat, data; 426 unsigned int len, stat, data;
463 427
464 if (!skb) { 428 if (!skb) {
@@ -469,11 +433,10 @@ static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev
469 /* 433 /*
470 * Get the current data position. 434 * Get the current data position.
471 */ 435 */
472 dma_addr = sa1100_get_dma_pos(si->rxdma); 436 len = sa1100_irda_dma_xferred(&si->dma_rx);
473 len = dma_addr - si->rxbuf_dma;
474 if (len > HPSIR_MAX_RXLEN) 437 if (len > HPSIR_MAX_RXLEN)
475 len = HPSIR_MAX_RXLEN; 438 len = HPSIR_MAX_RXLEN;
476 dma_unmap_single(si->dev, si->rxbuf_dma, len, DMA_FROM_DEVICE); 439 dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE);
477 440
478 do { 441 do {
479 /* 442 /*
@@ -501,7 +464,7 @@ static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev
501 } while (Ser2HSSR0 & HSSR0_EIF); 464 } while (Ser2HSSR0 & HSSR0_EIF);
502 465
503 if (stat & HSSR1_EOF) { 466 if (stat & HSSR1_EOF) {
504 si->rxskb = NULL; 467 si->dma_rx.skb = NULL;
505 468
506 skb_put(skb, len); 469 skb_put(skb, len);
507 skb->dev = dev; 470 skb->dev = dev;
@@ -518,28 +481,23 @@ static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev
518 netif_rx(skb); 481 netif_rx(skb);
519 } else { 482 } else {
520 /* 483 /*
521 * Remap the buffer. 484 * Remap the buffer - it was previously mapped, and we
485 * hope that this succeeds.
522 */ 486 */
523 si->rxbuf_dma = dma_map_single(si->dev, si->rxskb->data, 487 dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE);
524 HPSIR_MAX_RXLEN,
525 DMA_FROM_DEVICE);
526 } 488 }
527} 489}
528 490
529/* 491/*
530 * FIR format interrupt service routine. We only have to 492 * We only have to handle RX events here; transmit events go via the TX
531 * handle RX events; transmit events go via the TX DMA handler. 493 * DMA handler. We disable RX, process, and the restart RX.
532 *
533 * No matter what, we disable RX, process, and the restart RX.
534 */ 494 */
535static void sa1100_irda_fir_irq(struct net_device *dev) 495static irqreturn_t sa1100_irda_fir_irq(struct net_device *dev, struct sa1100_irda *si)
536{ 496{
537 struct sa1100_irda *si = netdev_priv(dev);
538
539 /* 497 /*
540 * Stop RX DMA 498 * Stop RX DMA
541 */ 499 */
542 sa1100_stop_dma(si->rxdma); 500 dmaengine_pause(si->dma_rx.chan);
543 501
544 /* 502 /*
545 * Framing error - we throw away the packet completely. 503 * Framing error - we throw away the packet completely.
@@ -555,7 +513,7 @@ static void sa1100_irda_fir_irq(struct net_device *dev)
555 /* 513 /*
556 * Clear out the DMA... 514 * Clear out the DMA...
557 */ 515 */
558 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP; 516 Ser2HSCR0 = HSCR0_HSSP;
559 517
560 /* 518 /*
561 * Clear selected status bits now, so we 519 * Clear selected status bits now, so we
@@ -577,74 +535,124 @@ static void sa1100_irda_fir_irq(struct net_device *dev)
577 * No matter what happens, we must restart reception. 535 * No matter what happens, we must restart reception.
578 */ 536 */
579 sa1100_irda_rx_dma_start(si); 537 sa1100_irda_rx_dma_start(si);
580}
581 538
582static irqreturn_t sa1100_irda_irq(int irq, void *dev_id)
583{
584 struct net_device *dev = dev_id;
585 if (IS_FIR(((struct sa1100_irda *)netdev_priv(dev))))
586 sa1100_irda_fir_irq(dev);
587 else
588 sa1100_irda_hpsir_irq(dev);
589 return IRQ_HANDLED; 539 return IRQ_HANDLED;
590} 540}
591 541
592/* 542/*
593 * TX DMA completion handler. 543 * Set the IrDA communications speed.
594 */ 544 */
595static void sa1100_irda_txdma_irq(void *id) 545static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
596{ 546{
597 struct net_device *dev = id; 547 unsigned long flags;
598 struct sa1100_irda *si = netdev_priv(dev); 548 int brd, ret = -EINVAL;
599 struct sk_buff *skb = si->txskb;
600 549
601 si->txskb = NULL; 550 switch (speed) {
551 case 9600: case 19200: case 38400:
552 case 57600: case 115200:
553 brd = 3686400 / (16 * speed) - 1;
602 554
603 /* 555 /* Stop the receive DMA, and configure transmit. */
604 * Wait for the transmission to complete. Unfortunately, 556 if (IS_FIR(si)) {
605 * the hardware doesn't give us an interrupt to indicate 557 dmaengine_terminate_all(si->dma_rx.chan);
606 * "end of frame". 558 dmaengine_slave_config(si->dma_tx.chan,
607 */ 559 &sa1100_irda_sir_tx);
608 do 560 }
609 rmb();
610 while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
611 561
612 /* 562 local_irq_save(flags);
613 * Clear the transmit underrun bit.
614 */
615 Ser2HSSR0 = HSSR0_TUR;
616 563
617 /* 564 Ser2UTCR3 = 0;
618 * Do we need to change speed? Note that we're lazy 565 Ser2HSCR0 = HSCR0_UART;
619 * here - we don't free the old rxskb. We don't need
620 * to allocate a buffer either.
621 */
622 if (si->newspeed) {
623 sa1100_irda_set_speed(si, si->newspeed);
624 si->newspeed = 0;
625 }
626 566
627 /* 567 Ser2UTCR1 = brd >> 8;
628 * Start reception. This disables the transmitter for 568 Ser2UTCR2 = brd;
629 * us. This will be using the existing RX buffer.
630 */
631 sa1100_irda_rx_dma_start(si);
632 569
633 /* 570 /*
634 * Account and free the packet. 571 * Clear status register
635 */ 572 */
636 if (skb) { 573 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
637 dma_unmap_single(si->dev, si->txbuf_dma, skb->len, DMA_TO_DEVICE); 574 Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
638 dev->stats.tx_packets ++; 575
639 dev->stats.tx_bytes += skb->len; 576 if (si->pdata->set_speed)
640 dev_kfree_skb_irq(skb); 577 si->pdata->set_speed(si->dev, speed);
578
579 si->speed = speed;
580 si->tx_start = sa1100_irda_sir_tx_start;
581 si->irq = sa1100_irda_sir_irq;
582
583 local_irq_restore(flags);
584 ret = 0;
585 break;
586
587 case 4000000:
588 if (!IS_FIR(si))
589 dmaengine_slave_config(si->dma_tx.chan,
590 &sa1100_irda_fir_tx);
591
592 local_irq_save(flags);
593
594 Ser2HSSR0 = 0xff;
595 Ser2HSCR0 = HSCR0_HSSP;
596 Ser2UTCR3 = 0;
597
598 si->speed = speed;
599 si->tx_start = sa1100_irda_fir_tx_start;
600 si->irq = sa1100_irda_fir_irq;
601
602 if (si->pdata->set_speed)
603 si->pdata->set_speed(si->dev, speed);
604
605 sa1100_irda_rx_alloc(si);
606 sa1100_irda_rx_dma_start(si);
607
608 local_irq_restore(flags);
609
610 break;
611
612 default:
613 break;
641 } 614 }
642 615
643 /* 616 return ret;
644 * Make sure that the TX queue is available for sending 617}
645 * (for retries). TX has priority over RX at all times. 618
646 */ 619/*
647 netif_wake_queue(dev); 620 * Control the power state of the IrDA transmitter.
621 * State:
622 * 0 - off
623 * 1 - short range, lowest power
624 * 2 - medium range, medium power
625 * 3 - maximum range, high power
626 *
627 * Currently, only assabet is known to support this.
628 */
629static int
630__sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
631{
632 int ret = 0;
633 if (si->pdata->set_power)
634 ret = si->pdata->set_power(si->dev, state);
635 return ret;
636}
637
638static inline int
639sa1100_set_power(struct sa1100_irda *si, unsigned int state)
640{
641 int ret;
642
643 ret = __sa1100_irda_set_power(si, state);
644 if (ret == 0)
645 si->power = state;
646
647 return ret;
648}
649
650static irqreturn_t sa1100_irda_irq(int irq, void *dev_id)
651{
652 struct net_device *dev = dev_id;
653 struct sa1100_irda *si = netdev_priv(dev);
654
655 return si->irq(dev, si);
648} 656}
649 657
650static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev) 658static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
@@ -660,62 +668,19 @@ static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
660 if (speed != si->speed && speed != -1) 668 if (speed != si->speed && speed != -1)
661 si->newspeed = speed; 669 si->newspeed = speed;
662 670
663 /* 671 /* If this is an empty frame, we can bypass a lot. */
664 * If this is an empty frame, we can bypass a lot.
665 */
666 if (skb->len == 0) { 672 if (skb->len == 0) {
667 if (si->newspeed) { 673 sa1100_irda_check_speed(si);
668 si->newspeed = 0;
669 sa1100_irda_set_speed(si, speed);
670 }
671 dev_kfree_skb(skb); 674 dev_kfree_skb(skb);
672 return NETDEV_TX_OK; 675 return NETDEV_TX_OK;
673 } 676 }
674 677
675 if (!IS_FIR(si)) { 678 netif_stop_queue(dev);
676 netif_stop_queue(dev);
677
678 si->tx_buff.data = si->tx_buff.head;
679 si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data,
680 si->tx_buff.truesize);
681
682 /*
683 * Set the transmit interrupt enable. This will fire
684 * off an interrupt immediately. Note that we disable
685 * the receiver so we won't get spurious characteres
686 * received.
687 */
688 Ser2UTCR3 = UTCR3_TIE | UTCR3_TXE;
689
690 dev_kfree_skb(skb);
691 } else {
692 int mtt = irda_get_mtt(skb);
693
694 /*
695 * We must not be transmitting...
696 */
697 BUG_ON(si->txskb);
698
699 netif_stop_queue(dev);
700
701 si->txskb = skb;
702 si->txbuf_dma = dma_map_single(si->dev, skb->data,
703 skb->len, DMA_TO_DEVICE);
704
705 sa1100_start_dma(si->txdma, si->txbuf_dma, skb->len);
706
707 /*
708 * If we have a mean turn-around time, impose the specified
709 * specified delay. We could shorten this by timing from
710 * the point we received the packet.
711 */
712 if (mtt)
713 udelay(mtt);
714 679
715 Ser2HSCR0 = si->hscr0 | HSCR0_HSSP | HSCR0_TXE; 680 /* We must not already have a skb to transmit... */
716 } 681 BUG_ON(si->dma_tx.skb);
717 682
718 return NETDEV_TX_OK; 683 return si->tx_start(skb, dev, si);
719} 684}
720 685
721static int 686static int
@@ -762,6 +727,69 @@ sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
762 return ret; 727 return ret;
763} 728}
764 729
730static int sa1100_irda_startup(struct sa1100_irda *si)
731{
732 int ret;
733
734 /*
735 * Ensure that the ports for this device are setup correctly.
736 */
737 if (si->pdata->startup) {
738 ret = si->pdata->startup(si->dev);
739 if (ret)
740 return ret;
741 }
742
743 /*
744 * Configure PPC for IRDA - we want to drive TXD2 low.
745 * We also want to drive this pin low during sleep.
746 */
747 PPSR &= ~PPC_TXD2;
748 PSDR &= ~PPC_TXD2;
749 PPDR |= PPC_TXD2;
750
751 /*
752 * Enable HP-SIR modulation, and ensure that the port is disabled.
753 */
754 Ser2UTCR3 = 0;
755 Ser2HSCR0 = HSCR0_UART;
756 Ser2UTCR4 = si->utcr4;
757 Ser2UTCR0 = UTCR0_8BitData;
758 Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
759
760 /*
761 * Clear status register
762 */
763 Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
764
765 ret = sa1100_irda_set_speed(si, si->speed = 9600);
766 if (ret) {
767 Ser2UTCR3 = 0;
768 Ser2HSCR0 = 0;
769
770 if (si->pdata->shutdown)
771 si->pdata->shutdown(si->dev);
772 }
773
774 return ret;
775}
776
777static void sa1100_irda_shutdown(struct sa1100_irda *si)
778{
779 /*
780 * Stop all DMA activity.
781 */
782 dmaengine_terminate_all(si->dma_rx.chan);
783 dmaengine_terminate_all(si->dma_tx.chan);
784
785 /* Disable the port. */
786 Ser2UTCR3 = 0;
787 Ser2HSCR0 = 0;
788
789 if (si->pdata->shutdown)
790 si->pdata->shutdown(si->dev);
791}
792
765static int sa1100_irda_start(struct net_device *dev) 793static int sa1100_irda_start(struct net_device *dev)
766{ 794{
767 struct sa1100_irda *si = netdev_priv(dev); 795 struct sa1100_irda *si = netdev_priv(dev);
@@ -769,26 +797,17 @@ static int sa1100_irda_start(struct net_device *dev)
769 797
770 si->speed = 9600; 798 si->speed = 9600;
771 799
772 err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev); 800 err = sa1100_irda_dma_request(si->dev, &si->dma_rx, "Ser2ICPRc",
773 if (err) 801 &sa1100_irda_fir_rx);
774 goto err_irq;
775
776 err = sa1100_request_dma(DMA_Ser2HSSPRd, "IrDA receive",
777 NULL, NULL, &si->rxdma);
778 if (err) 802 if (err)
779 goto err_rx_dma; 803 goto err_rx_dma;
780 804
781 err = sa1100_request_dma(DMA_Ser2HSSPWr, "IrDA transmit", 805 err = sa1100_irda_dma_request(si->dev, &si->dma_tx, "Ser2ICPTr",
782 sa1100_irda_txdma_irq, dev, &si->txdma); 806 &sa1100_irda_sir_tx);
783 if (err) 807 if (err)
784 goto err_tx_dma; 808 goto err_tx_dma;
785 809
786 /* 810 /*
787 * The interrupt must remain disabled for now.
788 */
789 disable_irq(dev->irq);
790
791 /*
792 * Setup the serial port for the specified speed. 811 * Setup the serial port for the specified speed.
793 */ 812 */
794 err = sa1100_irda_startup(si); 813 err = sa1100_irda_startup(si);
@@ -803,44 +822,60 @@ static int sa1100_irda_start(struct net_device *dev)
803 if (!si->irlap) 822 if (!si->irlap)
804 goto err_irlap; 823 goto err_irlap;
805 824
825 err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
826 if (err)
827 goto err_irq;
828
806 /* 829 /*
807 * Now enable the interrupt and start the queue 830 * Now enable the interrupt and start the queue
808 */ 831 */
809 si->open = 1; 832 si->open = 1;
810 sa1100_set_power(si, power_level); /* low power mode */ 833 sa1100_set_power(si, power_level); /* low power mode */
811 enable_irq(dev->irq); 834
812 netif_start_queue(dev); 835 netif_start_queue(dev);
813 return 0; 836 return 0;
814 837
838err_irq:
839 irlap_close(si->irlap);
815err_irlap: 840err_irlap:
816 si->open = 0; 841 si->open = 0;
817 sa1100_irda_shutdown(si); 842 sa1100_irda_shutdown(si);
818err_startup: 843err_startup:
819 sa1100_free_dma(si->txdma); 844 dma_release_channel(si->dma_tx.chan);
820err_tx_dma: 845err_tx_dma:
821 sa1100_free_dma(si->rxdma); 846 dma_release_channel(si->dma_rx.chan);
822err_rx_dma: 847err_rx_dma:
823 free_irq(dev->irq, dev);
824err_irq:
825 return err; 848 return err;
826} 849}
827 850
828static int sa1100_irda_stop(struct net_device *dev) 851static int sa1100_irda_stop(struct net_device *dev)
829{ 852{
830 struct sa1100_irda *si = netdev_priv(dev); 853 struct sa1100_irda *si = netdev_priv(dev);
854 struct sk_buff *skb;
855
856 netif_stop_queue(dev);
831 857
832 disable_irq(dev->irq); 858 si->open = 0;
833 sa1100_irda_shutdown(si); 859 sa1100_irda_shutdown(si);
834 860
835 /* 861 /*
836 * If we have been doing DMA receive, make sure we 862 * If we have been doing any DMA activity, make sure we
837 * tidy that up cleanly. 863 * tidy that up cleanly.
838 */ 864 */
839 if (si->rxskb) { 865 skb = si->dma_rx.skb;
840 dma_unmap_single(si->dev, si->rxbuf_dma, HPSIR_MAX_RXLEN, 866 if (skb) {
841 DMA_FROM_DEVICE); 867 dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1,
842 dev_kfree_skb(si->rxskb); 868 DMA_FROM_DEVICE);
843 si->rxskb = NULL; 869 dev_kfree_skb(skb);
870 si->dma_rx.skb = NULL;
871 }
872
873 skb = si->dma_tx.skb;
874 if (skb) {
875 dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1,
876 DMA_TO_DEVICE);
877 dev_kfree_skb(skb);
878 si->dma_tx.skb = NULL;
844 } 879 }
845 880
846 /* Stop IrLAP */ 881 /* Stop IrLAP */
@@ -849,14 +884,11 @@ static int sa1100_irda_stop(struct net_device *dev)
849 si->irlap = NULL; 884 si->irlap = NULL;
850 } 885 }
851 886
852 netif_stop_queue(dev);
853 si->open = 0;
854
855 /* 887 /*
856 * Free resources 888 * Free resources
857 */ 889 */
858 sa1100_free_dma(si->txdma); 890 dma_release_channel(si->dma_tx.chan);
859 sa1100_free_dma(si->rxdma); 891 dma_release_channel(si->dma_rx.chan);
860 free_irq(dev->irq, dev); 892 free_irq(dev->irq, dev);
861 893
862 sa1100_set_power(si, 0); 894 sa1100_set_power(si, 0);
@@ -888,11 +920,15 @@ static int sa1100_irda_probe(struct platform_device *pdev)
888 struct net_device *dev; 920 struct net_device *dev;
889 struct sa1100_irda *si; 921 struct sa1100_irda *si;
890 unsigned int baudrate_mask; 922 unsigned int baudrate_mask;
891 int err; 923 int err, irq;
892 924
893 if (!pdev->dev.platform_data) 925 if (!pdev->dev.platform_data)
894 return -EINVAL; 926 return -EINVAL;
895 927
928 irq = platform_get_irq(pdev, 0);
929 if (irq <= 0)
930 return irq < 0 ? irq : -ENXIO;
931
896 err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY; 932 err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
897 if (err) 933 if (err)
898 goto err_mem_1; 934 goto err_mem_1;
@@ -907,22 +943,27 @@ static int sa1100_irda_probe(struct platform_device *pdev)
907 if (!dev) 943 if (!dev)
908 goto err_mem_4; 944 goto err_mem_4;
909 945
946 SET_NETDEV_DEV(dev, &pdev->dev);
947
910 si = netdev_priv(dev); 948 si = netdev_priv(dev);
911 si->dev = &pdev->dev; 949 si->dev = &pdev->dev;
912 si->pdata = pdev->dev.platform_data; 950 si->pdata = pdev->dev.platform_data;
913 951
952 sg_init_table(&si->dma_rx.sg, 1);
953 sg_init_table(&si->dma_tx.sg, 1);
954
914 /* 955 /*
915 * Initialise the HP-SIR buffers 956 * Initialise the HP-SIR buffers
916 */ 957 */
917 err = sa1100_irda_init_iobuf(&si->rx_buff, 14384); 958 err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
918 if (err) 959 if (err)
919 goto err_mem_5; 960 goto err_mem_5;
920 err = sa1100_irda_init_iobuf(&si->tx_buff, 4000); 961 err = sa1100_irda_init_iobuf(&si->tx_buff, IRDA_SIR_MAX_FRAME);
921 if (err) 962 if (err)
922 goto err_mem_5; 963 goto err_mem_5;
923 964
924 dev->netdev_ops = &sa1100_irda_netdev_ops; 965 dev->netdev_ops = &sa1100_irda_netdev_ops;
925 dev->irq = IRQ_Ser2ICP; 966 dev->irq = irq;
926 967
927 irda_init_max_qos_capabilies(&si->qos); 968 irda_init_max_qos_capabilies(&si->qos);
928 969
@@ -996,6 +1037,74 @@ static int sa1100_irda_remove(struct platform_device *pdev)
996 return 0; 1037 return 0;
997} 1038}
998 1039
1040#ifdef CONFIG_PM
1041/*
1042 * Suspend the IrDA interface.
1043 */
1044static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
1045{
1046 struct net_device *dev = platform_get_drvdata(pdev);
1047 struct sa1100_irda *si;
1048
1049 if (!dev)
1050 return 0;
1051
1052 si = netdev_priv(dev);
1053 if (si->open) {
1054 /*
1055 * Stop the transmit queue
1056 */
1057 netif_device_detach(dev);
1058 disable_irq(dev->irq);
1059 sa1100_irda_shutdown(si);
1060 __sa1100_irda_set_power(si, 0);
1061 }
1062
1063 return 0;
1064}
1065
1066/*
1067 * Resume the IrDA interface.
1068 */
1069static int sa1100_irda_resume(struct platform_device *pdev)
1070{
1071 struct net_device *dev = platform_get_drvdata(pdev);
1072 struct sa1100_irda *si;
1073
1074 if (!dev)
1075 return 0;
1076
1077 si = netdev_priv(dev);
1078 if (si->open) {
1079 /*
1080 * If we missed a speed change, initialise at the new speed
1081 * directly. It is debatable whether this is actually
1082 * required, but in the interests of continuing from where
1083 * we left off it is desirable. The converse argument is
1084 * that we should re-negotiate at 9600 baud again.
1085 */
1086 if (si->newspeed) {
1087 si->speed = si->newspeed;
1088 si->newspeed = 0;
1089 }
1090
1091 sa1100_irda_startup(si);
1092 __sa1100_irda_set_power(si, si->power);
1093 enable_irq(dev->irq);
1094
1095 /*
1096 * This automatically wakes up the queue
1097 */
1098 netif_device_attach(dev);
1099 }
1100
1101 return 0;
1102}
1103#else
1104#define sa1100_irda_suspend NULL
1105#define sa1100_irda_resume NULL
1106#endif
1107
999static struct platform_driver sa1100ir_driver = { 1108static struct platform_driver sa1100ir_driver = {
1000 .probe = sa1100_irda_probe, 1109 .probe = sa1100_irda_probe,
1001 .remove = sa1100_irda_remove, 1110 .remove = sa1100_irda_remove,
diff --git a/include/linux/sa11x0-dma.h b/include/linux/sa11x0-dma.h
new file mode 100644
index 000000000000..65839a58b8e5
--- /dev/null
+++ b/include/linux/sa11x0-dma.h
@@ -0,0 +1,24 @@
1/*
2 * SA11x0 DMA Engine support
3 *
4 * Copyright (C) 2012 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef __LINUX_SA11X0_DMA_H
11#define __LINUX_SA11X0_DMA_H
12
13struct dma_chan;
14
15#if defined(CONFIG_DMA_SA11X0) || defined(CONFIG_DMA_SA11X0_MODULE)
16bool sa11x0_dma_filter_fn(struct dma_chan *, void *);
17#else
18static inline bool sa11x0_dma_filter_fn(struct dma_chan *c, void *d)
19{
20 return false;
21}
22#endif
23
24#endif