diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /mm/oom_kill.c |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'mm/oom_kill.c')
-rw-r--r-- | mm/oom_kill.c | 292 |
1 files changed, 292 insertions, 0 deletions
diff --git a/mm/oom_kill.c b/mm/oom_kill.c new file mode 100644 index 000000000000..9595a0f6c4b8 --- /dev/null +++ b/mm/oom_kill.c | |||
@@ -0,0 +1,292 @@ | |||
1 | /* | ||
2 | * linux/mm/oom_kill.c | ||
3 | * | ||
4 | * Copyright (C) 1998,2000 Rik van Riel | ||
5 | * Thanks go out to Claus Fischer for some serious inspiration and | ||
6 | * for goading me into coding this file... | ||
7 | * | ||
8 | * The routines in this file are used to kill a process when | ||
9 | * we're seriously out of memory. This gets called from kswapd() | ||
10 | * in linux/mm/vmscan.c when we really run out of memory. | ||
11 | * | ||
12 | * Since we won't call these routines often (on a well-configured | ||
13 | * machine) this file will double as a 'coding guide' and a signpost | ||
14 | * for newbie kernel hackers. It features several pointers to major | ||
15 | * kernel subsystems and hints as to where to find out what things do. | ||
16 | */ | ||
17 | |||
18 | #include <linux/mm.h> | ||
19 | #include <linux/sched.h> | ||
20 | #include <linux/swap.h> | ||
21 | #include <linux/timex.h> | ||
22 | #include <linux/jiffies.h> | ||
23 | |||
24 | /* #define DEBUG */ | ||
25 | |||
26 | /** | ||
27 | * oom_badness - calculate a numeric value for how bad this task has been | ||
28 | * @p: task struct of which task we should calculate | ||
29 | * @p: current uptime in seconds | ||
30 | * | ||
31 | * The formula used is relatively simple and documented inline in the | ||
32 | * function. The main rationale is that we want to select a good task | ||
33 | * to kill when we run out of memory. | ||
34 | * | ||
35 | * Good in this context means that: | ||
36 | * 1) we lose the minimum amount of work done | ||
37 | * 2) we recover a large amount of memory | ||
38 | * 3) we don't kill anything innocent of eating tons of memory | ||
39 | * 4) we want to kill the minimum amount of processes (one) | ||
40 | * 5) we try to kill the process the user expects us to kill, this | ||
41 | * algorithm has been meticulously tuned to meet the principle | ||
42 | * of least surprise ... (be careful when you change it) | ||
43 | */ | ||
44 | |||
45 | unsigned long badness(struct task_struct *p, unsigned long uptime) | ||
46 | { | ||
47 | unsigned long points, cpu_time, run_time, s; | ||
48 | struct list_head *tsk; | ||
49 | |||
50 | if (!p->mm) | ||
51 | return 0; | ||
52 | |||
53 | /* | ||
54 | * The memory size of the process is the basis for the badness. | ||
55 | */ | ||
56 | points = p->mm->total_vm; | ||
57 | |||
58 | /* | ||
59 | * Processes which fork a lot of child processes are likely | ||
60 | * a good choice. We add the vmsize of the childs if they | ||
61 | * have an own mm. This prevents forking servers to flood the | ||
62 | * machine with an endless amount of childs | ||
63 | */ | ||
64 | list_for_each(tsk, &p->children) { | ||
65 | struct task_struct *chld; | ||
66 | chld = list_entry(tsk, struct task_struct, sibling); | ||
67 | if (chld->mm != p->mm && chld->mm) | ||
68 | points += chld->mm->total_vm; | ||
69 | } | ||
70 | |||
71 | /* | ||
72 | * CPU time is in tens of seconds and run time is in thousands | ||
73 | * of seconds. There is no particular reason for this other than | ||
74 | * that it turned out to work very well in practice. | ||
75 | */ | ||
76 | cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime)) | ||
77 | >> (SHIFT_HZ + 3); | ||
78 | |||
79 | if (uptime >= p->start_time.tv_sec) | ||
80 | run_time = (uptime - p->start_time.tv_sec) >> 10; | ||
81 | else | ||
82 | run_time = 0; | ||
83 | |||
84 | s = int_sqrt(cpu_time); | ||
85 | if (s) | ||
86 | points /= s; | ||
87 | s = int_sqrt(int_sqrt(run_time)); | ||
88 | if (s) | ||
89 | points /= s; | ||
90 | |||
91 | /* | ||
92 | * Niced processes are most likely less important, so double | ||
93 | * their badness points. | ||
94 | */ | ||
95 | if (task_nice(p) > 0) | ||
96 | points *= 2; | ||
97 | |||
98 | /* | ||
99 | * Superuser processes are usually more important, so we make it | ||
100 | * less likely that we kill those. | ||
101 | */ | ||
102 | if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) || | ||
103 | p->uid == 0 || p->euid == 0) | ||
104 | points /= 4; | ||
105 | |||
106 | /* | ||
107 | * We don't want to kill a process with direct hardware access. | ||
108 | * Not only could that mess up the hardware, but usually users | ||
109 | * tend to only have this flag set on applications they think | ||
110 | * of as important. | ||
111 | */ | ||
112 | if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO)) | ||
113 | points /= 4; | ||
114 | |||
115 | /* | ||
116 | * Adjust the score by oomkilladj. | ||
117 | */ | ||
118 | if (p->oomkilladj) { | ||
119 | if (p->oomkilladj > 0) | ||
120 | points <<= p->oomkilladj; | ||
121 | else | ||
122 | points >>= -(p->oomkilladj); | ||
123 | } | ||
124 | |||
125 | #ifdef DEBUG | ||
126 | printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n", | ||
127 | p->pid, p->comm, points); | ||
128 | #endif | ||
129 | return points; | ||
130 | } | ||
131 | |||
132 | /* | ||
133 | * Simple selection loop. We chose the process with the highest | ||
134 | * number of 'points'. We expect the caller will lock the tasklist. | ||
135 | * | ||
136 | * (not docbooked, we don't want this one cluttering up the manual) | ||
137 | */ | ||
138 | static struct task_struct * select_bad_process(void) | ||
139 | { | ||
140 | unsigned long maxpoints = 0; | ||
141 | struct task_struct *g, *p; | ||
142 | struct task_struct *chosen = NULL; | ||
143 | struct timespec uptime; | ||
144 | |||
145 | do_posix_clock_monotonic_gettime(&uptime); | ||
146 | do_each_thread(g, p) | ||
147 | /* skip the init task with pid == 1 */ | ||
148 | if (p->pid > 1) { | ||
149 | unsigned long points; | ||
150 | |||
151 | /* | ||
152 | * This is in the process of releasing memory so wait it | ||
153 | * to finish before killing some other task by mistake. | ||
154 | */ | ||
155 | if ((unlikely(test_tsk_thread_flag(p, TIF_MEMDIE)) || (p->flags & PF_EXITING)) && | ||
156 | !(p->flags & PF_DEAD)) | ||
157 | return ERR_PTR(-1UL); | ||
158 | if (p->flags & PF_SWAPOFF) | ||
159 | return p; | ||
160 | |||
161 | points = badness(p, uptime.tv_sec); | ||
162 | if (points > maxpoints || !chosen) { | ||
163 | chosen = p; | ||
164 | maxpoints = points; | ||
165 | } | ||
166 | } | ||
167 | while_each_thread(g, p); | ||
168 | return chosen; | ||
169 | } | ||
170 | |||
171 | /** | ||
172 | * We must be careful though to never send SIGKILL a process with | ||
173 | * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that | ||
174 | * we select a process with CAP_SYS_RAW_IO set). | ||
175 | */ | ||
176 | static void __oom_kill_task(task_t *p) | ||
177 | { | ||
178 | if (p->pid == 1) { | ||
179 | WARN_ON(1); | ||
180 | printk(KERN_WARNING "tried to kill init!\n"); | ||
181 | return; | ||
182 | } | ||
183 | |||
184 | task_lock(p); | ||
185 | if (!p->mm || p->mm == &init_mm) { | ||
186 | WARN_ON(1); | ||
187 | printk(KERN_WARNING "tried to kill an mm-less task!\n"); | ||
188 | task_unlock(p); | ||
189 | return; | ||
190 | } | ||
191 | task_unlock(p); | ||
192 | printk(KERN_ERR "Out of Memory: Killed process %d (%s).\n", p->pid, p->comm); | ||
193 | |||
194 | /* | ||
195 | * We give our sacrificial lamb high priority and access to | ||
196 | * all the memory it needs. That way it should be able to | ||
197 | * exit() and clear out its resources quickly... | ||
198 | */ | ||
199 | p->time_slice = HZ; | ||
200 | set_tsk_thread_flag(p, TIF_MEMDIE); | ||
201 | |||
202 | force_sig(SIGKILL, p); | ||
203 | } | ||
204 | |||
205 | static struct mm_struct *oom_kill_task(task_t *p) | ||
206 | { | ||
207 | struct mm_struct *mm = get_task_mm(p); | ||
208 | task_t * g, * q; | ||
209 | |||
210 | if (!mm) | ||
211 | return NULL; | ||
212 | if (mm == &init_mm) { | ||
213 | mmput(mm); | ||
214 | return NULL; | ||
215 | } | ||
216 | |||
217 | __oom_kill_task(p); | ||
218 | /* | ||
219 | * kill all processes that share the ->mm (i.e. all threads), | ||
220 | * but are in a different thread group | ||
221 | */ | ||
222 | do_each_thread(g, q) | ||
223 | if (q->mm == mm && q->tgid != p->tgid) | ||
224 | __oom_kill_task(q); | ||
225 | while_each_thread(g, q); | ||
226 | |||
227 | return mm; | ||
228 | } | ||
229 | |||
230 | static struct mm_struct *oom_kill_process(struct task_struct *p) | ||
231 | { | ||
232 | struct mm_struct *mm; | ||
233 | struct task_struct *c; | ||
234 | struct list_head *tsk; | ||
235 | |||
236 | /* Try to kill a child first */ | ||
237 | list_for_each(tsk, &p->children) { | ||
238 | c = list_entry(tsk, struct task_struct, sibling); | ||
239 | if (c->mm == p->mm) | ||
240 | continue; | ||
241 | mm = oom_kill_task(c); | ||
242 | if (mm) | ||
243 | return mm; | ||
244 | } | ||
245 | return oom_kill_task(p); | ||
246 | } | ||
247 | |||
248 | /** | ||
249 | * oom_kill - kill the "best" process when we run out of memory | ||
250 | * | ||
251 | * If we run out of memory, we have the choice between either | ||
252 | * killing a random task (bad), letting the system crash (worse) | ||
253 | * OR try to be smart about which process to kill. Note that we | ||
254 | * don't have to be perfect here, we just have to be good. | ||
255 | */ | ||
256 | void out_of_memory(unsigned int __nocast gfp_mask) | ||
257 | { | ||
258 | struct mm_struct *mm = NULL; | ||
259 | task_t * p; | ||
260 | |||
261 | read_lock(&tasklist_lock); | ||
262 | retry: | ||
263 | p = select_bad_process(); | ||
264 | |||
265 | if (PTR_ERR(p) == -1UL) | ||
266 | goto out; | ||
267 | |||
268 | /* Found nothing?!?! Either we hang forever, or we panic. */ | ||
269 | if (!p) { | ||
270 | read_unlock(&tasklist_lock); | ||
271 | show_free_areas(); | ||
272 | panic("Out of memory and no killable processes...\n"); | ||
273 | } | ||
274 | |||
275 | printk("oom-killer: gfp_mask=0x%x\n", gfp_mask); | ||
276 | show_free_areas(); | ||
277 | mm = oom_kill_process(p); | ||
278 | if (!mm) | ||
279 | goto retry; | ||
280 | |||
281 | out: | ||
282 | read_unlock(&tasklist_lock); | ||
283 | if (mm) | ||
284 | mmput(mm); | ||
285 | |||
286 | /* | ||
287 | * Give "p" a good chance of killing itself before we | ||
288 | * retry to allocate memory. | ||
289 | */ | ||
290 | __set_current_state(TASK_INTERRUPTIBLE); | ||
291 | schedule_timeout(1); | ||
292 | } | ||