aboutsummaryrefslogtreecommitdiffstats
path: root/arch/ppc64/kernel/process.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/ppc64/kernel/process.c
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'arch/ppc64/kernel/process.c')
-rw-r--r--arch/ppc64/kernel/process.c688
1 files changed, 688 insertions, 0 deletions
diff --git a/arch/ppc64/kernel/process.c b/arch/ppc64/kernel/process.c
new file mode 100644
index 000000000000..8b0686122738
--- /dev/null
+++ b/arch/ppc64/kernel/process.c
@@ -0,0 +1,688 @@
1/*
2 * linux/arch/ppc64/kernel/process.c
3 *
4 * Derived from "arch/i386/kernel/process.c"
5 * Copyright (C) 1995 Linus Torvalds
6 *
7 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8 * Paul Mackerras (paulus@cs.anu.edu.au)
9 *
10 * PowerPC version
11 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18
19#include <linux/config.h>
20#include <linux/module.h>
21#include <linux/errno.h>
22#include <linux/sched.h>
23#include <linux/kernel.h>
24#include <linux/mm.h>
25#include <linux/smp.h>
26#include <linux/smp_lock.h>
27#include <linux/stddef.h>
28#include <linux/unistd.h>
29#include <linux/slab.h>
30#include <linux/user.h>
31#include <linux/elf.h>
32#include <linux/init.h>
33#include <linux/init_task.h>
34#include <linux/prctl.h>
35#include <linux/ptrace.h>
36#include <linux/kallsyms.h>
37#include <linux/interrupt.h>
38#include <linux/utsname.h>
39
40#include <asm/pgtable.h>
41#include <asm/uaccess.h>
42#include <asm/system.h>
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/mmu_context.h>
47#include <asm/prom.h>
48#include <asm/ppcdebug.h>
49#include <asm/machdep.h>
50#include <asm/iSeries/HvCallHpt.h>
51#include <asm/cputable.h>
52#include <asm/sections.h>
53#include <asm/tlbflush.h>
54#include <asm/time.h>
55
56#ifndef CONFIG_SMP
57struct task_struct *last_task_used_math = NULL;
58struct task_struct *last_task_used_altivec = NULL;
59#endif
60
61struct mm_struct ioremap_mm = {
62 .pgd = ioremap_dir,
63 .mm_users = ATOMIC_INIT(2),
64 .mm_count = ATOMIC_INIT(1),
65 .cpu_vm_mask = CPU_MASK_ALL,
66 .page_table_lock = SPIN_LOCK_UNLOCKED,
67};
68
69/*
70 * Make sure the floating-point register state in the
71 * the thread_struct is up to date for task tsk.
72 */
73void flush_fp_to_thread(struct task_struct *tsk)
74{
75 if (tsk->thread.regs) {
76 /*
77 * We need to disable preemption here because if we didn't,
78 * another process could get scheduled after the regs->msr
79 * test but before we have finished saving the FP registers
80 * to the thread_struct. That process could take over the
81 * FPU, and then when we get scheduled again we would store
82 * bogus values for the remaining FP registers.
83 */
84 preempt_disable();
85 if (tsk->thread.regs->msr & MSR_FP) {
86#ifdef CONFIG_SMP
87 /*
88 * This should only ever be called for current or
89 * for a stopped child process. Since we save away
90 * the FP register state on context switch on SMP,
91 * there is something wrong if a stopped child appears
92 * to still have its FP state in the CPU registers.
93 */
94 BUG_ON(tsk != current);
95#endif
96 giveup_fpu(current);
97 }
98 preempt_enable();
99 }
100}
101
102void enable_kernel_fp(void)
103{
104 WARN_ON(preemptible());
105
106#ifdef CONFIG_SMP
107 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
108 giveup_fpu(current);
109 else
110 giveup_fpu(NULL); /* just enables FP for kernel */
111#else
112 giveup_fpu(last_task_used_math);
113#endif /* CONFIG_SMP */
114}
115EXPORT_SYMBOL(enable_kernel_fp);
116
117int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
118{
119 if (!tsk->thread.regs)
120 return 0;
121 flush_fp_to_thread(current);
122
123 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
124
125 return 1;
126}
127
128#ifdef CONFIG_ALTIVEC
129
130void enable_kernel_altivec(void)
131{
132 WARN_ON(preemptible());
133
134#ifdef CONFIG_SMP
135 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
136 giveup_altivec(current);
137 else
138 giveup_altivec(NULL); /* just enables FP for kernel */
139#else
140 giveup_altivec(last_task_used_altivec);
141#endif /* CONFIG_SMP */
142}
143EXPORT_SYMBOL(enable_kernel_altivec);
144
145/*
146 * Make sure the VMX/Altivec register state in the
147 * the thread_struct is up to date for task tsk.
148 */
149void flush_altivec_to_thread(struct task_struct *tsk)
150{
151 if (tsk->thread.regs) {
152 preempt_disable();
153 if (tsk->thread.regs->msr & MSR_VEC) {
154#ifdef CONFIG_SMP
155 BUG_ON(tsk != current);
156#endif
157 giveup_altivec(current);
158 }
159 preempt_enable();
160 }
161}
162
163int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
164{
165 flush_altivec_to_thread(current);
166 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
167 return 1;
168}
169
170#endif /* CONFIG_ALTIVEC */
171
172DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
173
174struct task_struct *__switch_to(struct task_struct *prev,
175 struct task_struct *new)
176{
177 struct thread_struct *new_thread, *old_thread;
178 unsigned long flags;
179 struct task_struct *last;
180
181#ifdef CONFIG_SMP
182 /* avoid complexity of lazy save/restore of fpu
183 * by just saving it every time we switch out if
184 * this task used the fpu during the last quantum.
185 *
186 * If it tries to use the fpu again, it'll trap and
187 * reload its fp regs. So we don't have to do a restore
188 * every switch, just a save.
189 * -- Cort
190 */
191 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
192 giveup_fpu(prev);
193#ifdef CONFIG_ALTIVEC
194 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
195 giveup_altivec(prev);
196#endif /* CONFIG_ALTIVEC */
197#endif /* CONFIG_SMP */
198
199#if defined(CONFIG_ALTIVEC) && !defined(CONFIG_SMP)
200 /* Avoid the trap. On smp this this never happens since
201 * we don't set last_task_used_altivec -- Cort
202 */
203 if (new->thread.regs && last_task_used_altivec == new)
204 new->thread.regs->msr |= MSR_VEC;
205#endif /* CONFIG_ALTIVEC */
206
207 flush_tlb_pending();
208
209 new_thread = &new->thread;
210 old_thread = &current->thread;
211
212/* Collect purr utilization data per process and per processor wise */
213/* purr is nothing but processor time base */
214
215#if defined(CONFIG_PPC_PSERIES)
216 if (cur_cpu_spec->firmware_features & FW_FEATURE_SPLPAR) {
217 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
218 long unsigned start_tb, current_tb;
219 start_tb = old_thread->start_tb;
220 cu->current_tb = current_tb = mfspr(SPRN_PURR);
221 old_thread->accum_tb += (current_tb - start_tb);
222 new_thread->start_tb = current_tb;
223 }
224#endif
225
226
227 local_irq_save(flags);
228 last = _switch(old_thread, new_thread);
229
230 local_irq_restore(flags);
231
232 return last;
233}
234
235static int instructions_to_print = 16;
236
237static void show_instructions(struct pt_regs *regs)
238{
239 int i;
240 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
241 sizeof(int));
242
243 printk("Instruction dump:");
244
245 for (i = 0; i < instructions_to_print; i++) {
246 int instr;
247
248 if (!(i % 8))
249 printk("\n");
250
251 if (((REGION_ID(pc) != KERNEL_REGION_ID) &&
252 (REGION_ID(pc) != VMALLOC_REGION_ID)) ||
253 __get_user(instr, (unsigned int *)pc)) {
254 printk("XXXXXXXX ");
255 } else {
256 if (regs->nip == pc)
257 printk("<%08x> ", instr);
258 else
259 printk("%08x ", instr);
260 }
261
262 pc += sizeof(int);
263 }
264
265 printk("\n");
266}
267
268void show_regs(struct pt_regs * regs)
269{
270 int i;
271 unsigned long trap;
272
273 printk("NIP: %016lX XER: %08X LR: %016lX CTR: %016lX\n",
274 regs->nip, (unsigned int)regs->xer, regs->link, regs->ctr);
275 printk("REGS: %p TRAP: %04lx %s (%s)\n",
276 regs, regs->trap, print_tainted(), system_utsname.release);
277 printk("MSR: %016lx EE: %01x PR: %01x FP: %01x ME: %01x "
278 "IR/DR: %01x%01x CR: %08X\n",
279 regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0,
280 regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0,
281 regs->msr&MSR_IR ? 1 : 0,
282 regs->msr&MSR_DR ? 1 : 0,
283 (unsigned int)regs->ccr);
284 trap = TRAP(regs);
285 printk("DAR: %016lx DSISR: %016lx\n", regs->dar, regs->dsisr);
286 printk("TASK: %p[%d] '%s' THREAD: %p",
287 current, current->pid, current->comm, current->thread_info);
288
289#ifdef CONFIG_SMP
290 printk(" CPU: %d", smp_processor_id());
291#endif /* CONFIG_SMP */
292
293 for (i = 0; i < 32; i++) {
294 if ((i % 4) == 0) {
295 printk("\n" KERN_INFO "GPR%02d: ", i);
296 }
297
298 printk("%016lX ", regs->gpr[i]);
299 if (i == 13 && !FULL_REGS(regs))
300 break;
301 }
302 printk("\n");
303 /*
304 * Lookup NIP late so we have the best change of getting the
305 * above info out without failing
306 */
307 printk("NIP [%016lx] ", regs->nip);
308 print_symbol("%s\n", regs->nip);
309 printk("LR [%016lx] ", regs->link);
310 print_symbol("%s\n", regs->link);
311 show_stack(current, (unsigned long *)regs->gpr[1]);
312 if (!user_mode(regs))
313 show_instructions(regs);
314}
315
316void exit_thread(void)
317{
318#ifndef CONFIG_SMP
319 if (last_task_used_math == current)
320 last_task_used_math = NULL;
321#ifdef CONFIG_ALTIVEC
322 if (last_task_used_altivec == current)
323 last_task_used_altivec = NULL;
324#endif /* CONFIG_ALTIVEC */
325#endif /* CONFIG_SMP */
326}
327
328void flush_thread(void)
329{
330 struct thread_info *t = current_thread_info();
331
332 if (t->flags & _TIF_ABI_PENDING)
333 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
334
335#ifndef CONFIG_SMP
336 if (last_task_used_math == current)
337 last_task_used_math = NULL;
338#ifdef CONFIG_ALTIVEC
339 if (last_task_used_altivec == current)
340 last_task_used_altivec = NULL;
341#endif /* CONFIG_ALTIVEC */
342#endif /* CONFIG_SMP */
343}
344
345void
346release_thread(struct task_struct *t)
347{
348}
349
350
351/*
352 * This gets called before we allocate a new thread and copy
353 * the current task into it.
354 */
355void prepare_to_copy(struct task_struct *tsk)
356{
357 flush_fp_to_thread(current);
358 flush_altivec_to_thread(current);
359}
360
361/*
362 * Copy a thread..
363 */
364int
365copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
366 unsigned long unused, struct task_struct *p, struct pt_regs *regs)
367{
368 struct pt_regs *childregs, *kregs;
369 extern void ret_from_fork(void);
370 unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE;
371
372 /* Copy registers */
373 sp -= sizeof(struct pt_regs);
374 childregs = (struct pt_regs *) sp;
375 *childregs = *regs;
376 if ((childregs->msr & MSR_PR) == 0) {
377 /* for kernel thread, set stackptr in new task */
378 childregs->gpr[1] = sp + sizeof(struct pt_regs);
379 p->thread.regs = NULL; /* no user register state */
380 clear_ti_thread_flag(p->thread_info, TIF_32BIT);
381#ifdef CONFIG_PPC_ISERIES
382 set_ti_thread_flag(p->thread_info, TIF_RUN_LIGHT);
383#endif
384 } else {
385 childregs->gpr[1] = usp;
386 p->thread.regs = childregs;
387 if (clone_flags & CLONE_SETTLS) {
388 if (test_thread_flag(TIF_32BIT))
389 childregs->gpr[2] = childregs->gpr[6];
390 else
391 childregs->gpr[13] = childregs->gpr[6];
392 }
393 }
394 childregs->gpr[3] = 0; /* Result from fork() */
395 sp -= STACK_FRAME_OVERHEAD;
396
397 /*
398 * The way this works is that at some point in the future
399 * some task will call _switch to switch to the new task.
400 * That will pop off the stack frame created below and start
401 * the new task running at ret_from_fork. The new task will
402 * do some house keeping and then return from the fork or clone
403 * system call, using the stack frame created above.
404 */
405 sp -= sizeof(struct pt_regs);
406 kregs = (struct pt_regs *) sp;
407 sp -= STACK_FRAME_OVERHEAD;
408 p->thread.ksp = sp;
409 if (cpu_has_feature(CPU_FTR_SLB)) {
410 unsigned long sp_vsid = get_kernel_vsid(sp);
411
412 sp_vsid <<= SLB_VSID_SHIFT;
413 sp_vsid |= SLB_VSID_KERNEL;
414 if (cpu_has_feature(CPU_FTR_16M_PAGE))
415 sp_vsid |= SLB_VSID_L;
416
417 p->thread.ksp_vsid = sp_vsid;
418 }
419
420 /*
421 * The PPC64 ABI makes use of a TOC to contain function
422 * pointers. The function (ret_from_except) is actually a pointer
423 * to the TOC entry. The first entry is a pointer to the actual
424 * function.
425 */
426 kregs->nip = *((unsigned long *)ret_from_fork);
427
428 return 0;
429}
430
431/*
432 * Set up a thread for executing a new program
433 */
434void start_thread(struct pt_regs *regs, unsigned long fdptr, unsigned long sp)
435{
436 unsigned long entry, toc, load_addr = regs->gpr[2];
437
438 /* fdptr is a relocated pointer to the function descriptor for
439 * the elf _start routine. The first entry in the function
440 * descriptor is the entry address of _start and the second
441 * entry is the TOC value we need to use.
442 */
443 set_fs(USER_DS);
444 __get_user(entry, (unsigned long __user *)fdptr);
445 __get_user(toc, (unsigned long __user *)fdptr+1);
446
447 /* Check whether the e_entry function descriptor entries
448 * need to be relocated before we can use them.
449 */
450 if (load_addr != 0) {
451 entry += load_addr;
452 toc += load_addr;
453 }
454
455 /*
456 * If we exec out of a kernel thread then thread.regs will not be
457 * set. Do it now.
458 */
459 if (!current->thread.regs) {
460 unsigned long childregs = (unsigned long)current->thread_info +
461 THREAD_SIZE;
462 childregs -= sizeof(struct pt_regs);
463 current->thread.regs = (struct pt_regs *)childregs;
464 }
465
466 regs->nip = entry;
467 regs->gpr[1] = sp;
468 regs->gpr[2] = toc;
469 regs->msr = MSR_USER64;
470#ifndef CONFIG_SMP
471 if (last_task_used_math == current)
472 last_task_used_math = 0;
473#endif /* CONFIG_SMP */
474 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
475 current->thread.fpscr = 0;
476#ifdef CONFIG_ALTIVEC
477#ifndef CONFIG_SMP
478 if (last_task_used_altivec == current)
479 last_task_used_altivec = 0;
480#endif /* CONFIG_SMP */
481 memset(current->thread.vr, 0, sizeof(current->thread.vr));
482 current->thread.vscr.u[0] = 0;
483 current->thread.vscr.u[1] = 0;
484 current->thread.vscr.u[2] = 0;
485 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
486 current->thread.vrsave = 0;
487 current->thread.used_vr = 0;
488#endif /* CONFIG_ALTIVEC */
489}
490EXPORT_SYMBOL(start_thread);
491
492int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
493{
494 struct pt_regs *regs = tsk->thread.regs;
495
496 if (val > PR_FP_EXC_PRECISE)
497 return -EINVAL;
498 tsk->thread.fpexc_mode = __pack_fe01(val);
499 if (regs != NULL && (regs->msr & MSR_FP) != 0)
500 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
501 | tsk->thread.fpexc_mode;
502 return 0;
503}
504
505int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
506{
507 unsigned int val;
508
509 val = __unpack_fe01(tsk->thread.fpexc_mode);
510 return put_user(val, (unsigned int __user *) adr);
511}
512
513int sys_clone(unsigned long clone_flags, unsigned long p2, unsigned long p3,
514 unsigned long p4, unsigned long p5, unsigned long p6,
515 struct pt_regs *regs)
516{
517 unsigned long parent_tidptr = 0;
518 unsigned long child_tidptr = 0;
519
520 if (p2 == 0)
521 p2 = regs->gpr[1]; /* stack pointer for child */
522
523 if (clone_flags & (CLONE_PARENT_SETTID | CLONE_CHILD_SETTID |
524 CLONE_CHILD_CLEARTID)) {
525 parent_tidptr = p3;
526 child_tidptr = p5;
527 if (test_thread_flag(TIF_32BIT)) {
528 parent_tidptr &= 0xffffffff;
529 child_tidptr &= 0xffffffff;
530 }
531 }
532
533 return do_fork(clone_flags, p2, regs, 0,
534 (int __user *)parent_tidptr, (int __user *)child_tidptr);
535}
536
537int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
538 unsigned long p4, unsigned long p5, unsigned long p6,
539 struct pt_regs *regs)
540{
541 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
542}
543
544int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
545 unsigned long p4, unsigned long p5, unsigned long p6,
546 struct pt_regs *regs)
547{
548 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], regs, 0,
549 NULL, NULL);
550}
551
552int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
553 unsigned long a3, unsigned long a4, unsigned long a5,
554 struct pt_regs *regs)
555{
556 int error;
557 char * filename;
558
559 filename = getname((char __user *) a0);
560 error = PTR_ERR(filename);
561 if (IS_ERR(filename))
562 goto out;
563 flush_fp_to_thread(current);
564 flush_altivec_to_thread(current);
565 error = do_execve(filename, (char __user * __user *) a1,
566 (char __user * __user *) a2, regs);
567
568 if (error == 0) {
569 task_lock(current);
570 current->ptrace &= ~PT_DTRACE;
571 task_unlock(current);
572 }
573 putname(filename);
574
575out:
576 return error;
577}
578
579static int kstack_depth_to_print = 64;
580
581static int validate_sp(unsigned long sp, struct task_struct *p,
582 unsigned long nbytes)
583{
584 unsigned long stack_page = (unsigned long)p->thread_info;
585
586 if (sp >= stack_page + sizeof(struct thread_struct)
587 && sp <= stack_page + THREAD_SIZE - nbytes)
588 return 1;
589
590#ifdef CONFIG_IRQSTACKS
591 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
592 if (sp >= stack_page + sizeof(struct thread_struct)
593 && sp <= stack_page + THREAD_SIZE - nbytes)
594 return 1;
595
596 stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
597 if (sp >= stack_page + sizeof(struct thread_struct)
598 && sp <= stack_page + THREAD_SIZE - nbytes)
599 return 1;
600#endif
601
602 return 0;
603}
604
605unsigned long get_wchan(struct task_struct *p)
606{
607 unsigned long ip, sp;
608 int count = 0;
609
610 if (!p || p == current || p->state == TASK_RUNNING)
611 return 0;
612
613 sp = p->thread.ksp;
614 if (!validate_sp(sp, p, 112))
615 return 0;
616
617 do {
618 sp = *(unsigned long *)sp;
619 if (!validate_sp(sp, p, 112))
620 return 0;
621 if (count > 0) {
622 ip = *(unsigned long *)(sp + 16);
623 if (!in_sched_functions(ip))
624 return ip;
625 }
626 } while (count++ < 16);
627 return 0;
628}
629EXPORT_SYMBOL(get_wchan);
630
631void show_stack(struct task_struct *p, unsigned long *_sp)
632{
633 unsigned long ip, newsp, lr;
634 int count = 0;
635 unsigned long sp = (unsigned long)_sp;
636 int firstframe = 1;
637
638 if (sp == 0) {
639 if (p) {
640 sp = p->thread.ksp;
641 } else {
642 sp = __get_SP();
643 p = current;
644 }
645 }
646
647 lr = 0;
648 printk("Call Trace:\n");
649 do {
650 if (!validate_sp(sp, p, 112))
651 return;
652
653 _sp = (unsigned long *) sp;
654 newsp = _sp[0];
655 ip = _sp[2];
656 if (!firstframe || ip != lr) {
657 printk("[%016lx] [%016lx] ", sp, ip);
658 print_symbol("%s", ip);
659 if (firstframe)
660 printk(" (unreliable)");
661 printk("\n");
662 }
663 firstframe = 0;
664
665 /*
666 * See if this is an exception frame.
667 * We look for the "regshere" marker in the current frame.
668 */
669 if (validate_sp(sp, p, sizeof(struct pt_regs) + 400)
670 && _sp[12] == 0x7265677368657265ul) {
671 struct pt_regs *regs = (struct pt_regs *)
672 (sp + STACK_FRAME_OVERHEAD);
673 printk("--- Exception: %lx", regs->trap);
674 print_symbol(" at %s\n", regs->nip);
675 lr = regs->link;
676 print_symbol(" LR = %s\n", lr);
677 firstframe = 1;
678 }
679
680 sp = newsp;
681 } while (count++ < kstack_depth_to_print);
682}
683
684void dump_stack(void)
685{
686 show_stack(current, (unsigned long *)__get_SP());
687}
688EXPORT_SYMBOL(dump_stack);