aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/spi
diff options
context:
space:
mode:
authorGrant Likely <grant.likely@secretlab.ca>2011-06-09 14:42:57 -0400
committerGrant Likely <grant.likely@secretlab.ca>2011-06-09 14:42:57 -0400
commite4c8308c852e6b3fa49215052a5b9e99597dee99 (patch)
treea44ef3377c17d69c2210e809ac2552540ce6f1fc /drivers/spi
parentc37f3c2749b53225d36faa5c583203c5f12ae15b (diff)
parent626a96db11698119a67eeda130488e869aa6f14e (diff)
Merge branch 'ep93xx-dma' into spi/next
Diffstat (limited to 'drivers/spi')
-rw-r--r--drivers/spi/spi-ep93xx.c303
1 files changed, 291 insertions, 12 deletions
diff --git a/drivers/spi/spi-ep93xx.c b/drivers/spi/spi-ep93xx.c
index d3570071e98f..1cf645479bfe 100644
--- a/drivers/spi/spi-ep93xx.c
+++ b/drivers/spi/spi-ep93xx.c
@@ -1,7 +1,7 @@
1/* 1/*
2 * Driver for Cirrus Logic EP93xx SPI controller. 2 * Driver for Cirrus Logic EP93xx SPI controller.
3 * 3 *
4 * Copyright (c) 2010 Mika Westerberg 4 * Copyright (C) 2010-2011 Mika Westerberg
5 * 5 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver. 6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 * 7 *
@@ -21,13 +21,16 @@
21#include <linux/err.h> 21#include <linux/err.h>
22#include <linux/delay.h> 22#include <linux/delay.h>
23#include <linux/device.h> 23#include <linux/device.h>
24#include <linux/dmaengine.h>
24#include <linux/bitops.h> 25#include <linux/bitops.h>
25#include <linux/interrupt.h> 26#include <linux/interrupt.h>
26#include <linux/platform_device.h> 27#include <linux/platform_device.h>
27#include <linux/workqueue.h> 28#include <linux/workqueue.h>
28#include <linux/sched.h> 29#include <linux/sched.h>
30#include <linux/scatterlist.h>
29#include <linux/spi/spi.h> 31#include <linux/spi/spi.h>
30 32
33#include <mach/dma.h>
31#include <mach/ep93xx_spi.h> 34#include <mach/ep93xx_spi.h>
32 35
33#define SSPCR0 0x0000 36#define SSPCR0 0x0000
@@ -71,6 +74,7 @@
71 * @pdev: pointer to platform device 74 * @pdev: pointer to platform device
72 * @clk: clock for the controller 75 * @clk: clock for the controller
73 * @regs_base: pointer to ioremap()'d registers 76 * @regs_base: pointer to ioremap()'d registers
77 * @sspdr_phys: physical address of the SSPDR register
74 * @irq: IRQ number used by the driver 78 * @irq: IRQ number used by the driver
75 * @min_rate: minimum clock rate (in Hz) supported by the controller 79 * @min_rate: minimum clock rate (in Hz) supported by the controller
76 * @max_rate: maximum clock rate (in Hz) supported by the controller 80 * @max_rate: maximum clock rate (in Hz) supported by the controller
@@ -84,6 +88,14 @@
84 * @rx: current byte in transfer to receive 88 * @rx: current byte in transfer to receive
85 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one 89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
86 * frame decreases this level and sending one frame increases it. 90 * frame decreases this level and sending one frame increases it.
91 * @dma_rx: RX DMA channel
92 * @dma_tx: TX DMA channel
93 * @dma_rx_data: RX parameters passed to the DMA engine
94 * @dma_tx_data: TX parameters passed to the DMA engine
95 * @rx_sgt: sg table for RX transfers
96 * @tx_sgt: sg table for TX transfers
97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98 * the client
87 * 99 *
88 * This structure holds EP93xx SPI controller specific information. When 100 * This structure holds EP93xx SPI controller specific information. When
89 * @running is %true, driver accepts transfer requests from protocol drivers. 101 * @running is %true, driver accepts transfer requests from protocol drivers.
@@ -100,6 +112,7 @@ struct ep93xx_spi {
100 const struct platform_device *pdev; 112 const struct platform_device *pdev;
101 struct clk *clk; 113 struct clk *clk;
102 void __iomem *regs_base; 114 void __iomem *regs_base;
115 unsigned long sspdr_phys;
103 int irq; 116 int irq;
104 unsigned long min_rate; 117 unsigned long min_rate;
105 unsigned long max_rate; 118 unsigned long max_rate;
@@ -112,6 +125,13 @@ struct ep93xx_spi {
112 size_t tx; 125 size_t tx;
113 size_t rx; 126 size_t rx;
114 size_t fifo_level; 127 size_t fifo_level;
128 struct dma_chan *dma_rx;
129 struct dma_chan *dma_tx;
130 struct ep93xx_dma_data dma_rx_data;
131 struct ep93xx_dma_data dma_tx_data;
132 struct sg_table rx_sgt;
133 struct sg_table tx_sgt;
134 void *zeropage;
115}; 135};
116 136
117/** 137/**
@@ -496,14 +516,195 @@ static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
496 espi->fifo_level++; 516 espi->fifo_level++;
497 } 517 }
498 518
499 if (espi->rx == t->len) { 519 if (espi->rx == t->len)
500 msg->actual_length += t->len;
501 return 0; 520 return 0;
502 }
503 521
504 return -EINPROGRESS; 522 return -EINPROGRESS;
505} 523}
506 524
525static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
526{
527 /*
528 * Now everything is set up for the current transfer. We prime the TX
529 * FIFO, enable interrupts, and wait for the transfer to complete.
530 */
531 if (ep93xx_spi_read_write(espi)) {
532 ep93xx_spi_enable_interrupts(espi);
533 wait_for_completion(&espi->wait);
534 }
535}
536
537/**
538 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
539 * @espi: ep93xx SPI controller struct
540 * @dir: DMA transfer direction
541 *
542 * Function configures the DMA, maps the buffer and prepares the DMA
543 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
544 * in case of failure.
545 */
546static struct dma_async_tx_descriptor *
547ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_data_direction dir)
548{
549 struct spi_transfer *t = espi->current_msg->state;
550 struct dma_async_tx_descriptor *txd;
551 enum dma_slave_buswidth buswidth;
552 struct dma_slave_config conf;
553 struct scatterlist *sg;
554 struct sg_table *sgt;
555 struct dma_chan *chan;
556 const void *buf, *pbuf;
557 size_t len = t->len;
558 int i, ret, nents;
559
560 if (bits_per_word(espi) > 8)
561 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
562 else
563 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
564
565 memset(&conf, 0, sizeof(conf));
566 conf.direction = dir;
567
568 if (dir == DMA_FROM_DEVICE) {
569 chan = espi->dma_rx;
570 buf = t->rx_buf;
571 sgt = &espi->rx_sgt;
572
573 conf.src_addr = espi->sspdr_phys;
574 conf.src_addr_width = buswidth;
575 } else {
576 chan = espi->dma_tx;
577 buf = t->tx_buf;
578 sgt = &espi->tx_sgt;
579
580 conf.dst_addr = espi->sspdr_phys;
581 conf.dst_addr_width = buswidth;
582 }
583
584 ret = dmaengine_slave_config(chan, &conf);
585 if (ret)
586 return ERR_PTR(ret);
587
588 /*
589 * We need to split the transfer into PAGE_SIZE'd chunks. This is
590 * because we are using @espi->zeropage to provide a zero RX buffer
591 * for the TX transfers and we have only allocated one page for that.
592 *
593 * For performance reasons we allocate a new sg_table only when
594 * needed. Otherwise we will re-use the current one. Eventually the
595 * last sg_table is released in ep93xx_spi_release_dma().
596 */
597
598 nents = DIV_ROUND_UP(len, PAGE_SIZE);
599 if (nents != sgt->nents) {
600 sg_free_table(sgt);
601
602 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
603 if (ret)
604 return ERR_PTR(ret);
605 }
606
607 pbuf = buf;
608 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
609 size_t bytes = min_t(size_t, len, PAGE_SIZE);
610
611 if (buf) {
612 sg_set_page(sg, virt_to_page(pbuf), bytes,
613 offset_in_page(pbuf));
614 } else {
615 sg_set_page(sg, virt_to_page(espi->zeropage),
616 bytes, 0);
617 }
618
619 pbuf += bytes;
620 len -= bytes;
621 }
622
623 if (WARN_ON(len)) {
624 dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
625 return ERR_PTR(-EINVAL);
626 }
627
628 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
629 if (!nents)
630 return ERR_PTR(-ENOMEM);
631
632 txd = chan->device->device_prep_slave_sg(chan, sgt->sgl, nents,
633 dir, DMA_CTRL_ACK);
634 if (!txd) {
635 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
636 return ERR_PTR(-ENOMEM);
637 }
638 return txd;
639}
640
641/**
642 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
643 * @espi: ep93xx SPI controller struct
644 * @dir: DMA transfer direction
645 *
646 * Function finishes with the DMA transfer. After this, the DMA buffer is
647 * unmapped.
648 */
649static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
650 enum dma_data_direction dir)
651{
652 struct dma_chan *chan;
653 struct sg_table *sgt;
654
655 if (dir == DMA_FROM_DEVICE) {
656 chan = espi->dma_rx;
657 sgt = &espi->rx_sgt;
658 } else {
659 chan = espi->dma_tx;
660 sgt = &espi->tx_sgt;
661 }
662
663 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
664}
665
666static void ep93xx_spi_dma_callback(void *callback_param)
667{
668 complete(callback_param);
669}
670
671static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
672{
673 struct spi_message *msg = espi->current_msg;
674 struct dma_async_tx_descriptor *rxd, *txd;
675
676 rxd = ep93xx_spi_dma_prepare(espi, DMA_FROM_DEVICE);
677 if (IS_ERR(rxd)) {
678 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
679 msg->status = PTR_ERR(rxd);
680 return;
681 }
682
683 txd = ep93xx_spi_dma_prepare(espi, DMA_TO_DEVICE);
684 if (IS_ERR(txd)) {
685 ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
686 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
687 msg->status = PTR_ERR(txd);
688 return;
689 }
690
691 /* We are ready when RX is done */
692 rxd->callback = ep93xx_spi_dma_callback;
693 rxd->callback_param = &espi->wait;
694
695 /* Now submit both descriptors and wait while they finish */
696 dmaengine_submit(rxd);
697 dmaengine_submit(txd);
698
699 dma_async_issue_pending(espi->dma_rx);
700 dma_async_issue_pending(espi->dma_tx);
701
702 wait_for_completion(&espi->wait);
703
704 ep93xx_spi_dma_finish(espi, DMA_TO_DEVICE);
705 ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
706}
707
507/** 708/**
508 * ep93xx_spi_process_transfer() - processes one SPI transfer 709 * ep93xx_spi_process_transfer() - processes one SPI transfer
509 * @espi: ep93xx SPI controller struct 710 * @espi: ep93xx SPI controller struct
@@ -556,13 +757,14 @@ static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
556 espi->tx = 0; 757 espi->tx = 0;
557 758
558 /* 759 /*
559 * Now everything is set up for the current transfer. We prime the TX 760 * There is no point of setting up DMA for the transfers which will
560 * FIFO, enable interrupts, and wait for the transfer to complete. 761 * fit into the FIFO and can be transferred with a single interrupt.
762 * So in these cases we will be using PIO and don't bother for DMA.
561 */ 763 */
562 if (ep93xx_spi_read_write(espi)) { 764 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
563 ep93xx_spi_enable_interrupts(espi); 765 ep93xx_spi_dma_transfer(espi);
564 wait_for_completion(&espi->wait); 766 else
565 } 767 ep93xx_spi_pio_transfer(espi);
566 768
567 /* 769 /*
568 * In case of error during transmit, we bail out from processing 770 * In case of error during transmit, we bail out from processing
@@ -571,6 +773,8 @@ static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
571 if (msg->status) 773 if (msg->status)
572 return; 774 return;
573 775
776 msg->actual_length += t->len;
777
574 /* 778 /*
575 * After this transfer is finished, perform any possible 779 * After this transfer is finished, perform any possible
576 * post-transfer actions requested by the protocol driver. 780 * post-transfer actions requested by the protocol driver.
@@ -752,6 +956,75 @@ static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
752 return IRQ_HANDLED; 956 return IRQ_HANDLED;
753} 957}
754 958
959static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
960{
961 if (ep93xx_dma_chan_is_m2p(chan))
962 return false;
963
964 chan->private = filter_param;
965 return true;
966}
967
968static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
969{
970 dma_cap_mask_t mask;
971 int ret;
972
973 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
974 if (!espi->zeropage)
975 return -ENOMEM;
976
977 dma_cap_zero(mask);
978 dma_cap_set(DMA_SLAVE, mask);
979
980 espi->dma_rx_data.port = EP93XX_DMA_SSP;
981 espi->dma_rx_data.direction = DMA_FROM_DEVICE;
982 espi->dma_rx_data.name = "ep93xx-spi-rx";
983
984 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
985 &espi->dma_rx_data);
986 if (!espi->dma_rx) {
987 ret = -ENODEV;
988 goto fail_free_page;
989 }
990
991 espi->dma_tx_data.port = EP93XX_DMA_SSP;
992 espi->dma_tx_data.direction = DMA_TO_DEVICE;
993 espi->dma_tx_data.name = "ep93xx-spi-tx";
994
995 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
996 &espi->dma_tx_data);
997 if (!espi->dma_tx) {
998 ret = -ENODEV;
999 goto fail_release_rx;
1000 }
1001
1002 return 0;
1003
1004fail_release_rx:
1005 dma_release_channel(espi->dma_rx);
1006 espi->dma_rx = NULL;
1007fail_free_page:
1008 free_page((unsigned long)espi->zeropage);
1009
1010 return ret;
1011}
1012
1013static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1014{
1015 if (espi->dma_rx) {
1016 dma_release_channel(espi->dma_rx);
1017 sg_free_table(&espi->rx_sgt);
1018 }
1019 if (espi->dma_tx) {
1020 dma_release_channel(espi->dma_tx);
1021 sg_free_table(&espi->tx_sgt);
1022 }
1023
1024 if (espi->zeropage)
1025 free_page((unsigned long)espi->zeropage);
1026}
1027
755static int __init ep93xx_spi_probe(struct platform_device *pdev) 1028static int __init ep93xx_spi_probe(struct platform_device *pdev)
756{ 1029{
757 struct spi_master *master; 1030 struct spi_master *master;
@@ -818,6 +1091,7 @@ static int __init ep93xx_spi_probe(struct platform_device *pdev)
818 goto fail_put_clock; 1091 goto fail_put_clock;
819 } 1092 }
820 1093
1094 espi->sspdr_phys = res->start + SSPDR;
821 espi->regs_base = ioremap(res->start, resource_size(res)); 1095 espi->regs_base = ioremap(res->start, resource_size(res));
822 if (!espi->regs_base) { 1096 if (!espi->regs_base) {
823 dev_err(&pdev->dev, "failed to map resources\n"); 1097 dev_err(&pdev->dev, "failed to map resources\n");
@@ -832,10 +1106,13 @@ static int __init ep93xx_spi_probe(struct platform_device *pdev)
832 goto fail_unmap_regs; 1106 goto fail_unmap_regs;
833 } 1107 }
834 1108
1109 if (info->use_dma && ep93xx_spi_setup_dma(espi))
1110 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1111
835 espi->wq = create_singlethread_workqueue("ep93xx_spid"); 1112 espi->wq = create_singlethread_workqueue("ep93xx_spid");
836 if (!espi->wq) { 1113 if (!espi->wq) {
837 dev_err(&pdev->dev, "unable to create workqueue\n"); 1114 dev_err(&pdev->dev, "unable to create workqueue\n");
838 goto fail_free_irq; 1115 goto fail_free_dma;
839 } 1116 }
840 INIT_WORK(&espi->msg_work, ep93xx_spi_work); 1117 INIT_WORK(&espi->msg_work, ep93xx_spi_work);
841 INIT_LIST_HEAD(&espi->msg_queue); 1118 INIT_LIST_HEAD(&espi->msg_queue);
@@ -857,7 +1134,8 @@ static int __init ep93xx_spi_probe(struct platform_device *pdev)
857 1134
858fail_free_queue: 1135fail_free_queue:
859 destroy_workqueue(espi->wq); 1136 destroy_workqueue(espi->wq);
860fail_free_irq: 1137fail_free_dma:
1138 ep93xx_spi_release_dma(espi);
861 free_irq(espi->irq, espi); 1139 free_irq(espi->irq, espi);
862fail_unmap_regs: 1140fail_unmap_regs:
863 iounmap(espi->regs_base); 1141 iounmap(espi->regs_base);
@@ -901,6 +1179,7 @@ static int __exit ep93xx_spi_remove(struct platform_device *pdev)
901 } 1179 }
902 spin_unlock_irq(&espi->lock); 1180 spin_unlock_irq(&espi->lock);
903 1181
1182 ep93xx_spi_release_dma(espi);
904 free_irq(espi->irq, espi); 1183 free_irq(espi->irq, espi);
905 iounmap(espi->regs_base); 1184 iounmap(espi->regs_base);
906 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1185 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);