diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/sh64/kernel/time.c |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/sh64/kernel/time.c')
-rw-r--r-- | arch/sh64/kernel/time.c | 610 |
1 files changed, 610 insertions, 0 deletions
diff --git a/arch/sh64/kernel/time.c b/arch/sh64/kernel/time.c new file mode 100644 index 000000000000..6c84da3efc73 --- /dev/null +++ b/arch/sh64/kernel/time.c | |||
@@ -0,0 +1,610 @@ | |||
1 | /* | ||
2 | * This file is subject to the terms and conditions of the GNU General Public | ||
3 | * License. See the file "COPYING" in the main directory of this archive | ||
4 | * for more details. | ||
5 | * | ||
6 | * arch/sh64/kernel/time.c | ||
7 | * | ||
8 | * Copyright (C) 2000, 2001 Paolo Alberelli | ||
9 | * Copyright (C) 2003, 2004 Paul Mundt | ||
10 | * Copyright (C) 2003 Richard Curnow | ||
11 | * | ||
12 | * Original TMU/RTC code taken from sh version. | ||
13 | * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka | ||
14 | * Some code taken from i386 version. | ||
15 | * Copyright (C) 1991, 1992, 1995 Linus Torvalds | ||
16 | */ | ||
17 | |||
18 | #include <linux/config.h> | ||
19 | #include <linux/errno.h> | ||
20 | #include <linux/rwsem.h> | ||
21 | #include <linux/sched.h> | ||
22 | #include <linux/kernel.h> | ||
23 | #include <linux/param.h> | ||
24 | #include <linux/string.h> | ||
25 | #include <linux/mm.h> | ||
26 | #include <linux/interrupt.h> | ||
27 | #include <linux/time.h> | ||
28 | #include <linux/delay.h> | ||
29 | #include <linux/init.h> | ||
30 | #include <linux/profile.h> | ||
31 | #include <linux/smp.h> | ||
32 | |||
33 | #include <asm/registers.h> /* required by inline __asm__ stmt. */ | ||
34 | |||
35 | #include <asm/processor.h> | ||
36 | #include <asm/uaccess.h> | ||
37 | #include <asm/io.h> | ||
38 | #include <asm/irq.h> | ||
39 | #include <asm/delay.h> | ||
40 | |||
41 | #include <linux/timex.h> | ||
42 | #include <linux/irq.h> | ||
43 | #include <asm/hardware.h> | ||
44 | |||
45 | #define TMU_TOCR_INIT 0x00 | ||
46 | #define TMU0_TCR_INIT 0x0020 | ||
47 | #define TMU_TSTR_INIT 1 | ||
48 | #define TMU_TSTR_OFF 0 | ||
49 | |||
50 | /* RCR1 Bits */ | ||
51 | #define RCR1_CF 0x80 /* Carry Flag */ | ||
52 | #define RCR1_CIE 0x10 /* Carry Interrupt Enable */ | ||
53 | #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */ | ||
54 | #define RCR1_AF 0x01 /* Alarm Flag */ | ||
55 | |||
56 | /* RCR2 Bits */ | ||
57 | #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */ | ||
58 | #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */ | ||
59 | #define RCR2_RTCEN 0x08 /* ENable RTC */ | ||
60 | #define RCR2_ADJ 0x04 /* ADJustment (30-second) */ | ||
61 | #define RCR2_RESET 0x02 /* Reset bit */ | ||
62 | #define RCR2_START 0x01 /* Start bit */ | ||
63 | |||
64 | /* Clock, Power and Reset Controller */ | ||
65 | #define CPRC_BLOCK_OFF 0x01010000 | ||
66 | #define CPRC_BASE PHYS_PERIPHERAL_BLOCK + CPRC_BLOCK_OFF | ||
67 | |||
68 | #define FRQCR (cprc_base+0x0) | ||
69 | #define WTCSR (cprc_base+0x0018) | ||
70 | #define STBCR (cprc_base+0x0030) | ||
71 | |||
72 | /* Time Management Unit */ | ||
73 | #define TMU_BLOCK_OFF 0x01020000 | ||
74 | #define TMU_BASE PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF | ||
75 | #define TMU0_BASE tmu_base + 0x8 + (0xc * 0x0) | ||
76 | #define TMU1_BASE tmu_base + 0x8 + (0xc * 0x1) | ||
77 | #define TMU2_BASE tmu_base + 0x8 + (0xc * 0x2) | ||
78 | |||
79 | #define TMU_TOCR tmu_base+0x0 /* Byte access */ | ||
80 | #define TMU_TSTR tmu_base+0x4 /* Byte access */ | ||
81 | |||
82 | #define TMU0_TCOR TMU0_BASE+0x0 /* Long access */ | ||
83 | #define TMU0_TCNT TMU0_BASE+0x4 /* Long access */ | ||
84 | #define TMU0_TCR TMU0_BASE+0x8 /* Word access */ | ||
85 | |||
86 | /* Real Time Clock */ | ||
87 | #define RTC_BLOCK_OFF 0x01040000 | ||
88 | #define RTC_BASE PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF | ||
89 | |||
90 | #define R64CNT rtc_base+0x00 | ||
91 | #define RSECCNT rtc_base+0x04 | ||
92 | #define RMINCNT rtc_base+0x08 | ||
93 | #define RHRCNT rtc_base+0x0c | ||
94 | #define RWKCNT rtc_base+0x10 | ||
95 | #define RDAYCNT rtc_base+0x14 | ||
96 | #define RMONCNT rtc_base+0x18 | ||
97 | #define RYRCNT rtc_base+0x1c /* 16bit */ | ||
98 | #define RSECAR rtc_base+0x20 | ||
99 | #define RMINAR rtc_base+0x24 | ||
100 | #define RHRAR rtc_base+0x28 | ||
101 | #define RWKAR rtc_base+0x2c | ||
102 | #define RDAYAR rtc_base+0x30 | ||
103 | #define RMONAR rtc_base+0x34 | ||
104 | #define RCR1 rtc_base+0x38 | ||
105 | #define RCR2 rtc_base+0x3c | ||
106 | |||
107 | #ifndef BCD_TO_BIN | ||
108 | #define BCD_TO_BIN(val) ((val)=((val)&15) + ((val)>>4)*10) | ||
109 | #endif | ||
110 | |||
111 | #ifndef BIN_TO_BCD | ||
112 | #define BIN_TO_BCD(val) ((val)=(((val)/10)<<4) + (val)%10) | ||
113 | #endif | ||
114 | |||
115 | #define TICK_SIZE (tick_nsec / 1000) | ||
116 | |||
117 | extern unsigned long wall_jiffies; | ||
118 | |||
119 | u64 jiffies_64 = INITIAL_JIFFIES; | ||
120 | |||
121 | static unsigned long tmu_base, rtc_base; | ||
122 | unsigned long cprc_base; | ||
123 | |||
124 | /* Variables to allow interpolation of time of day to resolution better than a | ||
125 | * jiffy. */ | ||
126 | |||
127 | /* This is effectively protected by xtime_lock */ | ||
128 | static unsigned long ctc_last_interrupt; | ||
129 | static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */ | ||
130 | |||
131 | #define CTC_JIFFY_SCALE_SHIFT 40 | ||
132 | |||
133 | /* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */ | ||
134 | static unsigned long long scaled_recip_ctc_ticks_per_jiffy; | ||
135 | |||
136 | /* Estimate number of microseconds that have elapsed since the last timer tick, | ||
137 | by scaling the delta that has occured in the CTC register. | ||
138 | |||
139 | WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at | ||
140 | the CPU clock rate. If the CPU sleeps, the CTC stops counting. Bear this | ||
141 | in mind if enabling SLEEP_WORKS in process.c. In that case, this algorithm | ||
142 | probably needs to use TMU.TCNT0 instead. This will work even if the CPU is | ||
143 | sleeping, though will be coarser. | ||
144 | |||
145 | FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime | ||
146 | is running or if the freq or tick arguments of adjtimex are modified after | ||
147 | we have calibrated the scaling factor? This will result in either a jump at | ||
148 | the end of a tick period, or a wrap backwards at the start of the next one, | ||
149 | if the application is reading the time of day often enough. I think we | ||
150 | ought to do better than this. For this reason, usecs_per_jiffy is left | ||
151 | separated out in the calculation below. This allows some future hook into | ||
152 | the adjtime-related stuff in kernel/timer.c to remove this hazard. | ||
153 | |||
154 | */ | ||
155 | |||
156 | static unsigned long usecs_since_tick(void) | ||
157 | { | ||
158 | unsigned long long current_ctc; | ||
159 | long ctc_ticks_since_interrupt; | ||
160 | unsigned long long ull_ctc_ticks_since_interrupt; | ||
161 | unsigned long result; | ||
162 | |||
163 | unsigned long long mul1_out; | ||
164 | unsigned long long mul1_out_high; | ||
165 | unsigned long long mul2_out_low, mul2_out_high; | ||
166 | |||
167 | /* Read CTC register */ | ||
168 | asm ("getcon cr62, %0" : "=r" (current_ctc)); | ||
169 | /* Note, the CTC counts down on each CPU clock, not up. | ||
170 | Note(2), use long type to get correct wraparound arithmetic when | ||
171 | the counter crosses zero. */ | ||
172 | ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc; | ||
173 | ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt; | ||
174 | |||
175 | /* Inline assembly to do 32x32x32->64 multiplier */ | ||
176 | asm volatile ("mulu.l %1, %2, %0" : | ||
177 | "=r" (mul1_out) : | ||
178 | "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy)); | ||
179 | |||
180 | mul1_out_high = mul1_out >> 32; | ||
181 | |||
182 | asm volatile ("mulu.l %1, %2, %0" : | ||
183 | "=r" (mul2_out_low) : | ||
184 | "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy)); | ||
185 | |||
186 | #if 1 | ||
187 | asm volatile ("mulu.l %1, %2, %0" : | ||
188 | "=r" (mul2_out_high) : | ||
189 | "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy)); | ||
190 | #endif | ||
191 | |||
192 | result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT); | ||
193 | |||
194 | return result; | ||
195 | } | ||
196 | |||
197 | void do_gettimeofday(struct timeval *tv) | ||
198 | { | ||
199 | unsigned long flags; | ||
200 | unsigned long seq; | ||
201 | unsigned long usec, sec; | ||
202 | |||
203 | do { | ||
204 | seq = read_seqbegin_irqsave(&xtime_lock, flags); | ||
205 | usec = usecs_since_tick(); | ||
206 | { | ||
207 | unsigned long lost = jiffies - wall_jiffies; | ||
208 | |||
209 | if (lost) | ||
210 | usec += lost * (1000000 / HZ); | ||
211 | } | ||
212 | |||
213 | sec = xtime.tv_sec; | ||
214 | usec += xtime.tv_nsec / 1000; | ||
215 | } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); | ||
216 | |||
217 | while (usec >= 1000000) { | ||
218 | usec -= 1000000; | ||
219 | sec++; | ||
220 | } | ||
221 | |||
222 | tv->tv_sec = sec; | ||
223 | tv->tv_usec = usec; | ||
224 | } | ||
225 | |||
226 | int do_settimeofday(struct timespec *tv) | ||
227 | { | ||
228 | time_t wtm_sec, sec = tv->tv_sec; | ||
229 | long wtm_nsec, nsec = tv->tv_nsec; | ||
230 | |||
231 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | ||
232 | return -EINVAL; | ||
233 | |||
234 | write_seqlock_irq(&xtime_lock); | ||
235 | /* | ||
236 | * This is revolting. We need to set "xtime" correctly. However, the | ||
237 | * value in this location is the value at the most recent update of | ||
238 | * wall time. Discover what correction gettimeofday() would have | ||
239 | * made, and then undo it! | ||
240 | */ | ||
241 | nsec -= 1000 * (usecs_since_tick() + | ||
242 | (jiffies - wall_jiffies) * (1000000 / HZ)); | ||
243 | |||
244 | wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); | ||
245 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | ||
246 | |||
247 | set_normalized_timespec(&xtime, sec, nsec); | ||
248 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | ||
249 | |||
250 | time_adjust = 0; /* stop active adjtime() */ | ||
251 | time_status |= STA_UNSYNC; | ||
252 | time_maxerror = NTP_PHASE_LIMIT; | ||
253 | time_esterror = NTP_PHASE_LIMIT; | ||
254 | write_sequnlock_irq(&xtime_lock); | ||
255 | clock_was_set(); | ||
256 | |||
257 | return 0; | ||
258 | } | ||
259 | |||
260 | static int set_rtc_time(unsigned long nowtime) | ||
261 | { | ||
262 | int retval = 0; | ||
263 | int real_seconds, real_minutes, cmos_minutes; | ||
264 | |||
265 | ctrl_outb(RCR2_RESET, RCR2); /* Reset pre-scaler & stop RTC */ | ||
266 | |||
267 | cmos_minutes = ctrl_inb(RMINCNT); | ||
268 | BCD_TO_BIN(cmos_minutes); | ||
269 | |||
270 | /* | ||
271 | * since we're only adjusting minutes and seconds, | ||
272 | * don't interfere with hour overflow. This avoids | ||
273 | * messing with unknown time zones but requires your | ||
274 | * RTC not to be off by more than 15 minutes | ||
275 | */ | ||
276 | real_seconds = nowtime % 60; | ||
277 | real_minutes = nowtime / 60; | ||
278 | if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) | ||
279 | real_minutes += 30; /* correct for half hour time zone */ | ||
280 | real_minutes %= 60; | ||
281 | |||
282 | if (abs(real_minutes - cmos_minutes) < 30) { | ||
283 | BIN_TO_BCD(real_seconds); | ||
284 | BIN_TO_BCD(real_minutes); | ||
285 | ctrl_outb(real_seconds, RSECCNT); | ||
286 | ctrl_outb(real_minutes, RMINCNT); | ||
287 | } else { | ||
288 | printk(KERN_WARNING | ||
289 | "set_rtc_time: can't update from %d to %d\n", | ||
290 | cmos_minutes, real_minutes); | ||
291 | retval = -1; | ||
292 | } | ||
293 | |||
294 | ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start RTC */ | ||
295 | |||
296 | return retval; | ||
297 | } | ||
298 | |||
299 | /* last time the RTC clock got updated */ | ||
300 | static long last_rtc_update = 0; | ||
301 | |||
302 | /* | ||
303 | * timer_interrupt() needs to keep up the real-time clock, | ||
304 | * as well as call the "do_timer()" routine every clocktick | ||
305 | */ | ||
306 | static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
307 | { | ||
308 | unsigned long long current_ctc; | ||
309 | asm ("getcon cr62, %0" : "=r" (current_ctc)); | ||
310 | ctc_last_interrupt = (unsigned long) current_ctc; | ||
311 | |||
312 | do_timer(regs); | ||
313 | #ifndef CONFIG_SMP | ||
314 | update_process_times(user_mode(regs)); | ||
315 | #endif | ||
316 | profile_tick(CPU_PROFILING, regs); | ||
317 | |||
318 | #ifdef CONFIG_HEARTBEAT | ||
319 | { | ||
320 | extern void heartbeat(void); | ||
321 | |||
322 | heartbeat(); | ||
323 | } | ||
324 | #endif | ||
325 | |||
326 | /* | ||
327 | * If we have an externally synchronized Linux clock, then update | ||
328 | * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | ||
329 | * called as close as possible to 500 ms before the new second starts. | ||
330 | */ | ||
331 | if ((time_status & STA_UNSYNC) == 0 && | ||
332 | xtime.tv_sec > last_rtc_update + 660 && | ||
333 | (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && | ||
334 | (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { | ||
335 | if (set_rtc_time(xtime.tv_sec) == 0) | ||
336 | last_rtc_update = xtime.tv_sec; | ||
337 | else | ||
338 | last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ | ||
339 | } | ||
340 | } | ||
341 | |||
342 | /* | ||
343 | * This is the same as the above, except we _also_ save the current | ||
344 | * Time Stamp Counter value at the time of the timer interrupt, so that | ||
345 | * we later on can estimate the time of day more exactly. | ||
346 | */ | ||
347 | static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
348 | { | ||
349 | unsigned long timer_status; | ||
350 | |||
351 | /* Clear UNF bit */ | ||
352 | timer_status = ctrl_inw(TMU0_TCR); | ||
353 | timer_status &= ~0x100; | ||
354 | ctrl_outw(timer_status, TMU0_TCR); | ||
355 | |||
356 | /* | ||
357 | * Here we are in the timer irq handler. We just have irqs locally | ||
358 | * disabled but we don't know if the timer_bh is running on the other | ||
359 | * CPU. We need to avoid to SMP race with it. NOTE: we don' t need | ||
360 | * the irq version of write_lock because as just said we have irq | ||
361 | * locally disabled. -arca | ||
362 | */ | ||
363 | write_lock(&xtime_lock); | ||
364 | do_timer_interrupt(irq, NULL, regs); | ||
365 | write_unlock(&xtime_lock); | ||
366 | |||
367 | return IRQ_HANDLED; | ||
368 | } | ||
369 | |||
370 | static unsigned long get_rtc_time(void) | ||
371 | { | ||
372 | unsigned int sec, min, hr, wk, day, mon, yr, yr100; | ||
373 | |||
374 | again: | ||
375 | do { | ||
376 | ctrl_outb(0, RCR1); /* Clear CF-bit */ | ||
377 | sec = ctrl_inb(RSECCNT); | ||
378 | min = ctrl_inb(RMINCNT); | ||
379 | hr = ctrl_inb(RHRCNT); | ||
380 | wk = ctrl_inb(RWKCNT); | ||
381 | day = ctrl_inb(RDAYCNT); | ||
382 | mon = ctrl_inb(RMONCNT); | ||
383 | yr = ctrl_inw(RYRCNT); | ||
384 | yr100 = (yr >> 8); | ||
385 | yr &= 0xff; | ||
386 | } while ((ctrl_inb(RCR1) & RCR1_CF) != 0); | ||
387 | |||
388 | BCD_TO_BIN(yr100); | ||
389 | BCD_TO_BIN(yr); | ||
390 | BCD_TO_BIN(mon); | ||
391 | BCD_TO_BIN(day); | ||
392 | BCD_TO_BIN(hr); | ||
393 | BCD_TO_BIN(min); | ||
394 | BCD_TO_BIN(sec); | ||
395 | |||
396 | if (yr > 99 || mon < 1 || mon > 12 || day > 31 || day < 1 || | ||
397 | hr > 23 || min > 59 || sec > 59) { | ||
398 | printk(KERN_ERR | ||
399 | "SH RTC: invalid value, resetting to 1 Jan 2000\n"); | ||
400 | ctrl_outb(RCR2_RESET, RCR2); /* Reset & Stop */ | ||
401 | ctrl_outb(0, RSECCNT); | ||
402 | ctrl_outb(0, RMINCNT); | ||
403 | ctrl_outb(0, RHRCNT); | ||
404 | ctrl_outb(6, RWKCNT); | ||
405 | ctrl_outb(1, RDAYCNT); | ||
406 | ctrl_outb(1, RMONCNT); | ||
407 | ctrl_outw(0x2000, RYRCNT); | ||
408 | ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start */ | ||
409 | goto again; | ||
410 | } | ||
411 | |||
412 | return mktime(yr100 * 100 + yr, mon, day, hr, min, sec); | ||
413 | } | ||
414 | |||
415 | static __init unsigned int get_cpu_hz(void) | ||
416 | { | ||
417 | unsigned int count; | ||
418 | unsigned long __dummy; | ||
419 | unsigned long ctc_val_init, ctc_val; | ||
420 | |||
421 | /* | ||
422 | ** Regardless the toolchain, force the compiler to use the | ||
423 | ** arbitrary register r3 as a clock tick counter. | ||
424 | ** NOTE: r3 must be in accordance with rtc_interrupt() | ||
425 | */ | ||
426 | register unsigned long long __rtc_irq_flag __asm__ ("r3"); | ||
427 | |||
428 | local_irq_enable(); | ||
429 | do {} while (ctrl_inb(R64CNT) != 0); | ||
430 | ctrl_outb(RCR1_CIE, RCR1); /* Enable carry interrupt */ | ||
431 | |||
432 | /* | ||
433 | * r3 is arbitrary. CDC does not support "=z". | ||
434 | */ | ||
435 | ctc_val_init = 0xffffffff; | ||
436 | ctc_val = ctc_val_init; | ||
437 | |||
438 | asm volatile("gettr tr0, %1\n\t" | ||
439 | "putcon %0, " __CTC "\n\t" | ||
440 | "and %2, r63, %2\n\t" | ||
441 | "pta $+4, tr0\n\t" | ||
442 | "beq/l %2, r63, tr0\n\t" | ||
443 | "ptabs %1, tr0\n\t" | ||
444 | "getcon " __CTC ", %0\n\t" | ||
445 | : "=r"(ctc_val), "=r" (__dummy), "=r" (__rtc_irq_flag) | ||
446 | : "0" (0)); | ||
447 | local_irq_disable(); | ||
448 | /* | ||
449 | * SH-3: | ||
450 | * CPU clock = 4 stages * loop | ||
451 | * tst rm,rm if id ex | ||
452 | * bt/s 1b if id ex | ||
453 | * add #1,rd if id ex | ||
454 | * (if) pipe line stole | ||
455 | * tst rm,rm if id ex | ||
456 | * .... | ||
457 | * | ||
458 | * | ||
459 | * SH-4: | ||
460 | * CPU clock = 6 stages * loop | ||
461 | * I don't know why. | ||
462 | * .... | ||
463 | * | ||
464 | * SH-5: | ||
465 | * Use CTC register to count. This approach returns the right value | ||
466 | * even if the I-cache is disabled (e.g. whilst debugging.) | ||
467 | * | ||
468 | */ | ||
469 | |||
470 | count = ctc_val_init - ctc_val; /* CTC counts down */ | ||
471 | |||
472 | #if defined (CONFIG_SH_SIMULATOR) | ||
473 | /* | ||
474 | * Let's pretend we are a 5MHz SH-5 to avoid a too | ||
475 | * little timer interval. Also to keep delay | ||
476 | * calibration within a reasonable time. | ||
477 | */ | ||
478 | return 5000000; | ||
479 | #else | ||
480 | /* | ||
481 | * This really is count by the number of clock cycles | ||
482 | * by the ratio between a complete R64CNT | ||
483 | * wrap-around (128) and CUI interrupt being raised (64). | ||
484 | */ | ||
485 | return count*2; | ||
486 | #endif | ||
487 | } | ||
488 | |||
489 | static irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
490 | { | ||
491 | ctrl_outb(0, RCR1); /* Disable Carry Interrupts */ | ||
492 | regs->regs[3] = 1; /* Using r3 */ | ||
493 | |||
494 | return IRQ_HANDLED; | ||
495 | } | ||
496 | |||
497 | static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL}; | ||
498 | static struct irqaction irq1 = { rtc_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "rtc", NULL, NULL}; | ||
499 | |||
500 | void __init time_init(void) | ||
501 | { | ||
502 | unsigned int cpu_clock, master_clock, bus_clock, module_clock; | ||
503 | unsigned long interval; | ||
504 | unsigned long frqcr, ifc, pfc; | ||
505 | static int ifc_table[] = { 2, 4, 6, 8, 10, 12, 16, 24 }; | ||
506 | #define bfc_table ifc_table /* Same */ | ||
507 | #define pfc_table ifc_table /* Same */ | ||
508 | |||
509 | tmu_base = onchip_remap(TMU_BASE, 1024, "TMU"); | ||
510 | if (!tmu_base) { | ||
511 | panic("Unable to remap TMU\n"); | ||
512 | } | ||
513 | |||
514 | rtc_base = onchip_remap(RTC_BASE, 1024, "RTC"); | ||
515 | if (!rtc_base) { | ||
516 | panic("Unable to remap RTC\n"); | ||
517 | } | ||
518 | |||
519 | cprc_base = onchip_remap(CPRC_BASE, 1024, "CPRC"); | ||
520 | if (!cprc_base) { | ||
521 | panic("Unable to remap CPRC\n"); | ||
522 | } | ||
523 | |||
524 | xtime.tv_sec = get_rtc_time(); | ||
525 | xtime.tv_nsec = 0; | ||
526 | |||
527 | setup_irq(TIMER_IRQ, &irq0); | ||
528 | setup_irq(RTC_IRQ, &irq1); | ||
529 | |||
530 | /* Check how fast it is.. */ | ||
531 | cpu_clock = get_cpu_hz(); | ||
532 | |||
533 | /* Note careful order of operations to maintain reasonable precision and avoid overflow. */ | ||
534 | scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) / (unsigned long long)(cpu_clock / HZ)); | ||
535 | |||
536 | disable_irq(RTC_IRQ); | ||
537 | |||
538 | printk("CPU clock: %d.%02dMHz\n", | ||
539 | (cpu_clock / 1000000), (cpu_clock % 1000000)/10000); | ||
540 | { | ||
541 | unsigned short bfc; | ||
542 | frqcr = ctrl_inl(FRQCR); | ||
543 | ifc = ifc_table[(frqcr>> 6) & 0x0007]; | ||
544 | bfc = bfc_table[(frqcr>> 3) & 0x0007]; | ||
545 | pfc = pfc_table[(frqcr>> 12) & 0x0007]; | ||
546 | master_clock = cpu_clock * ifc; | ||
547 | bus_clock = master_clock/bfc; | ||
548 | } | ||
549 | |||
550 | printk("Bus clock: %d.%02dMHz\n", | ||
551 | (bus_clock/1000000), (bus_clock % 1000000)/10000); | ||
552 | module_clock = master_clock/pfc; | ||
553 | printk("Module clock: %d.%02dMHz\n", | ||
554 | (module_clock/1000000), (module_clock % 1000000)/10000); | ||
555 | interval = (module_clock/(HZ*4)); | ||
556 | |||
557 | printk("Interval = %ld\n", interval); | ||
558 | |||
559 | current_cpu_data.cpu_clock = cpu_clock; | ||
560 | current_cpu_data.master_clock = master_clock; | ||
561 | current_cpu_data.bus_clock = bus_clock; | ||
562 | current_cpu_data.module_clock = module_clock; | ||
563 | |||
564 | /* Start TMU0 */ | ||
565 | ctrl_outb(TMU_TSTR_OFF, TMU_TSTR); | ||
566 | ctrl_outb(TMU_TOCR_INIT, TMU_TOCR); | ||
567 | ctrl_outw(TMU0_TCR_INIT, TMU0_TCR); | ||
568 | ctrl_outl(interval, TMU0_TCOR); | ||
569 | ctrl_outl(interval, TMU0_TCNT); | ||
570 | ctrl_outb(TMU_TSTR_INIT, TMU_TSTR); | ||
571 | } | ||
572 | |||
573 | void enter_deep_standby(void) | ||
574 | { | ||
575 | /* Disable watchdog timer */ | ||
576 | ctrl_outl(0xa5000000, WTCSR); | ||
577 | /* Configure deep standby on sleep */ | ||
578 | ctrl_outl(0x03, STBCR); | ||
579 | |||
580 | #ifdef CONFIG_SH_ALPHANUMERIC | ||
581 | { | ||
582 | extern void mach_alphanum(int position, unsigned char value); | ||
583 | extern void mach_alphanum_brightness(int setting); | ||
584 | char halted[] = "Halted. "; | ||
585 | int i; | ||
586 | mach_alphanum_brightness(6); /* dimmest setting above off */ | ||
587 | for (i=0; i<8; i++) { | ||
588 | mach_alphanum(i, halted[i]); | ||
589 | } | ||
590 | asm __volatile__ ("synco"); | ||
591 | } | ||
592 | #endif | ||
593 | |||
594 | asm __volatile__ ("sleep"); | ||
595 | asm __volatile__ ("synci"); | ||
596 | asm __volatile__ ("nop"); | ||
597 | asm __volatile__ ("nop"); | ||
598 | asm __volatile__ ("nop"); | ||
599 | asm __volatile__ ("nop"); | ||
600 | panic("Unexpected wakeup!\n"); | ||
601 | } | ||
602 | |||
603 | /* | ||
604 | * Scheduler clock - returns current time in nanosec units. | ||
605 | */ | ||
606 | unsigned long long sched_clock(void) | ||
607 | { | ||
608 | return (unsigned long long)jiffies * (1000000000 / HZ); | ||
609 | } | ||
610 | |||