diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/ppc64/mm/numa.c |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/ppc64/mm/numa.c')
-rw-r--r-- | arch/ppc64/mm/numa.c | 734 |
1 files changed, 734 insertions, 0 deletions
diff --git a/arch/ppc64/mm/numa.c b/arch/ppc64/mm/numa.c new file mode 100644 index 000000000000..ea862ec643d3 --- /dev/null +++ b/arch/ppc64/mm/numa.c | |||
@@ -0,0 +1,734 @@ | |||
1 | /* | ||
2 | * pSeries NUMA support | ||
3 | * | ||
4 | * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU General Public License | ||
8 | * as published by the Free Software Foundation; either version | ||
9 | * 2 of the License, or (at your option) any later version. | ||
10 | */ | ||
11 | #include <linux/threads.h> | ||
12 | #include <linux/bootmem.h> | ||
13 | #include <linux/init.h> | ||
14 | #include <linux/mm.h> | ||
15 | #include <linux/mmzone.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/nodemask.h> | ||
18 | #include <linux/cpu.h> | ||
19 | #include <linux/notifier.h> | ||
20 | #include <asm/lmb.h> | ||
21 | #include <asm/machdep.h> | ||
22 | #include <asm/abs_addr.h> | ||
23 | |||
24 | static int numa_enabled = 1; | ||
25 | |||
26 | static int numa_debug; | ||
27 | #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } | ||
28 | |||
29 | #ifdef DEBUG_NUMA | ||
30 | #define ARRAY_INITIALISER -1 | ||
31 | #else | ||
32 | #define ARRAY_INITIALISER 0 | ||
33 | #endif | ||
34 | |||
35 | int numa_cpu_lookup_table[NR_CPUS] = { [ 0 ... (NR_CPUS - 1)] = | ||
36 | ARRAY_INITIALISER}; | ||
37 | char *numa_memory_lookup_table; | ||
38 | cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; | ||
39 | int nr_cpus_in_node[MAX_NUMNODES] = { [0 ... (MAX_NUMNODES -1)] = 0}; | ||
40 | |||
41 | struct pglist_data *node_data[MAX_NUMNODES]; | ||
42 | bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES]; | ||
43 | static int min_common_depth; | ||
44 | |||
45 | /* | ||
46 | * We need somewhere to store start/span for each node until we have | ||
47 | * allocated the real node_data structures. | ||
48 | */ | ||
49 | static struct { | ||
50 | unsigned long node_start_pfn; | ||
51 | unsigned long node_end_pfn; | ||
52 | unsigned long node_present_pages; | ||
53 | } init_node_data[MAX_NUMNODES] __initdata; | ||
54 | |||
55 | EXPORT_SYMBOL(node_data); | ||
56 | EXPORT_SYMBOL(numa_cpu_lookup_table); | ||
57 | EXPORT_SYMBOL(numa_memory_lookup_table); | ||
58 | EXPORT_SYMBOL(numa_cpumask_lookup_table); | ||
59 | EXPORT_SYMBOL(nr_cpus_in_node); | ||
60 | |||
61 | static inline void map_cpu_to_node(int cpu, int node) | ||
62 | { | ||
63 | numa_cpu_lookup_table[cpu] = node; | ||
64 | if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) { | ||
65 | cpu_set(cpu, numa_cpumask_lookup_table[node]); | ||
66 | nr_cpus_in_node[node]++; | ||
67 | } | ||
68 | } | ||
69 | |||
70 | #ifdef CONFIG_HOTPLUG_CPU | ||
71 | static void unmap_cpu_from_node(unsigned long cpu) | ||
72 | { | ||
73 | int node = numa_cpu_lookup_table[cpu]; | ||
74 | |||
75 | dbg("removing cpu %lu from node %d\n", cpu, node); | ||
76 | |||
77 | if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { | ||
78 | cpu_clear(cpu, numa_cpumask_lookup_table[node]); | ||
79 | nr_cpus_in_node[node]--; | ||
80 | } else { | ||
81 | printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", | ||
82 | cpu, node); | ||
83 | } | ||
84 | } | ||
85 | #endif /* CONFIG_HOTPLUG_CPU */ | ||
86 | |||
87 | static struct device_node * __devinit find_cpu_node(unsigned int cpu) | ||
88 | { | ||
89 | unsigned int hw_cpuid = get_hard_smp_processor_id(cpu); | ||
90 | struct device_node *cpu_node = NULL; | ||
91 | unsigned int *interrupt_server, *reg; | ||
92 | int len; | ||
93 | |||
94 | while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) { | ||
95 | /* Try interrupt server first */ | ||
96 | interrupt_server = (unsigned int *)get_property(cpu_node, | ||
97 | "ibm,ppc-interrupt-server#s", &len); | ||
98 | |||
99 | len = len / sizeof(u32); | ||
100 | |||
101 | if (interrupt_server && (len > 0)) { | ||
102 | while (len--) { | ||
103 | if (interrupt_server[len] == hw_cpuid) | ||
104 | return cpu_node; | ||
105 | } | ||
106 | } else { | ||
107 | reg = (unsigned int *)get_property(cpu_node, | ||
108 | "reg", &len); | ||
109 | if (reg && (len > 0) && (reg[0] == hw_cpuid)) | ||
110 | return cpu_node; | ||
111 | } | ||
112 | } | ||
113 | |||
114 | return NULL; | ||
115 | } | ||
116 | |||
117 | /* must hold reference to node during call */ | ||
118 | static int *of_get_associativity(struct device_node *dev) | ||
119 | { | ||
120 | return (unsigned int *)get_property(dev, "ibm,associativity", NULL); | ||
121 | } | ||
122 | |||
123 | static int of_node_numa_domain(struct device_node *device) | ||
124 | { | ||
125 | int numa_domain; | ||
126 | unsigned int *tmp; | ||
127 | |||
128 | if (min_common_depth == -1) | ||
129 | return 0; | ||
130 | |||
131 | tmp = of_get_associativity(device); | ||
132 | if (tmp && (tmp[0] >= min_common_depth)) { | ||
133 | numa_domain = tmp[min_common_depth]; | ||
134 | } else { | ||
135 | dbg("WARNING: no NUMA information for %s\n", | ||
136 | device->full_name); | ||
137 | numa_domain = 0; | ||
138 | } | ||
139 | return numa_domain; | ||
140 | } | ||
141 | |||
142 | /* | ||
143 | * In theory, the "ibm,associativity" property may contain multiple | ||
144 | * associativity lists because a resource may be multiply connected | ||
145 | * into the machine. This resource then has different associativity | ||
146 | * characteristics relative to its multiple connections. We ignore | ||
147 | * this for now. We also assume that all cpu and memory sets have | ||
148 | * their distances represented at a common level. This won't be | ||
149 | * true for heirarchical NUMA. | ||
150 | * | ||
151 | * In any case the ibm,associativity-reference-points should give | ||
152 | * the correct depth for a normal NUMA system. | ||
153 | * | ||
154 | * - Dave Hansen <haveblue@us.ibm.com> | ||
155 | */ | ||
156 | static int __init find_min_common_depth(void) | ||
157 | { | ||
158 | int depth; | ||
159 | unsigned int *ref_points; | ||
160 | struct device_node *rtas_root; | ||
161 | unsigned int len; | ||
162 | |||
163 | rtas_root = of_find_node_by_path("/rtas"); | ||
164 | |||
165 | if (!rtas_root) | ||
166 | return -1; | ||
167 | |||
168 | /* | ||
169 | * this property is 2 32-bit integers, each representing a level of | ||
170 | * depth in the associativity nodes. The first is for an SMP | ||
171 | * configuration (should be all 0's) and the second is for a normal | ||
172 | * NUMA configuration. | ||
173 | */ | ||
174 | ref_points = (unsigned int *)get_property(rtas_root, | ||
175 | "ibm,associativity-reference-points", &len); | ||
176 | |||
177 | if ((len >= 1) && ref_points) { | ||
178 | depth = ref_points[1]; | ||
179 | } else { | ||
180 | dbg("WARNING: could not find NUMA " | ||
181 | "associativity reference point\n"); | ||
182 | depth = -1; | ||
183 | } | ||
184 | of_node_put(rtas_root); | ||
185 | |||
186 | return depth; | ||
187 | } | ||
188 | |||
189 | static int __init get_mem_addr_cells(void) | ||
190 | { | ||
191 | struct device_node *memory = NULL; | ||
192 | int rc; | ||
193 | |||
194 | memory = of_find_node_by_type(memory, "memory"); | ||
195 | if (!memory) | ||
196 | return 0; /* it won't matter */ | ||
197 | |||
198 | rc = prom_n_addr_cells(memory); | ||
199 | return rc; | ||
200 | } | ||
201 | |||
202 | static int __init get_mem_size_cells(void) | ||
203 | { | ||
204 | struct device_node *memory = NULL; | ||
205 | int rc; | ||
206 | |||
207 | memory = of_find_node_by_type(memory, "memory"); | ||
208 | if (!memory) | ||
209 | return 0; /* it won't matter */ | ||
210 | rc = prom_n_size_cells(memory); | ||
211 | return rc; | ||
212 | } | ||
213 | |||
214 | static unsigned long read_n_cells(int n, unsigned int **buf) | ||
215 | { | ||
216 | unsigned long result = 0; | ||
217 | |||
218 | while (n--) { | ||
219 | result = (result << 32) | **buf; | ||
220 | (*buf)++; | ||
221 | } | ||
222 | return result; | ||
223 | } | ||
224 | |||
225 | /* | ||
226 | * Figure out to which domain a cpu belongs and stick it there. | ||
227 | * Return the id of the domain used. | ||
228 | */ | ||
229 | static int numa_setup_cpu(unsigned long lcpu) | ||
230 | { | ||
231 | int numa_domain = 0; | ||
232 | struct device_node *cpu = find_cpu_node(lcpu); | ||
233 | |||
234 | if (!cpu) { | ||
235 | WARN_ON(1); | ||
236 | goto out; | ||
237 | } | ||
238 | |||
239 | numa_domain = of_node_numa_domain(cpu); | ||
240 | |||
241 | if (numa_domain >= num_online_nodes()) { | ||
242 | /* | ||
243 | * POWER4 LPAR uses 0xffff as invalid node, | ||
244 | * dont warn in this case. | ||
245 | */ | ||
246 | if (numa_domain != 0xffff) | ||
247 | printk(KERN_ERR "WARNING: cpu %ld " | ||
248 | "maps to invalid NUMA node %d\n", | ||
249 | lcpu, numa_domain); | ||
250 | numa_domain = 0; | ||
251 | } | ||
252 | out: | ||
253 | node_set_online(numa_domain); | ||
254 | |||
255 | map_cpu_to_node(lcpu, numa_domain); | ||
256 | |||
257 | of_node_put(cpu); | ||
258 | |||
259 | return numa_domain; | ||
260 | } | ||
261 | |||
262 | static int cpu_numa_callback(struct notifier_block *nfb, | ||
263 | unsigned long action, | ||
264 | void *hcpu) | ||
265 | { | ||
266 | unsigned long lcpu = (unsigned long)hcpu; | ||
267 | int ret = NOTIFY_DONE; | ||
268 | |||
269 | switch (action) { | ||
270 | case CPU_UP_PREPARE: | ||
271 | if (min_common_depth == -1 || !numa_enabled) | ||
272 | map_cpu_to_node(lcpu, 0); | ||
273 | else | ||
274 | numa_setup_cpu(lcpu); | ||
275 | ret = NOTIFY_OK; | ||
276 | break; | ||
277 | #ifdef CONFIG_HOTPLUG_CPU | ||
278 | case CPU_DEAD: | ||
279 | case CPU_UP_CANCELED: | ||
280 | unmap_cpu_from_node(lcpu); | ||
281 | break; | ||
282 | ret = NOTIFY_OK; | ||
283 | #endif | ||
284 | } | ||
285 | return ret; | ||
286 | } | ||
287 | |||
288 | /* | ||
289 | * Check and possibly modify a memory region to enforce the memory limit. | ||
290 | * | ||
291 | * Returns the size the region should have to enforce the memory limit. | ||
292 | * This will either be the original value of size, a truncated value, | ||
293 | * or zero. If the returned value of size is 0 the region should be | ||
294 | * discarded as it lies wholy above the memory limit. | ||
295 | */ | ||
296 | static unsigned long __init numa_enforce_memory_limit(unsigned long start, unsigned long size) | ||
297 | { | ||
298 | /* | ||
299 | * We use lmb_end_of_DRAM() in here instead of memory_limit because | ||
300 | * we've already adjusted it for the limit and it takes care of | ||
301 | * having memory holes below the limit. | ||
302 | */ | ||
303 | extern unsigned long memory_limit; | ||
304 | |||
305 | if (! memory_limit) | ||
306 | return size; | ||
307 | |||
308 | if (start + size <= lmb_end_of_DRAM()) | ||
309 | return size; | ||
310 | |||
311 | if (start >= lmb_end_of_DRAM()) | ||
312 | return 0; | ||
313 | |||
314 | return lmb_end_of_DRAM() - start; | ||
315 | } | ||
316 | |||
317 | static int __init parse_numa_properties(void) | ||
318 | { | ||
319 | struct device_node *cpu = NULL; | ||
320 | struct device_node *memory = NULL; | ||
321 | int addr_cells, size_cells; | ||
322 | int max_domain = 0; | ||
323 | long entries = lmb_end_of_DRAM() >> MEMORY_INCREMENT_SHIFT; | ||
324 | unsigned long i; | ||
325 | |||
326 | if (numa_enabled == 0) { | ||
327 | printk(KERN_WARNING "NUMA disabled by user\n"); | ||
328 | return -1; | ||
329 | } | ||
330 | |||
331 | numa_memory_lookup_table = | ||
332 | (char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1)); | ||
333 | memset(numa_memory_lookup_table, 0, entries * sizeof(char)); | ||
334 | |||
335 | for (i = 0; i < entries ; i++) | ||
336 | numa_memory_lookup_table[i] = ARRAY_INITIALISER; | ||
337 | |||
338 | min_common_depth = find_min_common_depth(); | ||
339 | |||
340 | dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); | ||
341 | if (min_common_depth < 0) | ||
342 | return min_common_depth; | ||
343 | |||
344 | max_domain = numa_setup_cpu(boot_cpuid); | ||
345 | |||
346 | /* | ||
347 | * Even though we connect cpus to numa domains later in SMP init, | ||
348 | * we need to know the maximum node id now. This is because each | ||
349 | * node id must have NODE_DATA etc backing it. | ||
350 | * As a result of hotplug we could still have cpus appear later on | ||
351 | * with larger node ids. In that case we force the cpu into node 0. | ||
352 | */ | ||
353 | for_each_cpu(i) { | ||
354 | int numa_domain; | ||
355 | |||
356 | cpu = find_cpu_node(i); | ||
357 | |||
358 | if (cpu) { | ||
359 | numa_domain = of_node_numa_domain(cpu); | ||
360 | of_node_put(cpu); | ||
361 | |||
362 | if (numa_domain < MAX_NUMNODES && | ||
363 | max_domain < numa_domain) | ||
364 | max_domain = numa_domain; | ||
365 | } | ||
366 | } | ||
367 | |||
368 | addr_cells = get_mem_addr_cells(); | ||
369 | size_cells = get_mem_size_cells(); | ||
370 | memory = NULL; | ||
371 | while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { | ||
372 | unsigned long start; | ||
373 | unsigned long size; | ||
374 | int numa_domain; | ||
375 | int ranges; | ||
376 | unsigned int *memcell_buf; | ||
377 | unsigned int len; | ||
378 | |||
379 | memcell_buf = (unsigned int *)get_property(memory, "reg", &len); | ||
380 | if (!memcell_buf || len <= 0) | ||
381 | continue; | ||
382 | |||
383 | ranges = memory->n_addrs; | ||
384 | new_range: | ||
385 | /* these are order-sensitive, and modify the buffer pointer */ | ||
386 | start = read_n_cells(addr_cells, &memcell_buf); | ||
387 | size = read_n_cells(size_cells, &memcell_buf); | ||
388 | |||
389 | start = _ALIGN_DOWN(start, MEMORY_INCREMENT); | ||
390 | size = _ALIGN_UP(size, MEMORY_INCREMENT); | ||
391 | |||
392 | numa_domain = of_node_numa_domain(memory); | ||
393 | |||
394 | if (numa_domain >= MAX_NUMNODES) { | ||
395 | if (numa_domain != 0xffff) | ||
396 | printk(KERN_ERR "WARNING: memory at %lx maps " | ||
397 | "to invalid NUMA node %d\n", start, | ||
398 | numa_domain); | ||
399 | numa_domain = 0; | ||
400 | } | ||
401 | |||
402 | if (max_domain < numa_domain) | ||
403 | max_domain = numa_domain; | ||
404 | |||
405 | if (! (size = numa_enforce_memory_limit(start, size))) { | ||
406 | if (--ranges) | ||
407 | goto new_range; | ||
408 | else | ||
409 | continue; | ||
410 | } | ||
411 | |||
412 | /* | ||
413 | * Initialize new node struct, or add to an existing one. | ||
414 | */ | ||
415 | if (init_node_data[numa_domain].node_end_pfn) { | ||
416 | if ((start / PAGE_SIZE) < | ||
417 | init_node_data[numa_domain].node_start_pfn) | ||
418 | init_node_data[numa_domain].node_start_pfn = | ||
419 | start / PAGE_SIZE; | ||
420 | if (((start / PAGE_SIZE) + (size / PAGE_SIZE)) > | ||
421 | init_node_data[numa_domain].node_end_pfn) | ||
422 | init_node_data[numa_domain].node_end_pfn = | ||
423 | (start / PAGE_SIZE) + | ||
424 | (size / PAGE_SIZE); | ||
425 | |||
426 | init_node_data[numa_domain].node_present_pages += | ||
427 | size / PAGE_SIZE; | ||
428 | } else { | ||
429 | node_set_online(numa_domain); | ||
430 | |||
431 | init_node_data[numa_domain].node_start_pfn = | ||
432 | start / PAGE_SIZE; | ||
433 | init_node_data[numa_domain].node_end_pfn = | ||
434 | init_node_data[numa_domain].node_start_pfn + | ||
435 | size / PAGE_SIZE; | ||
436 | init_node_data[numa_domain].node_present_pages = | ||
437 | size / PAGE_SIZE; | ||
438 | } | ||
439 | |||
440 | for (i = start ; i < (start+size); i += MEMORY_INCREMENT) | ||
441 | numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = | ||
442 | numa_domain; | ||
443 | |||
444 | if (--ranges) | ||
445 | goto new_range; | ||
446 | } | ||
447 | |||
448 | for (i = 0; i <= max_domain; i++) | ||
449 | node_set_online(i); | ||
450 | |||
451 | return 0; | ||
452 | } | ||
453 | |||
454 | static void __init setup_nonnuma(void) | ||
455 | { | ||
456 | unsigned long top_of_ram = lmb_end_of_DRAM(); | ||
457 | unsigned long total_ram = lmb_phys_mem_size(); | ||
458 | unsigned long i; | ||
459 | |||
460 | printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", | ||
461 | top_of_ram, total_ram); | ||
462 | printk(KERN_INFO "Memory hole size: %ldMB\n", | ||
463 | (top_of_ram - total_ram) >> 20); | ||
464 | |||
465 | if (!numa_memory_lookup_table) { | ||
466 | long entries = top_of_ram >> MEMORY_INCREMENT_SHIFT; | ||
467 | numa_memory_lookup_table = | ||
468 | (char *)abs_to_virt(lmb_alloc(entries * sizeof(char), 1)); | ||
469 | memset(numa_memory_lookup_table, 0, entries * sizeof(char)); | ||
470 | for (i = 0; i < entries ; i++) | ||
471 | numa_memory_lookup_table[i] = ARRAY_INITIALISER; | ||
472 | } | ||
473 | |||
474 | map_cpu_to_node(boot_cpuid, 0); | ||
475 | |||
476 | node_set_online(0); | ||
477 | |||
478 | init_node_data[0].node_start_pfn = 0; | ||
479 | init_node_data[0].node_end_pfn = lmb_end_of_DRAM() / PAGE_SIZE; | ||
480 | init_node_data[0].node_present_pages = total_ram / PAGE_SIZE; | ||
481 | |||
482 | for (i = 0 ; i < top_of_ram; i += MEMORY_INCREMENT) | ||
483 | numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] = 0; | ||
484 | } | ||
485 | |||
486 | static void __init dump_numa_topology(void) | ||
487 | { | ||
488 | unsigned int node; | ||
489 | unsigned int count; | ||
490 | |||
491 | if (min_common_depth == -1 || !numa_enabled) | ||
492 | return; | ||
493 | |||
494 | for_each_online_node(node) { | ||
495 | unsigned long i; | ||
496 | |||
497 | printk(KERN_INFO "Node %d Memory:", node); | ||
498 | |||
499 | count = 0; | ||
500 | |||
501 | for (i = 0; i < lmb_end_of_DRAM(); i += MEMORY_INCREMENT) { | ||
502 | if (numa_memory_lookup_table[i >> MEMORY_INCREMENT_SHIFT] == node) { | ||
503 | if (count == 0) | ||
504 | printk(" 0x%lx", i); | ||
505 | ++count; | ||
506 | } else { | ||
507 | if (count > 0) | ||
508 | printk("-0x%lx", i); | ||
509 | count = 0; | ||
510 | } | ||
511 | } | ||
512 | |||
513 | if (count > 0) | ||
514 | printk("-0x%lx", i); | ||
515 | printk("\n"); | ||
516 | } | ||
517 | return; | ||
518 | } | ||
519 | |||
520 | /* | ||
521 | * Allocate some memory, satisfying the lmb or bootmem allocator where | ||
522 | * required. nid is the preferred node and end is the physical address of | ||
523 | * the highest address in the node. | ||
524 | * | ||
525 | * Returns the physical address of the memory. | ||
526 | */ | ||
527 | static unsigned long careful_allocation(int nid, unsigned long size, | ||
528 | unsigned long align, unsigned long end) | ||
529 | { | ||
530 | unsigned long ret = lmb_alloc_base(size, align, end); | ||
531 | |||
532 | /* retry over all memory */ | ||
533 | if (!ret) | ||
534 | ret = lmb_alloc_base(size, align, lmb_end_of_DRAM()); | ||
535 | |||
536 | if (!ret) | ||
537 | panic("numa.c: cannot allocate %lu bytes on node %d", | ||
538 | size, nid); | ||
539 | |||
540 | /* | ||
541 | * If the memory came from a previously allocated node, we must | ||
542 | * retry with the bootmem allocator. | ||
543 | */ | ||
544 | if (pa_to_nid(ret) < nid) { | ||
545 | nid = pa_to_nid(ret); | ||
546 | ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(nid), | ||
547 | size, align, 0); | ||
548 | |||
549 | if (!ret) | ||
550 | panic("numa.c: cannot allocate %lu bytes on node %d", | ||
551 | size, nid); | ||
552 | |||
553 | ret = virt_to_abs(ret); | ||
554 | |||
555 | dbg("alloc_bootmem %lx %lx\n", ret, size); | ||
556 | } | ||
557 | |||
558 | return ret; | ||
559 | } | ||
560 | |||
561 | void __init do_init_bootmem(void) | ||
562 | { | ||
563 | int nid; | ||
564 | int addr_cells, size_cells; | ||
565 | struct device_node *memory = NULL; | ||
566 | static struct notifier_block ppc64_numa_nb = { | ||
567 | .notifier_call = cpu_numa_callback, | ||
568 | .priority = 1 /* Must run before sched domains notifier. */ | ||
569 | }; | ||
570 | |||
571 | min_low_pfn = 0; | ||
572 | max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; | ||
573 | max_pfn = max_low_pfn; | ||
574 | |||
575 | if (parse_numa_properties()) | ||
576 | setup_nonnuma(); | ||
577 | else | ||
578 | dump_numa_topology(); | ||
579 | |||
580 | register_cpu_notifier(&ppc64_numa_nb); | ||
581 | |||
582 | for_each_online_node(nid) { | ||
583 | unsigned long start_paddr, end_paddr; | ||
584 | int i; | ||
585 | unsigned long bootmem_paddr; | ||
586 | unsigned long bootmap_pages; | ||
587 | |||
588 | start_paddr = init_node_data[nid].node_start_pfn * PAGE_SIZE; | ||
589 | end_paddr = init_node_data[nid].node_end_pfn * PAGE_SIZE; | ||
590 | |||
591 | /* Allocate the node structure node local if possible */ | ||
592 | NODE_DATA(nid) = (struct pglist_data *)careful_allocation(nid, | ||
593 | sizeof(struct pglist_data), | ||
594 | SMP_CACHE_BYTES, end_paddr); | ||
595 | NODE_DATA(nid) = abs_to_virt(NODE_DATA(nid)); | ||
596 | memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); | ||
597 | |||
598 | dbg("node %d\n", nid); | ||
599 | dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); | ||
600 | |||
601 | NODE_DATA(nid)->bdata = &plat_node_bdata[nid]; | ||
602 | NODE_DATA(nid)->node_start_pfn = | ||
603 | init_node_data[nid].node_start_pfn; | ||
604 | NODE_DATA(nid)->node_spanned_pages = | ||
605 | end_paddr - start_paddr; | ||
606 | |||
607 | if (NODE_DATA(nid)->node_spanned_pages == 0) | ||
608 | continue; | ||
609 | |||
610 | dbg("start_paddr = %lx\n", start_paddr); | ||
611 | dbg("end_paddr = %lx\n", end_paddr); | ||
612 | |||
613 | bootmap_pages = bootmem_bootmap_pages((end_paddr - start_paddr) >> PAGE_SHIFT); | ||
614 | |||
615 | bootmem_paddr = careful_allocation(nid, | ||
616 | bootmap_pages << PAGE_SHIFT, | ||
617 | PAGE_SIZE, end_paddr); | ||
618 | memset(abs_to_virt(bootmem_paddr), 0, | ||
619 | bootmap_pages << PAGE_SHIFT); | ||
620 | dbg("bootmap_paddr = %lx\n", bootmem_paddr); | ||
621 | |||
622 | init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT, | ||
623 | start_paddr >> PAGE_SHIFT, | ||
624 | end_paddr >> PAGE_SHIFT); | ||
625 | |||
626 | /* | ||
627 | * We need to do another scan of all memory sections to | ||
628 | * associate memory with the correct node. | ||
629 | */ | ||
630 | addr_cells = get_mem_addr_cells(); | ||
631 | size_cells = get_mem_size_cells(); | ||
632 | memory = NULL; | ||
633 | while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { | ||
634 | unsigned long mem_start, mem_size; | ||
635 | int numa_domain, ranges; | ||
636 | unsigned int *memcell_buf; | ||
637 | unsigned int len; | ||
638 | |||
639 | memcell_buf = (unsigned int *)get_property(memory, "reg", &len); | ||
640 | if (!memcell_buf || len <= 0) | ||
641 | continue; | ||
642 | |||
643 | ranges = memory->n_addrs; /* ranges in cell */ | ||
644 | new_range: | ||
645 | mem_start = read_n_cells(addr_cells, &memcell_buf); | ||
646 | mem_size = read_n_cells(size_cells, &memcell_buf); | ||
647 | numa_domain = numa_enabled ? of_node_numa_domain(memory) : 0; | ||
648 | |||
649 | if (numa_domain != nid) | ||
650 | continue; | ||
651 | |||
652 | mem_size = numa_enforce_memory_limit(mem_start, mem_size); | ||
653 | if (mem_size) { | ||
654 | dbg("free_bootmem %lx %lx\n", mem_start, mem_size); | ||
655 | free_bootmem_node(NODE_DATA(nid), mem_start, mem_size); | ||
656 | } | ||
657 | |||
658 | if (--ranges) /* process all ranges in cell */ | ||
659 | goto new_range; | ||
660 | } | ||
661 | |||
662 | /* | ||
663 | * Mark reserved regions on this node | ||
664 | */ | ||
665 | for (i = 0; i < lmb.reserved.cnt; i++) { | ||
666 | unsigned long physbase = lmb.reserved.region[i].physbase; | ||
667 | unsigned long size = lmb.reserved.region[i].size; | ||
668 | |||
669 | if (pa_to_nid(physbase) != nid && | ||
670 | pa_to_nid(physbase+size-1) != nid) | ||
671 | continue; | ||
672 | |||
673 | if (physbase < end_paddr && | ||
674 | (physbase+size) > start_paddr) { | ||
675 | /* overlaps */ | ||
676 | if (physbase < start_paddr) { | ||
677 | size -= start_paddr - physbase; | ||
678 | physbase = start_paddr; | ||
679 | } | ||
680 | |||
681 | if (size > end_paddr - physbase) | ||
682 | size = end_paddr - physbase; | ||
683 | |||
684 | dbg("reserve_bootmem %lx %lx\n", physbase, | ||
685 | size); | ||
686 | reserve_bootmem_node(NODE_DATA(nid), physbase, | ||
687 | size); | ||
688 | } | ||
689 | } | ||
690 | } | ||
691 | } | ||
692 | |||
693 | void __init paging_init(void) | ||
694 | { | ||
695 | unsigned long zones_size[MAX_NR_ZONES]; | ||
696 | unsigned long zholes_size[MAX_NR_ZONES]; | ||
697 | int nid; | ||
698 | |||
699 | memset(zones_size, 0, sizeof(zones_size)); | ||
700 | memset(zholes_size, 0, sizeof(zholes_size)); | ||
701 | |||
702 | for_each_online_node(nid) { | ||
703 | unsigned long start_pfn; | ||
704 | unsigned long end_pfn; | ||
705 | |||
706 | start_pfn = init_node_data[nid].node_start_pfn; | ||
707 | end_pfn = init_node_data[nid].node_end_pfn; | ||
708 | |||
709 | zones_size[ZONE_DMA] = end_pfn - start_pfn; | ||
710 | zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - | ||
711 | init_node_data[nid].node_present_pages; | ||
712 | |||
713 | dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid, | ||
714 | zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]); | ||
715 | |||
716 | free_area_init_node(nid, NODE_DATA(nid), zones_size, | ||
717 | start_pfn, zholes_size); | ||
718 | } | ||
719 | } | ||
720 | |||
721 | static int __init early_numa(char *p) | ||
722 | { | ||
723 | if (!p) | ||
724 | return 0; | ||
725 | |||
726 | if (strstr(p, "off")) | ||
727 | numa_enabled = 0; | ||
728 | |||
729 | if (strstr(p, "debug")) | ||
730 | numa_debug = 1; | ||
731 | |||
732 | return 0; | ||
733 | } | ||
734 | early_param("numa", early_numa); | ||