aboutsummaryrefslogtreecommitdiffstats
path: root/arch/i386/kernel/time.c
diff options
context:
space:
mode:
authorAndrew Morton <akpm@osdl.org>2005-06-23 03:08:34 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-06-23 12:45:11 -0400
commita3a255e744dfa672e741dc24306491139d0de2d8 (patch)
treec19348966183d3ed79f6e9593a40d95c736e0665 /arch/i386/kernel/time.c
parent129f69465b411592247c408f93d7106939223be1 (diff)
[PATCH] x86: cpu_khz type fix
x86_64's cpu_khz is unsigned int and there is no reason why x86 needs to use unsigned long. So make cpu_khz unsigned int on x86 as well. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'arch/i386/kernel/time.c')
-rw-r--r--arch/i386/kernel/time.c2
1 files changed, 1 insertions, 1 deletions
diff --git a/arch/i386/kernel/time.c b/arch/i386/kernel/time.c
index 8bc8363fbb4c..e68d9fdb0759 100644
--- a/arch/i386/kernel/time.c
+++ b/arch/i386/kernel/time.c
@@ -77,7 +77,7 @@ u64 jiffies_64 = INITIAL_JIFFIES;
77 77
78EXPORT_SYMBOL(jiffies_64); 78EXPORT_SYMBOL(jiffies_64);
79 79
80unsigned long cpu_khz; /* Detected as we calibrate the TSC */ 80unsigned int cpu_khz; /* Detected as we calibrate the TSC */
81EXPORT_SYMBOL(cpu_khz); 81EXPORT_SYMBOL(cpu_khz);
82 82
83extern unsigned long wall_jiffies; 83extern unsigned long wall_jiffies;
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
/*
 * linux/fs/mbcache.c
 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
 */

/*
 * Filesystem Meta Information Block Cache (mbcache)
 *
 * The mbcache caches blocks of block devices that need to be located
 * by their device/block number, as well as by other criteria (such
 * as the block's contents).
 *
 * There can only be one cache entry in a cache per device and block number.
 * Additional indexes need not be unique in this sense. The number of
 * additional indexes (=other criteria) can be hardwired at compile time
 * or specified at cache create time.
 *
 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
 * in the cache. A valid entry is in the main hash tables of the cache,
 * and may also be in the lru list. An invalid entry is not in any hashes
 * or lists.
 *
 * A valid cache entry is only in the lru list if no handles refer to it.
 * Invalid cache entries will be freed when the last handle to the cache
 * entry is released. Entries that cannot be freed immediately are put
 * back on the lru list.
 */

/*
 * Lock descriptions and usage:
 *
 * Each hash chain of both the block and index hash tables now contains
 * a built-in lock used to serialize accesses to the hash chain.
 *
 * Accesses to global data structures mb_cache_list and mb_cache_lru_list
 * are serialized via the global spinlock mb_cache_spinlock.
 *
 * Each mb_cache_entry contains a spinlock, e_entry_lock, to serialize
 * accesses to its local data, such as e_used and e_queued.
 *
 * Lock ordering:
 *
 * Each block hash chain's lock has the highest lock order, followed by an
 * index hash chain's lock, mb_cache_bg_lock (used to implement mb_cache_entry's
 * lock), and mb_cach_spinlock, with the lowest order.  While holding
 * either a block or index hash chain lock, a thread can acquire an
 * mc_cache_bg_lock, which in turn can also acquire mb_cache_spinlock.
 *
 * Synchronization:
 *
 * Since both mb_cache_entry_get and mb_cache_entry_find scan the block and
 * index hash chian, it needs to lock the corresponding hash chain.  For each
 * mb_cache_entry within the chain, it needs to lock the mb_cache_entry to
 * prevent either any simultaneous release or free on the entry and also
 * to serialize accesses to either the e_used or e_queued member of the entry.
 *
 * To avoid having a dangling reference to an already freed
 * mb_cache_entry, an mb_cache_entry is only freed when it is not on a
 * block hash chain and also no longer being referenced, both e_used,
 * and e_queued are 0's.  When an mb_cache_entry is explicitly freed it is
 * first removed from a block hash chain.
 */

#include <linux/kernel.h>
#include <linux/module.h>

#include <linux/hash.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list_bl.h>
#include <linux/mbcache.h>
#include <linux/init.h>
#include <linux/blockgroup_lock.h>
#include <linux/log2.h>

#ifdef MB_CACHE_DEBUG
# define mb_debug(f...) do { \
		printk(KERN_DEBUG f); \
		printk("\n"); \
	} while (0)
#define mb_assert(c) do { if (!(c)) \
		printk(KERN_ERR "assertion " #c " failed\n"); \
	} while(0)
#else
# define mb_debug(f...) do { } while(0)
# define mb_assert(c) do { } while(0)
#endif
#define mb_error(f...) do { \
		printk(KERN_ERR f); \
		printk("\n"); \
	} while(0)

#define MB_CACHE_WRITER ((unsigned short)~0U >> 1)

#define MB_CACHE_ENTRY_LOCK_BITS	ilog2(NR_BG_LOCKS)
#define	MB_CACHE_ENTRY_LOCK_INDEX(ce)			\
	(hash_long((unsigned long)ce, MB_CACHE_ENTRY_LOCK_BITS))

static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
static struct blockgroup_lock *mb_cache_bg_lock;
static struct kmem_cache *mb_cache_kmem_cache;

MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
MODULE_LICENSE("GPL");

EXPORT_SYMBOL(mb_cache_create);
EXPORT_SYMBOL(mb_cache_shrink);
EXPORT_SYMBOL(mb_cache_destroy);
EXPORT_SYMBOL(mb_cache_entry_alloc);
EXPORT_SYMBOL(mb_cache_entry_insert);
EXPORT_SYMBOL(mb_cache_entry_release);
EXPORT_SYMBOL(mb_cache_entry_free);
EXPORT_SYMBOL(mb_cache_entry_get);
#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
EXPORT_SYMBOL(mb_cache_entry_find_first);
EXPORT_SYMBOL(mb_cache_entry_find_next);
#endif

/*
 * Global data: list of all mbcache's, lru list, and a spinlock for
 * accessing cache data structures on SMP machines. The lru list is
 * global across all mbcaches.
 */

static LIST_HEAD(mb_cache_list);
static LIST_HEAD(mb_cache_lru_list);
static DEFINE_SPINLOCK(mb_cache_spinlock);

static inline void
__spin_lock_mb_cache_entry(struct mb_cache_entry *ce)
{
	spin_lock(bgl_lock_ptr(mb_cache_bg_lock,
		MB_CACHE_ENTRY_LOCK_INDEX(ce)));
}

static inline void
__spin_unlock_mb_cache_entry(struct mb_cache_entry *ce)
{
	spin_unlock(bgl_lock_ptr(mb_cache_bg_lock,
		MB_CACHE_ENTRY_LOCK_INDEX(ce)));
}

static inline int
__mb_cache_entry_is_block_hashed(struct mb_cache_entry *ce)
{
	return !hlist_bl_unhashed(&ce->e_block_list);
}


static inline void
__mb_cache_entry_unhash_block(struct mb_cache_entry *ce)
{
	if (__mb_cache_entry_is_block_hashed(ce))
		hlist_bl_del_init(&ce->e_block_list);
}

static inline int
__mb_cache_entry_is_index_hashed(struct mb_cache_entry *ce)
{
	return !hlist_bl_unhashed(&ce->e_index.o_list);
}

static inline void
__mb_cache_entry_unhash_index(struct mb_cache_entry *ce)
{
	if (__mb_cache_entry_is_index_hashed(ce))
		hlist_bl_del_init(&ce->e_index.o_list);
}

/*
 * __mb_cache_entry_unhash_unlock()
 *
 * This function is called to unhash both the block and index hash
 * chain.
 * It assumes both the block and index hash chain is locked upon entry.
 * It also unlock both hash chains both exit
 */
static inline void
__mb_cache_entry_unhash_unlock(struct mb_cache_entry *ce)
{
	__mb_cache_entry_unhash_index(ce);
	hlist_bl_unlock(ce->e_index_hash_p);
	__mb_cache_entry_unhash_block(ce);
	hlist_bl_unlock(ce->e_block_hash_p);
}

static void
__mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
{
	struct mb_cache *cache = ce->e_cache;

	mb_assert(!(ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt)));
	kmem_cache_free(cache->c_entry_cache, ce);
	atomic_dec(&cache->c_entry_count);
}

static void
__mb_cache_entry_release(struct mb_cache_entry *ce)
{
	/* First lock the entry to serialize access to its local data. */
	__spin_lock_mb_cache_entry(ce);
	/* Wake up all processes queuing for this cache entry. */
	if (ce->e_queued)
		wake_up_all(&mb_cache_queue);
	if (ce->e_used >= MB_CACHE_WRITER)
		ce->e_used -= MB_CACHE_WRITER;
	/*
	 * Make sure that all cache entries on lru_list have
	 * both e_used and e_qued of 0s.
	 */
	ce->e_used--;
	if (!(ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt))) {
		if (!__mb_cache_entry_is_block_hashed(ce)) {
			__spin_unlock_mb_cache_entry(ce);
			goto forget;
		}
		/*
		 * Need access to lru list, first drop entry lock,
		 * then reacquire the lock in the proper order.
		 */
		spin_lock(&mb_cache_spinlock);
		if (list_empty(&ce->e_lru_list))
			list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
		spin_unlock(&mb_cache_spinlock);
	}
	__spin_unlock_mb_cache_entry(ce);
	return;
forget:
	mb_assert(list_empty(&ce->e_lru_list));
	__mb_cache_entry_forget(ce, GFP_KERNEL);
}

/*
 * mb_cache_shrink_scan()  memory pressure callback
 *
 * This function is called by the kernel memory management when memory
 * gets low.
 *
 * @shrink: (ignored)
 * @sc: shrink_control passed from reclaim
 *
 * Returns the number of objects freed.
 */
static unsigned long
mb_cache_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{
	LIST_HEAD(free_list);
	struct mb_cache_entry *entry, *tmp;
	int nr_to_scan = sc->nr_to_scan;
	gfp_t gfp_mask = sc->gfp_mask;
	unsigned long freed = 0;

	mb_debug("trying to free %d entries", nr_to_scan);
	spin_lock(&mb_cache_spinlock);
	while ((nr_to_scan-- > 0) && !list_empty(&mb_cache_lru_list)) {
		struct mb_cache_entry *ce =
			list_entry(mb_cache_lru_list.next,
				struct mb_cache_entry, e_lru_list);
		list_del_init(&ce->e_lru_list);
		if (ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt))
			continue;
		spin_unlock(&mb_cache_spinlock);
		/* Prevent any find or get operation on the entry */
		hlist_bl_lock(ce->e_block_hash_p);
		hlist_bl_lock(ce->e_index_hash_p);
		/* Ignore if it is touched by a find/get */
		if (ce->e_used || ce->e_queued || atomic_read(&ce->e_refcnt) ||
			!list_empty(&ce->e_lru_list)) {
			hlist_bl_unlock(ce->e_index_hash_p);
			hlist_bl_unlock(ce->e_block_hash_p);
			spin_lock(&mb_cache_spinlock);
			continue;
		}
		__mb_cache_entry_unhash_unlock(ce);
		list_add_tail(&ce->e_lru_list, &free_list);
		spin_lock(&mb_cache_spinlock);
	}
	spin_unlock(&mb_cache_spinlock);

	list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
		__mb_cache_entry_forget(entry, gfp_mask);
		freed++;
	}
	return freed;
}

static unsigned long
mb_cache_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
	struct mb_cache *cache;
	unsigned long count = 0;

	spin_lock(&mb_cache_spinlock);
	list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
		mb_debug("cache %s (%d)", cache->c_name,
			  atomic_read(&cache->c_entry_count));
		count += atomic_read(&cache->c_entry_count);
	}
	spin_unlock(&mb_cache_spinlock);

	return vfs_pressure_ratio(count);
}

static struct shrinker mb_cache_shrinker = {
	.count_objects = mb_cache_shrink_count,
	.scan_objects = mb_cache_shrink_scan,
	.seeks = DEFAULT_SEEKS,
};

/*
 * mb_cache_create()  create a new cache
 *
 * All entries in one cache are equal size. Cache entries may be from
 * multiple devices. If this is the first mbcache created, registers
 * the cache with kernel memory management. Returns NULL if no more
 * memory was available.
 *
 * @name: name of the cache (informal)
 * @bucket_bits: log2(number of hash buckets)
 */
struct mb_cache *
mb_cache_create(const char *name, int bucket_bits)
{
	int n, bucket_count = 1 << bucket_bits;
	struct mb_cache *cache = NULL;

	if (!mb_cache_bg_lock) {
		mb_cache_bg_lock = kmalloc(sizeof(struct blockgroup_lock),
			GFP_KERNEL);
		if (!mb_cache_bg_lock)
			return NULL;
		bgl_lock_init(mb_cache_bg_lock);
	}

	cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL);
	if (!cache)
		return NULL;
	cache->c_name = name;
	atomic_set(&cache->c_entry_count, 0);
	cache->c_bucket_bits = bucket_bits;
	cache->c_block_hash = kmalloc(bucket_count *
		sizeof(struct hlist_bl_head), GFP_KERNEL);
	if (!cache->c_block_hash)
		goto fail;
	for (n=0; n<bucket_count; n++)
		INIT_HLIST_BL_HEAD(&cache->c_block_hash[n]);
	cache->c_index_hash = kmalloc(bucket_count *
		sizeof(struct hlist_bl_head), GFP_KERNEL);
	if (!cache->c_index_hash)
		goto fail;
	for (n=0; n<bucket_count; n++)
		INIT_HLIST_BL_HEAD(&cache->c_index_hash[n]);
	if (!mb_cache_kmem_cache) {
		mb_cache_kmem_cache = kmem_cache_create(name,
			sizeof(struct mb_cache_entry), 0,
			SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
		if (!mb_cache_kmem_cache)
			goto fail2;
	}
	cache->c_entry_cache = mb_cache_kmem_cache;

	/*
	 * Set an upper limit on the number of cache entries so that the hash
	 * chains won't grow too long.
	 */
	cache->c_max_entries = bucket_count << 4;

	spin_lock(&mb_cache_spinlock);
	list_add(&cache->c_cache_list, &mb_cache_list);
	spin_unlock(&mb_cache_spinlock);
	return cache;

fail2:
	kfree(cache->c_index_hash);

fail:
	kfree(cache->c_block_hash);
	kfree(cache);
	return NULL;
}


/*
 * mb_cache_shrink()
 *
 * Removes all cache entries of a device from the cache. All cache entries
 * currently in use cannot be freed, and thus remain in the cache. All others
 * are freed.
 *
 * @bdev: which device's cache entries to shrink
 */
void
mb_cache_shrink(struct block_device *bdev)
{
	LIST_HEAD(free_list);
	struct list_head *l;
	struct mb_cache_entry *ce, *tmp;

	l = &mb_cache_lru_list;
	spin_lock(&mb_cache_spinlock);
	while (!list_is_last(l, &mb_cache_lru_list)) {
		l = l->next;
		ce = list_entry(l, struct mb_cache_entry, e_lru_list);
		if (ce->e_bdev == bdev) {
			list_del_init(&ce->e_lru_list);
			if (ce->e_used || ce->e_queued ||
				atomic_read(&ce->e_refcnt))
				continue;
			spin_unlock(&mb_cache_spinlock);
			/*
			 * Prevent any find or get operation on the entry.
			 */
			hlist_bl_lock(ce->e_block_hash_p);
			hlist_bl_lock(ce->e_index_hash_p);
			/* Ignore if it is touched by a find/get */
			if (ce->e_used || ce->e_queued ||
				atomic_read(&ce->e_refcnt) ||
				!list_empty(&ce->e_lru_list)) {
				hlist_bl_unlock(ce->e_index_hash_p);
				hlist_bl_unlock(ce->e_block_hash_p);
				l = &mb_cache_lru_list;
				spin_lock(&mb_cache_spinlock);
				continue;
			}
			__mb_cache_entry_unhash_unlock(ce);
			mb_assert(!(ce->e_used || ce->e_queued ||
				atomic_read(&ce->e_refcnt)));
			list_add_tail(&ce->e_lru_list, &free_list);
			l = &mb_cache_lru_list;
			spin_lock(&mb_cache_spinlock);
		}
	}
	spin_unlock(&mb_cache_spinlock);

	list_for_each_entry_safe(ce, tmp, &free_list, e_lru_list) {
		__mb_cache_entry_forget(ce, GFP_KERNEL);
	}
}


/*
 * mb_cache_destroy()
 *
 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
 * and then destroys it. If this was the last mbcache, un-registers the
 * mbcache from kernel memory management.
 */
void
mb_cache_destroy(struct mb_cache *cache)
{
	LIST_HEAD(free_list);
	struct mb_cache_entry *ce, *tmp;

	spin_lock(&mb_cache_spinlock);
	list_for_each_entry_safe(ce, tmp, &mb_cache_lru_list, e_lru_list) {
		if (ce->e_cache == cache)
			list_move_tail(&ce->e_lru_list, &free_list);
	}
	list_del(&cache->c_cache_list);
	spin_unlock(&mb_cache_spinlock);

	list_for_each_entry_safe(ce, tmp, &free_list, e_lru_list) {
		list_del_init(&ce->e_lru_list);
		/*
		 * Prevent any find or get operation on the entry.
		 */
		hlist_bl_lock(ce->e_block_hash_p);
		hlist_bl_lock(ce->e_index_hash_p);
		mb_assert(!(ce->e_used || ce->e_queued ||
			atomic_read(&ce->e_refcnt)));
		__mb_cache_entry_unhash_unlock(ce);
		__mb_cache_entry_forget(ce, GFP_KERNEL);
	}

	if (atomic_read(&cache->c_entry_count) > 0) {
		mb_error("cache %s: %d orphaned entries",
			  cache->c_name,
			  atomic_read(&cache->c_entry_count));
	}

	if (list_empty(&mb_cache_list)) {
		kmem_cache_destroy(mb_cache_kmem_cache);
		mb_cache_kmem_cache = NULL;
	}
	kfree(cache->c_index_hash);
	kfree(cache->c_block_hash);
	kfree(cache);
}

/*
 * mb_cache_entry_alloc()
 *
 * Allocates a new cache entry. The new entry will not be valid initially,
 * and thus cannot be looked up yet. It should be filled with data, and
 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
 * if no more memory was available.
 */
struct mb_cache_entry *
mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
{
	struct mb_cache_entry *ce;

	if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) {
		struct list_head *l;

		l = &mb_cache_lru_list;
		spin_lock(&mb_cache_spinlock);
		while (!list_is_last(l, &mb_cache_lru_list)) {
			l = l->next;
			ce = list_entry(l, struct mb_cache_entry, e_lru_list);
			if (ce->e_cache == cache) {
				list_del_init(&ce->e_lru_list);
				if (ce->e_used || ce->e_queued ||
					atomic_read(&ce->e_refcnt))
					continue;
				spin_unlock(&mb_cache_spinlock);
				/*
				 * Prevent any find or get operation on the
				 * entry.
				 */
				hlist_bl_lock(ce->e_block_hash_p);
				hlist_bl_lock(ce->e_index_hash_p);
				/* Ignore if it is touched by a find/get */
				if (ce->e_used || ce->e_queued ||
					atomic_read(&ce->e_refcnt) ||
					!list_empty(&ce->e_lru_list)) {
					hlist_bl_unlock(ce->e_index_hash_p);
					hlist_bl_unlock(ce->e_block_hash_p);
					l = &mb_cache_lru_list;
					spin_lock(&mb_cache_spinlock);
					continue;
				}
				mb_assert(list_empty(&ce->e_lru_list));
				mb_assert(!(ce->e_used || ce->e_queued ||
					atomic_read(&ce->e_refcnt)));
				__mb_cache_entry_unhash_unlock(ce);
				goto found;
			}
		}
		spin_unlock(&mb_cache_spinlock);
	}

	ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
	if (!ce)
		return NULL;
	atomic_inc(&cache->c_entry_count);
	INIT_LIST_HEAD(&ce->e_lru_list);
	INIT_HLIST_BL_NODE(&ce->e_block_list);
	INIT_HLIST_BL_NODE(&ce->e_index.o_list);
	ce->e_cache = cache;
	ce->e_queued = 0;
	atomic_set(&ce->e_refcnt, 0);
found:
	ce->e_block_hash_p = &cache->c_block_hash[0];
	ce->e_index_hash_p = &cache->c_index_hash[0];
	ce->e_used = 1 + MB_CACHE_WRITER;
	return ce;
}


/*
 * mb_cache_entry_insert()
 *
 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
 * the cache. After this, the cache entry can be looked up, but is not yet
 * in the lru list as the caller still holds a handle to it. Returns 0 on
 * success, or -EBUSY if a cache entry for that device + inode exists
 * already (this may happen after a failed lookup, but when another process
 * has inserted the same cache entry in the meantime).
 *
 * @bdev: device the cache entry belongs to
 * @block: block number
 * @key: lookup key
 */
int
mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
		      sector_t block, unsigned int key)
{
	struct mb_cache *cache = ce->e_cache;
	unsigned int bucket;
	struct hlist_bl_node *l;
	struct hlist_bl_head *block_hash_p;
	struct hlist_bl_head *index_hash_p;
	struct mb_cache_entry *lce;

	mb_assert(ce);
	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 
			   cache->c_bucket_bits);
	block_hash_p = &cache->c_block_hash[bucket];
	hlist_bl_lock(block_hash_p);
	hlist_bl_for_each_entry(lce, l, block_hash_p, e_block_list) {
		if (lce->e_bdev == bdev && lce->e_block == block) {
			hlist_bl_unlock(block_hash_p);
			return -EBUSY;
		}
	}
	mb_assert(!__mb_cache_entry_is_block_hashed(ce));
	__mb_cache_entry_unhash_block(ce);
	__mb_cache_entry_unhash_index(ce);
	ce->e_bdev = bdev;
	ce->e_block = block;
	ce->e_block_hash_p = block_hash_p;
	ce->e_index.o_key = key;
	hlist_bl_add_head(&ce->e_block_list, block_hash_p);
	hlist_bl_unlock(block_hash_p);
	bucket = hash_long(key, cache->c_bucket_bits);
	index_hash_p = &cache->c_index_hash[bucket];
	hlist_bl_lock(index_hash_p);
	ce->e_index_hash_p = index_hash_p;
	hlist_bl_add_head(&ce->e_index.o_list, index_hash_p);
	hlist_bl_unlock(index_hash_p);
	return 0;
}


/*
 * mb_cache_entry_release()
 *
 * Release a handle to a cache entry. When the last handle to a cache entry
 * is released it is either freed (if it is invalid) or otherwise inserted
 * in to the lru list.
 */
void
mb_cache_entry_release(struct mb_cache_entry *ce)
{
	__mb_cache_entry_release(ce);
}


/*
 * mb_cache_entry_free()
 *
 */
void
mb_cache_entry_free(struct mb_cache_entry *ce)
{
	mb_assert(ce);
	mb_assert(list_empty(&ce->e_lru_list));
	hlist_bl_lock(ce->e_index_hash_p);
	__mb_cache_entry_unhash_index(ce);
	hlist_bl_unlock(ce->e_index_hash_p);
	hlist_bl_lock(ce->e_block_hash_p);
	__mb_cache_entry_unhash_block(ce);
	hlist_bl_unlock(ce->e_block_hash_p);
	__mb_cache_entry_release(ce);
}


/*
 * mb_cache_entry_get()
 *
 * Get a cache entry  by device / block number. (There can only be one entry
 * in the cache per device and block.) Returns NULL if no such cache entry
 * exists. The returned cache entry is locked for exclusive access ("single
 * writer").
 */
struct mb_cache_entry *
mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
		   sector_t block)
{
	unsigned int bucket;
	struct hlist_bl_node *l;
	struct mb_cache_entry *ce;
	struct hlist_bl_head *block_hash_p;

	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
			   cache->c_bucket_bits);
	block_hash_p = &cache->c_block_hash[bucket];
	/* First serialize access to the block corresponding hash chain. */
	hlist_bl_lock(block_hash_p);
	hlist_bl_for_each_entry(ce, l, block_hash_p, e_block_list) {
		mb_assert(ce->e_block_hash_p == block_hash_p);
		if (ce->e_bdev == bdev && ce->e_block == block) {
			/*
			 * Prevent a free from removing the entry.
			 */
			atomic_inc(&ce->e_refcnt);
			hlist_bl_unlock(block_hash_p);
			__spin_lock_mb_cache_entry(ce);
			atomic_dec(&ce->e_refcnt);
			if (ce->e_used > 0) {
				DEFINE_WAIT(wait);
				while (ce->e_used > 0) {
					ce->e_queued++;
					prepare_to_wait(&mb_cache_queue, &wait,
							TASK_UNINTERRUPTIBLE);
					__spin_unlock_mb_cache_entry(ce);
					schedule();
					__spin_lock_mb_cache_entry(ce);
					ce->e_queued--;
				}
				finish_wait(&mb_cache_queue, &wait);
			}
			ce->e_used += 1 + MB_CACHE_WRITER;
			__spin_unlock_mb_cache_entry(ce);

			if (!list_empty(&ce->e_lru_list)) {
				spin_lock(&mb_cache_spinlock);
				list_del_init(&ce->e_lru_list);
				spin_unlock(&mb_cache_spinlock);
			}
			if (!__mb_cache_entry_is_block_hashed(ce)) {
				__mb_cache_entry_release(ce);
				return NULL;
			}
			return ce;
		}
	}
	hlist_bl_unlock(block_hash_p);
	return NULL;
}

#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)

static struct mb_cache_entry *
__mb_cache_entry_find(struct hlist_bl_node *l, struct hlist_bl_head *head,
		      struct block_device *bdev, unsigned int key)
{

	/* The index hash chain is alredy acquire by caller. */
	while (l != NULL) {
		struct mb_cache_entry *ce =
			hlist_bl_entry(l, struct mb_cache_entry,
				e_index.o_list);
		mb_assert(ce->e_index_hash_p == head);
		if (ce->e_bdev == bdev && ce->e_index.o_key == key) {
			/*
			 * Prevent a free from removing the entry.
			 */
			atomic_inc(&ce->e_refcnt);
			hlist_bl_unlock(head);
			__spin_lock_mb_cache_entry(ce);
			atomic_dec(&ce->e_refcnt);
			ce->e_used++;
			/* Incrementing before holding the lock gives readers
			   priority over writers. */
			if (ce->e_used >= MB_CACHE_WRITER) {
				DEFINE_WAIT(wait);

				while (ce->e_used >= MB_CACHE_WRITER) {
					ce->e_queued++;
					prepare_to_wait(&mb_cache_queue, &wait,
							TASK_UNINTERRUPTIBLE);
					__spin_unlock_mb_cache_entry(ce);
					schedule();
					__spin_lock_mb_cache_entry(ce);
					ce->e_queued--;
				}
				finish_wait(&mb_cache_queue, &wait);
			}
			__spin_unlock_mb_cache_entry(ce);
			if (!list_empty(&ce->e_lru_list)) {
				spin_lock(&mb_cache_spinlock);
				list_del_init(&ce->e_lru_list);
				spin_unlock(&mb_cache_spinlock);
			}
			if (!__mb_cache_entry_is_block_hashed(ce)) {
				__mb_cache_entry_release(ce);
				return ERR_PTR(-EAGAIN);
			}
			return ce;
		}
		l = l->next;
	}
	hlist_bl_unlock(head);
	return NULL;
}


/*
 * mb_cache_entry_find_first()
 *
 * Find the first cache entry on a given device with a certain key in
 * an additional index. Additional matches can be found with
 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
 * returned cache entry is locked for shared access ("multiple readers").
 *
 * @cache: the cache to search
 * @bdev: the device the cache entry should belong to
 * @key: the key in the index
 */
struct mb_cache_entry *
mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev,
			  unsigned int key)
{
	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
	struct hlist_bl_node *l;
	struct mb_cache_entry *ce = NULL;
	struct hlist_bl_head *index_hash_p;

	index_hash_p = &cache->c_index_hash[bucket];
	hlist_bl_lock(index_hash_p);
	if (!hlist_bl_empty(index_hash_p)) {
		l = hlist_bl_first(index_hash_p);
		ce = __mb_cache_entry_find(l, index_hash_p, bdev, key);
	} else
		hlist_bl_unlock(index_hash_p);
	return ce;
}


/*
 * mb_cache_entry_find_next()
 *
 * Find the next cache entry on a given device with a certain key in an
 * additional index. Returns NULL if no match could be found. The previous
 * entry is atomatically released, so that mb_cache_entry_find_next() can
 * be called like this:
 *
 * entry = mb_cache_entry_find_first();
 * while (entry) {
 * 	...
 *	entry = mb_cache_entry_find_next(entry, ...);
 * }
 *
 * @prev: The previous match
 * @bdev: the device the cache entry should belong to
 * @key: the key in the index
 */
struct mb_cache_entry *
mb_cache_entry_find_next(struct mb_cache_entry *prev,
			 struct block_device *bdev, unsigned int key)
{
	struct mb_cache *cache = prev->e_cache;
	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
	struct hlist_bl_node *l;
	struct mb_cache_entry *ce;
	struct hlist_bl_head *index_hash_p;

	index_hash_p = &cache->c_index_hash[bucket];
	mb_assert(prev->e_index_hash_p == index_hash_p);