aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/pci
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2011-07-22 19:39:42 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2011-07-22 19:39:42 -0400
commit6d16d6d9bb6f93e6f8506cfb3e91795d6443d54f (patch)
tree92a1c9e4b645fa6d1fffedaeb56141b66f847320 /drivers/pci
parent431bf99d26157d56689e5de65bd27ce9f077fc3f (diff)
parentb395fb36d59e17b9335805c10fa30fc51c8a94c6 (diff)
Merge branch 'core-iommu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'core-iommu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: iommu/core: Fix build with INTR_REMAP=y && CONFIG_DMAR=n iommu/amd: Don't use MSI address range for DMA addresses iommu/amd: Move missing parts to drivers/iommu iommu: Move iommu Kconfig entries to submenu x86/ia64: intel-iommu: move to drivers/iommu/ x86: amd_iommu: move to drivers/iommu/ msm: iommu: move to drivers/iommu/ drivers: iommu: move to a dedicated folder x86/amd-iommu: Store device alias as dev_data pointer x86/amd-iommu: Search for existind dev_data before allocting a new one x86/amd-iommu: Allow dev_data->alias to be NULL x86/amd-iommu: Use only dev_data in low-level domain attach/detach functions x86/amd-iommu: Use only dev_data for dte and iotlb flushing routines x86/amd-iommu: Store ATS state in dev_data x86/amd-iommu: Store devid in dev_data x86/amd-iommu: Introduce global dev_data_list x86/amd-iommu: Remove redundant device_flush_dte() calls iommu-api: Add missing header file Fix up trivial conflicts (independent additions close to each other) in drivers/Makefile and include/linux/pci.h
Diffstat (limited to 'drivers/pci')
-rw-r--r--drivers/pci/Makefile5
-rw-r--r--drivers/pci/dmar.c1461
-rw-r--r--drivers/pci/intel-iommu.c4017
-rw-r--r--drivers/pci/intr_remapping.c798
-rw-r--r--drivers/pci/intr_remapping.h17
-rw-r--r--drivers/pci/iova.c435
-rw-r--r--drivers/pci/pci.h2
7 files changed, 0 insertions, 6735 deletions
diff --git a/drivers/pci/Makefile b/drivers/pci/Makefile
index 631f73027608..6fadae3ad134 100644
--- a/drivers/pci/Makefile
+++ b/drivers/pci/Makefile
@@ -29,11 +29,6 @@ obj-$(CONFIG_PCI_MSI) += msi.o
29# Build the Hypertransport interrupt support 29# Build the Hypertransport interrupt support
30obj-$(CONFIG_HT_IRQ) += htirq.o 30obj-$(CONFIG_HT_IRQ) += htirq.o
31 31
32# Build Intel IOMMU support
33obj-$(CONFIG_DMAR) += dmar.o iova.o intel-iommu.o
34
35obj-$(CONFIG_INTR_REMAP) += dmar.o intr_remapping.o
36
37obj-$(CONFIG_PCI_IOV) += iov.o 32obj-$(CONFIG_PCI_IOV) += iov.o
38 33
39# 34#
diff --git a/drivers/pci/dmar.c b/drivers/pci/dmar.c
deleted file mode 100644
index 3dc9befa5aec..000000000000
--- a/drivers/pci/dmar.c
+++ /dev/null
@@ -1,1461 +0,0 @@
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29#include <linux/pci.h>
30#include <linux/dmar.h>
31#include <linux/iova.h>
32#include <linux/intel-iommu.h>
33#include <linux/timer.h>
34#include <linux/irq.h>
35#include <linux/interrupt.h>
36#include <linux/tboot.h>
37#include <linux/dmi.h>
38#include <linux/slab.h>
39#include <asm/iommu_table.h>
40
41#define PREFIX "DMAR: "
42
43/* No locks are needed as DMA remapping hardware unit
44 * list is constructed at boot time and hotplug of
45 * these units are not supported by the architecture.
46 */
47LIST_HEAD(dmar_drhd_units);
48
49static struct acpi_table_header * __initdata dmar_tbl;
50static acpi_size dmar_tbl_size;
51
52static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
53{
54 /*
55 * add INCLUDE_ALL at the tail, so scan the list will find it at
56 * the very end.
57 */
58 if (drhd->include_all)
59 list_add_tail(&drhd->list, &dmar_drhd_units);
60 else
61 list_add(&drhd->list, &dmar_drhd_units);
62}
63
64static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
65 struct pci_dev **dev, u16 segment)
66{
67 struct pci_bus *bus;
68 struct pci_dev *pdev = NULL;
69 struct acpi_dmar_pci_path *path;
70 int count;
71
72 bus = pci_find_bus(segment, scope->bus);
73 path = (struct acpi_dmar_pci_path *)(scope + 1);
74 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
75 / sizeof(struct acpi_dmar_pci_path);
76
77 while (count) {
78 if (pdev)
79 pci_dev_put(pdev);
80 /*
81 * Some BIOSes list non-exist devices in DMAR table, just
82 * ignore it
83 */
84 if (!bus) {
85 printk(KERN_WARNING
86 PREFIX "Device scope bus [%d] not found\n",
87 scope->bus);
88 break;
89 }
90 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
91 if (!pdev) {
92 printk(KERN_WARNING PREFIX
93 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
94 segment, bus->number, path->dev, path->fn);
95 break;
96 }
97 path ++;
98 count --;
99 bus = pdev->subordinate;
100 }
101 if (!pdev) {
102 printk(KERN_WARNING PREFIX
103 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
104 segment, scope->bus, path->dev, path->fn);
105 *dev = NULL;
106 return 0;
107 }
108 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
109 pdev->subordinate) || (scope->entry_type == \
110 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
111 pci_dev_put(pdev);
112 printk(KERN_WARNING PREFIX
113 "Device scope type does not match for %s\n",
114 pci_name(pdev));
115 return -EINVAL;
116 }
117 *dev = pdev;
118 return 0;
119}
120
121static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
122 struct pci_dev ***devices, u16 segment)
123{
124 struct acpi_dmar_device_scope *scope;
125 void * tmp = start;
126 int index;
127 int ret;
128
129 *cnt = 0;
130 while (start < end) {
131 scope = start;
132 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
133 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
134 (*cnt)++;
135 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
136 printk(KERN_WARNING PREFIX
137 "Unsupported device scope\n");
138 }
139 start += scope->length;
140 }
141 if (*cnt == 0)
142 return 0;
143
144 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
145 if (!*devices)
146 return -ENOMEM;
147
148 start = tmp;
149 index = 0;
150 while (start < end) {
151 scope = start;
152 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
153 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
154 ret = dmar_parse_one_dev_scope(scope,
155 &(*devices)[index], segment);
156 if (ret) {
157 kfree(*devices);
158 return ret;
159 }
160 index ++;
161 }
162 start += scope->length;
163 }
164
165 return 0;
166}
167
168/**
169 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
170 * structure which uniquely represent one DMA remapping hardware unit
171 * present in the platform
172 */
173static int __init
174dmar_parse_one_drhd(struct acpi_dmar_header *header)
175{
176 struct acpi_dmar_hardware_unit *drhd;
177 struct dmar_drhd_unit *dmaru;
178 int ret = 0;
179
180 drhd = (struct acpi_dmar_hardware_unit *)header;
181 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
182 if (!dmaru)
183 return -ENOMEM;
184
185 dmaru->hdr = header;
186 dmaru->reg_base_addr = drhd->address;
187 dmaru->segment = drhd->segment;
188 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
189
190 ret = alloc_iommu(dmaru);
191 if (ret) {
192 kfree(dmaru);
193 return ret;
194 }
195 dmar_register_drhd_unit(dmaru);
196 return 0;
197}
198
199static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
200{
201 struct acpi_dmar_hardware_unit *drhd;
202 int ret = 0;
203
204 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
205
206 if (dmaru->include_all)
207 return 0;
208
209 ret = dmar_parse_dev_scope((void *)(drhd + 1),
210 ((void *)drhd) + drhd->header.length,
211 &dmaru->devices_cnt, &dmaru->devices,
212 drhd->segment);
213 if (ret) {
214 list_del(&dmaru->list);
215 kfree(dmaru);
216 }
217 return ret;
218}
219
220#ifdef CONFIG_DMAR
221LIST_HEAD(dmar_rmrr_units);
222
223static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
224{
225 list_add(&rmrr->list, &dmar_rmrr_units);
226}
227
228
229static int __init
230dmar_parse_one_rmrr(struct acpi_dmar_header *header)
231{
232 struct acpi_dmar_reserved_memory *rmrr;
233 struct dmar_rmrr_unit *rmrru;
234
235 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
236 if (!rmrru)
237 return -ENOMEM;
238
239 rmrru->hdr = header;
240 rmrr = (struct acpi_dmar_reserved_memory *)header;
241 rmrru->base_address = rmrr->base_address;
242 rmrru->end_address = rmrr->end_address;
243
244 dmar_register_rmrr_unit(rmrru);
245 return 0;
246}
247
248static int __init
249rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
250{
251 struct acpi_dmar_reserved_memory *rmrr;
252 int ret;
253
254 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
255 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
256 ((void *)rmrr) + rmrr->header.length,
257 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
258
259 if (ret || (rmrru->devices_cnt == 0)) {
260 list_del(&rmrru->list);
261 kfree(rmrru);
262 }
263 return ret;
264}
265
266static LIST_HEAD(dmar_atsr_units);
267
268static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
269{
270 struct acpi_dmar_atsr *atsr;
271 struct dmar_atsr_unit *atsru;
272
273 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
274 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
275 if (!atsru)
276 return -ENOMEM;
277
278 atsru->hdr = hdr;
279 atsru->include_all = atsr->flags & 0x1;
280
281 list_add(&atsru->list, &dmar_atsr_units);
282
283 return 0;
284}
285
286static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
287{
288 int rc;
289 struct acpi_dmar_atsr *atsr;
290
291 if (atsru->include_all)
292 return 0;
293
294 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
295 rc = dmar_parse_dev_scope((void *)(atsr + 1),
296 (void *)atsr + atsr->header.length,
297 &atsru->devices_cnt, &atsru->devices,
298 atsr->segment);
299 if (rc || !atsru->devices_cnt) {
300 list_del(&atsru->list);
301 kfree(atsru);
302 }
303
304 return rc;
305}
306
307int dmar_find_matched_atsr_unit(struct pci_dev *dev)
308{
309 int i;
310 struct pci_bus *bus;
311 struct acpi_dmar_atsr *atsr;
312 struct dmar_atsr_unit *atsru;
313
314 dev = pci_physfn(dev);
315
316 list_for_each_entry(atsru, &dmar_atsr_units, list) {
317 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
318 if (atsr->segment == pci_domain_nr(dev->bus))
319 goto found;
320 }
321
322 return 0;
323
324found:
325 for (bus = dev->bus; bus; bus = bus->parent) {
326 struct pci_dev *bridge = bus->self;
327
328 if (!bridge || !pci_is_pcie(bridge) ||
329 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
330 return 0;
331
332 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
333 for (i = 0; i < atsru->devices_cnt; i++)
334 if (atsru->devices[i] == bridge)
335 return 1;
336 break;
337 }
338 }
339
340 if (atsru->include_all)
341 return 1;
342
343 return 0;
344}
345#endif
346
347#ifdef CONFIG_ACPI_NUMA
348static int __init
349dmar_parse_one_rhsa(struct acpi_dmar_header *header)
350{
351 struct acpi_dmar_rhsa *rhsa;
352 struct dmar_drhd_unit *drhd;
353
354 rhsa = (struct acpi_dmar_rhsa *)header;
355 for_each_drhd_unit(drhd) {
356 if (drhd->reg_base_addr == rhsa->base_address) {
357 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
358
359 if (!node_online(node))
360 node = -1;
361 drhd->iommu->node = node;
362 return 0;
363 }
364 }
365 WARN_TAINT(
366 1, TAINT_FIRMWARE_WORKAROUND,
367 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
368 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
369 drhd->reg_base_addr,
370 dmi_get_system_info(DMI_BIOS_VENDOR),
371 dmi_get_system_info(DMI_BIOS_VERSION),
372 dmi_get_system_info(DMI_PRODUCT_VERSION));
373
374 return 0;
375}
376#endif
377
378static void __init
379dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
380{
381 struct acpi_dmar_hardware_unit *drhd;
382 struct acpi_dmar_reserved_memory *rmrr;
383 struct acpi_dmar_atsr *atsr;
384 struct acpi_dmar_rhsa *rhsa;
385
386 switch (header->type) {
387 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
388 drhd = container_of(header, struct acpi_dmar_hardware_unit,
389 header);
390 printk (KERN_INFO PREFIX
391 "DRHD base: %#016Lx flags: %#x\n",
392 (unsigned long long)drhd->address, drhd->flags);
393 break;
394 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
395 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
396 header);
397 printk (KERN_INFO PREFIX
398 "RMRR base: %#016Lx end: %#016Lx\n",
399 (unsigned long long)rmrr->base_address,
400 (unsigned long long)rmrr->end_address);
401 break;
402 case ACPI_DMAR_TYPE_ATSR:
403 atsr = container_of(header, struct acpi_dmar_atsr, header);
404 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
405 break;
406 case ACPI_DMAR_HARDWARE_AFFINITY:
407 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
408 printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
409 (unsigned long long)rhsa->base_address,
410 rhsa->proximity_domain);
411 break;
412 }
413}
414
415/**
416 * dmar_table_detect - checks to see if the platform supports DMAR devices
417 */
418static int __init dmar_table_detect(void)
419{
420 acpi_status status = AE_OK;
421
422 /* if we could find DMAR table, then there are DMAR devices */
423 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
424 (struct acpi_table_header **)&dmar_tbl,
425 &dmar_tbl_size);
426
427 if (ACPI_SUCCESS(status) && !dmar_tbl) {
428 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
429 status = AE_NOT_FOUND;
430 }
431
432 return (ACPI_SUCCESS(status) ? 1 : 0);
433}
434
435/**
436 * parse_dmar_table - parses the DMA reporting table
437 */
438static int __init
439parse_dmar_table(void)
440{
441 struct acpi_table_dmar *dmar;
442 struct acpi_dmar_header *entry_header;
443 int ret = 0;
444
445 /*
446 * Do it again, earlier dmar_tbl mapping could be mapped with
447 * fixed map.
448 */
449 dmar_table_detect();
450
451 /*
452 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
453 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
454 */
455 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
456
457 dmar = (struct acpi_table_dmar *)dmar_tbl;
458 if (!dmar)
459 return -ENODEV;
460
461 if (dmar->width < PAGE_SHIFT - 1) {
462 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
463 return -EINVAL;
464 }
465
466 printk (KERN_INFO PREFIX "Host address width %d\n",
467 dmar->width + 1);
468
469 entry_header = (struct acpi_dmar_header *)(dmar + 1);
470 while (((unsigned long)entry_header) <
471 (((unsigned long)dmar) + dmar_tbl->length)) {
472 /* Avoid looping forever on bad ACPI tables */
473 if (entry_header->length == 0) {
474 printk(KERN_WARNING PREFIX
475 "Invalid 0-length structure\n");
476 ret = -EINVAL;
477 break;
478 }
479
480 dmar_table_print_dmar_entry(entry_header);
481
482 switch (entry_header->type) {
483 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
484 ret = dmar_parse_one_drhd(entry_header);
485 break;
486 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
487#ifdef CONFIG_DMAR
488 ret = dmar_parse_one_rmrr(entry_header);
489#endif
490 break;
491 case ACPI_DMAR_TYPE_ATSR:
492#ifdef CONFIG_DMAR
493 ret = dmar_parse_one_atsr(entry_header);
494#endif
495 break;
496 case ACPI_DMAR_HARDWARE_AFFINITY:
497#ifdef CONFIG_ACPI_NUMA
498 ret = dmar_parse_one_rhsa(entry_header);
499#endif
500 break;
501 default:
502 printk(KERN_WARNING PREFIX
503 "Unknown DMAR structure type %d\n",
504 entry_header->type);
505 ret = 0; /* for forward compatibility */
506 break;
507 }
508 if (ret)
509 break;
510
511 entry_header = ((void *)entry_header + entry_header->length);
512 }
513 return ret;
514}
515
516static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
517 struct pci_dev *dev)
518{
519 int index;
520
521 while (dev) {
522 for (index = 0; index < cnt; index++)
523 if (dev == devices[index])
524 return 1;
525
526 /* Check our parent */
527 dev = dev->bus->self;
528 }
529
530 return 0;
531}
532
533struct dmar_drhd_unit *
534dmar_find_matched_drhd_unit(struct pci_dev *dev)
535{
536 struct dmar_drhd_unit *dmaru = NULL;
537 struct acpi_dmar_hardware_unit *drhd;
538
539 dev = pci_physfn(dev);
540
541 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
542 drhd = container_of(dmaru->hdr,
543 struct acpi_dmar_hardware_unit,
544 header);
545
546 if (dmaru->include_all &&
547 drhd->segment == pci_domain_nr(dev->bus))
548 return dmaru;
549
550 if (dmar_pci_device_match(dmaru->devices,
551 dmaru->devices_cnt, dev))
552 return dmaru;
553 }
554
555 return NULL;
556}
557
558int __init dmar_dev_scope_init(void)
559{
560 struct dmar_drhd_unit *drhd, *drhd_n;
561 int ret = -ENODEV;
562
563 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
564 ret = dmar_parse_dev(drhd);
565 if (ret)
566 return ret;
567 }
568
569#ifdef CONFIG_DMAR
570 {
571 struct dmar_rmrr_unit *rmrr, *rmrr_n;
572 struct dmar_atsr_unit *atsr, *atsr_n;
573
574 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
575 ret = rmrr_parse_dev(rmrr);
576 if (ret)
577 return ret;
578 }
579
580 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
581 ret = atsr_parse_dev(atsr);
582 if (ret)
583 return ret;
584 }
585 }
586#endif
587
588 return ret;
589}
590
591
592int __init dmar_table_init(void)
593{
594 static int dmar_table_initialized;
595 int ret;
596
597 if (dmar_table_initialized)
598 return 0;
599
600 dmar_table_initialized = 1;
601
602 ret = parse_dmar_table();
603 if (ret) {
604 if (ret != -ENODEV)
605 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
606 return ret;
607 }
608
609 if (list_empty(&dmar_drhd_units)) {
610 printk(KERN_INFO PREFIX "No DMAR devices found\n");
611 return -ENODEV;
612 }
613
614#ifdef CONFIG_DMAR
615 if (list_empty(&dmar_rmrr_units))
616 printk(KERN_INFO PREFIX "No RMRR found\n");
617
618 if (list_empty(&dmar_atsr_units))
619 printk(KERN_INFO PREFIX "No ATSR found\n");
620#endif
621
622 return 0;
623}
624
625static void warn_invalid_dmar(u64 addr, const char *message)
626{
627 WARN_TAINT_ONCE(
628 1, TAINT_FIRMWARE_WORKAROUND,
629 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
630 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
631 addr, message,
632 dmi_get_system_info(DMI_BIOS_VENDOR),
633 dmi_get_system_info(DMI_BIOS_VERSION),
634 dmi_get_system_info(DMI_PRODUCT_VERSION));
635}
636
637int __init check_zero_address(void)
638{
639 struct acpi_table_dmar *dmar;
640 struct acpi_dmar_header *entry_header;
641 struct acpi_dmar_hardware_unit *drhd;
642
643 dmar = (struct acpi_table_dmar *)dmar_tbl;
644 entry_header = (struct acpi_dmar_header *)(dmar + 1);
645
646 while (((unsigned long)entry_header) <
647 (((unsigned long)dmar) + dmar_tbl->length)) {
648 /* Avoid looping forever on bad ACPI tables */
649 if (entry_header->length == 0) {
650 printk(KERN_WARNING PREFIX
651 "Invalid 0-length structure\n");
652 return 0;
653 }
654
655 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
656 void __iomem *addr;
657 u64 cap, ecap;
658
659 drhd = (void *)entry_header;
660 if (!drhd->address) {
661 warn_invalid_dmar(0, "");
662 goto failed;
663 }
664
665 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
666 if (!addr ) {
667 printk("IOMMU: can't validate: %llx\n", drhd->address);
668 goto failed;
669 }
670 cap = dmar_readq(addr + DMAR_CAP_REG);
671 ecap = dmar_readq(addr + DMAR_ECAP_REG);
672 early_iounmap(addr, VTD_PAGE_SIZE);
673 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
674 warn_invalid_dmar(drhd->address,
675 " returns all ones");
676 goto failed;
677 }
678 }
679
680 entry_header = ((void *)entry_header + entry_header->length);
681 }
682 return 1;
683
684failed:
685#ifdef CONFIG_DMAR
686 dmar_disabled = 1;
687#endif
688 return 0;
689}
690
691int __init detect_intel_iommu(void)
692{
693 int ret;
694
695 ret = dmar_table_detect();
696 if (ret)
697 ret = check_zero_address();
698 {
699#ifdef CONFIG_INTR_REMAP
700 struct acpi_table_dmar *dmar;
701
702 dmar = (struct acpi_table_dmar *) dmar_tbl;
703 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
704 printk(KERN_INFO
705 "Queued invalidation will be enabled to support "
706 "x2apic and Intr-remapping.\n");
707#endif
708#ifdef CONFIG_DMAR
709 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
710 iommu_detected = 1;
711 /* Make sure ACS will be enabled */
712 pci_request_acs();
713 }
714#endif
715#ifdef CONFIG_X86
716 if (ret)
717 x86_init.iommu.iommu_init = intel_iommu_init;
718#endif
719 }
720 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
721 dmar_tbl = NULL;
722
723 return ret ? 1 : -ENODEV;
724}
725
726
727int alloc_iommu(struct dmar_drhd_unit *drhd)
728{
729 struct intel_iommu *iommu;
730 int map_size;
731 u32 ver;
732 static int iommu_allocated = 0;
733 int agaw = 0;
734 int msagaw = 0;
735
736 if (!drhd->reg_base_addr) {
737 warn_invalid_dmar(0, "");
738 return -EINVAL;
739 }
740
741 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
742 if (!iommu)
743 return -ENOMEM;
744
745 iommu->seq_id = iommu_allocated++;
746 sprintf (iommu->name, "dmar%d", iommu->seq_id);
747
748 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
749 if (!iommu->reg) {
750 printk(KERN_ERR "IOMMU: can't map the region\n");
751 goto error;
752 }
753 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
754 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
755
756 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
757 warn_invalid_dmar(drhd->reg_base_addr, " returns all ones");
758 goto err_unmap;
759 }
760
761#ifdef CONFIG_DMAR
762 agaw = iommu_calculate_agaw(iommu);
763 if (agaw < 0) {
764 printk(KERN_ERR
765 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
766 iommu->seq_id);
767 goto err_unmap;
768 }
769 msagaw = iommu_calculate_max_sagaw(iommu);
770 if (msagaw < 0) {
771 printk(KERN_ERR
772 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
773 iommu->seq_id);
774 goto err_unmap;
775 }
776#endif
777 iommu->agaw = agaw;
778 iommu->msagaw = msagaw;
779
780 iommu->node = -1;
781
782 /* the registers might be more than one page */
783 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
784 cap_max_fault_reg_offset(iommu->cap));
785 map_size = VTD_PAGE_ALIGN(map_size);
786 if (map_size > VTD_PAGE_SIZE) {
787 iounmap(iommu->reg);
788 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
789 if (!iommu->reg) {
790 printk(KERN_ERR "IOMMU: can't map the region\n");
791 goto error;
792 }
793 }
794
795 ver = readl(iommu->reg + DMAR_VER_REG);
796 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
797 iommu->seq_id,
798 (unsigned long long)drhd->reg_base_addr,
799 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
800 (unsigned long long)iommu->cap,
801 (unsigned long long)iommu->ecap);
802
803 spin_lock_init(&iommu->register_lock);
804
805 drhd->iommu = iommu;
806 return 0;
807
808 err_unmap:
809 iounmap(iommu->reg);
810 error:
811 kfree(iommu);
812 return -1;
813}
814
815void free_iommu(struct intel_iommu *iommu)
816{
817 if (!iommu)
818 return;
819
820#ifdef CONFIG_DMAR
821 free_dmar_iommu(iommu);
822#endif
823
824 if (iommu->reg)
825 iounmap(iommu->reg);
826 kfree(iommu);
827}
828
829/*
830 * Reclaim all the submitted descriptors which have completed its work.
831 */
832static inline void reclaim_free_desc(struct q_inval *qi)
833{
834 while (qi->desc_status[qi->free_tail] == QI_DONE ||
835 qi->desc_status[qi->free_tail] == QI_ABORT) {
836 qi->desc_status[qi->free_tail] = QI_FREE;
837 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
838 qi->free_cnt++;
839 }
840}
841
842static int qi_check_fault(struct intel_iommu *iommu, int index)
843{
844 u32 fault;
845 int head, tail;
846 struct q_inval *qi = iommu->qi;
847 int wait_index = (index + 1) % QI_LENGTH;
848
849 if (qi->desc_status[wait_index] == QI_ABORT)
850 return -EAGAIN;
851
852 fault = readl(iommu->reg + DMAR_FSTS_REG);
853
854 /*
855 * If IQE happens, the head points to the descriptor associated
856 * with the error. No new descriptors are fetched until the IQE
857 * is cleared.
858 */
859 if (fault & DMA_FSTS_IQE) {
860 head = readl(iommu->reg + DMAR_IQH_REG);
861 if ((head >> DMAR_IQ_SHIFT) == index) {
862 printk(KERN_ERR "VT-d detected invalid descriptor: "
863 "low=%llx, high=%llx\n",
864 (unsigned long long)qi->desc[index].low,
865 (unsigned long long)qi->desc[index].high);
866 memcpy(&qi->desc[index], &qi->desc[wait_index],
867 sizeof(struct qi_desc));
868 __iommu_flush_cache(iommu, &qi->desc[index],
869 sizeof(struct qi_desc));
870 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
871 return -EINVAL;
872 }
873 }
874
875 /*
876 * If ITE happens, all pending wait_desc commands are aborted.
877 * No new descriptors are fetched until the ITE is cleared.
878 */
879 if (fault & DMA_FSTS_ITE) {
880 head = readl(iommu->reg + DMAR_IQH_REG);
881 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
882 head |= 1;
883 tail = readl(iommu->reg + DMAR_IQT_REG);
884 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
885
886 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
887
888 do {
889 if (qi->desc_status[head] == QI_IN_USE)
890 qi->desc_status[head] = QI_ABORT;
891 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
892 } while (head != tail);
893
894 if (qi->desc_status[wait_index] == QI_ABORT)
895 return -EAGAIN;
896 }
897
898 if (fault & DMA_FSTS_ICE)
899 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
900
901 return 0;
902}
903
904/*
905 * Submit the queued invalidation descriptor to the remapping
906 * hardware unit and wait for its completion.
907 */
908int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
909{
910 int rc;
911 struct q_inval *qi = iommu->qi;
912 struct qi_desc *hw, wait_desc;
913 int wait_index, index;
914 unsigned long flags;
915
916 if (!qi)
917 return 0;
918
919 hw = qi->desc;
920
921restart:
922 rc = 0;
923
924 spin_lock_irqsave(&qi->q_lock, flags);
925 while (qi->free_cnt < 3) {
926 spin_unlock_irqrestore(&qi->q_lock, flags);
927 cpu_relax();
928 spin_lock_irqsave(&qi->q_lock, flags);
929 }
930
931 index = qi->free_head;
932 wait_index = (index + 1) % QI_LENGTH;
933
934 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
935
936 hw[index] = *desc;
937
938 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
939 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
940 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
941
942 hw[wait_index] = wait_desc;
943
944 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
945 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
946
947 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
948 qi->free_cnt -= 2;
949
950 /*
951 * update the HW tail register indicating the presence of
952 * new descriptors.
953 */
954 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
955
956 while (qi->desc_status[wait_index] != QI_DONE) {
957 /*
958 * We will leave the interrupts disabled, to prevent interrupt
959 * context to queue another cmd while a cmd is already submitted
960 * and waiting for completion on this cpu. This is to avoid
961 * a deadlock where the interrupt context can wait indefinitely
962 * for free slots in the queue.
963 */
964 rc = qi_check_fault(iommu, index);
965 if (rc)
966 break;
967
968 spin_unlock(&qi->q_lock);
969 cpu_relax();
970 spin_lock(&qi->q_lock);
971 }
972
973 qi->desc_status[index] = QI_DONE;
974
975 reclaim_free_desc(qi);
976 spin_unlock_irqrestore(&qi->q_lock, flags);
977
978 if (rc == -EAGAIN)
979 goto restart;
980
981 return rc;
982}
983
984/*
985 * Flush the global interrupt entry cache.
986 */
987void qi_global_iec(struct intel_iommu *iommu)
988{
989 struct qi_desc desc;
990
991 desc.low = QI_IEC_TYPE;
992 desc.high = 0;
993
994 /* should never fail */
995 qi_submit_sync(&desc, iommu);
996}
997
998void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
999 u64 type)
1000{
1001 struct qi_desc desc;
1002
1003 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1004 | QI_CC_GRAN(type) | QI_CC_TYPE;
1005 desc.high = 0;
1006
1007 qi_submit_sync(&desc, iommu);
1008}
1009
1010void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1011 unsigned int size_order, u64 type)
1012{
1013 u8 dw = 0, dr = 0;
1014
1015 struct qi_desc desc;
1016 int ih = 0;
1017
1018 if (cap_write_drain(iommu->cap))
1019 dw = 1;
1020
1021 if (cap_read_drain(iommu->cap))
1022 dr = 1;
1023
1024 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1025 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1026 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1027 | QI_IOTLB_AM(size_order);
1028
1029 qi_submit_sync(&desc, iommu);
1030}
1031
1032void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1033 u64 addr, unsigned mask)
1034{
1035 struct qi_desc desc;
1036
1037 if (mask) {
1038 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1039 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1040 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1041 } else
1042 desc.high = QI_DEV_IOTLB_ADDR(addr);
1043
1044 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1045 qdep = 0;
1046
1047 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1048 QI_DIOTLB_TYPE;
1049
1050 qi_submit_sync(&desc, iommu);
1051}
1052
1053/*
1054 * Disable Queued Invalidation interface.
1055 */
1056void dmar_disable_qi(struct intel_iommu *iommu)
1057{
1058 unsigned long flags;
1059 u32 sts;
1060 cycles_t start_time = get_cycles();
1061
1062 if (!ecap_qis(iommu->ecap))
1063 return;
1064
1065 spin_lock_irqsave(&iommu->register_lock, flags);
1066
1067 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
1068 if (!(sts & DMA_GSTS_QIES))
1069 goto end;
1070
1071 /*
1072 * Give a chance to HW to complete the pending invalidation requests.
1073 */
1074 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1075 readl(iommu->reg + DMAR_IQH_REG)) &&
1076 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1077 cpu_relax();
1078
1079 iommu->gcmd &= ~DMA_GCMD_QIE;
1080 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1081
1082 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1083 !(sts & DMA_GSTS_QIES), sts);
1084end:
1085 spin_unlock_irqrestore(&iommu->register_lock, flags);
1086}
1087
1088/*
1089 * Enable queued invalidation.
1090 */
1091static void __dmar_enable_qi(struct intel_iommu *iommu)
1092{
1093 u32 sts;
1094 unsigned long flags;
1095 struct q_inval *qi = iommu->qi;
1096
1097 qi->free_head = qi->free_tail = 0;
1098 qi->free_cnt = QI_LENGTH;
1099
1100 spin_lock_irqsave(&iommu->register_lock, flags);
1101
1102 /* write zero to the tail reg */
1103 writel(0, iommu->reg + DMAR_IQT_REG);
1104
1105 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1106
1107 iommu->gcmd |= DMA_GCMD_QIE;
1108 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1109
1110 /* Make sure hardware complete it */
1111 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1112
1113 spin_unlock_irqrestore(&iommu->register_lock, flags);
1114}
1115
1116/*
1117 * Enable Queued Invalidation interface. This is a must to support
1118 * interrupt-remapping. Also used by DMA-remapping, which replaces
1119 * register based IOTLB invalidation.
1120 */
1121int dmar_enable_qi(struct intel_iommu *iommu)
1122{
1123 struct q_inval *qi;
1124 struct page *desc_page;
1125
1126 if (!ecap_qis(iommu->ecap))
1127 return -ENOENT;
1128
1129 /*
1130 * queued invalidation is already setup and enabled.
1131 */
1132 if (iommu->qi)
1133 return 0;
1134
1135 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1136 if (!iommu->qi)
1137 return -ENOMEM;
1138
1139 qi = iommu->qi;
1140
1141
1142 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1143 if (!desc_page) {
1144 kfree(qi);
1145 iommu->qi = 0;
1146 return -ENOMEM;
1147 }
1148
1149 qi->desc = page_address(desc_page);
1150
1151 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1152 if (!qi->desc_status) {
1153 free_page((unsigned long) qi->desc);
1154 kfree(qi);
1155 iommu->qi = 0;
1156 return -ENOMEM;
1157 }
1158
1159 qi->free_head = qi->free_tail = 0;
1160 qi->free_cnt = QI_LENGTH;
1161
1162 spin_lock_init(&qi->q_lock);
1163
1164 __dmar_enable_qi(iommu);
1165
1166 return 0;
1167}
1168
1169/* iommu interrupt handling. Most stuff are MSI-like. */
1170
1171enum faulttype {
1172 DMA_REMAP,
1173 INTR_REMAP,
1174 UNKNOWN,
1175};
1176
1177static const char *dma_remap_fault_reasons[] =
1178{
1179 "Software",
1180 "Present bit in root entry is clear",
1181 "Present bit in context entry is clear",
1182 "Invalid context entry",
1183 "Access beyond MGAW",
1184 "PTE Write access is not set",
1185 "PTE Read access is not set",
1186 "Next page table ptr is invalid",
1187 "Root table address invalid",
1188 "Context table ptr is invalid",
1189 "non-zero reserved fields in RTP",
1190 "non-zero reserved fields in CTP",
1191 "non-zero reserved fields in PTE",
1192};
1193
1194static const char *intr_remap_fault_reasons[] =
1195{
1196 "Detected reserved fields in the decoded interrupt-remapped request",
1197 "Interrupt index exceeded the interrupt-remapping table size",
1198 "Present field in the IRTE entry is clear",
1199 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1200 "Detected reserved fields in the IRTE entry",
1201 "Blocked a compatibility format interrupt request",
1202 "Blocked an interrupt request due to source-id verification failure",
1203};
1204
1205#define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1206
1207const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1208{
1209 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1210 ARRAY_SIZE(intr_remap_fault_reasons))) {
1211 *fault_type = INTR_REMAP;
1212 return intr_remap_fault_reasons[fault_reason - 0x20];
1213 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1214 *fault_type = DMA_REMAP;
1215 return dma_remap_fault_reasons[fault_reason];
1216 } else {
1217 *fault_type = UNKNOWN;
1218 return "Unknown";
1219 }
1220}
1221
1222void dmar_msi_unmask(struct irq_data *data)
1223{
1224 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1225 unsigned long flag;
1226
1227 /* unmask it */
1228 spin_lock_irqsave(&iommu->register_lock, flag);
1229 writel(0, iommu->reg + DMAR_FECTL_REG);
1230 /* Read a reg to force flush the post write */
1231 readl(iommu->reg + DMAR_FECTL_REG);
1232 spin_unlock_irqrestore(&iommu->register_lock, flag);
1233}
1234
1235void dmar_msi_mask(struct irq_data *data)
1236{
1237 unsigned long flag;
1238 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1239
1240 /* mask it */
1241 spin_lock_irqsave(&iommu->register_lock, flag);
1242 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1243 /* Read a reg to force flush the post write */
1244 readl(iommu->reg + DMAR_FECTL_REG);
1245 spin_unlock_irqrestore(&iommu->register_lock, flag);
1246}
1247
1248void dmar_msi_write(int irq, struct msi_msg *msg)
1249{
1250 struct intel_iommu *iommu = irq_get_handler_data(irq);
1251 unsigned long flag;
1252
1253 spin_lock_irqsave(&iommu->register_lock, flag);
1254 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1255 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1256 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1257 spin_unlock_irqrestore(&iommu->register_lock, flag);
1258}
1259
1260void dmar_msi_read(int irq, struct msi_msg *msg)
1261{
1262 struct intel_iommu *iommu = irq_get_handler_data(irq);
1263 unsigned long flag;
1264
1265 spin_lock_irqsave(&iommu->register_lock, flag);
1266 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1267 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1268 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1269 spin_unlock_irqrestore(&iommu->register_lock, flag);
1270}
1271
1272static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1273 u8 fault_reason, u16 source_id, unsigned long long addr)
1274{
1275 const char *reason;
1276 int fault_type;
1277
1278 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1279
1280 if (fault_type == INTR_REMAP)
1281 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1282 "fault index %llx\n"
1283 "INTR-REMAP:[fault reason %02d] %s\n",
1284 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1285 PCI_FUNC(source_id & 0xFF), addr >> 48,
1286 fault_reason, reason);
1287 else
1288 printk(KERN_ERR
1289 "DMAR:[%s] Request device [%02x:%02x.%d] "
1290 "fault addr %llx \n"
1291 "DMAR:[fault reason %02d] %s\n",
1292 (type ? "DMA Read" : "DMA Write"),
1293 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1294 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1295 return 0;
1296}
1297
1298#define PRIMARY_FAULT_REG_LEN (16)
1299irqreturn_t dmar_fault(int irq, void *dev_id)
1300{
1301 struct intel_iommu *iommu = dev_id;
1302 int reg, fault_index;
1303 u32 fault_status;
1304 unsigned long flag;
1305
1306 spin_lock_irqsave(&iommu->register_lock, flag);
1307 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1308 if (fault_status)
1309 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1310 fault_status);
1311
1312 /* TBD: ignore advanced fault log currently */
1313 if (!(fault_status & DMA_FSTS_PPF))
1314 goto clear_rest;
1315
1316 fault_index = dma_fsts_fault_record_index(fault_status);
1317 reg = cap_fault_reg_offset(iommu->cap);
1318 while (1) {
1319 u8 fault_reason;
1320 u16 source_id;
1321 u64 guest_addr;
1322 int type;
1323 u32 data;
1324
1325 /* highest 32 bits */
1326 data = readl(iommu->reg + reg +
1327 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1328 if (!(data & DMA_FRCD_F))
1329 break;
1330
1331 fault_reason = dma_frcd_fault_reason(data);
1332 type = dma_frcd_type(data);
1333
1334 data = readl(iommu->reg + reg +
1335 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1336 source_id = dma_frcd_source_id(data);
1337
1338 guest_addr = dmar_readq(iommu->reg + reg +
1339 fault_index * PRIMARY_FAULT_REG_LEN);
1340 guest_addr = dma_frcd_page_addr(guest_addr);
1341 /* clear the fault */
1342 writel(DMA_FRCD_F, iommu->reg + reg +
1343 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1344
1345 spin_unlock_irqrestore(&iommu->register_lock, flag);
1346
1347 dmar_fault_do_one(iommu, type, fault_reason,
1348 source_id, guest_addr);
1349
1350 fault_index++;
1351 if (fault_index >= cap_num_fault_regs(iommu->cap))
1352 fault_index = 0;
1353 spin_lock_irqsave(&iommu->register_lock, flag);
1354 }
1355clear_rest:
1356 /* clear all the other faults */
1357 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1358 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1359
1360 spin_unlock_irqrestore(&iommu->register_lock, flag);
1361 return IRQ_HANDLED;
1362}
1363
1364int dmar_set_interrupt(struct intel_iommu *iommu)
1365{
1366 int irq, ret;
1367
1368 /*
1369 * Check if the fault interrupt is already initialized.
1370 */
1371 if (iommu->irq)
1372 return 0;
1373
1374 irq = create_irq();
1375 if (!irq) {
1376 printk(KERN_ERR "IOMMU: no free vectors\n");
1377 return -EINVAL;
1378 }
1379
1380 irq_set_handler_data(irq, iommu);
1381 iommu->irq = irq;
1382
1383 ret = arch_setup_dmar_msi(irq);
1384 if (ret) {
1385 irq_set_handler_data(irq, NULL);
1386 iommu->irq = 0;
1387 destroy_irq(irq);
1388 return ret;
1389 }
1390
1391 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1392 if (ret)
1393 printk(KERN_ERR "IOMMU: can't request irq\n");
1394 return ret;
1395}
1396
1397int __init enable_drhd_fault_handling(void)
1398{
1399 struct dmar_drhd_unit *drhd;
1400
1401 /*
1402 * Enable fault control interrupt.
1403 */
1404 for_each_drhd_unit(drhd) {
1405 int ret;
1406 struct intel_iommu *iommu = drhd->iommu;
1407 ret = dmar_set_interrupt(iommu);
1408
1409 if (ret) {
1410 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1411 " interrupt, ret %d\n",
1412 (unsigned long long)drhd->reg_base_addr, ret);
1413 return -1;
1414 }
1415
1416 /*
1417 * Clear any previous faults.
1418 */
1419 dmar_fault(iommu->irq, iommu);
1420 }
1421
1422 return 0;
1423}
1424
1425/*
1426 * Re-enable Queued Invalidation interface.
1427 */
1428int dmar_reenable_qi(struct intel_iommu *iommu)
1429{
1430 if (!ecap_qis(iommu->ecap))
1431 return -ENOENT;
1432
1433 if (!iommu->qi)
1434 return -ENOENT;
1435
1436 /*
1437 * First disable queued invalidation.
1438 */
1439 dmar_disable_qi(iommu);
1440 /*
1441 * Then enable queued invalidation again. Since there is no pending
1442 * invalidation requests now, it's safe to re-enable queued
1443 * invalidation.
1444 */
1445 __dmar_enable_qi(iommu);
1446
1447 return 0;
1448}
1449
1450/*
1451 * Check interrupt remapping support in DMAR table description.
1452 */
1453int __init dmar_ir_support(void)
1454{
1455 struct acpi_table_dmar *dmar;
1456 dmar = (struct acpi_table_dmar *)dmar_tbl;
1457 if (!dmar)
1458 return 0;
1459 return dmar->flags & 0x1;
1460}
1461IOMMU_INIT_POST(detect_intel_iommu);
diff --git a/drivers/pci/intel-iommu.c b/drivers/pci/intel-iommu.c
deleted file mode 100644
index f02c34d26d1b..000000000000
--- a/drivers/pci/intel-iommu.c
+++ /dev/null
@@ -1,4017 +0,0 @@
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24#include <linux/init.h>
25#include <linux/bitmap.h>
26#include <linux/debugfs.h>
27#include <linux/slab.h>
28#include <linux/irq.h>
29#include <linux/interrupt.h>
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
35#include <linux/timer.h>
36#include <linux/iova.h>
37#include <linux/iommu.h>
38#include <linux/intel-iommu.h>
39#include <linux/syscore_ops.h>
40#include <linux/tboot.h>
41#include <linux/dmi.h>
42#include <linux/pci-ats.h>
43#include <asm/cacheflush.h>
44#include <asm/iommu.h>
45#include "pci.h"
46
47#define ROOT_SIZE VTD_PAGE_SIZE
48#define CONTEXT_SIZE VTD_PAGE_SIZE
49
50#define IS_BRIDGE_HOST_DEVICE(pdev) \
51 ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
52#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
55
56#define IOAPIC_RANGE_START (0xfee00000)
57#define IOAPIC_RANGE_END (0xfeefffff)
58#define IOVA_START_ADDR (0x1000)
59
60#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
61
62#define MAX_AGAW_WIDTH 64
63
64#define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
65#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
66
67/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
68 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
69#define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
70 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
71#define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
72
73#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
74#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
75#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
76
77/* page table handling */
78#define LEVEL_STRIDE (9)
79#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
80
81static inline int agaw_to_level(int agaw)
82{
83 return agaw + 2;
84}
85
86static inline int agaw_to_width(int agaw)
87{
88 return 30 + agaw * LEVEL_STRIDE;
89}
90
91static inline int width_to_agaw(int width)
92{
93 return (width - 30) / LEVEL_STRIDE;
94}
95
96static inline unsigned int level_to_offset_bits(int level)
97{
98 return (level - 1) * LEVEL_STRIDE;
99}
100
101static inline int pfn_level_offset(unsigned long pfn, int level)
102{
103 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
104}
105
106static inline unsigned long level_mask(int level)
107{
108 return -1UL << level_to_offset_bits(level);
109}
110
111static inline unsigned long level_size(int level)
112{
113 return 1UL << level_to_offset_bits(level);
114}
115
116static inline unsigned long align_to_level(unsigned long pfn, int level)
117{
118 return (pfn + level_size(level) - 1) & level_mask(level);
119}
120
121static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
122{
123 return 1 << ((lvl - 1) * LEVEL_STRIDE);
124}
125
126/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
127 are never going to work. */
128static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
129{
130 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
131}
132
133static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
134{
135 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
136}
137static inline unsigned long page_to_dma_pfn(struct page *pg)
138{
139 return mm_to_dma_pfn(page_to_pfn(pg));
140}
141static inline unsigned long virt_to_dma_pfn(void *p)
142{
143 return page_to_dma_pfn(virt_to_page(p));
144}
145
146/* global iommu list, set NULL for ignored DMAR units */
147static struct intel_iommu **g_iommus;
148
149static void __init check_tylersburg_isoch(void);
150static int rwbf_quirk;
151
152/*
153 * set to 1 to panic kernel if can't successfully enable VT-d
154 * (used when kernel is launched w/ TXT)
155 */
156static int force_on = 0;
157
158/*
159 * 0: Present
160 * 1-11: Reserved
161 * 12-63: Context Ptr (12 - (haw-1))
162 * 64-127: Reserved
163 */
164struct root_entry {
165 u64 val;
166 u64 rsvd1;
167};
168#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
169static inline bool root_present(struct root_entry *root)
170{
171 return (root->val & 1);
172}
173static inline void set_root_present(struct root_entry *root)
174{
175 root->val |= 1;
176}
177static inline void set_root_value(struct root_entry *root, unsigned long value)
178{
179 root->val |= value & VTD_PAGE_MASK;
180}
181
182static inline struct context_entry *
183get_context_addr_from_root(struct root_entry *root)
184{
185 return (struct context_entry *)
186 (root_present(root)?phys_to_virt(
187 root->val & VTD_PAGE_MASK) :
188 NULL);
189}
190
191/*
192 * low 64 bits:
193 * 0: present
194 * 1: fault processing disable
195 * 2-3: translation type
196 * 12-63: address space root
197 * high 64 bits:
198 * 0-2: address width
199 * 3-6: aval
200 * 8-23: domain id
201 */
202struct context_entry {
203 u64 lo;
204 u64 hi;
205};
206
207static inline bool context_present(struct context_entry *context)
208{
209 return (context->lo & 1);
210}
211static inline void context_set_present(struct context_entry *context)
212{
213 context->lo |= 1;
214}
215
216static inline void context_set_fault_enable(struct context_entry *context)
217{
218 context->lo &= (((u64)-1) << 2) | 1;
219}
220
221static inline void context_set_translation_type(struct context_entry *context,
222 unsigned long value)
223{
224 context->lo &= (((u64)-1) << 4) | 3;
225 context->lo |= (value & 3) << 2;
226}
227
228static inline void context_set_address_root(struct context_entry *context,
229 unsigned long value)
230{
231 context->lo |= value & VTD_PAGE_MASK;
232}
233
234static inline void context_set_address_width(struct context_entry *context,
235 unsigned long value)
236{
237 context->hi |= value & 7;
238}
239
240static inline void context_set_domain_id(struct context_entry *context,
241 unsigned long value)
242{
243 context->hi |= (value & ((1 << 16) - 1)) << 8;
244}
245
246static inline void context_clear_entry(struct context_entry *context)
247{
248 context->lo = 0;
249 context->hi = 0;
250}
251
252/*
253 * 0: readable
254 * 1: writable
255 * 2-6: reserved
256 * 7: super page
257 * 8-10: available
258 * 11: snoop behavior
259 * 12-63: Host physcial address
260 */
261struct dma_pte {
262 u64 val;
263};
264
265static inline void dma_clear_pte(struct dma_pte *pte)
266{
267 pte->val = 0;
268}
269
270static inline void dma_set_pte_readable(struct dma_pte *pte)
271{
272 pte->val |= DMA_PTE_READ;
273}
274
275static inline void dma_set_pte_writable(struct dma_pte *pte)
276{
277 pte->val |= DMA_PTE_WRITE;
278}
279
280static inline void dma_set_pte_snp(struct dma_pte *pte)
281{
282 pte->val |= DMA_PTE_SNP;
283}
284
285static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
286{
287 pte->val = (pte->val & ~3) | (prot & 3);
288}
289
290static inline u64 dma_pte_addr(struct dma_pte *pte)
291{
292#ifdef CONFIG_64BIT
293 return pte->val & VTD_PAGE_MASK;
294#else
295 /* Must have a full atomic 64-bit read */
296 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
297#endif
298}
299
300static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
301{
302 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
303}
304
305static inline bool dma_pte_present(struct dma_pte *pte)
306{
307 return (pte->val & 3) != 0;
308}
309
310static inline int first_pte_in_page(struct dma_pte *pte)
311{
312 return !((unsigned long)pte & ~VTD_PAGE_MASK);
313}
314
315/*
316 * This domain is a statically identity mapping domain.
317 * 1. This domain creats a static 1:1 mapping to all usable memory.
318 * 2. It maps to each iommu if successful.
319 * 3. Each iommu mapps to this domain if successful.
320 */
321static struct dmar_domain *si_domain;
322static int hw_pass_through = 1;
323
324/* devices under the same p2p bridge are owned in one domain */
325#define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
326
327/* domain represents a virtual machine, more than one devices
328 * across iommus may be owned in one domain, e.g. kvm guest.
329 */
330#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
331
332/* si_domain contains mulitple devices */
333#define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
334
335struct dmar_domain {
336 int id; /* domain id */
337 int nid; /* node id */
338 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
339
340 struct list_head devices; /* all devices' list */
341 struct iova_domain iovad; /* iova's that belong to this domain */
342
343 struct dma_pte *pgd; /* virtual address */
344 int gaw; /* max guest address width */
345
346 /* adjusted guest address width, 0 is level 2 30-bit */
347 int agaw;
348
349 int flags; /* flags to find out type of domain */
350
351 int iommu_coherency;/* indicate coherency of iommu access */
352 int iommu_snooping; /* indicate snooping control feature*/
353 int iommu_count; /* reference count of iommu */
354 int iommu_superpage;/* Level of superpages supported:
355 0 == 4KiB (no superpages), 1 == 2MiB,
356 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
357 spinlock_t iommu_lock; /* protect iommu set in domain */
358 u64 max_addr; /* maximum mapped address */
359};
360
361/* PCI domain-device relationship */
362struct device_domain_info {
363 struct list_head link; /* link to domain siblings */
364 struct list_head global; /* link to global list */
365 int segment; /* PCI domain */
366 u8 bus; /* PCI bus number */
367 u8 devfn; /* PCI devfn number */
368 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
369 struct intel_iommu *iommu; /* IOMMU used by this device */
370 struct dmar_domain *domain; /* pointer to domain */
371};
372
373static void flush_unmaps_timeout(unsigned long data);
374
375DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
376
377#define HIGH_WATER_MARK 250
378struct deferred_flush_tables {
379 int next;
380 struct iova *iova[HIGH_WATER_MARK];
381 struct dmar_domain *domain[HIGH_WATER_MARK];
382};
383
384static struct deferred_flush_tables *deferred_flush;
385
386/* bitmap for indexing intel_iommus */
387static int g_num_of_iommus;
388
389static DEFINE_SPINLOCK(async_umap_flush_lock);
390static LIST_HEAD(unmaps_to_do);
391
392static int timer_on;
393static long list_size;
394
395static void domain_remove_dev_info(struct dmar_domain *domain);
396
397#ifdef CONFIG_DMAR_DEFAULT_ON
398int dmar_disabled = 0;
399#else
400int dmar_disabled = 1;
401#endif /*CONFIG_DMAR_DEFAULT_ON*/
402
403static int dmar_map_gfx = 1;
404static int dmar_forcedac;
405static int intel_iommu_strict;
406static int intel_iommu_superpage = 1;
407
408#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
409static DEFINE_SPINLOCK(device_domain_lock);
410static LIST_HEAD(device_domain_list);
411
412static struct iommu_ops intel_iommu_ops;
413
414static int __init intel_iommu_setup(char *str)
415{
416 if (!str)
417 return -EINVAL;
418 while (*str) {
419 if (!strncmp(str, "on", 2)) {
420 dmar_disabled = 0;
421 printk(KERN_INFO "Intel-IOMMU: enabled\n");
422 } else if (!strncmp(str, "off", 3)) {
423 dmar_disabled = 1;
424 printk(KERN_INFO "Intel-IOMMU: disabled\n");
425 } else if (!strncmp(str, "igfx_off", 8)) {
426 dmar_map_gfx = 0;
427 printk(KERN_INFO
428 "Intel-IOMMU: disable GFX device mapping\n");
429 } else if (!strncmp(str, "forcedac", 8)) {
430 printk(KERN_INFO
431 "Intel-IOMMU: Forcing DAC for PCI devices\n");
432 dmar_forcedac = 1;
433 } else if (!strncmp(str, "strict", 6)) {
434 printk(KERN_INFO
435 "Intel-IOMMU: disable batched IOTLB flush\n");
436 intel_iommu_strict = 1;
437 } else if (!strncmp(str, "sp_off", 6)) {
438 printk(KERN_INFO
439 "Intel-IOMMU: disable supported super page\n");
440 intel_iommu_superpage = 0;
441 }
442
443 str += strcspn(str, ",");
444 while (*str == ',')
445 str++;
446 }
447 return 0;
448}
449__setup("intel_iommu=", intel_iommu_setup);
450
451static struct kmem_cache *iommu_domain_cache;
452static struct kmem_cache *iommu_devinfo_cache;
453static struct kmem_cache *iommu_iova_cache;
454
455static inline void *alloc_pgtable_page(int node)
456{
457 struct page *page;
458 void *vaddr = NULL;
459
460 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
461 if (page)
462 vaddr = page_address(page);
463 return vaddr;
464}
465
466static inline void free_pgtable_page(void *vaddr)
467{
468 free_page((unsigned long)vaddr);
469}
470
471static inline void *alloc_domain_mem(void)
472{
473 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
474}
475
476static void free_domain_mem(void *vaddr)
477{
478 kmem_cache_free(iommu_domain_cache, vaddr);
479}
480
481static inline void * alloc_devinfo_mem(void)
482{
483 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
484}
485
486static inline void free_devinfo_mem(void *vaddr)
487{
488 kmem_cache_free(iommu_devinfo_cache, vaddr);
489}
490
491struct iova *alloc_iova_mem(void)
492{
493 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
494}
495
496void free_iova_mem(struct iova *iova)
497{
498 kmem_cache_free(iommu_iova_cache, iova);
499}
500
501
502static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
503{
504 unsigned long sagaw;
505 int agaw = -1;
506
507 sagaw = cap_sagaw(iommu->cap);
508 for (agaw = width_to_agaw(max_gaw);
509 agaw >= 0; agaw--) {
510 if (test_bit(agaw, &sagaw))
511 break;
512 }
513
514 return agaw;
515}
516
517/*
518 * Calculate max SAGAW for each iommu.
519 */
520int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
521{
522 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
523}
524
525/*
526 * calculate agaw for each iommu.
527 * "SAGAW" may be different across iommus, use a default agaw, and
528 * get a supported less agaw for iommus that don't support the default agaw.
529 */
530int iommu_calculate_agaw(struct intel_iommu *iommu)
531{
532 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
533}
534
535/* This functionin only returns single iommu in a domain */
536static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
537{
538 int iommu_id;
539
540 /* si_domain and vm domain should not get here. */
541 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
542 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
543
544 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
545 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
546 return NULL;
547
548 return g_iommus[iommu_id];
549}
550
551static void domain_update_iommu_coherency(struct dmar_domain *domain)
552{
553 int i;
554
555 domain->iommu_coherency = 1;
556
557 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
558 if (!ecap_coherent(g_iommus[i]->ecap)) {
559 domain->iommu_coherency = 0;
560 break;
561 }
562 }
563}
564
565static void domain_update_iommu_snooping(struct dmar_domain *domain)
566{
567 int i;
568
569 domain->iommu_snooping = 1;
570
571 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
572 if (!ecap_sc_support(g_iommus[i]->ecap)) {
573 domain->iommu_snooping = 0;
574 break;
575 }
576 }
577}
578
579static void domain_update_iommu_superpage(struct dmar_domain *domain)
580{
581 int i, mask = 0xf;
582
583 if (!intel_iommu_superpage) {
584 domain->iommu_superpage = 0;
585 return;
586 }
587
588 domain->iommu_superpage = 4; /* 1TiB */
589
590 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
591 mask |= cap_super_page_val(g_iommus[i]->cap);
592 if (!mask) {
593 break;
594 }
595 }
596 domain->iommu_superpage = fls(mask);
597}
598
599/* Some capabilities may be different across iommus */
600static void domain_update_iommu_cap(struct dmar_domain *domain)
601{
602 domain_update_iommu_coherency(domain);
603 domain_update_iommu_snooping(domain);
604 domain_update_iommu_superpage(domain);
605}
606
607static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
608{
609 struct dmar_drhd_unit *drhd = NULL;
610 int i;
611
612 for_each_drhd_unit(drhd) {
613 if (drhd->ignored)
614 continue;
615 if (segment != drhd->segment)
616 continue;
617
618 for (i = 0; i < drhd->devices_cnt; i++) {
619 if (drhd->devices[i] &&
620 drhd->devices[i]->bus->number == bus &&
621 drhd->devices[i]->devfn == devfn)
622 return drhd->iommu;
623 if (drhd->devices[i] &&
624 drhd->devices[i]->subordinate &&
625 drhd->devices[i]->subordinate->number <= bus &&
626 drhd->devices[i]->subordinate->subordinate >= bus)
627 return drhd->iommu;
628 }
629
630 if (drhd->include_all)
631 return drhd->iommu;
632 }
633
634 return NULL;
635}
636
637static void domain_flush_cache(struct dmar_domain *domain,
638 void *addr, int size)
639{
640 if (!domain->iommu_coherency)
641 clflush_cache_range(addr, size);
642}
643
644/* Gets context entry for a given bus and devfn */
645static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
646 u8 bus, u8 devfn)
647{
648 struct root_entry *root;
649 struct context_entry *context;
650 unsigned long phy_addr;
651 unsigned long flags;
652
653 spin_lock_irqsave(&iommu->lock, flags);
654 root = &iommu->root_entry[bus];
655 context = get_context_addr_from_root(root);
656 if (!context) {
657 context = (struct context_entry *)
658 alloc_pgtable_page(iommu->node);
659 if (!context) {
660 spin_unlock_irqrestore(&iommu->lock, flags);
661 return NULL;
662 }
663 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
664 phy_addr = virt_to_phys((void *)context);
665 set_root_value(root, phy_addr);
666 set_root_present(root);
667 __iommu_flush_cache(iommu, root, sizeof(*root));
668 }
669 spin_unlock_irqrestore(&iommu->lock, flags);
670 return &context[devfn];
671}
672
673static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
674{
675 struct root_entry *root;
676 struct context_entry *context;
677 int ret;
678 unsigned long flags;
679
680 spin_lock_irqsave(&iommu->lock, flags);
681 root = &iommu->root_entry[bus];
682 context = get_context_addr_from_root(root);
683 if (!context) {
684 ret = 0;
685 goto out;
686 }
687 ret = context_present(&context[devfn]);
688out:
689 spin_unlock_irqrestore(&iommu->lock, flags);
690 return ret;
691}
692
693static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
694{
695 struct root_entry *root;
696 struct context_entry *context;
697 unsigned long flags;
698
699 spin_lock_irqsave(&iommu->lock, flags);
700 root = &iommu->root_entry[bus];
701 context = get_context_addr_from_root(root);
702 if (context) {
703 context_clear_entry(&context[devfn]);
704 __iommu_flush_cache(iommu, &context[devfn], \
705 sizeof(*context));
706 }
707 spin_unlock_irqrestore(&iommu->lock, flags);
708}
709
710static void free_context_table(struct intel_iommu *iommu)
711{
712 struct root_entry *root;
713 int i;
714 unsigned long flags;
715 struct context_entry *context;
716
717 spin_lock_irqsave(&iommu->lock, flags);
718 if (!iommu->root_entry) {
719 goto out;
720 }
721 for (i = 0; i < ROOT_ENTRY_NR; i++) {
722 root = &iommu->root_entry[i];
723 context = get_context_addr_from_root(root);
724 if (context)
725 free_pgtable_page(context);
726 }
727 free_pgtable_page(iommu->root_entry);
728 iommu->root_entry = NULL;
729out:
730 spin_unlock_irqrestore(&iommu->lock, flags);
731}
732
733static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
734 unsigned long pfn, int large_level)
735{
736 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
737 struct dma_pte *parent, *pte = NULL;
738 int level = agaw_to_level(domain->agaw);
739 int offset, target_level;
740
741 BUG_ON(!domain->pgd);
742 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
743 parent = domain->pgd;
744
745 /* Search pte */
746 if (!large_level)
747 target_level = 1;
748 else
749 target_level = large_level;
750
751 while (level > 0) {
752 void *tmp_page;
753
754 offset = pfn_level_offset(pfn, level);
755 pte = &parent[offset];
756 if (!large_level && (pte->val & DMA_PTE_LARGE_PAGE))
757 break;
758 if (level == target_level)
759 break;
760
761 if (!dma_pte_present(pte)) {
762 uint64_t pteval;
763
764 tmp_page = alloc_pgtable_page(domain->nid);
765
766 if (!tmp_page)
767 return NULL;
768
769 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
770 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
771 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
772 /* Someone else set it while we were thinking; use theirs. */
773 free_pgtable_page(tmp_page);
774 } else {
775 dma_pte_addr(pte);
776 domain_flush_cache(domain, pte, sizeof(*pte));
777 }
778 }
779 parent = phys_to_virt(dma_pte_addr(pte));
780 level--;
781 }
782
783 return pte;
784}
785
786
787/* return address's pte at specific level */
788static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
789 unsigned long pfn,
790 int level, int *large_page)
791{
792 struct dma_pte *parent, *pte = NULL;
793 int total = agaw_to_level(domain->agaw);
794 int offset;
795
796 parent = domain->pgd;
797 while (level <= total) {
798 offset = pfn_level_offset(pfn, total);
799 pte = &parent[offset];
800 if (level == total)
801 return pte;
802
803 if (!dma_pte_present(pte)) {
804 *large_page = total;
805 break;
806 }
807
808 if (pte->val & DMA_PTE_LARGE_PAGE) {
809 *large_page = total;
810 return pte;
811 }
812
813 parent = phys_to_virt(dma_pte_addr(pte));
814 total--;
815 }
816 return NULL;
817}
818
819/* clear last level pte, a tlb flush should be followed */
820static void dma_pte_clear_range(struct dmar_domain *domain,
821 unsigned long start_pfn,
822 unsigned long last_pfn)
823{
824 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
825 unsigned int large_page = 1;
826 struct dma_pte *first_pte, *pte;
827
828 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
829 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
830 BUG_ON(start_pfn > last_pfn);
831
832 /* we don't need lock here; nobody else touches the iova range */
833 do {
834 large_page = 1;
835 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
836 if (!pte) {
837 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
838 continue;
839 }
840 do {
841 dma_clear_pte(pte);
842 start_pfn += lvl_to_nr_pages(large_page);
843 pte++;
844 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
845
846 domain_flush_cache(domain, first_pte,
847 (void *)pte - (void *)first_pte);
848
849 } while (start_pfn && start_pfn <= last_pfn);
850}
851
852/* free page table pages. last level pte should already be cleared */
853static void dma_pte_free_pagetable(struct dmar_domain *domain,
854 unsigned long start_pfn,
855 unsigned long last_pfn)
856{
857 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
858 struct dma_pte *first_pte, *pte;
859 int total = agaw_to_level(domain->agaw);
860 int level;
861 unsigned long tmp;
862 int large_page = 2;
863
864 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
865 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
866 BUG_ON(start_pfn > last_pfn);
867
868 /* We don't need lock here; nobody else touches the iova range */
869 level = 2;
870 while (level <= total) {
871 tmp = align_to_level(start_pfn, level);
872
873 /* If we can't even clear one PTE at this level, we're done */
874 if (tmp + level_size(level) - 1 > last_pfn)
875 return;
876
877 do {
878 large_page = level;
879 first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
880 if (large_page > level)
881 level = large_page + 1;
882 if (!pte) {
883 tmp = align_to_level(tmp + 1, level + 1);
884 continue;
885 }
886 do {
887 if (dma_pte_present(pte)) {
888 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
889 dma_clear_pte(pte);
890 }
891 pte++;
892 tmp += level_size(level);
893 } while (!first_pte_in_page(pte) &&
894 tmp + level_size(level) - 1 <= last_pfn);
895
896 domain_flush_cache(domain, first_pte,
897 (void *)pte - (void *)first_pte);
898
899 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
900 level++;
901 }
902 /* free pgd */
903 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
904 free_pgtable_page(domain->pgd);
905 domain->pgd = NULL;
906 }
907}
908
909/* iommu handling */
910static int iommu_alloc_root_entry(struct intel_iommu *iommu)
911{
912 struct root_entry *root;
913 unsigned long flags;
914
915 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
916 if (!root)
917 return -ENOMEM;
918
919 __iommu_flush_cache(iommu, root, ROOT_SIZE);
920
921 spin_lock_irqsave(&iommu->lock, flags);
922 iommu->root_entry = root;
923 spin_unlock_irqrestore(&iommu->lock, flags);
924
925 return 0;
926}
927
928static void iommu_set_root_entry(struct intel_iommu *iommu)
929{
930 void *addr;
931 u32 sts;
932 unsigned long flag;
933
934 addr = iommu->root_entry;
935
936 spin_lock_irqsave(&iommu->register_lock, flag);
937 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
938
939 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
940
941 /* Make sure hardware complete it */
942 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
943 readl, (sts & DMA_GSTS_RTPS), sts);
944
945 spin_unlock_irqrestore(&iommu->register_lock, flag);
946}
947
948static void iommu_flush_write_buffer(struct intel_iommu *iommu)
949{
950 u32 val;
951 unsigned long flag;
952
953 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
954 return;
955
956 spin_lock_irqsave(&iommu->register_lock, flag);
957 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
958
959 /* Make sure hardware complete it */
960 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
961 readl, (!(val & DMA_GSTS_WBFS)), val);
962
963 spin_unlock_irqrestore(&iommu->register_lock, flag);
964}
965
966/* return value determine if we need a write buffer flush */
967static void __iommu_flush_context(struct intel_iommu *iommu,
968 u16 did, u16 source_id, u8 function_mask,
969 u64 type)
970{
971 u64 val = 0;
972 unsigned long flag;
973
974 switch (type) {
975 case DMA_CCMD_GLOBAL_INVL:
976 val = DMA_CCMD_GLOBAL_INVL;
977 break;
978 case DMA_CCMD_DOMAIN_INVL:
979 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
980 break;
981 case DMA_CCMD_DEVICE_INVL:
982 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
983 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
984 break;
985 default:
986 BUG();
987 }
988 val |= DMA_CCMD_ICC;
989
990 spin_lock_irqsave(&iommu->register_lock, flag);
991 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
992
993 /* Make sure hardware complete it */
994 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
995 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
996
997 spin_unlock_irqrestore(&iommu->register_lock, flag);
998}
999
1000/* return value determine if we need a write buffer flush */
1001static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1002 u64 addr, unsigned int size_order, u64 type)
1003{
1004 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1005 u64 val = 0, val_iva = 0;
1006 unsigned long flag;
1007
1008 switch (type) {
1009 case DMA_TLB_GLOBAL_FLUSH:
1010 /* global flush doesn't need set IVA_REG */
1011 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1012 break;
1013 case DMA_TLB_DSI_FLUSH:
1014 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1015 break;
1016 case DMA_TLB_PSI_FLUSH:
1017 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1018 /* Note: always flush non-leaf currently */
1019 val_iva = size_order | addr;
1020 break;
1021 default:
1022 BUG();
1023 }
1024 /* Note: set drain read/write */
1025#if 0
1026 /*
1027 * This is probably to be super secure.. Looks like we can
1028 * ignore it without any impact.
1029 */
1030 if (cap_read_drain(iommu->cap))
1031 val |= DMA_TLB_READ_DRAIN;
1032#endif
1033 if (cap_write_drain(iommu->cap))
1034 val |= DMA_TLB_WRITE_DRAIN;
1035
1036 spin_lock_irqsave(&iommu->register_lock, flag);
1037 /* Note: Only uses first TLB reg currently */
1038 if (val_iva)
1039 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1040 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1041
1042 /* Make sure hardware complete it */
1043 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1044 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1045
1046 spin_unlock_irqrestore(&iommu->register_lock, flag);
1047
1048 /* check IOTLB invalidation granularity */
1049 if (DMA_TLB_IAIG(val) == 0)
1050 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1051 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1052 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1053 (unsigned long long)DMA_TLB_IIRG(type),
1054 (unsigned long long)DMA_TLB_IAIG(val));
1055}
1056
1057static struct device_domain_info *iommu_support_dev_iotlb(
1058 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1059{
1060 int found = 0;
1061 unsigned long flags;
1062 struct device_domain_info *info;
1063 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1064
1065 if (!ecap_dev_iotlb_support(iommu->ecap))
1066 return NULL;
1067
1068 if (!iommu->qi)
1069 return NULL;
1070
1071 spin_lock_irqsave(&device_domain_lock, flags);
1072 list_for_each_entry(info, &domain->devices, link)
1073 if (info->bus == bus && info->devfn == devfn) {
1074 found = 1;
1075 break;
1076 }
1077 spin_unlock_irqrestore(&device_domain_lock, flags);
1078
1079 if (!found || !info->dev)
1080 return NULL;
1081
1082 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1083 return NULL;
1084
1085 if (!dmar_find_matched_atsr_unit(info->dev))
1086 return NULL;
1087
1088 info->iommu = iommu;
1089
1090 return info;
1091}
1092
1093static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1094{
1095 if (!info)
1096 return;
1097
1098 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1099}
1100
1101static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1102{
1103 if (!info->dev || !pci_ats_enabled(info->dev))
1104 return;
1105
1106 pci_disable_ats(info->dev);
1107}
1108
1109static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1110 u64 addr, unsigned mask)
1111{
1112 u16 sid, qdep;
1113 unsigned long flags;
1114 struct device_domain_info *info;
1115
1116 spin_lock_irqsave(&device_domain_lock, flags);
1117 list_for_each_entry(info, &domain->devices, link) {
1118 if (!info->dev || !pci_ats_enabled(info->dev))
1119 continue;
1120
1121 sid = info->bus << 8 | info->devfn;
1122 qdep = pci_ats_queue_depth(info->dev);
1123 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1124 }
1125 spin_unlock_irqrestore(&device_domain_lock, flags);
1126}
1127
1128static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1129 unsigned long pfn, unsigned int pages, int map)
1130{
1131 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1132 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1133
1134 BUG_ON(pages == 0);
1135
1136 /*
1137 * Fallback to domain selective flush if no PSI support or the size is
1138 * too big.
1139 * PSI requires page size to be 2 ^ x, and the base address is naturally
1140 * aligned to the size
1141 */
1142 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1143 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1144 DMA_TLB_DSI_FLUSH);
1145 else
1146 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1147 DMA_TLB_PSI_FLUSH);
1148
1149 /*
1150 * In caching mode, changes of pages from non-present to present require
1151 * flush. However, device IOTLB doesn't need to be flushed in this case.
1152 */
1153 if (!cap_caching_mode(iommu->cap) || !map)
1154 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1155}
1156
1157static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1158{
1159 u32 pmen;
1160 unsigned long flags;
1161
1162 spin_lock_irqsave(&iommu->register_lock, flags);
1163 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1164 pmen &= ~DMA_PMEN_EPM;
1165 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1166
1167 /* wait for the protected region status bit to clear */
1168 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1169 readl, !(pmen & DMA_PMEN_PRS), pmen);
1170
1171 spin_unlock_irqrestore(&iommu->register_lock, flags);
1172}
1173
1174static int iommu_enable_translation(struct intel_iommu *iommu)
1175{
1176 u32 sts;
1177 unsigned long flags;
1178
1179 spin_lock_irqsave(&iommu->register_lock, flags);
1180 iommu->gcmd |= DMA_GCMD_TE;
1181 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1182
1183 /* Make sure hardware complete it */
1184 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1185 readl, (sts & DMA_GSTS_TES), sts);
1186
1187 spin_unlock_irqrestore(&iommu->register_lock, flags);
1188 return 0;
1189}
1190
1191static int iommu_disable_translation(struct intel_iommu *iommu)
1192{
1193 u32 sts;
1194 unsigned long flag;
1195
1196 spin_lock_irqsave(&iommu->register_lock, flag);
1197 iommu->gcmd &= ~DMA_GCMD_TE;
1198 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1199
1200 /* Make sure hardware complete it */
1201 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1202 readl, (!(sts & DMA_GSTS_TES)), sts);
1203
1204 spin_unlock_irqrestore(&iommu->register_lock, flag);
1205 return 0;
1206}
1207
1208
1209static int iommu_init_domains(struct intel_iommu *iommu)
1210{
1211 unsigned long ndomains;
1212 unsigned long nlongs;
1213
1214 ndomains = cap_ndoms(iommu->cap);
1215 pr_debug("IOMMU %d: Number of Domains supportd <%ld>\n", iommu->seq_id,
1216 ndomains);
1217 nlongs = BITS_TO_LONGS(ndomains);
1218
1219 spin_lock_init(&iommu->lock);
1220
1221 /* TBD: there might be 64K domains,
1222 * consider other allocation for future chip
1223 */
1224 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1225 if (!iommu->domain_ids) {
1226 printk(KERN_ERR "Allocating domain id array failed\n");
1227 return -ENOMEM;
1228 }
1229 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1230 GFP_KERNEL);
1231 if (!iommu->domains) {
1232 printk(KERN_ERR "Allocating domain array failed\n");
1233 return -ENOMEM;
1234 }
1235
1236 /*
1237 * if Caching mode is set, then invalid translations are tagged
1238 * with domainid 0. Hence we need to pre-allocate it.
1239 */
1240 if (cap_caching_mode(iommu->cap))
1241 set_bit(0, iommu->domain_ids);
1242 return 0;
1243}
1244
1245
1246static void domain_exit(struct dmar_domain *domain);
1247static void vm_domain_exit(struct dmar_domain *domain);
1248
1249void free_dmar_iommu(struct intel_iommu *iommu)
1250{
1251 struct dmar_domain *domain;
1252 int i;
1253 unsigned long flags;
1254
1255 if ((iommu->domains) && (iommu->domain_ids)) {
1256 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1257 domain = iommu->domains[i];
1258 clear_bit(i, iommu->domain_ids);
1259
1260 spin_lock_irqsave(&domain->iommu_lock, flags);
1261 if (--domain->iommu_count == 0) {
1262 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1263 vm_domain_exit(domain);
1264 else
1265 domain_exit(domain);
1266 }
1267 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1268 }
1269 }
1270
1271 if (iommu->gcmd & DMA_GCMD_TE)
1272 iommu_disable_translation(iommu);
1273
1274 if (iommu->irq) {
1275 irq_set_handler_data(iommu->irq, NULL);
1276 /* This will mask the irq */
1277 free_irq(iommu->irq, iommu);
1278 destroy_irq(iommu->irq);
1279 }
1280
1281 kfree(iommu->domains);
1282 kfree(iommu->domain_ids);
1283
1284 g_iommus[iommu->seq_id] = NULL;
1285
1286 /* if all iommus are freed, free g_iommus */
1287 for (i = 0; i < g_num_of_iommus; i++) {
1288 if (g_iommus[i])
1289 break;
1290 }
1291
1292 if (i == g_num_of_iommus)
1293 kfree(g_iommus);
1294
1295 /* free context mapping */
1296 free_context_table(iommu);
1297}
1298
1299static struct dmar_domain *alloc_domain(void)
1300{
1301 struct dmar_domain *domain;
1302
1303 domain = alloc_domain_mem();
1304 if (!domain)
1305 return NULL;
1306
1307 domain->nid = -1;
1308 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1309 domain->flags = 0;
1310
1311 return domain;
1312}
1313
1314static int iommu_attach_domain(struct dmar_domain *domain,
1315 struct intel_iommu *iommu)
1316{
1317 int num;
1318 unsigned long ndomains;
1319 unsigned long flags;
1320
1321 ndomains = cap_ndoms(iommu->cap);
1322
1323 spin_lock_irqsave(&iommu->lock, flags);
1324
1325 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1326 if (num >= ndomains) {
1327 spin_unlock_irqrestore(&iommu->lock, flags);
1328 printk(KERN_ERR "IOMMU: no free domain ids\n");
1329 return -ENOMEM;
1330 }
1331
1332 domain->id = num;
1333 set_bit(num, iommu->domain_ids);
1334 set_bit(iommu->seq_id, &domain->iommu_bmp);
1335 iommu->domains[num] = domain;
1336 spin_unlock_irqrestore(&iommu->lock, flags);
1337
1338 return 0;
1339}
1340
1341static void iommu_detach_domain(struct dmar_domain *domain,
1342 struct intel_iommu *iommu)
1343{
1344 unsigned long flags;
1345 int num, ndomains;
1346 int found = 0;
1347
1348 spin_lock_irqsave(&iommu->lock, flags);
1349 ndomains = cap_ndoms(iommu->cap);
1350 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1351 if (iommu->domains[num] == domain) {
1352 found = 1;
1353 break;
1354 }
1355 }
1356
1357 if (found) {
1358 clear_bit(num, iommu->domain_ids);
1359 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1360 iommu->domains[num] = NULL;
1361 }
1362 spin_unlock_irqrestore(&iommu->lock, flags);
1363}
1364
1365static struct iova_domain reserved_iova_list;
1366static struct lock_class_key reserved_rbtree_key;
1367
1368static int dmar_init_reserved_ranges(void)
1369{
1370 struct pci_dev *pdev = NULL;
1371 struct iova *iova;
1372 int i;
1373
1374 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1375
1376 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1377 &reserved_rbtree_key);
1378
1379 /* IOAPIC ranges shouldn't be accessed by DMA */
1380 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1381 IOVA_PFN(IOAPIC_RANGE_END));
1382 if (!iova) {
1383 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1384 return -ENODEV;
1385 }
1386
1387 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1388 for_each_pci_dev(pdev) {
1389 struct resource *r;
1390
1391 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1392 r = &pdev->resource[i];
1393 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1394 continue;
1395 iova = reserve_iova(&reserved_iova_list,
1396 IOVA_PFN(r->start),
1397 IOVA_PFN(r->end));
1398 if (!iova) {
1399 printk(KERN_ERR "Reserve iova failed\n");
1400 return -ENODEV;
1401 }
1402 }
1403 }
1404 return 0;
1405}
1406
1407static void domain_reserve_special_ranges(struct dmar_domain *domain)
1408{
1409 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1410}
1411
1412static inline int guestwidth_to_adjustwidth(int gaw)
1413{
1414 int agaw;
1415 int r = (gaw - 12) % 9;
1416
1417 if (r == 0)
1418 agaw = gaw;
1419 else
1420 agaw = gaw + 9 - r;
1421 if (agaw > 64)
1422 agaw = 64;
1423 return agaw;
1424}
1425
1426static int domain_init(struct dmar_domain *domain, int guest_width)
1427{
1428 struct intel_iommu *iommu;
1429 int adjust_width, agaw;
1430 unsigned long sagaw;
1431
1432 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1433 spin_lock_init(&domain->iommu_lock);
1434
1435 domain_reserve_special_ranges(domain);
1436
1437 /* calculate AGAW */
1438 iommu = domain_get_iommu(domain);
1439 if (guest_width > cap_mgaw(iommu->cap))
1440 guest_width = cap_mgaw(iommu->cap);
1441 domain->gaw = guest_width;
1442 adjust_width = guestwidth_to_adjustwidth(guest_width);
1443 agaw = width_to_agaw(adjust_width);
1444 sagaw = cap_sagaw(iommu->cap);
1445 if (!test_bit(agaw, &sagaw)) {
1446 /* hardware doesn't support it, choose a bigger one */
1447 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1448 agaw = find_next_bit(&sagaw, 5, agaw);
1449 if (agaw >= 5)
1450 return -ENODEV;
1451 }
1452 domain->agaw = agaw;
1453 INIT_LIST_HEAD(&domain->devices);
1454
1455 if (ecap_coherent(iommu->ecap))
1456 domain->iommu_coherency = 1;
1457 else
1458 domain->iommu_coherency = 0;
1459
1460 if (ecap_sc_support(iommu->ecap))
1461 domain->iommu_snooping = 1;
1462 else
1463 domain->iommu_snooping = 0;
1464
1465 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1466 domain->iommu_count = 1;
1467 domain->nid = iommu->node;
1468
1469 /* always allocate the top pgd */
1470 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1471 if (!domain->pgd)
1472 return -ENOMEM;
1473 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1474 return 0;
1475}
1476
1477static void domain_exit(struct dmar_domain *domain)
1478{
1479 struct dmar_drhd_unit *drhd;
1480 struct intel_iommu *iommu;
1481
1482 /* Domain 0 is reserved, so dont process it */
1483 if (!domain)
1484 return;
1485
1486 /* Flush any lazy unmaps that may reference this domain */
1487 if (!intel_iommu_strict)
1488 flush_unmaps_timeout(0);
1489
1490 domain_remove_dev_info(domain);
1491 /* destroy iovas */
1492 put_iova_domain(&domain->iovad);
1493
1494 /* clear ptes */
1495 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1496
1497 /* free page tables */
1498 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1499
1500 for_each_active_iommu(iommu, drhd)
1501 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1502 iommu_detach_domain(domain, iommu);
1503
1504 free_domain_mem(domain);
1505}
1506
1507static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1508 u8 bus, u8 devfn, int translation)
1509{
1510 struct context_entry *context;
1511 unsigned long flags;
1512 struct intel_iommu *iommu;
1513 struct dma_pte *pgd;
1514 unsigned long num;
1515 unsigned long ndomains;
1516 int id;
1517 int agaw;
1518 struct device_domain_info *info = NULL;
1519
1520 pr_debug("Set context mapping for %02x:%02x.%d\n",
1521 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1522
1523 BUG_ON(!domain->pgd);
1524 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1525 translation != CONTEXT_TT_MULTI_LEVEL);
1526
1527 iommu = device_to_iommu(segment, bus, devfn);
1528 if (!iommu)
1529 return -ENODEV;
1530
1531 context = device_to_context_entry(iommu, bus, devfn);
1532 if (!context)
1533 return -ENOMEM;
1534 spin_lock_irqsave(&iommu->lock, flags);
1535 if (context_present(context)) {
1536 spin_unlock_irqrestore(&iommu->lock, flags);
1537 return 0;
1538 }
1539
1540 id = domain->id;
1541 pgd = domain->pgd;
1542
1543 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1544 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1545 int found = 0;
1546
1547 /* find an available domain id for this device in iommu */
1548 ndomains = cap_ndoms(iommu->cap);
1549 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1550 if (iommu->domains[num] == domain) {
1551 id = num;
1552 found = 1;
1553 break;
1554 }
1555 }
1556
1557 if (found == 0) {
1558 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1559 if (num >= ndomains) {
1560 spin_unlock_irqrestore(&iommu->lock, flags);
1561 printk(KERN_ERR "IOMMU: no free domain ids\n");
1562 return -EFAULT;
1563 }
1564
1565 set_bit(num, iommu->domain_ids);
1566 iommu->domains[num] = domain;
1567 id = num;
1568 }
1569
1570 /* Skip top levels of page tables for
1571 * iommu which has less agaw than default.
1572 * Unnecessary for PT mode.
1573 */
1574 if (translation != CONTEXT_TT_PASS_THROUGH) {
1575 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1576 pgd = phys_to_virt(dma_pte_addr(pgd));
1577 if (!dma_pte_present(pgd)) {
1578 spin_unlock_irqrestore(&iommu->lock, flags);
1579 return -ENOMEM;
1580 }
1581 }
1582 }
1583 }
1584
1585 context_set_domain_id(context, id);
1586
1587 if (translation != CONTEXT_TT_PASS_THROUGH) {
1588 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1589 translation = info ? CONTEXT_TT_DEV_IOTLB :
1590 CONTEXT_TT_MULTI_LEVEL;
1591 }
1592 /*
1593 * In pass through mode, AW must be programmed to indicate the largest
1594 * AGAW value supported by hardware. And ASR is ignored by hardware.
1595 */
1596 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1597 context_set_address_width(context, iommu->msagaw);
1598 else {
1599 context_set_address_root(context, virt_to_phys(pgd));
1600 context_set_address_width(context, iommu->agaw);
1601 }
1602
1603 context_set_translation_type(context, translation);
1604 context_set_fault_enable(context);
1605 context_set_present(context);
1606 domain_flush_cache(domain, context, sizeof(*context));
1607
1608 /*
1609 * It's a non-present to present mapping. If hardware doesn't cache
1610 * non-present entry we only need to flush the write-buffer. If the
1611 * _does_ cache non-present entries, then it does so in the special
1612 * domain #0, which we have to flush:
1613 */
1614 if (cap_caching_mode(iommu->cap)) {
1615 iommu->flush.flush_context(iommu, 0,
1616 (((u16)bus) << 8) | devfn,
1617 DMA_CCMD_MASK_NOBIT,
1618 DMA_CCMD_DEVICE_INVL);
1619 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1620 } else {
1621 iommu_flush_write_buffer(iommu);
1622 }
1623 iommu_enable_dev_iotlb(info);
1624 spin_unlock_irqrestore(&iommu->lock, flags);
1625
1626 spin_lock_irqsave(&domain->iommu_lock, flags);
1627 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1628 domain->iommu_count++;
1629 if (domain->iommu_count == 1)
1630 domain->nid = iommu->node;
1631 domain_update_iommu_cap(domain);
1632 }
1633 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1634 return 0;
1635}
1636
1637static int
1638domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1639 int translation)
1640{
1641 int ret;
1642 struct pci_dev *tmp, *parent;
1643
1644 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1645 pdev->bus->number, pdev->devfn,
1646 translation);
1647 if (ret)
1648 return ret;
1649
1650 /* dependent device mapping */
1651 tmp = pci_find_upstream_pcie_bridge(pdev);
1652 if (!tmp)
1653 return 0;
1654 /* Secondary interface's bus number and devfn 0 */
1655 parent = pdev->bus->self;
1656 while (parent != tmp) {
1657 ret = domain_context_mapping_one(domain,
1658 pci_domain_nr(parent->bus),
1659 parent->bus->number,
1660 parent->devfn, translation);
1661 if (ret)
1662 return ret;
1663 parent = parent->bus->self;
1664 }
1665 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1666 return domain_context_mapping_one(domain,
1667 pci_domain_nr(tmp->subordinate),
1668 tmp->subordinate->number, 0,
1669 translation);
1670 else /* this is a legacy PCI bridge */
1671 return domain_context_mapping_one(domain,
1672 pci_domain_nr(tmp->bus),
1673 tmp->bus->number,
1674 tmp->devfn,
1675 translation);
1676}
1677
1678static int domain_context_mapped(struct pci_dev *pdev)
1679{
1680 int ret;
1681 struct pci_dev *tmp, *parent;
1682 struct intel_iommu *iommu;
1683
1684 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1685 pdev->devfn);
1686 if (!iommu)
1687 return -ENODEV;
1688
1689 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1690 if (!ret)
1691 return ret;
1692 /* dependent device mapping */
1693 tmp = pci_find_upstream_pcie_bridge(pdev);
1694 if (!tmp)
1695 return ret;
1696 /* Secondary interface's bus number and devfn 0 */
1697 parent = pdev->bus->self;
1698 while (parent != tmp) {
1699 ret = device_context_mapped(iommu, parent->bus->number,
1700 parent->devfn);
1701 if (!ret)
1702 return ret;
1703 parent = parent->bus->self;
1704 }
1705 if (pci_is_pcie(tmp))
1706 return device_context_mapped(iommu, tmp->subordinate->number,
1707 0);
1708 else
1709 return device_context_mapped(iommu, tmp->bus->number,
1710 tmp->devfn);
1711}
1712
1713/* Returns a number of VTD pages, but aligned to MM page size */
1714static inline unsigned long aligned_nrpages(unsigned long host_addr,
1715 size_t size)
1716{
1717 host_addr &= ~PAGE_MASK;
1718 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1719}
1720
1721/* Return largest possible superpage level for a given mapping */
1722static inline int hardware_largepage_caps(struct dmar_domain *domain,
1723 unsigned long iov_pfn,
1724 unsigned long phy_pfn,
1725 unsigned long pages)
1726{
1727 int support, level = 1;
1728 unsigned long pfnmerge;
1729
1730 support = domain->iommu_superpage;
1731
1732 /* To use a large page, the virtual *and* physical addresses
1733 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1734 of them will mean we have to use smaller pages. So just
1735 merge them and check both at once. */
1736 pfnmerge = iov_pfn | phy_pfn;
1737
1738 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1739 pages >>= VTD_STRIDE_SHIFT;
1740 if (!pages)
1741 break;
1742 pfnmerge >>= VTD_STRIDE_SHIFT;
1743 level++;
1744 support--;
1745 }
1746 return level;
1747}
1748
1749static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1750 struct scatterlist *sg, unsigned long phys_pfn,
1751 unsigned long nr_pages, int prot)
1752{
1753 struct dma_pte *first_pte = NULL, *pte = NULL;
1754 phys_addr_t uninitialized_var(pteval);
1755 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1756 unsigned long sg_res;
1757 unsigned int largepage_lvl = 0;
1758 unsigned long lvl_pages = 0;
1759
1760 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1761
1762 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1763 return -EINVAL;
1764
1765 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1766
1767 if (sg)
1768 sg_res = 0;
1769 else {
1770 sg_res = nr_pages + 1;
1771 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1772 }
1773
1774 while (nr_pages > 0) {
1775 uint64_t tmp;
1776
1777 if (!sg_res) {
1778 sg_res = aligned_nrpages(sg->offset, sg->length);
1779 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1780 sg->dma_length = sg->length;
1781 pteval = page_to_phys(sg_page(sg)) | prot;
1782 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1783 }
1784
1785 if (!pte) {
1786 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1787
1788 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1789 if (!pte)
1790 return -ENOMEM;
1791 /* It is large page*/
1792 if (largepage_lvl > 1)
1793 pteval |= DMA_PTE_LARGE_PAGE;
1794 else
1795 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1796
1797 }
1798 /* We don't need lock here, nobody else
1799 * touches the iova range
1800 */
1801 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1802 if (tmp) {
1803 static int dumps = 5;
1804 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1805 iov_pfn, tmp, (unsigned long long)pteval);
1806 if (dumps) {
1807 dumps--;
1808 debug_dma_dump_mappings(NULL);
1809 }
1810 WARN_ON(1);
1811 }
1812
1813 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1814
1815 BUG_ON(nr_pages < lvl_pages);
1816 BUG_ON(sg_res < lvl_pages);
1817
1818 nr_pages -= lvl_pages;
1819 iov_pfn += lvl_pages;
1820 phys_pfn += lvl_pages;
1821 pteval += lvl_pages * VTD_PAGE_SIZE;
1822 sg_res -= lvl_pages;
1823
1824 /* If the next PTE would be the first in a new page, then we
1825 need to flush the cache on the entries we've just written.
1826 And then we'll need to recalculate 'pte', so clear it and
1827 let it get set again in the if (!pte) block above.
1828
1829 If we're done (!nr_pages) we need to flush the cache too.
1830
1831 Also if we've been setting superpages, we may need to
1832 recalculate 'pte' and switch back to smaller pages for the
1833 end of the mapping, if the trailing size is not enough to
1834 use another superpage (i.e. sg_res < lvl_pages). */
1835 pte++;
1836 if (!nr_pages || first_pte_in_page(pte) ||
1837 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1838 domain_flush_cache(domain, first_pte,
1839 (void *)pte - (void *)first_pte);
1840 pte = NULL;
1841 }
1842
1843 if (!sg_res && nr_pages)
1844 sg = sg_next(sg);
1845 }
1846 return 0;
1847}
1848
1849static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1850 struct scatterlist *sg, unsigned long nr_pages,
1851 int prot)
1852{
1853 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1854}
1855
1856static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1857 unsigned long phys_pfn, unsigned long nr_pages,
1858 int prot)
1859{
1860 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1861}
1862
1863static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1864{
1865 if (!iommu)
1866 return;
1867
1868 clear_context_table(iommu, bus, devfn);
1869 iommu->flush.flush_context(iommu, 0, 0, 0,
1870 DMA_CCMD_GLOBAL_INVL);
1871 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1872}
1873
1874static void domain_remove_dev_info(struct dmar_domain *domain)
1875{
1876 struct device_domain_info *info;
1877 unsigned long flags;
1878 struct intel_iommu *iommu;
1879
1880 spin_lock_irqsave(&device_domain_lock, flags);
1881 while (!list_empty(&domain->devices)) {
1882 info = list_entry(domain->devices.next,
1883 struct device_domain_info, link);
1884 list_del(&info->link);
1885 list_del(&info->global);
1886 if (info->dev)
1887 info->dev->dev.archdata.iommu = NULL;
1888 spin_unlock_irqrestore(&device_domain_lock, flags);
1889
1890 iommu_disable_dev_iotlb(info);
1891 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1892 iommu_detach_dev(iommu, info->bus, info->devfn);
1893 free_devinfo_mem(info);
1894
1895 spin_lock_irqsave(&device_domain_lock, flags);
1896 }
1897 spin_unlock_irqrestore(&device_domain_lock, flags);
1898}
1899
1900/*
1901 * find_domain
1902 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1903 */
1904static struct dmar_domain *
1905find_domain(struct pci_dev *pdev)
1906{
1907 struct device_domain_info *info;
1908
1909 /* No lock here, assumes no domain exit in normal case */
1910 info = pdev->dev.archdata.iommu;
1911 if (info)
1912 return info->domain;
1913 return NULL;
1914}
1915
1916/* domain is initialized */
1917static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1918{
1919 struct dmar_domain *domain, *found = NULL;
1920 struct intel_iommu *iommu;
1921 struct dmar_drhd_unit *drhd;
1922 struct device_domain_info *info, *tmp;
1923 struct pci_dev *dev_tmp;
1924 unsigned long flags;
1925 int bus = 0, devfn = 0;
1926 int segment;
1927 int ret;
1928
1929 domain = find_domain(pdev);
1930 if (domain)
1931 return domain;
1932
1933 segment = pci_domain_nr(pdev->bus);
1934
1935 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1936 if (dev_tmp) {
1937 if (pci_is_pcie(dev_tmp)) {
1938 bus = dev_tmp->subordinate->number;
1939 devfn = 0;
1940 } else {
1941 bus = dev_tmp->bus->number;
1942 devfn = dev_tmp->devfn;
1943 }
1944 spin_lock_irqsave(&device_domain_lock, flags);
1945 list_for_each_entry(info, &device_domain_list, global) {
1946 if (info->segment == segment &&
1947 info->bus == bus && info->devfn == devfn) {
1948 found = info->domain;
1949 break;
1950 }
1951 }
1952 spin_unlock_irqrestore(&device_domain_lock, flags);
1953 /* pcie-pci bridge already has a domain, uses it */
1954 if (found) {
1955 domain = found;
1956 goto found_domain;
1957 }
1958 }
1959
1960 domain = alloc_domain();
1961 if (!domain)
1962 goto error;
1963
1964 /* Allocate new domain for the device */
1965 drhd = dmar_find_matched_drhd_unit(pdev);
1966 if (!drhd) {
1967 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1968 pci_name(pdev));
1969 return NULL;
1970 }
1971 iommu = drhd->iommu;
1972
1973 ret = iommu_attach_domain(domain, iommu);
1974 if (ret) {
1975 free_domain_mem(domain);
1976 goto error;
1977 }
1978
1979 if (domain_init(domain, gaw)) {
1980 domain_exit(domain);
1981 goto error;
1982 }
1983
1984 /* register pcie-to-pci device */
1985 if (dev_tmp) {
1986 info = alloc_devinfo_mem();
1987 if (!info) {
1988 domain_exit(domain);
1989 goto error;
1990 }
1991 info->segment = segment;
1992 info->bus = bus;
1993 info->devfn = devfn;
1994 info->dev = NULL;
1995 info->domain = domain;
1996 /* This domain is shared by devices under p2p bridge */
1997 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1998
1999 /* pcie-to-pci bridge already has a domain, uses it */
2000 found = NULL;
2001 spin_lock_irqsave(&device_domain_lock, flags);
2002 list_for_each_entry(tmp, &device_domain_list, global) {
2003 if (tmp->segment == segment &&
2004 tmp->bus == bus && tmp->devfn == devfn) {
2005 found = tmp->domain;
2006 break;
2007 }
2008 }
2009 if (found) {
2010 spin_unlock_irqrestore(&device_domain_lock, flags);
2011 free_devinfo_mem(info);
2012 domain_exit(domain);
2013 domain = found;
2014 } else {
2015 list_add(&info->link, &domain->devices);
2016 list_add(&info->global, &device_domain_list);
2017 spin_unlock_irqrestore(&device_domain_lock, flags);
2018 }
2019 }
2020
2021found_domain:
2022 info = alloc_devinfo_mem();
2023 if (!info)
2024 goto error;
2025 info->segment = segment;
2026 info->bus = pdev->bus->number;
2027 info->devfn = pdev->devfn;
2028 info->dev = pdev;
2029 info->domain = domain;
2030 spin_lock_irqsave(&device_domain_lock, flags);
2031 /* somebody is fast */
2032 found = find_domain(pdev);
2033 if (found != NULL) {
2034 spin_unlock_irqrestore(&device_domain_lock, flags);
2035 if (found != domain) {
2036 domain_exit(domain);
2037 domain = found;
2038 }
2039 free_devinfo_mem(info);
2040 return domain;
2041 }
2042 list_add(&info->link, &domain->devices);
2043 list_add(&info->global, &device_domain_list);
2044 pdev->dev.archdata.iommu = info;
2045 spin_unlock_irqrestore(&device_domain_lock, flags);
2046 return domain;
2047error:
2048 /* recheck it here, maybe others set it */
2049 return find_domain(pdev);
2050}
2051
2052static int iommu_identity_mapping;
2053#define IDENTMAP_ALL 1
2054#define IDENTMAP_GFX 2
2055#define IDENTMAP_AZALIA 4
2056
2057static int iommu_domain_identity_map(struct dmar_domain *domain,
2058 unsigned long long start,
2059 unsigned long long end)
2060{
2061 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2062 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2063
2064 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2065 dma_to_mm_pfn(last_vpfn))) {
2066 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2067 return -ENOMEM;
2068 }
2069
2070 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2071 start, end, domain->id);
2072 /*
2073 * RMRR range might have overlap with physical memory range,
2074 * clear it first
2075 */
2076 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2077
2078 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2079 last_vpfn - first_vpfn + 1,
2080 DMA_PTE_READ|DMA_PTE_WRITE);
2081}
2082
2083static int iommu_prepare_identity_map(struct pci_dev *pdev,
2084 unsigned long long start,
2085 unsigned long long end)
2086{
2087 struct dmar_domain *domain;
2088 int ret;
2089
2090 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2091 if (!domain)
2092 return -ENOMEM;
2093
2094 /* For _hardware_ passthrough, don't bother. But for software
2095 passthrough, we do it anyway -- it may indicate a memory
2096 range which is reserved in E820, so which didn't get set
2097 up to start with in si_domain */
2098 if (domain == si_domain && hw_pass_through) {
2099 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2100 pci_name(pdev), start, end);
2101 return 0;
2102 }
2103
2104 printk(KERN_INFO
2105 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2106 pci_name(pdev), start, end);
2107
2108 if (end < start) {
2109 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2110 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2111 dmi_get_system_info(DMI_BIOS_VENDOR),
2112 dmi_get_system_info(DMI_BIOS_VERSION),
2113 dmi_get_system_info(DMI_PRODUCT_VERSION));
2114 ret = -EIO;
2115 goto error;
2116 }
2117
2118 if (end >> agaw_to_width(domain->agaw)) {
2119 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2120 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2121 agaw_to_width(domain->agaw),
2122 dmi_get_system_info(DMI_BIOS_VENDOR),
2123 dmi_get_system_info(DMI_BIOS_VERSION),
2124 dmi_get_system_info(DMI_PRODUCT_VERSION));
2125 ret = -EIO;
2126 goto error;
2127 }
2128
2129 ret = iommu_domain_identity_map(domain, start, end);
2130 if (ret)
2131 goto error;
2132
2133 /* context entry init */
2134 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2135 if (ret)
2136 goto error;
2137
2138 return 0;
2139
2140 error:
2141 domain_exit(domain);
2142 return ret;
2143}
2144
2145static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2146 struct pci_dev *pdev)
2147{
2148 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2149 return 0;
2150 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2151 rmrr->end_address);
2152}
2153
2154#ifdef CONFIG_DMAR_FLOPPY_WA
2155static inline void iommu_prepare_isa(void)
2156{
2157 struct pci_dev *pdev;
2158 int ret;
2159
2160 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2161 if (!pdev)
2162 return;
2163
2164 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2165 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2166
2167 if (ret)
2168 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2169 "floppy might not work\n");
2170
2171}
2172#else
2173static inline void iommu_prepare_isa(void)
2174{
2175 return;
2176}
2177#endif /* !CONFIG_DMAR_FLPY_WA */
2178
2179static int md_domain_init(struct dmar_domain *domain, int guest_width);
2180
2181static int __init si_domain_work_fn(unsigned long start_pfn,
2182 unsigned long end_pfn, void *datax)
2183{
2184 int *ret = datax;
2185
2186 *ret = iommu_domain_identity_map(si_domain,
2187 (uint64_t)start_pfn << PAGE_SHIFT,
2188 (uint64_t)end_pfn << PAGE_SHIFT);
2189 return *ret;
2190
2191}
2192
2193static int __init si_domain_init(int hw)
2194{
2195 struct dmar_drhd_unit *drhd;
2196 struct intel_iommu *iommu;
2197 int nid, ret = 0;
2198
2199 si_domain = alloc_domain();
2200 if (!si_domain)
2201 return -EFAULT;
2202
2203 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2204
2205 for_each_active_iommu(iommu, drhd) {
2206 ret = iommu_attach_domain(si_domain, iommu);
2207 if (ret) {
2208 domain_exit(si_domain);
2209 return -EFAULT;
2210 }
2211 }
2212
2213 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2214 domain_exit(si_domain);
2215 return -EFAULT;
2216 }
2217
2218 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2219
2220 if (hw)
2221 return 0;
2222
2223 for_each_online_node(nid) {
2224 work_with_active_regions(nid, si_domain_work_fn, &ret);
2225 if (ret)
2226 return ret;
2227 }
2228
2229 return 0;
2230}
2231
2232static void domain_remove_one_dev_info(struct dmar_domain *domain,
2233 struct pci_dev *pdev);
2234static int identity_mapping(struct pci_dev *pdev)
2235{
2236 struct device_domain_info *info;
2237
2238 if (likely(!iommu_identity_mapping))
2239 return 0;
2240
2241 info = pdev->dev.archdata.iommu;
2242 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2243 return (info->domain == si_domain);
2244
2245 return 0;
2246}
2247
2248static int domain_add_dev_info(struct dmar_domain *domain,
2249 struct pci_dev *pdev,
2250 int translation)
2251{
2252 struct device_domain_info *info;
2253 unsigned long flags;
2254 int ret;
2255
2256 info = alloc_devinfo_mem();
2257 if (!info)
2258 return -ENOMEM;
2259
2260 ret = domain_context_mapping(domain, pdev, translation);
2261 if (ret) {
2262 free_devinfo_mem(info);
2263 return ret;
2264 }
2265
2266 info->segment = pci_domain_nr(pdev->bus);
2267 info->bus = pdev->bus->number;
2268 info->devfn = pdev->devfn;
2269 info->dev = pdev;
2270 info->domain = domain;
2271
2272 spin_lock_irqsave(&device_domain_lock, flags);
2273 list_add(&info->link, &domain->devices);
2274 list_add(&info->global, &device_domain_list);
2275 pdev->dev.archdata.iommu = info;
2276 spin_unlock_irqrestore(&device_domain_lock, flags);
2277
2278 return 0;
2279}
2280
2281static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2282{
2283 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2284 return 1;
2285
2286 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2287 return 1;
2288
2289 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2290 return 0;
2291
2292 /*
2293 * We want to start off with all devices in the 1:1 domain, and
2294 * take them out later if we find they can't access all of memory.
2295 *
2296 * However, we can't do this for PCI devices behind bridges,
2297 * because all PCI devices behind the same bridge will end up
2298 * with the same source-id on their transactions.
2299 *
2300 * Practically speaking, we can't change things around for these
2301 * devices at run-time, because we can't be sure there'll be no
2302 * DMA transactions in flight for any of their siblings.
2303 *
2304 * So PCI devices (unless they're on the root bus) as well as
2305 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2306 * the 1:1 domain, just in _case_ one of their siblings turns out
2307 * not to be able to map all of memory.
2308 */
2309 if (!pci_is_pcie(pdev)) {
2310 if (!pci_is_root_bus(pdev->bus))
2311 return 0;
2312 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2313 return 0;
2314 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2315 return 0;
2316
2317 /*
2318 * At boot time, we don't yet know if devices will be 64-bit capable.
2319 * Assume that they will -- if they turn out not to be, then we can
2320 * take them out of the 1:1 domain later.
2321 */
2322 if (!startup) {
2323 /*
2324 * If the device's dma_mask is less than the system's memory
2325 * size then this is not a candidate for identity mapping.
2326 */
2327 u64 dma_mask = pdev->dma_mask;
2328
2329 if (pdev->dev.coherent_dma_mask &&
2330 pdev->dev.coherent_dma_mask < dma_mask)
2331 dma_mask = pdev->dev.coherent_dma_mask;
2332
2333 return dma_mask >= dma_get_required_mask(&pdev->dev);
2334 }
2335
2336 return 1;
2337}
2338
2339static int __init iommu_prepare_static_identity_mapping(int hw)
2340{
2341 struct pci_dev *pdev = NULL;
2342 int ret;
2343
2344 ret = si_domain_init(hw);
2345 if (ret)
2346 return -EFAULT;
2347
2348 for_each_pci_dev(pdev) {
2349 /* Skip Host/PCI Bridge devices */
2350 if (IS_BRIDGE_HOST_DEVICE(pdev))
2351 continue;
2352 if (iommu_should_identity_map(pdev, 1)) {
2353 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2354 hw ? "hardware" : "software", pci_name(pdev));
2355
2356 ret = domain_add_dev_info(si_domain, pdev,
2357 hw ? CONTEXT_TT_PASS_THROUGH :
2358 CONTEXT_TT_MULTI_LEVEL);
2359 if (ret)
2360 return ret;
2361 }
2362 }
2363
2364 return 0;
2365}
2366
2367static int __init init_dmars(void)
2368{
2369 struct dmar_drhd_unit *drhd;
2370 struct dmar_rmrr_unit *rmrr;
2371 struct pci_dev *pdev;
2372 struct intel_iommu *iommu;
2373 int i, ret;
2374
2375 /*
2376 * for each drhd
2377 * allocate root
2378 * initialize and program root entry to not present
2379 * endfor
2380 */
2381 for_each_drhd_unit(drhd) {
2382 g_num_of_iommus++;
2383 /*
2384 * lock not needed as this is only incremented in the single
2385 * threaded kernel __init code path all other access are read
2386 * only
2387 */
2388 }
2389
2390 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2391 GFP_KERNEL);
2392 if (!g_iommus) {
2393 printk(KERN_ERR "Allocating global iommu array failed\n");
2394 ret = -ENOMEM;
2395 goto error;
2396 }
2397
2398 deferred_flush = kzalloc(g_num_of_iommus *
2399 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2400 if (!deferred_flush) {
2401 ret = -ENOMEM;
2402 goto error;
2403 }
2404
2405 for_each_drhd_unit(drhd) {
2406 if (drhd->ignored)
2407 continue;
2408
2409 iommu = drhd->iommu;
2410 g_iommus[iommu->seq_id] = iommu;
2411
2412 ret = iommu_init_domains(iommu);
2413 if (ret)
2414 goto error;
2415
2416 /*
2417 * TBD:
2418 * we could share the same root & context tables
2419 * among all IOMMU's. Need to Split it later.
2420 */
2421 ret = iommu_alloc_root_entry(iommu);
2422 if (ret) {
2423 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2424 goto error;
2425 }
2426 if (!ecap_pass_through(iommu->ecap))
2427 hw_pass_through = 0;
2428 }
2429
2430 /*
2431 * Start from the sane iommu hardware state.
2432 */
2433 for_each_drhd_unit(drhd) {
2434 if (drhd->ignored)
2435 continue;
2436
2437 iommu = drhd->iommu;
2438
2439 /*
2440 * If the queued invalidation is already initialized by us
2441 * (for example, while enabling interrupt-remapping) then
2442 * we got the things already rolling from a sane state.
2443 */
2444 if (iommu->qi)
2445 continue;
2446
2447 /*
2448 * Clear any previous faults.
2449 */
2450 dmar_fault(-1, iommu);
2451 /*
2452 * Disable queued invalidation if supported and already enabled
2453 * before OS handover.
2454 */
2455 dmar_disable_qi(iommu);
2456 }
2457
2458 for_each_drhd_unit(drhd) {
2459 if (drhd->ignored)
2460 continue;
2461
2462 iommu = drhd->iommu;
2463
2464 if (dmar_enable_qi(iommu)) {
2465 /*
2466 * Queued Invalidate not enabled, use Register Based
2467 * Invalidate
2468 */
2469 iommu->flush.flush_context = __iommu_flush_context;
2470 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2471 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2472 "invalidation\n",
2473 iommu->seq_id,
2474 (unsigned long long)drhd->reg_base_addr);
2475 } else {
2476 iommu->flush.flush_context = qi_flush_context;
2477 iommu->flush.flush_iotlb = qi_flush_iotlb;
2478 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2479 "invalidation\n",
2480 iommu->seq_id,
2481 (unsigned long long)drhd->reg_base_addr);
2482 }
2483 }
2484
2485 if (iommu_pass_through)
2486 iommu_identity_mapping |= IDENTMAP_ALL;
2487
2488#ifdef CONFIG_DMAR_BROKEN_GFX_WA
2489 iommu_identity_mapping |= IDENTMAP_GFX;
2490#endif
2491
2492 check_tylersburg_isoch();
2493
2494 /*
2495 * If pass through is not set or not enabled, setup context entries for
2496 * identity mappings for rmrr, gfx, and isa and may fall back to static
2497 * identity mapping if iommu_identity_mapping is set.
2498 */
2499 if (iommu_identity_mapping) {
2500 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2501 if (ret) {
2502 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2503 goto error;
2504 }
2505 }
2506 /*
2507 * For each rmrr
2508 * for each dev attached to rmrr
2509 * do
2510 * locate drhd for dev, alloc domain for dev
2511 * allocate free domain
2512 * allocate page table entries for rmrr
2513 * if context not allocated for bus
2514 * allocate and init context
2515 * set present in root table for this bus
2516 * init context with domain, translation etc
2517 * endfor
2518 * endfor
2519 */
2520 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2521 for_each_rmrr_units(rmrr) {
2522 for (i = 0; i < rmrr->devices_cnt; i++) {
2523 pdev = rmrr->devices[i];
2524 /*
2525 * some BIOS lists non-exist devices in DMAR
2526 * table.
2527 */
2528 if (!pdev)
2529 continue;
2530 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2531 if (ret)
2532 printk(KERN_ERR
2533 "IOMMU: mapping reserved region failed\n");
2534 }
2535 }
2536
2537 iommu_prepare_isa();
2538
2539 /*
2540 * for each drhd
2541 * enable fault log
2542 * global invalidate context cache
2543 * global invalidate iotlb
2544 * enable translation
2545 */
2546 for_each_drhd_unit(drhd) {
2547 if (drhd->ignored) {
2548 /*
2549 * we always have to disable PMRs or DMA may fail on
2550 * this device
2551 */
2552 if (force_on)
2553 iommu_disable_protect_mem_regions(drhd->iommu);
2554 continue;
2555 }
2556 iommu = drhd->iommu;
2557
2558 iommu_flush_write_buffer(iommu);
2559
2560 ret = dmar_set_interrupt(iommu);
2561 if (ret)
2562 goto error;
2563
2564 iommu_set_root_entry(iommu);
2565
2566 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2567 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2568
2569 ret = iommu_enable_translation(iommu);
2570 if (ret)
2571 goto error;
2572
2573 iommu_disable_protect_mem_regions(iommu);
2574 }
2575
2576 return 0;
2577error:
2578 for_each_drhd_unit(drhd) {
2579 if (drhd->ignored)
2580 continue;
2581 iommu = drhd->iommu;
2582 free_iommu(iommu);
2583 }
2584 kfree(g_iommus);
2585 return ret;
2586}
2587
2588/* This takes a number of _MM_ pages, not VTD pages */
2589static struct iova *intel_alloc_iova(struct device *dev,
2590 struct dmar_domain *domain,
2591 unsigned long nrpages, uint64_t dma_mask)
2592{
2593 struct pci_dev *pdev = to_pci_dev(dev);
2594 struct iova *iova = NULL;
2595
2596 /* Restrict dma_mask to the width that the iommu can handle */
2597 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2598
2599 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2600 /*
2601 * First try to allocate an io virtual address in
2602 * DMA_BIT_MASK(32) and if that fails then try allocating
2603 * from higher range
2604 */
2605 iova = alloc_iova(&domain->iovad, nrpages,
2606 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2607 if (iova)
2608 return iova;
2609 }
2610 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2611 if (unlikely(!iova)) {
2612 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2613 nrpages, pci_name(pdev));
2614 return NULL;
2615 }
2616
2617 return iova;
2618}
2619
2620static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2621{
2622 struct dmar_domain *domain;
2623 int ret;
2624
2625 domain = get_domain_for_dev(pdev,
2626 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2627 if (!domain) {
2628 printk(KERN_ERR
2629 "Allocating domain for %s failed", pci_name(pdev));
2630 return NULL;
2631 }
2632
2633 /* make sure context mapping is ok */
2634 if (unlikely(!domain_context_mapped(pdev))) {
2635 ret = domain_context_mapping(domain, pdev,
2636 CONTEXT_TT_MULTI_LEVEL);
2637 if (ret) {
2638 printk(KERN_ERR
2639 "Domain context map for %s failed",
2640 pci_name(pdev));
2641 return NULL;
2642 }
2643 }
2644
2645 return domain;
2646}
2647
2648static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2649{
2650 struct device_domain_info *info;
2651
2652 /* No lock here, assumes no domain exit in normal case */
2653 info = dev->dev.archdata.iommu;
2654 if (likely(info))
2655 return info->domain;
2656
2657 return __get_valid_domain_for_dev(dev);
2658}
2659
2660static int iommu_dummy(struct pci_dev *pdev)
2661{
2662 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2663}
2664
2665/* Check if the pdev needs to go through non-identity map and unmap process.*/
2666static int iommu_no_mapping(struct device *dev)
2667{
2668 struct pci_dev *pdev;
2669 int found;
2670
2671 if (unlikely(dev->bus != &pci_bus_type))
2672 return 1;
2673
2674 pdev = to_pci_dev(dev);
2675 if (iommu_dummy(pdev))
2676 return 1;
2677
2678 if (!iommu_identity_mapping)
2679 return 0;
2680
2681 found = identity_mapping(pdev);
2682 if (found) {
2683 if (iommu_should_identity_map(pdev, 0))
2684 return 1;
2685 else {
2686 /*
2687 * 32 bit DMA is removed from si_domain and fall back
2688 * to non-identity mapping.
2689 */
2690 domain_remove_one_dev_info(si_domain, pdev);
2691 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2692 pci_name(pdev));
2693 return 0;
2694 }
2695 } else {
2696 /*
2697 * In case of a detached 64 bit DMA device from vm, the device
2698 * is put into si_domain for identity mapping.
2699 */
2700 if (iommu_should_identity_map(pdev, 0)) {
2701 int ret;
2702 ret = domain_add_dev_info(si_domain, pdev,
2703 hw_pass_through ?
2704 CONTEXT_TT_PASS_THROUGH :
2705 CONTEXT_TT_MULTI_LEVEL);
2706 if (!ret) {
2707 printk(KERN_INFO "64bit %s uses identity mapping\n",
2708 pci_name(pdev));
2709 return 1;
2710 }
2711 }
2712 }
2713
2714 return 0;
2715}
2716
2717static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2718 size_t size, int dir, u64 dma_mask)
2719{
2720 struct pci_dev *pdev = to_pci_dev(hwdev);
2721 struct dmar_domain *domain;
2722 phys_addr_t start_paddr;
2723 struct iova *iova;
2724 int prot = 0;
2725 int ret;
2726 struct intel_iommu *iommu;
2727 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2728
2729 BUG_ON(dir == DMA_NONE);
2730
2731 if (iommu_no_mapping(hwdev))
2732 return paddr;
2733
2734 domain = get_valid_domain_for_dev(pdev);
2735 if (!domain)
2736 return 0;
2737
2738 iommu = domain_get_iommu(domain);
2739 size = aligned_nrpages(paddr, size);
2740
2741 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2742 if (!iova)
2743 goto error;
2744
2745 /*
2746 * Check if DMAR supports zero-length reads on write only
2747 * mappings..
2748 */
2749 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2750 !cap_zlr(iommu->cap))
2751 prot |= DMA_PTE_READ;
2752 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2753 prot |= DMA_PTE_WRITE;
2754 /*
2755 * paddr - (paddr + size) might be partial page, we should map the whole
2756 * page. Note: if two part of one page are separately mapped, we
2757 * might have two guest_addr mapping to the same host paddr, but this
2758 * is not a big problem
2759 */
2760 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2761 mm_to_dma_pfn(paddr_pfn), size, prot);
2762 if (ret)
2763 goto error;
2764
2765 /* it's a non-present to present mapping. Only flush if caching mode */
2766 if (cap_caching_mode(iommu->cap))
2767 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2768 else
2769 iommu_flush_write_buffer(iommu);
2770
2771 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2772 start_paddr += paddr & ~PAGE_MASK;
2773 return start_paddr;
2774
2775error:
2776 if (iova)
2777 __free_iova(&domain->iovad, iova);
2778 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2779 pci_name(pdev), size, (unsigned long long)paddr, dir);
2780 return 0;
2781}
2782
2783static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2784 unsigned long offset, size_t size,
2785 enum dma_data_direction dir,
2786 struct dma_attrs *attrs)
2787{
2788 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2789 dir, to_pci_dev(dev)->dma_mask);
2790}
2791
2792static void flush_unmaps(void)
2793{
2794 int i, j;
2795
2796 timer_on = 0;
2797
2798 /* just flush them all */
2799 for (i = 0; i < g_num_of_iommus; i++) {
2800 struct intel_iommu *iommu = g_iommus[i];
2801 if (!iommu)
2802 continue;
2803
2804 if (!deferred_flush[i].next)
2805 continue;
2806
2807 /* In caching mode, global flushes turn emulation expensive */
2808 if (!cap_caching_mode(iommu->cap))
2809 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2810 DMA_TLB_GLOBAL_FLUSH);
2811 for (j = 0; j < deferred_flush[i].next; j++) {
2812 unsigned long mask;
2813 struct iova *iova = deferred_flush[i].iova[j];
2814 struct dmar_domain *domain = deferred_flush[i].domain[j];
2815
2816 /* On real hardware multiple invalidations are expensive */
2817 if (cap_caching_mode(iommu->cap))
2818 iommu_flush_iotlb_psi(iommu, domain->id,
2819 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2820 else {
2821 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2822 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2823 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2824 }
2825 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2826 }
2827 deferred_flush[i].next = 0;
2828 }
2829
2830 list_size = 0;
2831}
2832
2833static void flush_unmaps_timeout(unsigned long data)
2834{
2835 unsigned long flags;
2836
2837 spin_lock_irqsave(&async_umap_flush_lock, flags);
2838 flush_unmaps();
2839 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2840}
2841
2842static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2843{
2844 unsigned long flags;
2845 int next, iommu_id;
2846 struct intel_iommu *iommu;
2847
2848 spin_lock_irqsave(&async_umap_flush_lock, flags);
2849 if (list_size == HIGH_WATER_MARK)
2850 flush_unmaps();
2851
2852 iommu = domain_get_iommu(dom);
2853 iommu_id = iommu->seq_id;
2854
2855 next = deferred_flush[iommu_id].next;
2856 deferred_flush[iommu_id].domain[next] = dom;
2857 deferred_flush[iommu_id].iova[next] = iova;
2858 deferred_flush[iommu_id].next++;
2859
2860 if (!timer_on) {
2861 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2862 timer_on = 1;
2863 }
2864 list_size++;
2865 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2866}
2867
2868static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2869 size_t size, enum dma_data_direction dir,
2870 struct dma_attrs *attrs)
2871{
2872 struct pci_dev *pdev = to_pci_dev(dev);
2873 struct dmar_domain *domain;
2874 unsigned long start_pfn, last_pfn;
2875 struct iova *iova;
2876 struct intel_iommu *iommu;
2877
2878 if (iommu_no_mapping(dev))
2879 return;
2880
2881 domain = find_domain(pdev);
2882 BUG_ON(!domain);
2883
2884 iommu = domain_get_iommu(domain);
2885
2886 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2887 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2888 (unsigned long long)dev_addr))
2889 return;
2890
2891 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2892 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2893
2894 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2895 pci_name(pdev), start_pfn, last_pfn);
2896
2897 /* clear the whole page */
2898 dma_pte_clear_range(domain, start_pfn, last_pfn);
2899
2900 /* free page tables */
2901 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2902
2903 if (intel_iommu_strict) {
2904 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2905 last_pfn - start_pfn + 1, 0);
2906 /* free iova */
2907 __free_iova(&domain->iovad, iova);
2908 } else {
2909 add_unmap(domain, iova);
2910 /*
2911 * queue up the release of the unmap to save the 1/6th of the
2912 * cpu used up by the iotlb flush operation...
2913 */
2914 }
2915}
2916
2917static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2918 dma_addr_t *dma_handle, gfp_t flags)
2919{
2920 void *vaddr;
2921 int order;
2922
2923 size = PAGE_ALIGN(size);
2924 order = get_order(size);
2925
2926 if (!iommu_no_mapping(hwdev))
2927 flags &= ~(GFP_DMA | GFP_DMA32);
2928 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2929 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2930 flags |= GFP_DMA;
2931 else
2932 flags |= GFP_DMA32;
2933 }
2934
2935 vaddr = (void *)__get_free_pages(flags, order);
2936 if (!vaddr)
2937 return NULL;
2938 memset(vaddr, 0, size);
2939
2940 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2941 DMA_BIDIRECTIONAL,
2942 hwdev->coherent_dma_mask);
2943 if (*dma_handle)
2944 return vaddr;
2945 free_pages((unsigned long)vaddr, order);
2946 return NULL;
2947}
2948
2949static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2950 dma_addr_t dma_handle)
2951{
2952 int order;
2953
2954 size = PAGE_ALIGN(size);
2955 order = get_order(size);
2956
2957 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2958 free_pages((unsigned long)vaddr, order);
2959}
2960
2961static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2962 int nelems, enum dma_data_direction dir,
2963 struct dma_attrs *attrs)
2964{
2965 struct pci_dev *pdev = to_pci_dev(hwdev);
2966 struct dmar_domain *domain;
2967 unsigned long start_pfn, last_pfn;
2968 struct iova *iova;
2969 struct intel_iommu *iommu;
2970
2971 if (iommu_no_mapping(hwdev))
2972 return;
2973
2974 domain = find_domain(pdev);
2975 BUG_ON(!domain);
2976
2977 iommu = domain_get_iommu(domain);
2978
2979 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2980 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2981 (unsigned long long)sglist[0].dma_address))
2982 return;
2983
2984 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2985 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2986
2987 /* clear the whole page */
2988 dma_pte_clear_range(domain, start_pfn, last_pfn);
2989
2990 /* free page tables */
2991 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2992
2993 if (intel_iommu_strict) {
2994 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2995 last_pfn - start_pfn + 1, 0);
2996 /* free iova */
2997 __free_iova(&domain->iovad, iova);
2998 } else {
2999 add_unmap(domain, iova);
3000 /*
3001 * queue up the release of the unmap to save the 1/6th of the
3002 * cpu used up by the iotlb flush operation...
3003 */
3004 }
3005}
3006
3007static int intel_nontranslate_map_sg(struct device *hddev,
3008 struct scatterlist *sglist, int nelems, int dir)
3009{
3010 int i;
3011 struct scatterlist *sg;
3012
3013 for_each_sg(sglist, sg, nelems, i) {
3014 BUG_ON(!sg_page(sg));
3015 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3016 sg->dma_length = sg->length;
3017 }
3018 return nelems;
3019}
3020
3021static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3022 enum dma_data_direction dir, struct dma_attrs *attrs)
3023{
3024 int i;
3025 struct pci_dev *pdev = to_pci_dev(hwdev);
3026 struct dmar_domain *domain;
3027 size_t size = 0;
3028 int prot = 0;
3029 struct iova *iova = NULL;
3030 int ret;
3031 struct scatterlist *sg;
3032 unsigned long start_vpfn;
3033 struct intel_iommu *iommu;
3034
3035 BUG_ON(dir == DMA_NONE);
3036 if (iommu_no_mapping(hwdev))
3037 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3038
3039 domain = get_valid_domain_for_dev(pdev);
3040 if (!domain)
3041 return 0;
3042
3043 iommu = domain_get_iommu(domain);
3044
3045 for_each_sg(sglist, sg, nelems, i)
3046 size += aligned_nrpages(sg->offset, sg->length);
3047
3048 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3049 pdev->dma_mask);
3050 if (!iova) {
3051 sglist->dma_length = 0;
3052 return 0;
3053 }
3054
3055 /*
3056 * Check if DMAR supports zero-length reads on write only
3057 * mappings..
3058 */
3059 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3060 !cap_zlr(iommu->cap))
3061 prot |= DMA_PTE_READ;
3062 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3063 prot |= DMA_PTE_WRITE;
3064
3065 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3066
3067 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3068 if (unlikely(ret)) {
3069 /* clear the page */
3070 dma_pte_clear_range(domain, start_vpfn,
3071 start_vpfn + size - 1);
3072 /* free page tables */
3073 dma_pte_free_pagetable(domain, start_vpfn,
3074 start_vpfn + size - 1);
3075 /* free iova */
3076 __free_iova(&domain->iovad, iova);
3077 return 0;
3078 }
3079
3080 /* it's a non-present to present mapping. Only flush if caching mode */
3081 if (cap_caching_mode(iommu->cap))
3082 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3083 else
3084 iommu_flush_write_buffer(iommu);
3085
3086 return nelems;
3087}
3088
3089static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3090{
3091 return !dma_addr;
3092}
3093
3094struct dma_map_ops intel_dma_ops = {
3095 .alloc_coherent = intel_alloc_coherent,
3096 .free_coherent = intel_free_coherent,
3097 .map_sg = intel_map_sg,
3098 .unmap_sg = intel_unmap_sg,
3099 .map_page = intel_map_page,
3100 .unmap_page = intel_unmap_page,
3101 .mapping_error = intel_mapping_error,
3102};
3103
3104static inline int iommu_domain_cache_init(void)
3105{
3106 int ret = 0;
3107
3108 iommu_domain_cache = kmem_cache_create("iommu_domain",
3109 sizeof(struct dmar_domain),
3110 0,
3111 SLAB_HWCACHE_ALIGN,
3112
3113 NULL);
3114 if (!iommu_domain_cache) {
3115 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3116 ret = -ENOMEM;
3117 }
3118
3119 return ret;
3120}
3121
3122static inline int iommu_devinfo_cache_init(void)
3123{
3124 int ret = 0;
3125
3126 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3127 sizeof(struct device_domain_info),
3128 0,
3129 SLAB_HWCACHE_ALIGN,
3130 NULL);
3131 if (!iommu_devinfo_cache) {
3132 printk(KERN_ERR "Couldn't create devinfo cache\n");
3133 ret = -ENOMEM;
3134 }
3135
3136 return ret;
3137}
3138
3139static inline int iommu_iova_cache_init(void)
3140{
3141 int ret = 0;
3142
3143 iommu_iova_cache = kmem_cache_create("iommu_iova",
3144 sizeof(struct iova),
3145 0,
3146 SLAB_HWCACHE_ALIGN,
3147 NULL);
3148 if (!iommu_iova_cache) {
3149 printk(KERN_ERR "Couldn't create iova cache\n");
3150 ret = -ENOMEM;
3151 }
3152
3153 return ret;
3154}
3155
3156static int __init iommu_init_mempool(void)
3157{
3158 int ret;
3159 ret = iommu_iova_cache_init();
3160 if (ret)
3161 return ret;
3162
3163 ret = iommu_domain_cache_init();
3164 if (ret)
3165 goto domain_error;
3166
3167 ret = iommu_devinfo_cache_init();
3168 if (!ret)
3169 return ret;
3170
3171 kmem_cache_destroy(iommu_domain_cache);
3172domain_error:
3173 kmem_cache_destroy(iommu_iova_cache);
3174
3175 return -ENOMEM;
3176}
3177
3178static void __init iommu_exit_mempool(void)
3179{
3180 kmem_cache_destroy(iommu_devinfo_cache);
3181 kmem_cache_destroy(iommu_domain_cache);
3182 kmem_cache_destroy(iommu_iova_cache);
3183
3184}
3185
3186static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3187{
3188 struct dmar_drhd_unit *drhd;
3189 u32 vtbar;
3190 int rc;
3191
3192 /* We know that this device on this chipset has its own IOMMU.
3193 * If we find it under a different IOMMU, then the BIOS is lying
3194 * to us. Hope that the IOMMU for this device is actually
3195 * disabled, and it needs no translation...
3196 */
3197 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3198 if (rc) {
3199 /* "can't" happen */
3200 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3201 return;
3202 }
3203 vtbar &= 0xffff0000;
3204
3205 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3206 drhd = dmar_find_matched_drhd_unit(pdev);
3207 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3208 TAINT_FIRMWARE_WORKAROUND,
3209 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3210 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3211}
3212DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3213
3214static void __init init_no_remapping_devices(void)
3215{
3216 struct dmar_drhd_unit *drhd;
3217
3218 for_each_drhd_unit(drhd) {
3219 if (!drhd->include_all) {
3220 int i;
3221 for (i = 0; i < drhd->devices_cnt; i++)
3222 if (drhd->devices[i] != NULL)
3223 break;
3224 /* ignore DMAR unit if no pci devices exist */
3225 if (i == drhd->devices_cnt)
3226 drhd->ignored = 1;
3227 }
3228 }
3229
3230 if (dmar_map_gfx)
3231 return;
3232
3233 for_each_drhd_unit(drhd) {
3234 int i;
3235 if (drhd->ignored || drhd->include_all)
3236 continue;
3237
3238 for (i = 0; i < drhd->devices_cnt; i++)
3239 if (drhd->devices[i] &&
3240 !IS_GFX_DEVICE(drhd->devices[i]))
3241 break;
3242
3243 if (i < drhd->devices_cnt)
3244 continue;
3245
3246 /* bypass IOMMU if it is just for gfx devices */
3247 drhd->ignored = 1;
3248 for (i = 0; i < drhd->devices_cnt; i++) {
3249 if (!drhd->devices[i])
3250 continue;
3251 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3252 }
3253 }
3254}
3255
3256#ifdef CONFIG_SUSPEND
3257static int init_iommu_hw(void)
3258{
3259 struct dmar_drhd_unit *drhd;
3260 struct intel_iommu *iommu = NULL;
3261
3262 for_each_active_iommu(iommu, drhd)
3263 if (iommu->qi)
3264 dmar_reenable_qi(iommu);
3265
3266 for_each_iommu(iommu, drhd) {
3267 if (drhd->ignored) {
3268 /*
3269 * we always have to disable PMRs or DMA may fail on
3270 * this device
3271 */
3272 if (force_on)
3273 iommu_disable_protect_mem_regions(iommu);
3274 continue;
3275 }
3276
3277 iommu_flush_write_buffer(iommu);
3278
3279 iommu_set_root_entry(iommu);
3280
3281 iommu->flush.flush_context(iommu, 0, 0, 0,
3282 DMA_CCMD_GLOBAL_INVL);
3283 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3284 DMA_TLB_GLOBAL_FLUSH);
3285 if (iommu_enable_translation(iommu))
3286 return 1;
3287 iommu_disable_protect_mem_regions(iommu);
3288 }
3289
3290 return 0;
3291}
3292
3293static void iommu_flush_all(void)
3294{
3295 struct dmar_drhd_unit *drhd;
3296 struct intel_iommu *iommu;
3297
3298 for_each_active_iommu(iommu, drhd) {
3299 iommu->flush.flush_context(iommu, 0, 0, 0,
3300 DMA_CCMD_GLOBAL_INVL);
3301 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3302 DMA_TLB_GLOBAL_FLUSH);
3303 }
3304}
3305
3306static int iommu_suspend(void)
3307{
3308 struct dmar_drhd_unit *drhd;
3309 struct intel_iommu *iommu = NULL;
3310 unsigned long flag;
3311
3312 for_each_active_iommu(iommu, drhd) {
3313 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3314 GFP_ATOMIC);
3315 if (!iommu->iommu_state)
3316 goto nomem;
3317 }
3318
3319 iommu_flush_all();
3320
3321 for_each_active_iommu(iommu, drhd) {
3322 iommu_disable_translation(iommu);
3323
3324 spin_lock_irqsave(&iommu->register_lock, flag);
3325
3326 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3327 readl(iommu->reg + DMAR_FECTL_REG);
3328 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3329 readl(iommu->reg + DMAR_FEDATA_REG);
3330 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3331 readl(iommu->reg + DMAR_FEADDR_REG);
3332 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3333 readl(iommu->reg + DMAR_FEUADDR_REG);
3334
3335 spin_unlock_irqrestore(&iommu->register_lock, flag);
3336 }
3337 return 0;
3338
3339nomem:
3340 for_each_active_iommu(iommu, drhd)
3341 kfree(iommu->iommu_state);
3342
3343 return -ENOMEM;
3344}
3345
3346static void iommu_resume(void)
3347{
3348 struct dmar_drhd_unit *drhd;
3349 struct intel_iommu *iommu = NULL;
3350 unsigned long flag;
3351
3352 if (init_iommu_hw()) {
3353 if (force_on)
3354 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3355 else
3356 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3357 return;
3358 }
3359
3360 for_each_active_iommu(iommu, drhd) {
3361
3362 spin_lock_irqsave(&iommu->register_lock, flag);
3363
3364 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3365 iommu->reg + DMAR_FECTL_REG);
3366 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3367 iommu->reg + DMAR_FEDATA_REG);
3368 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3369 iommu->reg + DMAR_FEADDR_REG);
3370 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3371 iommu->reg + DMAR_FEUADDR_REG);
3372
3373 spin_unlock_irqrestore(&iommu->register_lock, flag);
3374 }
3375
3376 for_each_active_iommu(iommu, drhd)
3377 kfree(iommu->iommu_state);
3378}
3379
3380static struct syscore_ops iommu_syscore_ops = {
3381 .resume = iommu_resume,
3382 .suspend = iommu_suspend,
3383};
3384
3385static void __init init_iommu_pm_ops(void)
3386{
3387 register_syscore_ops(&iommu_syscore_ops);
3388}
3389
3390#else
3391static inline void init_iommu_pm_ops(void) {}
3392#endif /* CONFIG_PM */
3393
3394/*
3395 * Here we only respond to action of unbound device from driver.
3396 *
3397 * Added device is not attached to its DMAR domain here yet. That will happen
3398 * when mapping the device to iova.
3399 */
3400static int device_notifier(struct notifier_block *nb,
3401 unsigned long action, void *data)
3402{
3403 struct device *dev = data;
3404 struct pci_dev *pdev = to_pci_dev(dev);
3405 struct dmar_domain *domain;
3406
3407 if (iommu_no_mapping(dev))
3408 return 0;
3409
3410 domain = find_domain(pdev);
3411 if (!domain)
3412 return 0;
3413
3414 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3415 domain_remove_one_dev_info(domain, pdev);
3416
3417 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3418 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3419 list_empty(&domain->devices))
3420 domain_exit(domain);
3421 }
3422
3423 return 0;
3424}
3425
3426static struct notifier_block device_nb = {
3427 .notifier_call = device_notifier,
3428};
3429
3430int __init intel_iommu_init(void)
3431{
3432 int ret = 0;
3433
3434 /* VT-d is required for a TXT/tboot launch, so enforce that */
3435 force_on = tboot_force_iommu();
3436
3437 if (dmar_table_init()) {
3438 if (force_on)
3439 panic("tboot: Failed to initialize DMAR table\n");
3440 return -ENODEV;
3441 }
3442
3443 if (dmar_dev_scope_init()) {
3444 if (force_on)
3445 panic("tboot: Failed to initialize DMAR device scope\n");
3446 return -ENODEV;
3447 }
3448
3449 /*
3450 * Check the need for DMA-remapping initialization now.
3451 * Above initialization will also be used by Interrupt-remapping.
3452 */
3453 if (no_iommu || dmar_disabled)
3454 return -ENODEV;
3455
3456 if (iommu_init_mempool()) {
3457 if (force_on)
3458 panic("tboot: Failed to initialize iommu memory\n");
3459 return -ENODEV;
3460 }
3461
3462 if (dmar_init_reserved_ranges()) {
3463 if (force_on)
3464 panic("tboot: Failed to reserve iommu ranges\n");
3465 return -ENODEV;
3466 }
3467
3468 init_no_remapping_devices();
3469
3470 ret = init_dmars();
3471 if (ret) {
3472 if (force_on)
3473 panic("tboot: Failed to initialize DMARs\n");
3474 printk(KERN_ERR "IOMMU: dmar init failed\n");
3475 put_iova_domain(&reserved_iova_list);
3476 iommu_exit_mempool();
3477 return ret;
3478 }
3479 printk(KERN_INFO
3480 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3481
3482 init_timer(&unmap_timer);
3483#ifdef CONFIG_SWIOTLB
3484 swiotlb = 0;
3485#endif
3486 dma_ops = &intel_dma_ops;
3487
3488 init_iommu_pm_ops();
3489
3490 register_iommu(&intel_iommu_ops);
3491
3492 bus_register_notifier(&pci_bus_type, &device_nb);
3493
3494 return 0;
3495}
3496
3497static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3498 struct pci_dev *pdev)
3499{
3500 struct pci_dev *tmp, *parent;
3501
3502 if (!iommu || !pdev)
3503 return;
3504
3505 /* dependent device detach */
3506 tmp = pci_find_upstream_pcie_bridge(pdev);
3507 /* Secondary interface's bus number and devfn 0 */
3508 if (tmp) {
3509 parent = pdev->bus->self;
3510 while (parent != tmp) {
3511 iommu_detach_dev(iommu, parent->bus->number,
3512 parent->devfn);
3513 parent = parent->bus->self;
3514 }
3515 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3516 iommu_detach_dev(iommu,
3517 tmp->subordinate->number, 0);
3518 else /* this is a legacy PCI bridge */
3519 iommu_detach_dev(iommu, tmp->bus->number,
3520 tmp->devfn);
3521 }
3522}
3523
3524static void domain_remove_one_dev_info(struct dmar_domain *domain,
3525 struct pci_dev *pdev)
3526{
3527 struct device_domain_info *info;
3528 struct intel_iommu *iommu;
3529 unsigned long flags;
3530 int found = 0;
3531 struct list_head *entry, *tmp;
3532
3533 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3534 pdev->devfn);
3535 if (!iommu)
3536 return;
3537
3538 spin_lock_irqsave(&device_domain_lock, flags);
3539 list_for_each_safe(entry, tmp, &domain->devices) {
3540 info = list_entry(entry, struct device_domain_info, link);
3541 if (info->segment == pci_domain_nr(pdev->bus) &&
3542 info->bus == pdev->bus->number &&
3543 info->devfn == pdev->devfn) {
3544 list_del(&info->link);
3545 list_del(&info->global);
3546 if (info->dev)
3547 info->dev->dev.archdata.iommu = NULL;
3548 spin_unlock_irqrestore(&device_domain_lock, flags);
3549
3550 iommu_disable_dev_iotlb(info);
3551 iommu_detach_dev(iommu, info->bus, info->devfn);
3552 iommu_detach_dependent_devices(iommu, pdev);
3553 free_devinfo_mem(info);
3554
3555 spin_lock_irqsave(&device_domain_lock, flags);
3556
3557 if (found)
3558 break;
3559 else
3560 continue;
3561 }
3562
3563 /* if there is no other devices under the same iommu
3564 * owned by this domain, clear this iommu in iommu_bmp
3565 * update iommu count and coherency
3566 */
3567 if (iommu == device_to_iommu(info->segment, info->bus,
3568 info->devfn))
3569 found = 1;
3570 }
3571
3572 if (found == 0) {
3573 unsigned long tmp_flags;
3574 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3575 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3576 domain->iommu_count--;
3577 domain_update_iommu_cap(domain);
3578 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3579
3580 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3581 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3582 spin_lock_irqsave(&iommu->lock, tmp_flags);
3583 clear_bit(domain->id, iommu->domain_ids);
3584 iommu->domains[domain->id] = NULL;
3585 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3586 }
3587 }
3588
3589 spin_unlock_irqrestore(&device_domain_lock, flags);
3590}
3591
3592static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3593{
3594 struct device_domain_info *info;
3595 struct intel_iommu *iommu;
3596 unsigned long flags1, flags2;
3597
3598 spin_lock_irqsave(&device_domain_lock, flags1);
3599 while (!list_empty(&domain->devices)) {
3600 info = list_entry(domain->devices.next,
3601 struct device_domain_info, link);
3602 list_del(&info->link);
3603 list_del(&info->global);
3604 if (info->dev)
3605 info->dev->dev.archdata.iommu = NULL;
3606
3607 spin_unlock_irqrestore(&device_domain_lock, flags1);
3608
3609 iommu_disable_dev_iotlb(info);
3610 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3611 iommu_detach_dev(iommu, info->bus, info->devfn);
3612 iommu_detach_dependent_devices(iommu, info->dev);
3613
3614 /* clear this iommu in iommu_bmp, update iommu count
3615 * and capabilities
3616 */
3617 spin_lock_irqsave(&domain->iommu_lock, flags2);
3618 if (test_and_clear_bit(iommu->seq_id,
3619 &domain->iommu_bmp)) {
3620 domain->iommu_count--;
3621 domain_update_iommu_cap(domain);
3622 }
3623 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3624
3625 free_devinfo_mem(info);
3626 spin_lock_irqsave(&device_domain_lock, flags1);
3627 }
3628 spin_unlock_irqrestore(&device_domain_lock, flags1);
3629}
3630
3631/* domain id for virtual machine, it won't be set in context */
3632static unsigned long vm_domid;
3633
3634static struct dmar_domain *iommu_alloc_vm_domain(void)
3635{
3636 struct dmar_domain *domain;
3637
3638 domain = alloc_domain_mem();
3639 if (!domain)
3640 return NULL;
3641
3642 domain->id = vm_domid++;
3643 domain->nid = -1;
3644 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3645 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3646
3647 return domain;
3648}
3649
3650static int md_domain_init(struct dmar_domain *domain, int guest_width)
3651{
3652 int adjust_width;
3653
3654 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3655 spin_lock_init(&domain->iommu_lock);
3656
3657 domain_reserve_special_ranges(domain);
3658
3659 /* calculate AGAW */
3660 domain->gaw = guest_width;
3661 adjust_width = guestwidth_to_adjustwidth(guest_width);
3662 domain->agaw = width_to_agaw(adjust_width);
3663
3664 INIT_LIST_HEAD(&domain->devices);
3665
3666 domain->iommu_count = 0;
3667 domain->iommu_coherency = 0;
3668 domain->iommu_snooping = 0;
3669 domain->iommu_superpage = 0;
3670 domain->max_addr = 0;
3671 domain->nid = -1;
3672
3673 /* always allocate the top pgd */
3674 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3675 if (!domain->pgd)
3676 return -ENOMEM;
3677 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3678 return 0;
3679}
3680
3681static void iommu_free_vm_domain(struct dmar_domain *domain)
3682{
3683 unsigned long flags;
3684 struct dmar_drhd_unit *drhd;
3685 struct intel_iommu *iommu;
3686 unsigned long i;
3687 unsigned long ndomains;
3688
3689 for_each_drhd_unit(drhd) {
3690 if (drhd->ignored)
3691 continue;
3692 iommu = drhd->iommu;
3693
3694 ndomains = cap_ndoms(iommu->cap);
3695 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3696 if (iommu->domains[i] == domain) {
3697 spin_lock_irqsave(&iommu->lock, flags);
3698 clear_bit(i, iommu->domain_ids);
3699 iommu->domains[i] = NULL;
3700 spin_unlock_irqrestore(&iommu->lock, flags);
3701 break;
3702 }
3703 }
3704 }
3705}
3706
3707static void vm_domain_exit(struct dmar_domain *domain)
3708{
3709 /* Domain 0 is reserved, so dont process it */
3710 if (!domain)
3711 return;
3712
3713 vm_domain_remove_all_dev_info(domain);
3714 /* destroy iovas */
3715 put_iova_domain(&domain->iovad);
3716
3717 /* clear ptes */
3718 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3719
3720 /* free page tables */
3721 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3722
3723 iommu_free_vm_domain(domain);
3724 free_domain_mem(domain);
3725}
3726
3727static int intel_iommu_domain_init(struct iommu_domain *domain)
3728{
3729 struct dmar_domain *dmar_domain;
3730
3731 dmar_domain = iommu_alloc_vm_domain();
3732 if (!dmar_domain) {
3733 printk(KERN_ERR
3734 "intel_iommu_domain_init: dmar_domain == NULL\n");
3735 return -ENOMEM;
3736 }
3737 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3738 printk(KERN_ERR
3739 "intel_iommu_domain_init() failed\n");
3740 vm_domain_exit(dmar_domain);
3741 return -ENOMEM;
3742 }
3743 domain->priv = dmar_domain;
3744
3745 return 0;
3746}
3747
3748static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3749{
3750 struct dmar_domain *dmar_domain = domain->priv;
3751
3752 domain->priv = NULL;
3753 vm_domain_exit(dmar_domain);
3754}
3755
3756static int intel_iommu_attach_device(struct iommu_domain *domain,
3757 struct device *dev)
3758{
3759 struct dmar_domain *dmar_domain = domain->priv;
3760 struct pci_dev *pdev = to_pci_dev(dev);
3761 struct intel_iommu *iommu;
3762 int addr_width;
3763
3764 /* normally pdev is not mapped */
3765 if (unlikely(domain_context_mapped(pdev))) {
3766 struct dmar_domain *old_domain;
3767
3768 old_domain = find_domain(pdev);
3769 if (old_domain) {
3770 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3771 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3772 domain_remove_one_dev_info(old_domain, pdev);
3773 else
3774 domain_remove_dev_info(old_domain);
3775 }
3776 }
3777
3778 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3779 pdev->devfn);
3780 if (!iommu)
3781 return -ENODEV;
3782
3783 /* check if this iommu agaw is sufficient for max mapped address */
3784 addr_width = agaw_to_width(iommu->agaw);
3785 if (addr_width > cap_mgaw(iommu->cap))
3786 addr_width = cap_mgaw(iommu->cap);
3787
3788 if (dmar_domain->max_addr > (1LL << addr_width)) {
3789 printk(KERN_ERR "%s: iommu width (%d) is not "
3790 "sufficient for the mapped address (%llx)\n",
3791 __func__, addr_width, dmar_domain->max_addr);
3792 return -EFAULT;
3793 }
3794 dmar_domain->gaw = addr_width;
3795
3796 /*
3797 * Knock out extra levels of page tables if necessary
3798 */
3799 while (iommu->agaw < dmar_domain->agaw) {
3800 struct dma_pte *pte;
3801
3802 pte = dmar_domain->pgd;
3803 if (dma_pte_present(pte)) {
3804 dmar_domain->pgd = (struct dma_pte *)
3805 phys_to_virt(dma_pte_addr(pte));
3806 free_pgtable_page(pte);
3807 }
3808 dmar_domain->agaw--;
3809 }
3810
3811 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3812}
3813
3814static void intel_iommu_detach_device(struct iommu_domain *domain,
3815 struct device *dev)
3816{
3817 struct dmar_domain *dmar_domain = domain->priv;
3818 struct pci_dev *pdev = to_pci_dev(dev);
3819
3820 domain_remove_one_dev_info(dmar_domain, pdev);
3821}
3822
3823static int intel_iommu_map(struct iommu_domain *domain,
3824 unsigned long iova, phys_addr_t hpa,
3825 int gfp_order, int iommu_prot)
3826{
3827 struct dmar_domain *dmar_domain = domain->priv;
3828 u64 max_addr;
3829 int prot = 0;
3830 size_t size;
3831 int ret;
3832
3833 if (iommu_prot & IOMMU_READ)
3834 prot |= DMA_PTE_READ;
3835 if (iommu_prot & IOMMU_WRITE)
3836 prot |= DMA_PTE_WRITE;
3837 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3838 prot |= DMA_PTE_SNP;
3839
3840 size = PAGE_SIZE << gfp_order;
3841 max_addr = iova + size;
3842 if (dmar_domain->max_addr < max_addr) {
3843 u64 end;
3844
3845 /* check if minimum agaw is sufficient for mapped address */
3846 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
3847 if (end < max_addr) {
3848 printk(KERN_ERR "%s: iommu width (%d) is not "
3849 "sufficient for the mapped address (%llx)\n",
3850 __func__, dmar_domain->gaw, max_addr);
3851 return -EFAULT;
3852 }
3853 dmar_domain->max_addr = max_addr;
3854 }
3855 /* Round up size to next multiple of PAGE_SIZE, if it and
3856 the low bits of hpa would take us onto the next page */
3857 size = aligned_nrpages(hpa, size);
3858 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3859 hpa >> VTD_PAGE_SHIFT, size, prot);
3860 return ret;
3861}
3862
3863static int intel_iommu_unmap(struct iommu_domain *domain,
3864 unsigned long iova, int gfp_order)
3865{
3866 struct dmar_domain *dmar_domain = domain->priv;
3867 size_t size = PAGE_SIZE << gfp_order;
3868
3869 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3870 (iova + size - 1) >> VTD_PAGE_SHIFT);
3871
3872 if (dmar_domain->max_addr == iova + size)
3873 dmar_domain->max_addr = iova;
3874
3875 return gfp_order;
3876}
3877
3878static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3879 unsigned long iova)
3880{
3881 struct dmar_domain *dmar_domain = domain->priv;
3882 struct dma_pte *pte;
3883 u64 phys = 0;
3884
3885 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
3886 if (pte)
3887 phys = dma_pte_addr(pte);
3888
3889 return phys;
3890}
3891
3892static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3893 unsigned long cap)
3894{
3895 struct dmar_domain *dmar_domain = domain->priv;
3896
3897 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3898 return dmar_domain->iommu_snooping;
3899 if (cap == IOMMU_CAP_INTR_REMAP)
3900 return intr_remapping_enabled;
3901
3902 return 0;
3903}
3904
3905static struct iommu_ops intel_iommu_ops = {
3906 .domain_init = intel_iommu_domain_init,
3907 .domain_destroy = intel_iommu_domain_destroy,
3908 .attach_dev = intel_iommu_attach_device,
3909 .detach_dev = intel_iommu_detach_device,
3910 .map = intel_iommu_map,
3911 .unmap = intel_iommu_unmap,
3912 .iova_to_phys = intel_iommu_iova_to_phys,
3913 .domain_has_cap = intel_iommu_domain_has_cap,
3914};
3915
3916static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3917{
3918 /*
3919 * Mobile 4 Series Chipset neglects to set RWBF capability,
3920 * but needs it:
3921 */
3922 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3923 rwbf_quirk = 1;
3924
3925 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
3926 if (dev->revision == 0x07) {
3927 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
3928 dmar_map_gfx = 0;
3929 }
3930}
3931
3932DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
3933
3934#define GGC 0x52
3935#define GGC_MEMORY_SIZE_MASK (0xf << 8)
3936#define GGC_MEMORY_SIZE_NONE (0x0 << 8)
3937#define GGC_MEMORY_SIZE_1M (0x1 << 8)
3938#define GGC_MEMORY_SIZE_2M (0x3 << 8)
3939#define GGC_MEMORY_VT_ENABLED (0x8 << 8)
3940#define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
3941#define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
3942#define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
3943
3944static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
3945{
3946 unsigned short ggc;
3947
3948 if (pci_read_config_word(dev, GGC, &ggc))
3949 return;
3950
3951 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
3952 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
3953 dmar_map_gfx = 0;
3954 }
3955}
3956DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
3957DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
3958DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
3959DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
3960
3961/* On Tylersburg chipsets, some BIOSes have been known to enable the
3962 ISOCH DMAR unit for the Azalia sound device, but not give it any
3963 TLB entries, which causes it to deadlock. Check for that. We do
3964 this in a function called from init_dmars(), instead of in a PCI
3965 quirk, because we don't want to print the obnoxious "BIOS broken"
3966 message if VT-d is actually disabled.
3967*/
3968static void __init check_tylersburg_isoch(void)
3969{
3970 struct pci_dev *pdev;
3971 uint32_t vtisochctrl;
3972
3973 /* If there's no Azalia in the system anyway, forget it. */
3974 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
3975 if (!pdev)
3976 return;
3977 pci_dev_put(pdev);
3978
3979 /* System Management Registers. Might be hidden, in which case
3980 we can't do the sanity check. But that's OK, because the
3981 known-broken BIOSes _don't_ actually hide it, so far. */
3982 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
3983 if (!pdev)
3984 return;
3985
3986 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
3987 pci_dev_put(pdev);
3988 return;
3989 }
3990
3991 pci_dev_put(pdev);
3992
3993 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
3994 if (vtisochctrl & 1)
3995 return;
3996
3997 /* Drop all bits other than the number of TLB entries */
3998 vtisochctrl &= 0x1c;
3999
4000 /* If we have the recommended number of TLB entries (16), fine. */
4001 if (vtisochctrl == 0x10)
4002 return;
4003
4004 /* Zero TLB entries? You get to ride the short bus to school. */
4005 if (!vtisochctrl) {
4006 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4007 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4008 dmi_get_system_info(DMI_BIOS_VENDOR),
4009 dmi_get_system_info(DMI_BIOS_VERSION),
4010 dmi_get_system_info(DMI_PRODUCT_VERSION));
4011 iommu_identity_mapping |= IDENTMAP_AZALIA;
4012 return;
4013 }
4014
4015 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4016 vtisochctrl);
4017}
diff --git a/drivers/pci/intr_remapping.c b/drivers/pci/intr_remapping.c
deleted file mode 100644
index 3607faf28a4d..000000000000
--- a/drivers/pci/intr_remapping.c
+++ /dev/null
@@ -1,798 +0,0 @@
1#include <linux/interrupt.h>
2#include <linux/dmar.h>
3#include <linux/spinlock.h>
4#include <linux/slab.h>
5#include <linux/jiffies.h>
6#include <linux/hpet.h>
7#include <linux/pci.h>
8#include <linux/irq.h>
9#include <asm/io_apic.h>
10#include <asm/smp.h>
11#include <asm/cpu.h>
12#include <linux/intel-iommu.h>
13#include "intr_remapping.h"
14#include <acpi/acpi.h>
15#include <asm/pci-direct.h>
16#include "pci.h"
17
18static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
19static struct hpet_scope ir_hpet[MAX_HPET_TBS];
20static int ir_ioapic_num, ir_hpet_num;
21int intr_remapping_enabled;
22
23static int disable_intremap;
24static int disable_sourceid_checking;
25
26static __init int setup_nointremap(char *str)
27{
28 disable_intremap = 1;
29 return 0;
30}
31early_param("nointremap", setup_nointremap);
32
33static __init int setup_intremap(char *str)
34{
35 if (!str)
36 return -EINVAL;
37
38 if (!strncmp(str, "on", 2))
39 disable_intremap = 0;
40 else if (!strncmp(str, "off", 3))
41 disable_intremap = 1;
42 else if (!strncmp(str, "nosid", 5))
43 disable_sourceid_checking = 1;
44
45 return 0;
46}
47early_param("intremap", setup_intremap);
48
49static DEFINE_SPINLOCK(irq_2_ir_lock);
50
51static struct irq_2_iommu *irq_2_iommu(unsigned int irq)
52{
53 struct irq_cfg *cfg = irq_get_chip_data(irq);
54 return cfg ? &cfg->irq_2_iommu : NULL;
55}
56
57int get_irte(int irq, struct irte *entry)
58{
59 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
60 unsigned long flags;
61 int index;
62
63 if (!entry || !irq_iommu)
64 return -1;
65
66 spin_lock_irqsave(&irq_2_ir_lock, flags);
67
68 index = irq_iommu->irte_index + irq_iommu->sub_handle;
69 *entry = *(irq_iommu->iommu->ir_table->base + index);
70
71 spin_unlock_irqrestore(&irq_2_ir_lock, flags);
72 return 0;
73}
74
75int alloc_irte(struct intel_iommu *iommu, int irq, u16 count)
76{
77 struct ir_table *table = iommu->ir_table;
78 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
79 u16 index, start_index;
80 unsigned int mask = 0;
81 unsigned long flags;
82 int i;
83
84 if (!count || !irq_iommu)
85 return -1;
86
87 /*
88 * start the IRTE search from index 0.
89 */
90 index = start_index = 0;
91
92 if (count > 1) {
93 count = __roundup_pow_of_two(count);
94 mask = ilog2(count);
95 }
96
97 if (mask > ecap_max_handle_mask(iommu->ecap)) {
98 printk(KERN_ERR
99 "Requested mask %x exceeds the max invalidation handle"
100 " mask value %Lx\n", mask,
101 ecap_max_handle_mask(iommu->ecap));
102 return -1;
103 }
104
105 spin_lock_irqsave(&irq_2_ir_lock, flags);
106 do {
107 for (i = index; i < index + count; i++)
108 if (table->base[i].present)
109 break;
110 /* empty index found */
111 if (i == index + count)
112 break;
113
114 index = (index + count) % INTR_REMAP_TABLE_ENTRIES;
115
116 if (index == start_index) {
117 spin_unlock_irqrestore(&irq_2_ir_lock, flags);
118 printk(KERN_ERR "can't allocate an IRTE\n");
119 return -1;
120 }
121 } while (1);
122
123 for (i = index; i < index + count; i++)
124 table->base[i].present = 1;
125
126 irq_iommu->iommu = iommu;
127 irq_iommu->irte_index = index;
128 irq_iommu->sub_handle = 0;
129 irq_iommu->irte_mask = mask;
130
131 spin_unlock_irqrestore(&irq_2_ir_lock, flags);
132
133 return index;
134}
135
136static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
137{
138 struct qi_desc desc;
139
140 desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
141 | QI_IEC_SELECTIVE;
142 desc.high = 0;
143
144 return qi_submit_sync(&desc, iommu);
145}
146
147int map_irq_to_irte_handle(int irq, u16 *sub_handle)
148{
149 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
150 unsigned long flags;
151 int index;
152
153 if (!irq_iommu)
154 return -1;
155
156 spin_lock_irqsave(&irq_2_ir_lock, flags);
157 *sub_handle = irq_iommu->sub_handle;
158 index = irq_iommu->irte_index;
159 spin_unlock_irqrestore(&irq_2_ir_lock, flags);
160 return index;
161}
162
163int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle)
164{
165 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
166 unsigned long flags;
167
168 if (!irq_iommu)
169 return -1;
170
171 spin_lock_irqsave(&irq_2_ir_lock, flags);
172
173 irq_iommu->iommu = iommu;
174 irq_iommu->irte_index = index;
175 irq_iommu->sub_handle = subhandle;
176 irq_iommu->irte_mask = 0;
177
178 spin_unlock_irqrestore(&irq_2_ir_lock, flags);
179
180 return 0;
181}
182
183int modify_irte(int irq, struct irte *irte_modified)
184{
185 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
186 struct intel_iommu *iommu;
187 unsigned long flags;
188 struct irte *irte;
189 int rc, index;
190
191 if (!irq_iommu)
192 return -1;
193
194 spin_lock_irqsave(&irq_2_ir_lock, flags);
195
196 iommu = irq_iommu->iommu;
197
198 index = irq_iommu->irte_index + irq_iommu->sub_handle;
199 irte = &iommu->ir_table->base[index];
200
201 set_64bit(&irte->low, irte_modified->low);
202 set_64bit(&irte->high, irte_modified->high);
203 __iommu_flush_cache(iommu, irte, sizeof(*irte));
204
205 rc = qi_flush_iec(iommu, index, 0);
206 spin_unlock_irqrestore(&irq_2_ir_lock, flags);
207
208 return rc;
209}
210
211struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
212{
213 int i;
214
215 for (i = 0; i < MAX_HPET_TBS; i++)
216 if (ir_hpet[i].id == hpet_id)
217 return ir_hpet[i].iommu;
218 return NULL;
219}
220
221struct intel_iommu *map_ioapic_to_ir(int apic)
222{
223 int i;
224
225 for (i = 0; i < MAX_IO_APICS; i++)
226 if (ir_ioapic[i].id == apic)
227 return ir_ioapic[i].iommu;
228 return NULL;
229}
230
231struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
232{
233 struct dmar_drhd_unit *drhd;
234
235 drhd = dmar_find_matched_drhd_unit(dev);
236 if (!drhd)
237 return NULL;
238
239 return drhd->iommu;
240}
241
242static int clear_entries(struct irq_2_iommu *irq_iommu)
243{
244 struct irte *start, *entry, *end;
245 struct intel_iommu *iommu;
246 int index;
247
248 if (irq_iommu->sub_handle)
249 return 0;
250
251 iommu = irq_iommu->iommu;
252 index = irq_iommu->irte_index + irq_iommu->sub_handle;
253
254 start = iommu->ir_table->base + index;
255 end = start + (1 << irq_iommu->irte_mask);
256
257 for (entry = start; entry < end; entry++) {
258 set_64bit(&entry->low, 0);
259 set_64bit(&entry->high, 0);
260 }
261
262 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
263}
264
265int free_irte(int irq)
266{
267 struct irq_2_iommu *irq_iommu = irq_2_iommu(irq);
268 unsigned long flags;
269 int rc;
270
271 if (!irq_iommu)
272 return -1;
273
274 spin_lock_irqsave(&irq_2_ir_lock, flags);
275
276 rc = clear_entries(irq_iommu);
277
278 irq_iommu->iommu = NULL;
279 irq_iommu->irte_index = 0;
280 irq_iommu->sub_handle = 0;
281 irq_iommu->irte_mask = 0;
282
283 spin_unlock_irqrestore(&irq_2_ir_lock, flags);
284
285 return rc;
286}
287
288/*
289 * source validation type
290 */
291#define SVT_NO_VERIFY 0x0 /* no verification is required */
292#define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
293#define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
294
295/*
296 * source-id qualifier
297 */
298#define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
299#define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
300 * the third least significant bit
301 */
302#define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
303 * the second and third least significant bits
304 */
305#define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
306 * the least three significant bits
307 */
308
309/*
310 * set SVT, SQ and SID fields of irte to verify
311 * source ids of interrupt requests
312 */
313static void set_irte_sid(struct irte *irte, unsigned int svt,
314 unsigned int sq, unsigned int sid)
315{
316 if (disable_sourceid_checking)
317 svt = SVT_NO_VERIFY;
318 irte->svt = svt;
319 irte->sq = sq;
320 irte->sid = sid;
321}
322
323int set_ioapic_sid(struct irte *irte, int apic)
324{
325 int i;
326 u16 sid = 0;
327
328 if (!irte)
329 return -1;
330
331 for (i = 0; i < MAX_IO_APICS; i++) {
332 if (ir_ioapic[i].id == apic) {
333 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
334 break;
335 }
336 }
337
338 if (sid == 0) {
339 pr_warning("Failed to set source-id of IOAPIC (%d)\n", apic);
340 return -1;
341 }
342
343 set_irte_sid(irte, 1, 0, sid);
344
345 return 0;
346}
347
348int set_hpet_sid(struct irte *irte, u8 id)
349{
350 int i;
351 u16 sid = 0;
352
353 if (!irte)
354 return -1;
355
356 for (i = 0; i < MAX_HPET_TBS; i++) {
357 if (ir_hpet[i].id == id) {
358 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
359 break;
360 }
361 }
362
363 if (sid == 0) {
364 pr_warning("Failed to set source-id of HPET block (%d)\n", id);
365 return -1;
366 }
367
368 /*
369 * Should really use SQ_ALL_16. Some platforms are broken.
370 * While we figure out the right quirks for these broken platforms, use
371 * SQ_13_IGNORE_3 for now.
372 */
373 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
374
375 return 0;
376}
377
378int set_msi_sid(struct irte *irte, struct pci_dev *dev)
379{
380 struct pci_dev *bridge;
381
382 if (!irte || !dev)
383 return -1;
384
385 /* PCIe device or Root Complex integrated PCI device */
386 if (pci_is_pcie(dev) || !dev->bus->parent) {
387 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
388 (dev->bus->number << 8) | dev->devfn);
389 return 0;
390 }
391
392 bridge = pci_find_upstream_pcie_bridge(dev);
393 if (bridge) {
394 if (pci_is_pcie(bridge))/* this is a PCIe-to-PCI/PCIX bridge */
395 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
396 (bridge->bus->number << 8) | dev->bus->number);
397 else /* this is a legacy PCI bridge */
398 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
399 (bridge->bus->number << 8) | bridge->devfn);
400 }
401
402 return 0;
403}
404
405static void iommu_set_intr_remapping(struct intel_iommu *iommu, int mode)
406{
407 u64 addr;
408 u32 sts;
409 unsigned long flags;
410
411 addr = virt_to_phys((void *)iommu->ir_table->base);
412
413 spin_lock_irqsave(&iommu->register_lock, flags);
414
415 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
416 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
417
418 /* Set interrupt-remapping table pointer */
419 iommu->gcmd |= DMA_GCMD_SIRTP;
420 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
421
422 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
423 readl, (sts & DMA_GSTS_IRTPS), sts);
424 spin_unlock_irqrestore(&iommu->register_lock, flags);
425
426 /*
427 * global invalidation of interrupt entry cache before enabling
428 * interrupt-remapping.
429 */
430 qi_global_iec(iommu);
431
432 spin_lock_irqsave(&iommu->register_lock, flags);
433
434 /* Enable interrupt-remapping */
435 iommu->gcmd |= DMA_GCMD_IRE;
436 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
437
438 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
439 readl, (sts & DMA_GSTS_IRES), sts);
440
441 spin_unlock_irqrestore(&iommu->register_lock, flags);
442}
443
444
445static int setup_intr_remapping(struct intel_iommu *iommu, int mode)
446{
447 struct ir_table *ir_table;
448 struct page *pages;
449
450 ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table),
451 GFP_ATOMIC);
452
453 if (!iommu->ir_table)
454 return -ENOMEM;
455
456 pages = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
457 INTR_REMAP_PAGE_ORDER);
458
459 if (!pages) {
460 printk(KERN_ERR "failed to allocate pages of order %d\n",
461 INTR_REMAP_PAGE_ORDER);
462 kfree(iommu->ir_table);
463 return -ENOMEM;
464 }
465
466 ir_table->base = page_address(pages);
467
468 iommu_set_intr_remapping(iommu, mode);
469 return 0;
470}
471
472/*
473 * Disable Interrupt Remapping.
474 */
475static void iommu_disable_intr_remapping(struct intel_iommu *iommu)
476{
477 unsigned long flags;
478 u32 sts;
479
480 if (!ecap_ir_support(iommu->ecap))
481 return;
482
483 /*
484 * global invalidation of interrupt entry cache before disabling
485 * interrupt-remapping.
486 */
487 qi_global_iec(iommu);
488
489 spin_lock_irqsave(&iommu->register_lock, flags);
490
491 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
492 if (!(sts & DMA_GSTS_IRES))
493 goto end;
494
495 iommu->gcmd &= ~DMA_GCMD_IRE;
496 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
497
498 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
499 readl, !(sts & DMA_GSTS_IRES), sts);
500
501end:
502 spin_unlock_irqrestore(&iommu->register_lock, flags);
503}
504
505int __init intr_remapping_supported(void)
506{
507 struct dmar_drhd_unit *drhd;
508
509 if (disable_intremap)
510 return 0;
511
512 if (!dmar_ir_support())
513 return 0;
514
515 for_each_drhd_unit(drhd) {
516 struct intel_iommu *iommu = drhd->iommu;
517
518 if (!ecap_ir_support(iommu->ecap))
519 return 0;
520 }
521
522 return 1;
523}
524
525int __init enable_intr_remapping(int eim)
526{
527 struct dmar_drhd_unit *drhd;
528 int setup = 0;
529
530 if (parse_ioapics_under_ir() != 1) {
531 printk(KERN_INFO "Not enable interrupt remapping\n");
532 return -1;
533 }
534
535 for_each_drhd_unit(drhd) {
536 struct intel_iommu *iommu = drhd->iommu;
537
538 /*
539 * If the queued invalidation is already initialized,
540 * shouldn't disable it.
541 */
542 if (iommu->qi)
543 continue;
544
545 /*
546 * Clear previous faults.
547 */
548 dmar_fault(-1, iommu);
549
550 /*
551 * Disable intr remapping and queued invalidation, if already
552 * enabled prior to OS handover.
553 */
554 iommu_disable_intr_remapping(iommu);
555
556 dmar_disable_qi(iommu);
557 }
558
559 /*
560 * check for the Interrupt-remapping support
561 */
562 for_each_drhd_unit(drhd) {
563 struct intel_iommu *iommu = drhd->iommu;
564
565 if (!ecap_ir_support(iommu->ecap))
566 continue;
567
568 if (eim && !ecap_eim_support(iommu->ecap)) {
569 printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, "
570 " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap);
571 return -1;
572 }
573 }
574
575 /*
576 * Enable queued invalidation for all the DRHD's.
577 */
578 for_each_drhd_unit(drhd) {
579 int ret;
580 struct intel_iommu *iommu = drhd->iommu;
581 ret = dmar_enable_qi(iommu);
582
583 if (ret) {
584 printk(KERN_ERR "DRHD %Lx: failed to enable queued, "
585 " invalidation, ecap %Lx, ret %d\n",
586 drhd->reg_base_addr, iommu->ecap, ret);
587 return -1;
588 }
589 }
590
591 /*
592 * Setup Interrupt-remapping for all the DRHD's now.
593 */
594 for_each_drhd_unit(drhd) {
595 struct intel_iommu *iommu = drhd->iommu;
596
597 if (!ecap_ir_support(iommu->ecap))
598 continue;
599
600 if (setup_intr_remapping(iommu, eim))
601 goto error;
602
603 setup = 1;
604 }
605
606 if (!setup)
607 goto error;
608
609 intr_remapping_enabled = 1;
610
611 return 0;
612
613error:
614 /*
615 * handle error condition gracefully here!
616 */
617 return -1;
618}
619
620static void ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
621 struct intel_iommu *iommu)
622{
623 struct acpi_dmar_pci_path *path;
624 u8 bus;
625 int count;
626
627 bus = scope->bus;
628 path = (struct acpi_dmar_pci_path *)(scope + 1);
629 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
630 / sizeof(struct acpi_dmar_pci_path);
631
632 while (--count > 0) {
633 /*
634 * Access PCI directly due to the PCI
635 * subsystem isn't initialized yet.
636 */
637 bus = read_pci_config_byte(bus, path->dev, path->fn,
638 PCI_SECONDARY_BUS);
639 path++;
640 }
641 ir_hpet[ir_hpet_num].bus = bus;
642 ir_hpet[ir_hpet_num].devfn = PCI_DEVFN(path->dev, path->fn);
643 ir_hpet[ir_hpet_num].iommu = iommu;
644 ir_hpet[ir_hpet_num].id = scope->enumeration_id;
645 ir_hpet_num++;
646}
647
648static void ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
649 struct intel_iommu *iommu)
650{
651 struct acpi_dmar_pci_path *path;
652 u8 bus;
653 int count;
654
655 bus = scope->bus;
656 path = (struct acpi_dmar_pci_path *)(scope + 1);
657 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
658 / sizeof(struct acpi_dmar_pci_path);
659
660 while (--count > 0) {
661 /*
662 * Access PCI directly due to the PCI
663 * subsystem isn't initialized yet.
664 */
665 bus = read_pci_config_byte(bus, path->dev, path->fn,
666 PCI_SECONDARY_BUS);
667 path++;
668 }
669
670 ir_ioapic[ir_ioapic_num].bus = bus;
671 ir_ioapic[ir_ioapic_num].devfn = PCI_DEVFN(path->dev, path->fn);
672 ir_ioapic[ir_ioapic_num].iommu = iommu;
673 ir_ioapic[ir_ioapic_num].id = scope->enumeration_id;
674 ir_ioapic_num++;
675}
676
677static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
678 struct intel_iommu *iommu)
679{
680 struct acpi_dmar_hardware_unit *drhd;
681 struct acpi_dmar_device_scope *scope;
682 void *start, *end;
683
684 drhd = (struct acpi_dmar_hardware_unit *)header;
685
686 start = (void *)(drhd + 1);
687 end = ((void *)drhd) + header->length;
688
689 while (start < end) {
690 scope = start;
691 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
692 if (ir_ioapic_num == MAX_IO_APICS) {
693 printk(KERN_WARNING "Exceeded Max IO APICS\n");
694 return -1;
695 }
696
697 printk(KERN_INFO "IOAPIC id %d under DRHD base "
698 " 0x%Lx IOMMU %d\n", scope->enumeration_id,
699 drhd->address, iommu->seq_id);
700
701 ir_parse_one_ioapic_scope(scope, iommu);
702 } else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) {
703 if (ir_hpet_num == MAX_HPET_TBS) {
704 printk(KERN_WARNING "Exceeded Max HPET blocks\n");
705 return -1;
706 }
707
708 printk(KERN_INFO "HPET id %d under DRHD base"
709 " 0x%Lx\n", scope->enumeration_id,
710 drhd->address);
711
712 ir_parse_one_hpet_scope(scope, iommu);
713 }
714 start += scope->length;
715 }
716
717 return 0;
718}
719
720/*
721 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
722 * hardware unit.
723 */
724int __init parse_ioapics_under_ir(void)
725{
726 struct dmar_drhd_unit *drhd;
727 int ir_supported = 0;
728
729 for_each_drhd_unit(drhd) {
730 struct intel_iommu *iommu = drhd->iommu;
731
732 if (ecap_ir_support(iommu->ecap)) {
733 if (ir_parse_ioapic_hpet_scope(drhd->hdr, iommu))
734 return -1;
735
736 ir_supported = 1;
737 }
738 }
739
740 if (ir_supported && ir_ioapic_num != nr_ioapics) {
741 printk(KERN_WARNING
742 "Not all IO-APIC's listed under remapping hardware\n");
743 return -1;
744 }
745
746 return ir_supported;
747}
748
749void disable_intr_remapping(void)
750{
751 struct dmar_drhd_unit *drhd;
752 struct intel_iommu *iommu = NULL;
753
754 /*
755 * Disable Interrupt-remapping for all the DRHD's now.
756 */
757 for_each_iommu(iommu, drhd) {
758 if (!ecap_ir_support(iommu->ecap))
759 continue;
760
761 iommu_disable_intr_remapping(iommu);
762 }
763}
764
765int reenable_intr_remapping(int eim)
766{
767 struct dmar_drhd_unit *drhd;
768 int setup = 0;
769 struct intel_iommu *iommu = NULL;
770
771 for_each_iommu(iommu, drhd)
772 if (iommu->qi)
773 dmar_reenable_qi(iommu);
774
775 /*
776 * Setup Interrupt-remapping for all the DRHD's now.
777 */
778 for_each_iommu(iommu, drhd) {
779 if (!ecap_ir_support(iommu->ecap))
780 continue;
781
782 /* Set up interrupt remapping for iommu.*/
783 iommu_set_intr_remapping(iommu, eim);
784 setup = 1;
785 }
786
787 if (!setup)
788 goto error;
789
790 return 0;
791
792error:
793 /*
794 * handle error condition gracefully here!
795 */
796 return -1;
797}
798
diff --git a/drivers/pci/intr_remapping.h b/drivers/pci/intr_remapping.h
deleted file mode 100644
index 5662fecfee60..000000000000
--- a/drivers/pci/intr_remapping.h
+++ /dev/null
@@ -1,17 +0,0 @@
1#include <linux/intel-iommu.h>
2
3struct ioapic_scope {
4 struct intel_iommu *iommu;
5 unsigned int id;
6 unsigned int bus; /* PCI bus number */
7 unsigned int devfn; /* PCI devfn number */
8};
9
10struct hpet_scope {
11 struct intel_iommu *iommu;
12 u8 id;
13 unsigned int bus;
14 unsigned int devfn;
15};
16
17#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
diff --git a/drivers/pci/iova.c b/drivers/pci/iova.c
deleted file mode 100644
index c5c274ab5c5a..000000000000
--- a/drivers/pci/iova.c
+++ /dev/null
@@ -1,435 +0,0 @@
1/*
2 * Copyright © 2006-2009, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
18 */
19
20#include <linux/iova.h>
21
22void
23init_iova_domain(struct iova_domain *iovad, unsigned long pfn_32bit)
24{
25 spin_lock_init(&iovad->iova_rbtree_lock);
26 iovad->rbroot = RB_ROOT;
27 iovad->cached32_node = NULL;
28 iovad->dma_32bit_pfn = pfn_32bit;
29}
30
31static struct rb_node *
32__get_cached_rbnode(struct iova_domain *iovad, unsigned long *limit_pfn)
33{
34 if ((*limit_pfn != iovad->dma_32bit_pfn) ||
35 (iovad->cached32_node == NULL))
36 return rb_last(&iovad->rbroot);
37 else {
38 struct rb_node *prev_node = rb_prev(iovad->cached32_node);
39 struct iova *curr_iova =
40 container_of(iovad->cached32_node, struct iova, node);
41 *limit_pfn = curr_iova->pfn_lo - 1;
42 return prev_node;
43 }
44}
45
46static void
47__cached_rbnode_insert_update(struct iova_domain *iovad,
48 unsigned long limit_pfn, struct iova *new)
49{
50 if (limit_pfn != iovad->dma_32bit_pfn)
51 return;
52 iovad->cached32_node = &new->node;
53}
54
55static void
56__cached_rbnode_delete_update(struct iova_domain *iovad, struct iova *free)
57{
58 struct iova *cached_iova;
59 struct rb_node *curr;
60
61 if (!iovad->cached32_node)
62 return;
63 curr = iovad->cached32_node;
64 cached_iova = container_of(curr, struct iova, node);
65
66 if (free->pfn_lo >= cached_iova->pfn_lo) {
67 struct rb_node *node = rb_next(&free->node);
68 struct iova *iova = container_of(node, struct iova, node);
69
70 /* only cache if it's below 32bit pfn */
71 if (node && iova->pfn_lo < iovad->dma_32bit_pfn)
72 iovad->cached32_node = node;
73 else
74 iovad->cached32_node = NULL;
75 }
76}
77
78/* Computes the padding size required, to make the
79 * the start address naturally aligned on its size
80 */
81static int
82iova_get_pad_size(int size, unsigned int limit_pfn)
83{
84 unsigned int pad_size = 0;
85 unsigned int order = ilog2(size);
86
87 if (order)
88 pad_size = (limit_pfn + 1) % (1 << order);
89
90 return pad_size;
91}
92
93static int __alloc_and_insert_iova_range(struct iova_domain *iovad,
94 unsigned long size, unsigned long limit_pfn,
95 struct iova *new, bool size_aligned)
96{
97 struct rb_node *prev, *curr = NULL;
98 unsigned long flags;
99 unsigned long saved_pfn;
100 unsigned int pad_size = 0;
101
102 /* Walk the tree backwards */
103 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
104 saved_pfn = limit_pfn;
105 curr = __get_cached_rbnode(iovad, &limit_pfn);
106 prev = curr;
107 while (curr) {
108 struct iova *curr_iova = container_of(curr, struct iova, node);
109
110 if (limit_pfn < curr_iova->pfn_lo)
111 goto move_left;
112 else if (limit_pfn < curr_iova->pfn_hi)
113 goto adjust_limit_pfn;
114 else {
115 if (size_aligned)
116 pad_size = iova_get_pad_size(size, limit_pfn);
117 if ((curr_iova->pfn_hi + size + pad_size) <= limit_pfn)
118 break; /* found a free slot */
119 }
120adjust_limit_pfn:
121 limit_pfn = curr_iova->pfn_lo - 1;
122move_left:
123 prev = curr;
124 curr = rb_prev(curr);
125 }
126
127 if (!curr) {
128 if (size_aligned)
129 pad_size = iova_get_pad_size(size, limit_pfn);
130 if ((IOVA_START_PFN + size + pad_size) > limit_pfn) {
131 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
132 return -ENOMEM;
133 }
134 }
135
136 /* pfn_lo will point to size aligned address if size_aligned is set */
137 new->pfn_lo = limit_pfn - (size + pad_size) + 1;
138 new->pfn_hi = new->pfn_lo + size - 1;
139
140 /* Insert the new_iova into domain rbtree by holding writer lock */
141 /* Add new node and rebalance tree. */
142 {
143 struct rb_node **entry, *parent = NULL;
144
145 /* If we have 'prev', it's a valid place to start the
146 insertion. Otherwise, start from the root. */
147 if (prev)
148 entry = &prev;
149 else
150 entry = &iovad->rbroot.rb_node;
151
152 /* Figure out where to put new node */
153 while (*entry) {
154 struct iova *this = container_of(*entry,
155 struct iova, node);
156 parent = *entry;
157
158 if (new->pfn_lo < this->pfn_lo)
159 entry = &((*entry)->rb_left);
160 else if (new->pfn_lo > this->pfn_lo)
161 entry = &((*entry)->rb_right);
162 else
163 BUG(); /* this should not happen */
164 }
165
166 /* Add new node and rebalance tree. */
167 rb_link_node(&new->node, parent, entry);
168 rb_insert_color(&new->node, &iovad->rbroot);
169 }
170 __cached_rbnode_insert_update(iovad, saved_pfn, new);
171
172 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
173
174
175 return 0;
176}
177
178static void
179iova_insert_rbtree(struct rb_root *root, struct iova *iova)
180{
181 struct rb_node **new = &(root->rb_node), *parent = NULL;
182 /* Figure out where to put new node */
183 while (*new) {
184 struct iova *this = container_of(*new, struct iova, node);
185 parent = *new;
186
187 if (iova->pfn_lo < this->pfn_lo)
188 new = &((*new)->rb_left);
189 else if (iova->pfn_lo > this->pfn_lo)
190 new = &((*new)->rb_right);
191 else
192 BUG(); /* this should not happen */
193 }
194 /* Add new node and rebalance tree. */
195 rb_link_node(&iova->node, parent, new);
196 rb_insert_color(&iova->node, root);
197}
198
199/**
200 * alloc_iova - allocates an iova
201 * @iovad - iova domain in question
202 * @size - size of page frames to allocate
203 * @limit_pfn - max limit address
204 * @size_aligned - set if size_aligned address range is required
205 * This function allocates an iova in the range limit_pfn to IOVA_START_PFN
206 * looking from limit_pfn instead from IOVA_START_PFN. If the size_aligned
207 * flag is set then the allocated address iova->pfn_lo will be naturally
208 * aligned on roundup_power_of_two(size).
209 */
210struct iova *
211alloc_iova(struct iova_domain *iovad, unsigned long size,
212 unsigned long limit_pfn,
213 bool size_aligned)
214{
215 struct iova *new_iova;
216 int ret;
217
218 new_iova = alloc_iova_mem();
219 if (!new_iova)
220 return NULL;
221
222 /* If size aligned is set then round the size to
223 * to next power of two.
224 */
225 if (size_aligned)
226 size = __roundup_pow_of_two(size);
227
228 ret = __alloc_and_insert_iova_range(iovad, size, limit_pfn,
229 new_iova, size_aligned);
230
231 if (ret) {
232 free_iova_mem(new_iova);
233 return NULL;
234 }
235
236 return new_iova;
237}
238
239/**
240 * find_iova - find's an iova for a given pfn
241 * @iovad - iova domain in question.
242 * pfn - page frame number
243 * This function finds and returns an iova belonging to the
244 * given doamin which matches the given pfn.
245 */
246struct iova *find_iova(struct iova_domain *iovad, unsigned long pfn)
247{
248 unsigned long flags;
249 struct rb_node *node;
250
251 /* Take the lock so that no other thread is manipulating the rbtree */
252 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
253 node = iovad->rbroot.rb_node;
254 while (node) {
255 struct iova *iova = container_of(node, struct iova, node);
256
257 /* If pfn falls within iova's range, return iova */
258 if ((pfn >= iova->pfn_lo) && (pfn <= iova->pfn_hi)) {
259 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
260 /* We are not holding the lock while this iova
261 * is referenced by the caller as the same thread
262 * which called this function also calls __free_iova()
263 * and it is by desing that only one thread can possibly
264 * reference a particular iova and hence no conflict.
265 */
266 return iova;
267 }
268
269 if (pfn < iova->pfn_lo)
270 node = node->rb_left;
271 else if (pfn > iova->pfn_lo)
272 node = node->rb_right;
273 }
274
275 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
276 return NULL;
277}
278
279/**
280 * __free_iova - frees the given iova
281 * @iovad: iova domain in question.
282 * @iova: iova in question.
283 * Frees the given iova belonging to the giving domain
284 */
285void
286__free_iova(struct iova_domain *iovad, struct iova *iova)
287{
288 unsigned long flags;
289
290 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
291 __cached_rbnode_delete_update(iovad, iova);
292 rb_erase(&iova->node, &iovad->rbroot);
293 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
294 free_iova_mem(iova);
295}
296
297/**
298 * free_iova - finds and frees the iova for a given pfn
299 * @iovad: - iova domain in question.
300 * @pfn: - pfn that is allocated previously
301 * This functions finds an iova for a given pfn and then
302 * frees the iova from that domain.
303 */
304void
305free_iova(struct iova_domain *iovad, unsigned long pfn)
306{
307 struct iova *iova = find_iova(iovad, pfn);
308 if (iova)
309 __free_iova(iovad, iova);
310
311}
312
313/**
314 * put_iova_domain - destroys the iova doamin
315 * @iovad: - iova domain in question.
316 * All the iova's in that domain are destroyed.
317 */
318void put_iova_domain(struct iova_domain *iovad)
319{
320 struct rb_node *node;
321 unsigned long flags;
322
323 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
324 node = rb_first(&iovad->rbroot);
325 while (node) {
326 struct iova *iova = container_of(node, struct iova, node);
327 rb_erase(node, &iovad->rbroot);
328 free_iova_mem(iova);
329 node = rb_first(&iovad->rbroot);
330 }
331 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
332}
333
334static int
335__is_range_overlap(struct rb_node *node,
336 unsigned long pfn_lo, unsigned long pfn_hi)
337{
338 struct iova *iova = container_of(node, struct iova, node);
339
340 if ((pfn_lo <= iova->pfn_hi) && (pfn_hi >= iova->pfn_lo))
341 return 1;
342 return 0;
343}
344
345static struct iova *
346__insert_new_range(struct iova_domain *iovad,
347 unsigned long pfn_lo, unsigned long pfn_hi)
348{
349 struct iova *iova;
350
351 iova = alloc_iova_mem();
352 if (!iova)
353 return iova;
354
355 iova->pfn_hi = pfn_hi;
356 iova->pfn_lo = pfn_lo;
357 iova_insert_rbtree(&iovad->rbroot, iova);
358 return iova;
359}
360
361static void
362__adjust_overlap_range(struct iova *iova,
363 unsigned long *pfn_lo, unsigned long *pfn_hi)
364{
365 if (*pfn_lo < iova->pfn_lo)
366 iova->pfn_lo = *pfn_lo;
367 if (*pfn_hi > iova->pfn_hi)
368 *pfn_lo = iova->pfn_hi + 1;
369}
370
371/**
372 * reserve_iova - reserves an iova in the given range
373 * @iovad: - iova domain pointer
374 * @pfn_lo: - lower page frame address
375 * @pfn_hi:- higher pfn adderss
376 * This function allocates reserves the address range from pfn_lo to pfn_hi so
377 * that this address is not dished out as part of alloc_iova.
378 */
379struct iova *
380reserve_iova(struct iova_domain *iovad,
381 unsigned long pfn_lo, unsigned long pfn_hi)
382{
383 struct rb_node *node;
384 unsigned long flags;
385 struct iova *iova;
386 unsigned int overlap = 0;
387
388 spin_lock_irqsave(&iovad->iova_rbtree_lock, flags);
389 for (node = rb_first(&iovad->rbroot); node; node = rb_next(node)) {
390 if (__is_range_overlap(node, pfn_lo, pfn_hi)) {
391 iova = container_of(node, struct iova, node);
392 __adjust_overlap_range(iova, &pfn_lo, &pfn_hi);
393 if ((pfn_lo >= iova->pfn_lo) &&
394 (pfn_hi <= iova->pfn_hi))
395 goto finish;
396 overlap = 1;
397
398 } else if (overlap)
399 break;
400 }
401
402 /* We are here either because this is the first reserver node
403 * or need to insert remaining non overlap addr range
404 */
405 iova = __insert_new_range(iovad, pfn_lo, pfn_hi);
406finish:
407
408 spin_unlock_irqrestore(&iovad->iova_rbtree_lock, flags);
409 return iova;
410}
411
412/**
413 * copy_reserved_iova - copies the reserved between domains
414 * @from: - source doamin from where to copy
415 * @to: - destination domin where to copy
416 * This function copies reserved iova's from one doamin to
417 * other.
418 */
419void
420copy_reserved_iova(struct iova_domain *from, struct iova_domain *to)
421{
422 unsigned long flags;
423 struct rb_node *node;
424
425 spin_lock_irqsave(&from->iova_rbtree_lock, flags);
426 for (node = rb_first(&from->rbroot); node; node = rb_next(node)) {
427 struct iova *iova = container_of(node, struct iova, node);
428 struct iova *new_iova;
429 new_iova = reserve_iova(to, iova->pfn_lo, iova->pfn_hi);
430 if (!new_iova)
431 printk(KERN_ERR "Reserve iova range %lx@%lx failed\n",
432 iova->pfn_lo, iova->pfn_lo);
433 }
434 spin_unlock_irqrestore(&from->iova_rbtree_lock, flags);
435}
diff --git a/drivers/pci/pci.h b/drivers/pci/pci.h
index 3a39bf1f1e2c..c8cee764b0de 100644
--- a/drivers/pci/pci.h
+++ b/drivers/pci/pci.h
@@ -186,8 +186,6 @@ pci_match_one_device(const struct pci_device_id *id, const struct pci_dev *dev)
186 return NULL; 186 return NULL;
187} 187}
188 188
189struct pci_dev *pci_find_upstream_pcie_bridge(struct pci_dev *pdev);
190
191/* PCI slot sysfs helper code */ 189/* PCI slot sysfs helper code */
192#define to_pci_slot(s) container_of(s, struct pci_slot, kobj) 190#define to_pci_slot(s) container_of(s, struct pci_slot, kobj)
193 191