aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/sym53c8xx_2/sym_fw2.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/scsi/sym53c8xx_2/sym_fw2.h
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/scsi/sym53c8xx_2/sym_fw2.h')
-rw-r--r--drivers/scsi/sym53c8xx_2/sym_fw2.h1927
1 files changed, 1927 insertions, 0 deletions
diff --git a/drivers/scsi/sym53c8xx_2/sym_fw2.h b/drivers/scsi/sym53c8xx_2/sym_fw2.h
new file mode 100644
index 000000000000..7ea7151f5d1d
--- /dev/null
+++ b/drivers/scsi/sym53c8xx_2/sym_fw2.h
@@ -0,0 +1,1927 @@
1/*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 *
7 * This driver is derived from the Linux sym53c8xx driver.
8 * Copyright (C) 1998-2000 Gerard Roudier
9 *
10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
12 *
13 * The original ncr driver has been written for 386bsd and FreeBSD by
14 * Wolfgang Stanglmeier <wolf@cologne.de>
15 * Stefan Esser <se@mi.Uni-Koeln.de>
16 * Copyright (C) 1994 Wolfgang Stanglmeier
17 *
18 * Other major contributions:
19 *
20 * NVRAM detection and reading.
21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
22 *
23 *-----------------------------------------------------------------------------
24 *
25 * This program is free software; you can redistribute it and/or modify
26 * it under the terms of the GNU General Public License as published by
27 * the Free Software Foundation; either version 2 of the License, or
28 * (at your option) any later version.
29 *
30 * This program is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33 * GNU General Public License for more details.
34 *
35 * You should have received a copy of the GNU General Public License
36 * along with this program; if not, write to the Free Software
37 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
38 */
39
40/*
41 * Scripts for SYMBIOS-Processor
42 *
43 * We have to know the offsets of all labels before we reach
44 * them (for forward jumps). Therefore we declare a struct
45 * here. If you make changes inside the script,
46 *
47 * DONT FORGET TO CHANGE THE LENGTHS HERE!
48 */
49
50/*
51 * Script fragments which are loaded into the on-chip RAM
52 * of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
53 * Must not exceed 4K bytes.
54 */
55struct SYM_FWA_SCR {
56 u32 start [ 14];
57 u32 getjob_begin [ 4];
58 u32 getjob_end [ 4];
59#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
60 u32 select [ 6];
61#else
62 u32 select [ 4];
63#endif
64#if SYM_CONF_DMA_ADDRESSING_MODE == 2
65 u32 is_dmap_dirty [ 4];
66#endif
67 u32 wf_sel_done [ 2];
68 u32 sel_done [ 2];
69 u32 send_ident [ 2];
70#ifdef SYM_CONF_IARB_SUPPORT
71 u32 select2 [ 8];
72#else
73 u32 select2 [ 2];
74#endif
75 u32 command [ 2];
76 u32 dispatch [ 28];
77 u32 sel_no_cmd [ 10];
78 u32 init [ 6];
79 u32 clrack [ 4];
80 u32 datai_done [ 10];
81 u32 datai_done_wsr [ 20];
82 u32 datao_done [ 10];
83 u32 datao_done_wss [ 6];
84 u32 datai_phase [ 4];
85 u32 datao_phase [ 6];
86 u32 msg_in [ 2];
87 u32 msg_in2 [ 10];
88#ifdef SYM_CONF_IARB_SUPPORT
89 u32 status [ 14];
90#else
91 u32 status [ 10];
92#endif
93 u32 complete [ 6];
94 u32 complete2 [ 12];
95 u32 done [ 14];
96 u32 done_end [ 2];
97 u32 complete_error [ 4];
98 u32 save_dp [ 12];
99 u32 restore_dp [ 8];
100 u32 disconnect [ 12];
101#ifdef SYM_CONF_IARB_SUPPORT
102 u32 idle [ 4];
103#else
104 u32 idle [ 2];
105#endif
106#ifdef SYM_CONF_IARB_SUPPORT
107 u32 ungetjob [ 6];
108#else
109 u32 ungetjob [ 4];
110#endif
111#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
112 u32 reselect [ 4];
113#else
114 u32 reselect [ 2];
115#endif
116 u32 reselected [ 22];
117 u32 resel_scntl4 [ 20];
118 u32 resel_lun0 [ 6];
119#if SYM_CONF_MAX_TASK*4 > 512
120 u32 resel_tag [ 26];
121#elif SYM_CONF_MAX_TASK*4 > 256
122 u32 resel_tag [ 20];
123#else
124 u32 resel_tag [ 16];
125#endif
126 u32 resel_dsa [ 2];
127 u32 resel_dsa1 [ 4];
128 u32 resel_no_tag [ 6];
129 u32 data_in [SYM_CONF_MAX_SG * 2];
130 u32 data_in2 [ 4];
131 u32 data_out [SYM_CONF_MAX_SG * 2];
132 u32 data_out2 [ 4];
133 u32 pm0_data [ 12];
134 u32 pm0_data_out [ 6];
135 u32 pm0_data_end [ 6];
136 u32 pm1_data [ 12];
137 u32 pm1_data_out [ 6];
138 u32 pm1_data_end [ 6];
139};
140
141/*
142 * Script fragments which stay in main memory for all chips
143 * except for chips that support 8K on-chip RAM.
144 */
145struct SYM_FWB_SCR {
146 u32 start64 [ 2];
147 u32 no_data [ 2];
148#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
149 u32 sel_for_abort [ 18];
150#else
151 u32 sel_for_abort [ 16];
152#endif
153 u32 sel_for_abort_1 [ 2];
154 u32 msg_in_etc [ 12];
155 u32 msg_received [ 4];
156 u32 msg_weird_seen [ 4];
157 u32 msg_extended [ 20];
158 u32 msg_bad [ 6];
159 u32 msg_weird [ 4];
160 u32 msg_weird1 [ 8];
161
162 u32 wdtr_resp [ 6];
163 u32 send_wdtr [ 4];
164 u32 sdtr_resp [ 6];
165 u32 send_sdtr [ 4];
166 u32 ppr_resp [ 6];
167 u32 send_ppr [ 4];
168 u32 nego_bad_phase [ 4];
169 u32 msg_out [ 4];
170 u32 msg_out_done [ 4];
171 u32 data_ovrun [ 2];
172 u32 data_ovrun1 [ 22];
173 u32 data_ovrun2 [ 8];
174 u32 abort_resel [ 16];
175 u32 resend_ident [ 4];
176 u32 ident_break [ 4];
177 u32 ident_break_atn [ 4];
178 u32 sdata_in [ 6];
179 u32 resel_bad_lun [ 4];
180 u32 bad_i_t_l [ 4];
181 u32 bad_i_t_l_q [ 4];
182 u32 bad_status [ 6];
183 u32 pm_handle [ 20];
184 u32 pm_handle1 [ 4];
185 u32 pm_save [ 4];
186 u32 pm0_save [ 12];
187 u32 pm_save_end [ 4];
188 u32 pm1_save [ 14];
189
190 /* WSR handling */
191 u32 pm_wsr_handle [ 38];
192 u32 wsr_ma_helper [ 4];
193
194#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
195 /* Unknown direction handling */
196 u32 data_io [ 2];
197 u32 data_io_in [ 2];
198 u32 data_io_com [ 6];
199 u32 data_io_out [ 8];
200#endif
201 /* Data area */
202 u32 zero [ 1];
203 u32 scratch [ 1];
204 u32 pm0_data_addr [ 1];
205 u32 pm1_data_addr [ 1];
206 u32 done_pos [ 1];
207 u32 startpos [ 1];
208 u32 targtbl [ 1];
209};
210
211/*
212 * Script fragments used at initialisations.
213 * Only runs out of main memory.
214 */
215struct SYM_FWZ_SCR {
216 u32 snooptest [ 6];
217 u32 snoopend [ 2];
218};
219
220static struct SYM_FWA_SCR SYM_FWA_SCR = {
221/*--------------------------< START >----------------------------*/ {
222 /*
223 * Switch the LED on.
224 * Will be patched with a NO_OP if LED
225 * not needed or not desired.
226 */
227 SCR_REG_REG (gpreg, SCR_AND, 0xfe),
228 0,
229 /*
230 * Clear SIGP.
231 */
232 SCR_FROM_REG (ctest2),
233 0,
234 /*
235 * Stop here if the C code wants to perform
236 * some error recovery procedure manually.
237 * (Indicate this by setting SEM in ISTAT)
238 */
239 SCR_FROM_REG (istat),
240 0,
241 /*
242 * Report to the C code the next position in
243 * the start queue the SCRIPTS will schedule.
244 * The C code must not change SCRATCHA.
245 */
246 SCR_LOAD_ABS (scratcha, 4),
247 PADDR_B (startpos),
248 SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
249 SIR_SCRIPT_STOPPED,
250 /*
251 * Start the next job.
252 *
253 * @DSA = start point for this job.
254 * SCRATCHA = address of this job in the start queue.
255 *
256 * We will restore startpos with SCRATCHA if we fails the
257 * arbitration or if it is the idle job.
258 *
259 * The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
260 * is a critical path. If it is partially executed, it then
261 * may happen that the job address is not yet in the DSA
262 * and the next queue position points to the next JOB.
263 */
264 SCR_LOAD_ABS (dsa, 4),
265 PADDR_B (startpos),
266 SCR_LOAD_REL (temp, 4),
267 4,
268}/*-------------------------< GETJOB_BEGIN >---------------------*/,{
269 SCR_STORE_ABS (temp, 4),
270 PADDR_B (startpos),
271 SCR_LOAD_REL (dsa, 4),
272 0,
273}/*-------------------------< GETJOB_END >-----------------------*/,{
274 SCR_LOAD_REL (temp, 4),
275 0,
276 SCR_RETURN,
277 0,
278}/*-------------------------< SELECT >---------------------------*/,{
279 /*
280 * DSA contains the address of a scheduled
281 * data structure.
282 *
283 * SCRATCHA contains the address of the start queue
284 * entry which points to the next job.
285 *
286 * Set Initiator mode.
287 *
288 * (Target mode is left as an exercise for the reader)
289 */
290#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
291 SCR_CLR (SCR_TRG),
292 0,
293#endif
294 /*
295 * And try to select this target.
296 */
297 SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
298 PADDR_A (ungetjob),
299 /*
300 * Now there are 4 possibilities:
301 *
302 * (1) The chip loses arbitration.
303 * This is ok, because it will try again,
304 * when the bus becomes idle.
305 * (But beware of the timeout function!)
306 *
307 * (2) The chip is reselected.
308 * Then the script processor takes the jump
309 * to the RESELECT label.
310 *
311 * (3) The chip wins arbitration.
312 * Then it will execute SCRIPTS instruction until
313 * the next instruction that checks SCSI phase.
314 * Then will stop and wait for selection to be
315 * complete or selection time-out to occur.
316 *
317 * After having won arbitration, the SCRIPTS
318 * processor is able to execute instructions while
319 * the SCSI core is performing SCSI selection.
320 */
321 /*
322 * Initialize the status registers
323 */
324 SCR_LOAD_REL (scr0, 4),
325 offsetof (struct sym_ccb, phys.head.status),
326 /*
327 * We may need help from CPU if the DMA segment
328 * registers aren't up-to-date for this IO.
329 * Patched with NOOP for chips that donnot
330 * support DAC addressing.
331 */
332#if SYM_CONF_DMA_ADDRESSING_MODE == 2
333}/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{
334 SCR_FROM_REG (HX_REG),
335 0,
336 SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)),
337 SIR_DMAP_DIRTY,
338#endif
339}/*-------------------------< WF_SEL_DONE >----------------------*/,{
340 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
341 SIR_SEL_ATN_NO_MSG_OUT,
342}/*-------------------------< SEL_DONE >-------------------------*/,{
343 /*
344 * C1010-33 errata work-around.
345 * Due to a race, the SCSI core may not have
346 * loaded SCNTL3 on SEL_TBL instruction.
347 * We reload it once phase is stable.
348 * Patched with a NOOP for other chips.
349 */
350 SCR_LOAD_REL (scntl3, 1),
351 offsetof(struct sym_dsb, select.sel_scntl3),
352}/*-------------------------< SEND_IDENT >-----------------------*/,{
353 /*
354 * Selection complete.
355 * Send the IDENTIFY and possibly the TAG message
356 * and negotiation message if present.
357 */
358 SCR_MOVE_TBL ^ SCR_MSG_OUT,
359 offsetof (struct sym_dsb, smsg),
360}/*-------------------------< SELECT2 >--------------------------*/,{
361#ifdef SYM_CONF_IARB_SUPPORT
362 /*
363 * Set IMMEDIATE ARBITRATION if we have been given
364 * a hint to do so. (Some job to do after this one).
365 */
366 SCR_FROM_REG (HF_REG),
367 0,
368 SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
369 8,
370 SCR_REG_REG (scntl1, SCR_OR, IARB),
371 0,
372#endif
373 /*
374 * Anticipate the COMMAND phase.
375 * This is the PHASE we expect at this point.
376 */
377 SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
378 PADDR_A (sel_no_cmd),
379}/*-------------------------< COMMAND >--------------------------*/,{
380 /*
381 * ... and send the command
382 */
383 SCR_MOVE_TBL ^ SCR_COMMAND,
384 offsetof (struct sym_dsb, cmd),
385}/*-------------------------< DISPATCH >-------------------------*/,{
386 /*
387 * MSG_IN is the only phase that shall be
388 * entered at least once for each (re)selection.
389 * So we test it first.
390 */
391 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
392 PADDR_A (msg_in),
393 SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
394 PADDR_A (datao_phase),
395 SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
396 PADDR_A (datai_phase),
397 SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
398 PADDR_A (status),
399 SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
400 PADDR_A (command),
401 SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
402 PADDR_B (msg_out),
403 /*
404 * Discard as many illegal phases as
405 * required and tell the C code about.
406 */
407 SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
408 16,
409 SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
410 HADDR_1 (scratch),
411 SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
412 -16,
413 SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
414 16,
415 SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
416 HADDR_1 (scratch),
417 SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
418 -16,
419 SCR_INT,
420 SIR_BAD_PHASE,
421 SCR_JUMP,
422 PADDR_A (dispatch),
423}/*-------------------------< SEL_NO_CMD >-----------------------*/,{
424 /*
425 * The target does not switch to command
426 * phase after IDENTIFY has been sent.
427 *
428 * If it stays in MSG OUT phase send it
429 * the IDENTIFY again.
430 */
431 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
432 PADDR_B (resend_ident),
433 /*
434 * If target does not switch to MSG IN phase
435 * and we sent a negotiation, assert the
436 * failure immediately.
437 */
438 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
439 PADDR_A (dispatch),
440 SCR_FROM_REG (HS_REG),
441 0,
442 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
443 SIR_NEGO_FAILED,
444 /*
445 * Jump to dispatcher.
446 */
447 SCR_JUMP,
448 PADDR_A (dispatch),
449}/*-------------------------< INIT >-----------------------------*/,{
450 /*
451 * Wait for the SCSI RESET signal to be
452 * inactive before restarting operations,
453 * since the chip may hang on SEL_ATN
454 * if SCSI RESET is active.
455 */
456 SCR_FROM_REG (sstat0),
457 0,
458 SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
459 -16,
460 SCR_JUMP,
461 PADDR_A (start),
462}/*-------------------------< CLRACK >---------------------------*/,{
463 /*
464 * Terminate possible pending message phase.
465 */
466 SCR_CLR (SCR_ACK),
467 0,
468 SCR_JUMP,
469 PADDR_A (dispatch),
470}/*-------------------------< DATAI_DONE >-----------------------*/,{
471 /*
472 * Save current pointer to LASTP.
473 */
474 SCR_STORE_REL (temp, 4),
475 offsetof (struct sym_ccb, phys.head.lastp),
476 /*
477 * If the SWIDE is not full, jump to dispatcher.
478 * We anticipate a STATUS phase.
479 */
480 SCR_FROM_REG (scntl2),
481 0,
482 SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
483 PADDR_A (datai_done_wsr),
484 SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
485 PADDR_A (status),
486 SCR_JUMP,
487 PADDR_A (dispatch),
488}/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
489 /*
490 * The SWIDE is full.
491 * Clear this condition.
492 */
493 SCR_REG_REG (scntl2, SCR_OR, WSR),
494 0,
495 /*
496 * We are expecting an IGNORE RESIDUE message
497 * from the device, otherwise we are in data
498 * overrun condition. Check against MSG_IN phase.
499 */
500 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
501 SIR_SWIDE_OVERRUN,
502 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
503 PADDR_A (dispatch),
504 /*
505 * We are in MSG_IN phase,
506 * Read the first byte of the message.
507 * If it is not an IGNORE RESIDUE message,
508 * signal overrun and jump to message
509 * processing.
510 */
511 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
512 HADDR_1 (msgin[0]),
513 SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
514 SIR_SWIDE_OVERRUN,
515 SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
516 PADDR_A (msg_in2),
517 /*
518 * We got the message we expected.
519 * Read the 2nd byte, and jump to dispatcher.
520 */
521 SCR_CLR (SCR_ACK),
522 0,
523 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
524 HADDR_1 (msgin[1]),
525 SCR_CLR (SCR_ACK),
526 0,
527 SCR_JUMP,
528 PADDR_A (dispatch),
529}/*-------------------------< DATAO_DONE >-----------------------*/,{
530 /*
531 * Save current pointer to LASTP.
532 */
533 SCR_STORE_REL (temp, 4),
534 offsetof (struct sym_ccb, phys.head.lastp),
535 /*
536 * If the SODL is not full jump to dispatcher.
537 * We anticipate a STATUS phase.
538 */
539 SCR_FROM_REG (scntl2),
540 0,
541 SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
542 PADDR_A (datao_done_wss),
543 SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
544 PADDR_A (status),
545 SCR_JUMP,
546 PADDR_A (dispatch),
547}/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
548 /*
549 * The SODL is full, clear this condition.
550 */
551 SCR_REG_REG (scntl2, SCR_OR, WSS),
552 0,
553 /*
554 * And signal a DATA UNDERRUN condition
555 * to the C code.
556 */
557 SCR_INT,
558 SIR_SODL_UNDERRUN,
559 SCR_JUMP,
560 PADDR_A (dispatch),
561}/*-------------------------< DATAI_PHASE >----------------------*/,{
562 /*
563 * Jump to current pointer.
564 */
565 SCR_LOAD_REL (temp, 4),
566 offsetof (struct sym_ccb, phys.head.lastp),
567 SCR_RETURN,
568 0,
569}/*-------------------------< DATAO_PHASE >----------------------*/,{
570 /*
571 * C1010-66 errata work-around.
572 * Extra clocks of data hold must be inserted
573 * in DATA OUT phase on 33 MHz PCI BUS.
574 * Patched with a NOOP for other chips.
575 */
576 SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
577 0,
578 /*
579 * Jump to current pointer.
580 */
581 SCR_LOAD_REL (temp, 4),
582 offsetof (struct sym_ccb, phys.head.lastp),
583 SCR_RETURN,
584 0,
585}/*-------------------------< MSG_IN >---------------------------*/,{
586 /*
587 * Get the first byte of the message.
588 *
589 * The script processor doesn't negate the
590 * ACK signal after this transfer.
591 */
592 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
593 HADDR_1 (msgin[0]),
594}/*-------------------------< MSG_IN2 >--------------------------*/,{
595 /*
596 * Check first against 1 byte messages
597 * that we handle from SCRIPTS.
598 */
599 SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
600 PADDR_A (complete),
601 SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
602 PADDR_A (disconnect),
603 SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
604 PADDR_A (save_dp),
605 SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
606 PADDR_A (restore_dp),
607 /*
608 * We handle all other messages from the
609 * C code, so no need to waste on-chip RAM
610 * for those ones.
611 */
612 SCR_JUMP,
613 PADDR_B (msg_in_etc),
614}/*-------------------------< STATUS >---------------------------*/,{
615 /*
616 * get the status
617 */
618 SCR_MOVE_ABS (1) ^ SCR_STATUS,
619 HADDR_1 (scratch),
620#ifdef SYM_CONF_IARB_SUPPORT
621 /*
622 * If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
623 * since we may have to tamper the start queue from
624 * the C code.
625 */
626 SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
627 8,
628 SCR_REG_REG (scntl1, SCR_AND, ~IARB),
629 0,
630#endif
631 /*
632 * save status to scsi_status.
633 * mark as complete.
634 */
635 SCR_TO_REG (SS_REG),
636 0,
637 SCR_LOAD_REG (HS_REG, HS_COMPLETE),
638 0,
639 /*
640 * Anticipate the MESSAGE PHASE for
641 * the TASK COMPLETE message.
642 */
643 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
644 PADDR_A (msg_in),
645 SCR_JUMP,
646 PADDR_A (dispatch),
647}/*-------------------------< COMPLETE >-------------------------*/,{
648 /*
649 * Complete message.
650 *
651 * When we terminate the cycle by clearing ACK,
652 * the target may disconnect immediately.
653 *
654 * We don't want to be told of an "unexpected disconnect",
655 * so we disable this feature.
656 */
657 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
658 0,
659 /*
660 * Terminate cycle ...
661 */
662 SCR_CLR (SCR_ACK|SCR_ATN),
663 0,
664 /*
665 * ... and wait for the disconnect.
666 */
667 SCR_WAIT_DISC,
668 0,
669}/*-------------------------< COMPLETE2 >------------------------*/,{
670 /*
671 * Save host status.
672 */
673 SCR_STORE_REL (scr0, 4),
674 offsetof (struct sym_ccb, phys.head.status),
675 /*
676 * Some bridges may reorder DMA writes to memory.
677 * We donnot want the CPU to deal with completions
678 * without all the posted write having been flushed
679 * to memory. This DUMMY READ should flush posted
680 * buffers prior to the CPU having to deal with
681 * completions.
682 */
683 SCR_LOAD_REL (scr0, 4), /* DUMMY READ */
684 offsetof (struct sym_ccb, phys.head.status),
685
686 /*
687 * If command resulted in not GOOD status,
688 * call the C code if needed.
689 */
690 SCR_FROM_REG (SS_REG),
691 0,
692 SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
693 PADDR_B (bad_status),
694 /*
695 * If we performed an auto-sense, call
696 * the C code to synchronyze task aborts
697 * with UNIT ATTENTION conditions.
698 */
699 SCR_FROM_REG (HF_REG),
700 0,
701 SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
702 PADDR_A (complete_error),
703}/*-------------------------< DONE >-----------------------------*/,{
704 /*
705 * Copy the DSA to the DONE QUEUE and
706 * signal completion to the host.
707 * If we are interrupted between DONE
708 * and DONE_END, we must reset, otherwise
709 * the completed CCB may be lost.
710 */
711 SCR_STORE_ABS (dsa, 4),
712 PADDR_B (scratch),
713 SCR_LOAD_ABS (dsa, 4),
714 PADDR_B (done_pos),
715 SCR_LOAD_ABS (scratcha, 4),
716 PADDR_B (scratch),
717 SCR_STORE_REL (scratcha, 4),
718 0,
719 /*
720 * The instruction below reads the DONE QUEUE next
721 * free position from memory.
722 * In addition it ensures that all PCI posted writes
723 * are flushed and so the DSA value of the done
724 * CCB is visible by the CPU before INTFLY is raised.
725 */
726 SCR_LOAD_REL (scratcha, 4),
727 4,
728 SCR_INT_FLY,
729 0,
730 SCR_STORE_ABS (scratcha, 4),
731 PADDR_B (done_pos),
732}/*-------------------------< DONE_END >-------------------------*/,{
733 SCR_JUMP,
734 PADDR_A (start),
735}/*-------------------------< COMPLETE_ERROR >-------------------*/,{
736 SCR_LOAD_ABS (scratcha, 4),
737 PADDR_B (startpos),
738 SCR_INT,
739 SIR_COMPLETE_ERROR,
740}/*-------------------------< SAVE_DP >--------------------------*/,{
741 /*
742 * Clear ACK immediately.
743 * No need to delay it.
744 */
745 SCR_CLR (SCR_ACK),
746 0,
747 /*
748 * Keep track we received a SAVE DP, so
749 * we will switch to the other PM context
750 * on the next PM since the DP may point
751 * to the current PM context.
752 */
753 SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
754 0,
755 /*
756 * SAVE_DP message:
757 * Copy LASTP to SAVEP.
758 */
759 SCR_LOAD_REL (scratcha, 4),
760 offsetof (struct sym_ccb, phys.head.lastp),
761 SCR_STORE_REL (scratcha, 4),
762 offsetof (struct sym_ccb, phys.head.savep),
763 /*
764 * Anticipate the MESSAGE PHASE for
765 * the DISCONNECT message.
766 */
767 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
768 PADDR_A (msg_in),
769 SCR_JUMP,
770 PADDR_A (dispatch),
771}/*-------------------------< RESTORE_DP >-----------------------*/,{
772 /*
773 * Clear ACK immediately.
774 * No need to delay it.
775 */
776 SCR_CLR (SCR_ACK),
777 0,
778 /*
779 * Copy SAVEP to LASTP.
780 */
781 SCR_LOAD_REL (scratcha, 4),
782 offsetof (struct sym_ccb, phys.head.savep),
783 SCR_STORE_REL (scratcha, 4),
784 offsetof (struct sym_ccb, phys.head.lastp),
785 SCR_JUMP,
786 PADDR_A (dispatch),
787}/*-------------------------< DISCONNECT >-----------------------*/,{
788 /*
789 * DISCONNECTing ...
790 *
791 * disable the "unexpected disconnect" feature,
792 * and remove the ACK signal.
793 */
794 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
795 0,
796 SCR_CLR (SCR_ACK|SCR_ATN),
797 0,
798 /*
799 * Wait for the disconnect.
800 */
801 SCR_WAIT_DISC,
802 0,
803 /*
804 * Status is: DISCONNECTED.
805 */
806 SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
807 0,
808 /*
809 * Save host status.
810 */
811 SCR_STORE_REL (scr0, 4),
812 offsetof (struct sym_ccb, phys.head.status),
813 SCR_JUMP,
814 PADDR_A (start),
815}/*-------------------------< IDLE >-----------------------------*/,{
816 /*
817 * Nothing to do?
818 * Switch the LED off and wait for reselect.
819 * Will be patched with a NO_OP if LED
820 * not needed or not desired.
821 */
822 SCR_REG_REG (gpreg, SCR_OR, 0x01),
823 0,
824#ifdef SYM_CONF_IARB_SUPPORT
825 SCR_JUMPR,
826 8,
827#endif
828}/*-------------------------< UNGETJOB >-------------------------*/,{
829#ifdef SYM_CONF_IARB_SUPPORT
830 /*
831 * Set IMMEDIATE ARBITRATION, for the next time.
832 * This will give us better chance to win arbitration
833 * for the job we just wanted to do.
834 */
835 SCR_REG_REG (scntl1, SCR_OR, IARB),
836 0,
837#endif
838 /*
839 * We are not able to restart the SCRIPTS if we are
840 * interrupted and these instruction haven't been
841 * all executed. BTW, this is very unlikely to
842 * happen, but we check that from the C code.
843 */
844 SCR_LOAD_REG (dsa, 0xff),
845 0,
846 SCR_STORE_ABS (scratcha, 4),
847 PADDR_B (startpos),
848}/*-------------------------< RESELECT >-------------------------*/,{
849#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
850 /*
851 * Make sure we are in initiator mode.
852 */
853 SCR_CLR (SCR_TRG),
854 0,
855#endif
856 /*
857 * Sleep waiting for a reselection.
858 */
859 SCR_WAIT_RESEL,
860 PADDR_A(start),
861}/*-------------------------< RESELECTED >-----------------------*/,{
862 /*
863 * Switch the LED on.
864 * Will be patched with a NO_OP if LED
865 * not needed or not desired.
866 */
867 SCR_REG_REG (gpreg, SCR_AND, 0xfe),
868 0,
869 /*
870 * load the target id into the sdid
871 */
872 SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
873 0,
874 SCR_TO_REG (sdid),
875 0,
876 /*
877 * Load the target control block address
878 */
879 SCR_LOAD_ABS (dsa, 4),
880 PADDR_B (targtbl),
881 SCR_SFBR_REG (dsa, SCR_SHL, 0),
882 0,
883 SCR_REG_REG (dsa, SCR_SHL, 0),
884 0,
885 SCR_REG_REG (dsa, SCR_AND, 0x3c),
886 0,
887 SCR_LOAD_REL (dsa, 4),
888 0,
889 /*
890 * We expect MESSAGE IN phase.
891 * If not, get help from the C code.
892 */
893 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
894 SIR_RESEL_NO_MSG_IN,
895 /*
896 * Load the legacy synchronous transfer registers.
897 */
898 SCR_LOAD_REL (scntl3, 1),
899 offsetof(struct sym_tcb, head.wval),
900 SCR_LOAD_REL (sxfer, 1),
901 offsetof(struct sym_tcb, head.sval),
902}/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
903 /*
904 * The C1010 uses a new synchronous timing scheme.
905 * Will be patched with a NO_OP if not a C1010.
906 */
907 SCR_LOAD_REL (scntl4, 1),
908 offsetof(struct sym_tcb, head.uval),
909 /*
910 * Get the IDENTIFY message.
911 */
912 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
913 HADDR_1 (msgin),
914 /*
915 * If IDENTIFY LUN #0, use a faster path
916 * to find the LCB structure.
917 */
918 SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
919 PADDR_A (resel_lun0),
920 /*
921 * If message isn't an IDENTIFY,
922 * tell the C code about.
923 */
924 SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
925 SIR_RESEL_NO_IDENTIFY,
926 /*
927 * It is an IDENTIFY message,
928 * Load the LUN control block address.
929 */
930 SCR_LOAD_REL (dsa, 4),
931 offsetof(struct sym_tcb, head.luntbl_sa),
932 SCR_SFBR_REG (dsa, SCR_SHL, 0),
933 0,
934 SCR_REG_REG (dsa, SCR_SHL, 0),
935 0,
936 SCR_REG_REG (dsa, SCR_AND, 0xfc),
937 0,
938 SCR_LOAD_REL (dsa, 4),
939 0,
940 SCR_JUMPR,
941 8,
942}/*-------------------------< RESEL_LUN0 >-----------------------*/,{
943 /*
944 * LUN 0 special case (but usual one :))
945 */
946 SCR_LOAD_REL (dsa, 4),
947 offsetof(struct sym_tcb, head.lun0_sa),
948 /*
949 * Jump indirectly to the reselect action for this LUN.
950 */
951 SCR_LOAD_REL (temp, 4),
952 offsetof(struct sym_lcb, head.resel_sa),
953 SCR_RETURN,
954 0,
955 /* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
956}/*-------------------------< RESEL_TAG >------------------------*/,{
957 /*
958 * ACK the IDENTIFY previously received.
959 */
960 SCR_CLR (SCR_ACK),
961 0,
962 /*
963 * It shall be a tagged command.
964 * Read SIMPLE+TAG.
965 * The C code will deal with errors.
966 * Agressive optimization, is'nt it? :)
967 */
968 SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
969 HADDR_1 (msgin),
970 /*
971 * Load the pointer to the tagged task
972 * table for this LUN.
973 */
974 SCR_LOAD_REL (dsa, 4),
975 offsetof(struct sym_lcb, head.itlq_tbl_sa),
976 /*
977 * The SIDL still contains the TAG value.
978 * Agressive optimization, isn't it? :):)
979 */
980 SCR_REG_SFBR (sidl, SCR_SHL, 0),
981 0,
982#if SYM_CONF_MAX_TASK*4 > 512
983 SCR_JUMPR ^ IFFALSE (CARRYSET),
984 8,
985 SCR_REG_REG (dsa1, SCR_OR, 2),
986 0,
987 SCR_REG_REG (sfbr, SCR_SHL, 0),
988 0,
989 SCR_JUMPR ^ IFFALSE (CARRYSET),
990 8,
991 SCR_REG_REG (dsa1, SCR_OR, 1),
992 0,
993#elif SYM_CONF_MAX_TASK*4 > 256
994 SCR_JUMPR ^ IFFALSE (CARRYSET),
995 8,
996 SCR_REG_REG (dsa1, SCR_OR, 1),
997 0,
998#endif
999 /*
1000 * Retrieve the DSA of this task.
1001 * JUMP indirectly to the restart point of the CCB.
1002 */
1003 SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
1004 0,
1005 SCR_LOAD_REL (dsa, 4),
1006 0,
1007 SCR_LOAD_REL (temp, 4),
1008 offsetof(struct sym_ccb, phys.head.go.restart),
1009 SCR_RETURN,
1010 0,
1011 /* In normal situations we branch to RESEL_DSA */
1012}/*-------------------------< RESEL_DSA >------------------------*/,{
1013 /*
1014 * ACK the IDENTIFY or TAG previously received.
1015 */
1016 SCR_CLR (SCR_ACK),
1017 0,
1018}/*-------------------------< RESEL_DSA1 >-----------------------*/,{
1019 /*
1020 * Initialize the status registers
1021 */
1022 SCR_LOAD_REL (scr0, 4),
1023 offsetof (struct sym_ccb, phys.head.status),
1024 /*
1025 * Jump to dispatcher.
1026 */
1027 SCR_JUMP,
1028 PADDR_A (dispatch),
1029}/*-------------------------< RESEL_NO_TAG >---------------------*/,{
1030 /*
1031 * Load the DSA with the unique ITL task.
1032 */
1033 SCR_LOAD_REL (dsa, 4),
1034 offsetof(struct sym_lcb, head.itl_task_sa),
1035 /*
1036 * JUMP indirectly to the restart point of the CCB.
1037 */
1038 SCR_LOAD_REL (temp, 4),
1039 offsetof(struct sym_ccb, phys.head.go.restart),
1040 SCR_RETURN,
1041 0,
1042 /* In normal situations we branch to RESEL_DSA */
1043}/*-------------------------< DATA_IN >--------------------------*/,{
1044/*
1045 * Because the size depends on the
1046 * #define SYM_CONF_MAX_SG parameter,
1047 * it is filled in at runtime.
1048 *
1049 * ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1050 * || SCR_CHMOV_TBL ^ SCR_DATA_IN,
1051 * || offsetof (struct sym_dsb, data[ i]),
1052 * ##==========================================
1053 */
10540
1055}/*-------------------------< DATA_IN2 >-------------------------*/,{
1056 SCR_CALL,
1057 PADDR_A (datai_done),
1058 SCR_JUMP,
1059 PADDR_B (data_ovrun),
1060}/*-------------------------< DATA_OUT >-------------------------*/,{
1061/*
1062 * Because the size depends on the
1063 * #define SYM_CONF_MAX_SG parameter,
1064 * it is filled in at runtime.
1065 *
1066 * ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1067 * || SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1068 * || offsetof (struct sym_dsb, data[ i]),
1069 * ##==========================================
1070 */
10710
1072}/*-------------------------< DATA_OUT2 >------------------------*/,{
1073 SCR_CALL,
1074 PADDR_A (datao_done),
1075 SCR_JUMP,
1076 PADDR_B (data_ovrun),
1077}/*-------------------------< PM0_DATA >-------------------------*/,{
1078 /*
1079 * Read our host flags to SFBR, so we will be able
1080 * to check against the data direction we expect.
1081 */
1082 SCR_FROM_REG (HF_REG),
1083 0,
1084 /*
1085 * Check against actual DATA PHASE.
1086 */
1087 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1088 PADDR_A (pm0_data_out),
1089 /*
1090 * Actual phase is DATA IN.
1091 * Check against expected direction.
1092 */
1093 SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1094 PADDR_B (data_ovrun),
1095 /*
1096 * Keep track we are moving data from the
1097 * PM0 DATA mini-script.
1098 */
1099 SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1100 0,
1101 /*
1102 * Move the data to memory.
1103 */
1104 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1105 offsetof (struct sym_ccb, phys.pm0.sg),
1106 SCR_JUMP,
1107 PADDR_A (pm0_data_end),
1108}/*-------------------------< PM0_DATA_OUT >---------------------*/,{
1109 /*
1110 * Actual phase is DATA OUT.
1111 * Check against expected direction.
1112 */
1113 SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1114 PADDR_B (data_ovrun),
1115 /*
1116 * Keep track we are moving data from the
1117 * PM0 DATA mini-script.
1118 */
1119 SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1120 0,
1121 /*
1122 * Move the data from memory.
1123 */
1124 SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1125 offsetof (struct sym_ccb, phys.pm0.sg),
1126}/*-------------------------< PM0_DATA_END >---------------------*/,{
1127 /*
1128 * Clear the flag that told we were moving
1129 * data from the PM0 DATA mini-script.
1130 */
1131 SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
1132 0,
1133 /*
1134 * Return to the previous DATA script which
1135 * is guaranteed by design (if no bug) to be
1136 * the main DATA script for this transfer.
1137 */
1138 SCR_LOAD_REL (temp, 4),
1139 offsetof (struct sym_ccb, phys.pm0.ret),
1140 SCR_RETURN,
1141 0,
1142}/*-------------------------< PM1_DATA >-------------------------*/,{
1143 /*
1144 * Read our host flags to SFBR, so we will be able
1145 * to check against the data direction we expect.
1146 */
1147 SCR_FROM_REG (HF_REG),
1148 0,
1149 /*
1150 * Check against actual DATA PHASE.
1151 */
1152 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1153 PADDR_A (pm1_data_out),
1154 /*
1155 * Actual phase is DATA IN.
1156 * Check against expected direction.
1157 */
1158 SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1159 PADDR_B (data_ovrun),
1160 /*
1161 * Keep track we are moving data from the
1162 * PM1 DATA mini-script.
1163 */
1164 SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1165 0,
1166 /*
1167 * Move the data to memory.
1168 */
1169 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1170 offsetof (struct sym_ccb, phys.pm1.sg),
1171 SCR_JUMP,
1172 PADDR_A (pm1_data_end),
1173}/*-------------------------< PM1_DATA_OUT >---------------------*/,{
1174 /*
1175 * Actual phase is DATA OUT.
1176 * Check against expected direction.
1177 */
1178 SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1179 PADDR_B (data_ovrun),
1180 /*
1181 * Keep track we are moving data from the
1182 * PM1 DATA mini-script.
1183 */
1184 SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1185 0,
1186 /*
1187 * Move the data from memory.
1188 */
1189 SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1190 offsetof (struct sym_ccb, phys.pm1.sg),
1191}/*-------------------------< PM1_DATA_END >---------------------*/,{
1192 /*
1193 * Clear the flag that told we were moving
1194 * data from the PM1 DATA mini-script.
1195 */
1196 SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
1197 0,
1198 /*
1199 * Return to the previous DATA script which
1200 * is guaranteed by design (if no bug) to be
1201 * the main DATA script for this transfer.
1202 */
1203 SCR_LOAD_REL (temp, 4),
1204 offsetof (struct sym_ccb, phys.pm1.ret),
1205 SCR_RETURN,
1206 0,
1207}/*-------------------------<>-----------------------------------*/
1208};
1209
1210static struct SYM_FWB_SCR SYM_FWB_SCR = {
1211/*--------------------------< START64 >--------------------------*/ {
1212 /*
1213 * SCRIPT entry point for the 895A, 896 and 1010.
1214 * For now, there is no specific stuff for those
1215 * chips at this point, but this may come.
1216 */
1217 SCR_JUMP,
1218 PADDR_A (init),
1219}/*-------------------------< NO_DATA >--------------------------*/,{
1220 SCR_JUMP,
1221 PADDR_B (data_ovrun),
1222}/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
1223 /*
1224 * We are jumped here by the C code, if we have
1225 * some target to reset or some disconnected
1226 * job to abort. Since error recovery is a serious
1227 * busyness, we will really reset the SCSI BUS, if
1228 * case of a SCSI interrupt occurring in this path.
1229 */
1230#ifdef SYM_CONF_TARGET_ROLE_SUPPORT
1231 /*
1232 * Set initiator mode.
1233 */
1234 SCR_CLR (SCR_TRG),
1235 0,
1236#endif
1237 /*
1238 * And try to select this target.
1239 */
1240 SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
1241 PADDR_A (reselect),
1242 /*
1243 * Wait for the selection to complete or
1244 * the selection to time out.
1245 */
1246 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1247 -8,
1248 /*
1249 * Call the C code.
1250 */
1251 SCR_INT,
1252 SIR_TARGET_SELECTED,
1253 /*
1254 * The C code should let us continue here.
1255 * Send the 'kiss of death' message.
1256 * We expect an immediate disconnect once
1257 * the target has eaten the message.
1258 */
1259 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1260 0,
1261 SCR_MOVE_TBL ^ SCR_MSG_OUT,
1262 offsetof (struct sym_hcb, abrt_tbl),
1263 SCR_CLR (SCR_ACK|SCR_ATN),
1264 0,
1265 SCR_WAIT_DISC,
1266 0,
1267 /*
1268 * Tell the C code that we are done.
1269 */
1270 SCR_INT,
1271 SIR_ABORT_SENT,
1272}/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
1273 /*
1274 * Jump at scheduler.
1275 */
1276 SCR_JUMP,
1277 PADDR_A (start),
1278}/*-------------------------< MSG_IN_ETC >-----------------------*/,{
1279 /*
1280 * If it is an EXTENDED (variable size message)
1281 * Handle it.
1282 */
1283 SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
1284 PADDR_B (msg_extended),
1285 /*
1286 * Let the C code handle any other
1287 * 1 byte message.
1288 */
1289 SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
1290 PADDR_B (msg_received),
1291 SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
1292 PADDR_B (msg_received),
1293 /*
1294 * We donnot handle 2 bytes messages from SCRIPTS.
1295 * So, let the C code deal with these ones too.
1296 */
1297 SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
1298 PADDR_B (msg_weird_seen),
1299 SCR_CLR (SCR_ACK),
1300 0,
1301 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1302 HADDR_1 (msgin[1]),
1303}/*-------------------------< MSG_RECEIVED >---------------------*/,{
1304 SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
1305 0,
1306 SCR_INT,
1307 SIR_MSG_RECEIVED,
1308}/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
1309 SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
1310 0,
1311 SCR_INT,
1312 SIR_MSG_WEIRD,
1313}/*-------------------------< MSG_EXTENDED >---------------------*/,{
1314 /*
1315 * Clear ACK and get the next byte
1316 * assumed to be the message length.
1317 */
1318 SCR_CLR (SCR_ACK),
1319 0,
1320 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1321 HADDR_1 (msgin[1]),
1322 /*
1323 * Try to catch some unlikely situations as 0 length
1324 * or too large the length.
1325 */
1326 SCR_JUMP ^ IFTRUE (DATA (0)),
1327 PADDR_B (msg_weird_seen),
1328 SCR_TO_REG (scratcha),
1329 0,
1330 SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
1331 0,
1332 SCR_JUMP ^ IFTRUE (CARRYSET),
1333 PADDR_B (msg_weird_seen),
1334 /*
1335 * We donnot handle extended messages from SCRIPTS.
1336 * Read the amount of data correponding to the
1337 * message length and call the C code.
1338 */
1339 SCR_STORE_REL (scratcha, 1),
1340 offsetof (struct sym_dsb, smsg_ext.size),
1341 SCR_CLR (SCR_ACK),
1342 0,
1343 SCR_MOVE_TBL ^ SCR_MSG_IN,
1344 offsetof (struct sym_dsb, smsg_ext),
1345 SCR_JUMP,
1346 PADDR_B (msg_received),
1347}/*-------------------------< MSG_BAD >--------------------------*/,{
1348 /*
1349 * unimplemented message - reject it.
1350 */
1351 SCR_INT,
1352 SIR_REJECT_TO_SEND,
1353 SCR_SET (SCR_ATN),
1354 0,
1355 SCR_JUMP,
1356 PADDR_A (clrack),
1357}/*-------------------------< MSG_WEIRD >------------------------*/,{
1358 /*
1359 * weird message received
1360 * ignore all MSG IN phases and reject it.
1361 */
1362 SCR_INT,
1363 SIR_REJECT_TO_SEND,
1364 SCR_SET (SCR_ATN),
1365 0,
1366}/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
1367 SCR_CLR (SCR_ACK),
1368 0,
1369 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
1370 PADDR_A (dispatch),
1371 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1372 HADDR_1 (scratch),
1373 SCR_JUMP,
1374 PADDR_B (msg_weird1),
1375}/*-------------------------< WDTR_RESP >------------------------*/,{
1376 /*
1377 * let the target fetch our answer.
1378 */
1379 SCR_SET (SCR_ATN),
1380 0,
1381 SCR_CLR (SCR_ACK),
1382 0,
1383 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1384 PADDR_B (nego_bad_phase),
1385}/*-------------------------< SEND_WDTR >------------------------*/,{
1386 /*
1387 * Send the M_X_WIDE_REQ
1388 */
1389 SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
1390 HADDR_1 (msgout),
1391 SCR_JUMP,
1392 PADDR_B (msg_out_done),
1393}/*-------------------------< SDTR_RESP >------------------------*/,{
1394 /*
1395 * let the target fetch our answer.
1396 */
1397 SCR_SET (SCR_ATN),
1398 0,
1399 SCR_CLR (SCR_ACK),
1400 0,
1401 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1402 PADDR_B (nego_bad_phase),
1403}/*-------------------------< SEND_SDTR >------------------------*/,{
1404 /*
1405 * Send the M_X_SYNC_REQ
1406 */
1407 SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
1408 HADDR_1 (msgout),
1409 SCR_JUMP,
1410 PADDR_B (msg_out_done),
1411}/*-------------------------< PPR_RESP >-------------------------*/,{
1412 /*
1413 * let the target fetch our answer.
1414 */
1415 SCR_SET (SCR_ATN),
1416 0,
1417 SCR_CLR (SCR_ACK),
1418 0,
1419 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1420 PADDR_B (nego_bad_phase),
1421}/*-------------------------< SEND_PPR >-------------------------*/,{
1422 /*
1423 * Send the M_X_PPR_REQ
1424 */
1425 SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
1426 HADDR_1 (msgout),
1427 SCR_JUMP,
1428 PADDR_B (msg_out_done),
1429}/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
1430 SCR_INT,
1431 SIR_NEGO_PROTO,
1432 SCR_JUMP,
1433 PADDR_A (dispatch),
1434}/*-------------------------< MSG_OUT >--------------------------*/,{
1435 /*
1436 * The target requests a message.
1437 * We donnot send messages that may
1438 * require the device to go to bus free.
1439 */
1440 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1441 HADDR_1 (msgout),
1442 /*
1443 * ... wait for the next phase
1444 * if it's a message out, send it again, ...
1445 */
1446 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
1447 PADDR_B (msg_out),
1448}/*-------------------------< MSG_OUT_DONE >---------------------*/,{
1449 /*
1450 * Let the C code be aware of the
1451 * sent message and clear the message.
1452 */
1453 SCR_INT,
1454 SIR_MSG_OUT_DONE,
1455 /*
1456 * ... and process the next phase
1457 */
1458 SCR_JUMP,
1459 PADDR_A (dispatch),
1460}/*-------------------------< DATA_OVRUN >-----------------------*/,{
1461 /*
1462 * Use scratcha to count the extra bytes.
1463 */
1464 SCR_LOAD_ABS (scratcha, 4),
1465 PADDR_B (zero),
1466}/*-------------------------< DATA_OVRUN1 >----------------------*/,{
1467 /*
1468 * The target may want to transfer too much data.
1469 *
1470 * If phase is DATA OUT write 1 byte and count it.
1471 */
1472 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
1473 16,
1474 SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
1475 HADDR_1 (scratch),
1476 SCR_JUMP,
1477 PADDR_B (data_ovrun2),
1478 /*
1479 * If WSR is set, clear this condition, and
1480 * count this byte.
1481 */
1482 SCR_FROM_REG (scntl2),
1483 0,
1484 SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
1485 16,
1486 SCR_REG_REG (scntl2, SCR_OR, WSR),
1487 0,
1488 SCR_JUMP,
1489 PADDR_B (data_ovrun2),
1490 /*
1491 * Finally check against DATA IN phase.
1492 * Signal data overrun to the C code
1493 * and jump to dispatcher if not so.
1494 * Read 1 byte otherwise and count it.
1495 */
1496 SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
1497 16,
1498 SCR_INT,
1499 SIR_DATA_OVERRUN,
1500 SCR_JUMP,
1501 PADDR_A (dispatch),
1502 SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
1503 HADDR_1 (scratch),
1504}/*-------------------------< DATA_OVRUN2 >----------------------*/,{
1505 /*
1506 * Count this byte.
1507 * This will allow to return a negative
1508 * residual to user.
1509 */
1510 SCR_REG_REG (scratcha, SCR_ADD, 0x01),
1511 0,
1512 SCR_REG_REG (scratcha1, SCR_ADDC, 0),
1513 0,
1514 SCR_REG_REG (scratcha2, SCR_ADDC, 0),
1515 0,
1516 /*
1517 * .. and repeat as required.
1518 */
1519 SCR_JUMP,
1520 PADDR_B (data_ovrun1),
1521}/*-------------------------< ABORT_RESEL >----------------------*/,{
1522 SCR_SET (SCR_ATN),
1523 0,
1524 SCR_CLR (SCR_ACK),
1525 0,
1526 /*
1527 * send the abort/abortag/reset message
1528 * we expect an immediate disconnect
1529 */
1530 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1531 0,
1532 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1533 HADDR_1 (msgout),
1534 SCR_CLR (SCR_ACK|SCR_ATN),
1535 0,
1536 SCR_WAIT_DISC,
1537 0,
1538 SCR_INT,
1539 SIR_RESEL_ABORTED,
1540 SCR_JUMP,
1541 PADDR_A (start),
1542}/*-------------------------< RESEND_IDENT >---------------------*/,{
1543 /*
1544 * The target stays in MSG OUT phase after having acked
1545 * Identify [+ Tag [+ Extended message ]]. Targets shall
1546 * behave this way on parity error.
1547 * We must send it again all the messages.
1548 */
1549 SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
1550 0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
1551 SCR_JUMP,
1552 PADDR_A (send_ident),
1553}/*-------------------------< IDENT_BREAK >----------------------*/,{
1554 SCR_CLR (SCR_ATN),
1555 0,
1556 SCR_JUMP,
1557 PADDR_A (select2),
1558}/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
1559 SCR_SET (SCR_ATN),
1560 0,
1561 SCR_JUMP,
1562 PADDR_A (select2),
1563}/*-------------------------< SDATA_IN >-------------------------*/,{
1564 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1565 offsetof (struct sym_dsb, sense),
1566 SCR_CALL,
1567 PADDR_A (datai_done),
1568 SCR_JUMP,
1569 PADDR_B (data_ovrun),
1570}/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
1571 /*
1572 * Message is an IDENTIFY, but lun is unknown.
1573 * Signal problem to C code for logging the event.
1574 * Send a M_ABORT to clear all pending tasks.
1575 */
1576 SCR_INT,
1577 SIR_RESEL_BAD_LUN,
1578 SCR_JUMP,
1579 PADDR_B (abort_resel),
1580}/*-------------------------< BAD_I_T_L >------------------------*/,{
1581 /*
1582 * We donnot have a task for that I_T_L.
1583 * Signal problem to C code for logging the event.
1584 * Send a M_ABORT message.
1585 */
1586 SCR_INT,
1587 SIR_RESEL_BAD_I_T_L,
1588 SCR_JUMP,
1589 PADDR_B (abort_resel),
1590}/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
1591 /*
1592 * We donnot have a task that matches the tag.
1593 * Signal problem to C code for logging the event.
1594 * Send a M_ABORTTAG message.
1595 */
1596 SCR_INT,
1597 SIR_RESEL_BAD_I_T_L_Q,
1598 SCR_JUMP,
1599 PADDR_B (abort_resel),
1600}/*-------------------------< BAD_STATUS >-----------------------*/,{
1601 /*
1602 * Anything different from INTERMEDIATE
1603 * CONDITION MET should be a bad SCSI status,
1604 * given that GOOD status has already been tested.
1605 * Call the C code.
1606 */
1607 SCR_LOAD_ABS (scratcha, 4),
1608 PADDR_B (startpos),
1609 SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
1610 SIR_BAD_SCSI_STATUS,
1611 SCR_RETURN,
1612 0,
1613}/*-------------------------< PM_HANDLE >------------------------*/,{
1614 /*
1615 * Phase mismatch handling.
1616 *
1617 * Since we have to deal with 2 SCSI data pointers
1618 * (current and saved), we need at least 2 contexts.
1619 * Each context (pm0 and pm1) has a saved area, a
1620 * SAVE mini-script and a DATA phase mini-script.
1621 */
1622 /*
1623 * Get the PM handling flags.
1624 */
1625 SCR_FROM_REG (HF_REG),
1626 0,
1627 /*
1628 * If no flags (1rst PM for example), avoid
1629 * all the below heavy flags testing.
1630 * This makes the normal case a bit faster.
1631 */
1632 SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
1633 PADDR_B (pm_handle1),
1634 /*
1635 * If we received a SAVE DP, switch to the
1636 * other PM context since the savep may point
1637 * to the current PM context.
1638 */
1639 SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
1640 8,
1641 SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
1642 0,
1643 /*
1644 * If we have been interrupt in a PM DATA mini-script,
1645 * we take the return address from the corresponding
1646 * saved area.
1647 * This ensure the return address always points to the
1648 * main DATA script for this transfer.
1649 */
1650 SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
1651 PADDR_B (pm_handle1),
1652 SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
1653 16,
1654 SCR_LOAD_REL (ia, 4),
1655 offsetof(struct sym_ccb, phys.pm0.ret),
1656 SCR_JUMP,
1657 PADDR_B (pm_save),
1658 SCR_LOAD_REL (ia, 4),
1659 offsetof(struct sym_ccb, phys.pm1.ret),
1660 SCR_JUMP,
1661 PADDR_B (pm_save),
1662}/*-------------------------< PM_HANDLE1 >-----------------------*/,{
1663 /*
1664 * Normal case.
1665 * Update the return address so that it
1666 * will point after the interrupted MOVE.
1667 */
1668 SCR_REG_REG (ia, SCR_ADD, 8),
1669 0,
1670 SCR_REG_REG (ia1, SCR_ADDC, 0),
1671 0,
1672}/*-------------------------< PM_SAVE >--------------------------*/,{
1673 /*
1674 * Clear all the flags that told us if we were
1675 * interrupted in a PM DATA mini-script and/or
1676 * we received a SAVE DP.
1677 */
1678 SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
1679 0,
1680 /*
1681 * Choose the current PM context.
1682 */
1683 SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
1684 PADDR_B (pm1_save),
1685}/*-------------------------< PM0_SAVE >-------------------------*/,{
1686 SCR_STORE_REL (ia, 4),
1687 offsetof(struct sym_ccb, phys.pm0.ret),
1688 /*
1689 * If WSR bit is set, either UA and RBC may
1690 * have to be changed whether the device wants
1691 * to ignore this residue or not.
1692 */
1693 SCR_FROM_REG (scntl2),
1694 0,
1695 SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1696 PADDR_B (pm_wsr_handle),
1697 /*
1698 * Save the remaining byte count, the updated
1699 * address and the return address.
1700 */
1701 SCR_STORE_REL (rbc, 4),
1702 offsetof(struct sym_ccb, phys.pm0.sg.size),
1703 SCR_STORE_REL (ua, 4),
1704 offsetof(struct sym_ccb, phys.pm0.sg.addr),
1705 /*
1706 * Set the current pointer at the PM0 DATA mini-script.
1707 */
1708 SCR_LOAD_ABS (ia, 4),
1709 PADDR_B (pm0_data_addr),
1710}/*-------------------------< PM_SAVE_END >----------------------*/,{
1711 SCR_STORE_REL (ia, 4),
1712 offsetof(struct sym_ccb, phys.head.lastp),
1713 SCR_JUMP,
1714 PADDR_A (dispatch),
1715}/*-------------------------< PM1_SAVE >-------------------------*/,{
1716 SCR_STORE_REL (ia, 4),
1717 offsetof(struct sym_ccb, phys.pm1.ret),
1718 /*
1719 * If WSR bit is set, either UA and RBC may
1720 * have to be changed whether the device wants
1721 * to ignore this residue or not.
1722 */
1723 SCR_FROM_REG (scntl2),
1724 0,
1725 SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1726 PADDR_B (pm_wsr_handle),
1727 /*
1728 * Save the remaining byte count, the updated
1729 * address and the return address.
1730 */
1731 SCR_STORE_REL (rbc, 4),
1732 offsetof(struct sym_ccb, phys.pm1.sg.size),
1733 SCR_STORE_REL (ua, 4),
1734 offsetof(struct sym_ccb, phys.pm1.sg.addr),
1735 /*
1736 * Set the current pointer at the PM1 DATA mini-script.
1737 */
1738 SCR_LOAD_ABS (ia, 4),
1739 PADDR_B (pm1_data_addr),
1740 SCR_JUMP,
1741 PADDR_B (pm_save_end),
1742}/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
1743 /*
1744 * Phase mismatch handling from SCRIPT with WSR set.
1745 * Such a condition can occur if the chip wants to
1746 * execute a CHMOV(size > 1) when the WSR bit is
1747 * set and the target changes PHASE.
1748 *
1749 * We must move the residual byte to memory.
1750 *
1751 * UA contains bit 0..31 of the address to
1752 * move the residual byte.
1753 * Move it to the table indirect.
1754 */
1755 SCR_STORE_REL (ua, 4),
1756 offsetof (struct sym_ccb, phys.wresid.addr),
1757 /*
1758 * Increment UA (move address to next position).
1759 */
1760 SCR_REG_REG (ua, SCR_ADD, 1),
1761 0,
1762 SCR_REG_REG (ua1, SCR_ADDC, 0),
1763 0,
1764 SCR_REG_REG (ua2, SCR_ADDC, 0),
1765 0,
1766 SCR_REG_REG (ua3, SCR_ADDC, 0),
1767 0,
1768 /*
1769 * Compute SCRATCHA as:
1770 * - size to transfer = 1 byte.
1771 * - bit 24..31 = high address bit [32...39].
1772 */
1773 SCR_LOAD_ABS (scratcha, 4),
1774 PADDR_B (zero),
1775 SCR_REG_REG (scratcha, SCR_OR, 1),
1776 0,
1777 SCR_FROM_REG (rbc3),
1778 0,
1779 SCR_TO_REG (scratcha3),
1780 0,
1781 /*
1782 * Move this value to the table indirect.
1783 */
1784 SCR_STORE_REL (scratcha, 4),
1785 offsetof (struct sym_ccb, phys.wresid.size),
1786 /*
1787 * Wait for a valid phase.
1788 * While testing with bogus QUANTUM drives, the C1010
1789 * sometimes raised a spurious phase mismatch with
1790 * WSR and the CHMOV(1) triggered another PM.
1791 * Waiting explicitely for the PHASE seemed to avoid
1792 * the nested phase mismatch. Btw, this didn't happen
1793 * using my IBM drives.
1794 */
1795 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
1796 0,
1797 /*
1798 * Perform the move of the residual byte.
1799 */
1800 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1801 offsetof (struct sym_ccb, phys.wresid),
1802 /*
1803 * We can now handle the phase mismatch with UA fixed.
1804 * RBC[0..23]=0 is a special case that does not require
1805 * a PM context. The C code also checks against this.
1806 */
1807 SCR_FROM_REG (rbc),
1808 0,
1809 SCR_RETURN ^ IFFALSE (DATA (0)),
1810 0,
1811 SCR_FROM_REG (rbc1),
1812 0,
1813 SCR_RETURN ^ IFFALSE (DATA (0)),
1814 0,
1815 SCR_FROM_REG (rbc2),
1816 0,
1817 SCR_RETURN ^ IFFALSE (DATA (0)),
1818 0,
1819 /*
1820 * RBC[0..23]=0.
1821 * Not only we donnot need a PM context, but this would
1822 * lead to a bogus CHMOV(0). This condition means that
1823 * the residual was the last byte to move from this CHMOV.
1824 * So, we just have to move the current data script pointer
1825 * (i.e. TEMP) to the SCRIPTS address following the
1826 * interrupted CHMOV and jump to dispatcher.
1827 * IA contains the data pointer to save.
1828 */
1829 SCR_JUMP,
1830 PADDR_B (pm_save_end),
1831}/*-------------------------< WSR_MA_HELPER >--------------------*/,{
1832 /*
1833 * Helper for the C code when WSR bit is set.
1834 * Perform the move of the residual byte.
1835 */
1836 SCR_CHMOV_TBL ^ SCR_DATA_IN,
1837 offsetof (struct sym_ccb, phys.wresid),
1838 SCR_JUMP,
1839 PADDR_A (dispatch),
1840
1841#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
1842}/*-------------------------< DATA_IO >--------------------------*/,{
1843 /*
1844 * We jump here if the data direction was unknown at the
1845 * time we had to queue the command to the scripts processor.
1846 * Pointers had been set as follow in this situation:
1847 * savep --> DATA_IO
1848 * lastp --> start pointer when DATA_IN
1849 * wlastp --> start pointer when DATA_OUT
1850 * This script sets savep and lastp according to the
1851 * direction chosen by the target.
1852 */
1853 SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)),
1854 PADDR_B (data_io_out),
1855}/*-------------------------< DATA_IO_IN >-----------------------*/,{
1856 /*
1857 * Direction is DATA IN.
1858 */
1859 SCR_LOAD_REL (scratcha, 4),
1860 offsetof (struct sym_ccb, phys.head.lastp),
1861}/*-------------------------< DATA_IO_COM >----------------------*/,{
1862 SCR_STORE_REL (scratcha, 4),
1863 offsetof (struct sym_ccb, phys.head.savep),
1864
1865 /*
1866 * Jump to the SCRIPTS according to actual direction.
1867 */
1868 SCR_LOAD_REL (temp, 4),
1869 offsetof (struct sym_ccb, phys.head.savep),
1870 SCR_RETURN,
1871 0,
1872}/*-------------------------< DATA_IO_OUT >----------------------*/,{
1873 /*
1874 * Direction is DATA OUT.
1875 */
1876 SCR_REG_REG (HF_REG, SCR_AND, (~HF_DATA_IN)),
1877 0,
1878 SCR_LOAD_REL (scratcha, 4),
1879 offsetof (struct sym_ccb, phys.head.wlastp),
1880 SCR_STORE_REL (scratcha, 4),
1881 offsetof (struct sym_ccb, phys.head.lastp),
1882 SCR_JUMP,
1883 PADDR_B(data_io_com),
1884#endif /* SYM_OPT_HANDLE_DIR_UNKNOWN */
1885
1886}/*-------------------------< ZERO >-----------------------------*/,{
1887 SCR_DATA_ZERO,
1888}/*-------------------------< SCRATCH >--------------------------*/,{
1889 SCR_DATA_ZERO,
1890}/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
1891 SCR_DATA_ZERO,
1892}/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
1893 SCR_DATA_ZERO,
1894}/*-------------------------< DONE_POS >-------------------------*/,{
1895 SCR_DATA_ZERO,
1896}/*-------------------------< STARTPOS >-------------------------*/,{
1897 SCR_DATA_ZERO,
1898}/*-------------------------< TARGTBL >--------------------------*/,{
1899 SCR_DATA_ZERO,
1900}/*-------------------------<>-----------------------------------*/
1901};
1902
1903static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
1904 /*-------------------------< SNOOPTEST >------------------------*/{
1905 /*
1906 * Read the variable from memory.
1907 */
1908 SCR_LOAD_REL (scratcha, 4),
1909 offsetof(struct sym_hcb, scratch),
1910 /*
1911 * Write the variable to memory.
1912 */
1913 SCR_STORE_REL (temp, 4),
1914 offsetof(struct sym_hcb, scratch),
1915 /*
1916 * Read back the variable from memory.
1917 */
1918 SCR_LOAD_REL (temp, 4),
1919 offsetof(struct sym_hcb, scratch),
1920}/*-------------------------< SNOOPEND >-------------------------*/,{
1921 /*
1922 * And stop.
1923 */
1924 SCR_INT,
1925 99,
1926}/*-------------------------<>-----------------------------------*/
1927};