aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/devicetree
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2011-11-06 20:12:03 -0500
committerLinus Torvalds <torvalds@linux-foundation.org>2011-11-06 20:12:03 -0500
commit1197ab2942f920f261952de0c392ac749a35796b (patch)
tree4922ccc8a6061e5ece6ac7420001f3bf4524ea92 /Documentation/devicetree
parentec773e99ab4abce07b1ae23117179c2861831964 (diff)
parent96cc017c5b7ec095ef047d3c1952b6b6bbf98943 (diff)
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (106 commits) powerpc/p3060qds: Add support for P3060QDS board powerpc/83xx: Add shutdown request support to MCU handling on MPC8349 MITX powerpc/85xx: Make kexec to interate over online cpus powerpc/fsl_booke: Fix comment in head_fsl_booke.S powerpc/85xx: issue 15 EOI after core reset for FSL CoreNet devices powerpc/8xxx: Fix interrupt handling in MPC8xxx GPIO driver powerpc/85xx: Add 'fsl,pq3-gpio' compatiable for GPIO driver powerpc/86xx: Correct Gianfar support for GE boards powerpc/cpm: Clear muram before it is in use. drivers/virt: add ioctl for 32-bit compat on 64-bit to fsl-hv-manager powerpc/fsl_msi: add support for "msi-address-64" property powerpc/85xx: Setup secondary cores PIR with hard SMP id powerpc/fsl-booke: Fix settlbcam for 64-bit powerpc/85xx: Adding DCSR node to dtsi device trees powerpc/85xx: clean up FPGA device tree nodes for Freecsale QorIQ boards powerpc/85xx: fix PHYS_64BIT selection for P1022DS powerpc/fsl-booke: Fix setup_initial_memory_limit to not blindly map powerpc: respect mem= setting for early memory limit setup powerpc: Update corenet64_smp_defconfig powerpc: Update mpc85xx/corenet 32-bit defconfigs ... Fix up trivial conflicts in: - arch/powerpc/configs/40x/hcu4_defconfig removed stale file, edited elsewhere - arch/powerpc/include/asm/udbg.h, arch/powerpc/kernel/udbg.c: added opal and gelic drivers vs added ePAPR driver - drivers/tty/serial/8250.c moved UPIO_TSI to powerpc vs removed UPIO_DWAPB support
Diffstat (limited to 'Documentation/devicetree')
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/board.txt30
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/dcsr.txt395
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt42
3 files changed, 455 insertions, 12 deletions
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/board.txt b/Documentation/devicetree/bindings/powerpc/fsl/board.txt
index 39e941515a36..380914e965e0 100644
--- a/Documentation/devicetree/bindings/powerpc/fsl/board.txt
+++ b/Documentation/devicetree/bindings/powerpc/fsl/board.txt
@@ -1,3 +1,8 @@
1Freescale Reference Board Bindings
2
3This document describes device tree bindings for various devices that
4exist on some Freescale reference boards.
5
1* Board Control and Status (BCSR) 6* Board Control and Status (BCSR)
2 7
3Required properties: 8Required properties:
@@ -12,25 +17,26 @@ Example:
12 reg = <f8000000 8000>; 17 reg = <f8000000 8000>;
13 }; 18 };
14 19
15* Freescale on board FPGA 20* Freescale on-board FPGA
16 21
17This is the memory-mapped registers for on board FPGA. 22This is the memory-mapped registers for on board FPGA.
18 23
19Required properities: 24Required properities:
20- compatible : should be "fsl,fpga-pixis". 25- compatible: should be a board-specific string followed by a string
21- reg : should contain the address and the length of the FPPGA register 26 indicating the type of FPGA. Example:
22 set. 27 "fsl,<board>-fpga", "fsl,fpga-pixis"
28- reg: should contain the address and the length of the FPGA register set.
23- interrupt-parent: should specify phandle for the interrupt controller. 29- interrupt-parent: should specify phandle for the interrupt controller.
24- interrupts : should specify event (wakeup) IRQ. 30- interrupts: should specify event (wakeup) IRQ.
25 31
26Example (MPC8610HPCD): 32Example (P1022DS):
27 33
28 board-control@e8000000 { 34 board-control@3,0 {
29 compatible = "fsl,fpga-pixis"; 35 compatible = "fsl,p1022ds-fpga", "fsl,fpga-ngpixis";
30 reg = <0xe8000000 32>; 36 reg = <3 0 0x30>;
31 interrupt-parent = <&mpic>; 37 interrupt-parent = <&mpic>;
32 interrupts = <8 8>; 38 interrupts = <8 8 0 0>;
33 }; 39 };
34 40
35* Freescale BCSR GPIO banks 41* Freescale BCSR GPIO banks
36 42
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/dcsr.txt b/Documentation/devicetree/bindings/powerpc/fsl/dcsr.txt
new file mode 100644
index 000000000000..9d54eb5a295f
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/dcsr.txt
@@ -0,0 +1,395 @@
1===================================================================
2Debug Control and Status Register (DCSR) Binding
3Copyright 2011 Freescale Semiconductor Inc.
4
5NOTE: The bindings described in this document are preliminary and subject
6to change. Some of the compatible strings that contain only generic names
7may turn out to be inappropriate, or need additional properties to describe
8the integration of the block with the rest of the chip.
9
10=====================================================================
11Debug Control and Status Register Memory Map
12
13Description
14
15This node defines the base address and range for the
16defined DCSR Memory Map. Child nodes will describe the individual
17debug blocks defined within this memory space.
18
19PROPERTIES
20
21 - compatible
22 Usage: required
23 Value type: <string>
24 Definition: Must include "fsl,dcsr" and "simple-bus".
25 The DCSR space exists in the memory-mapped bus.
26
27 - #address-cells
28 Usage: required
29 Value type: <u32>
30 Definition: A standard property. Defines the number of cells
31 or representing physical addresses in child nodes.
32
33 - #size-cells
34 Usage: required
35 Value type: <u32>
36 Definition: A standard property. Defines the number of cells
37 or representing the size of physical addresses in
38 child nodes.
39
40 - ranges
41 Usage: required
42 Value type: <prop-encoded-array>
43 Definition: A standard property. Specifies the physical address
44 range of the DCSR space.
45
46EXAMPLE
47 dcsr: dcsr@f00000000 {
48 #address-cells = <1>;
49 #size-cells = <1>;
50 compatible = "fsl,dcsr", "simple-bus";
51 ranges = <0x00000000 0xf 0x00000000 0x01008000>;
52 };
53
54=====================================================================
55Event Processing Unit
56
57This node represents the region of DCSR space allocated to the EPU
58
59PROPERTIES
60
61 - compatible
62 Usage: required
63 Value type: <string>
64 Definition: Must include "fsl,dcsr-epu"
65
66 - interrupts
67 Usage: required
68 Value type: <prop_encoded-array>
69 Definition: Specifies the interrupts generated by the EPU.
70 The value of the interrupts property consists of three
71 interrupt specifiers. The format of the specifier is defined
72 by the binding document describing the node's interrupt parent.
73
74 The EPU counters can be configured to assert the performance
75 monitor interrupt signal based on either counter overflow or value
76 match. Which counter asserted the interrupt is captured in an EPU
77 Counter Interrupt Status Register (EPCPUISR).
78
79 The EPU unit can also be configured to assert either or both of
80 two interrupt signals based on debug event sources within the SoC.
81 The interrupt signals are epu_xt_int0 and epu_xt_int1.
82 Which event source asserted the interrupt is captured in an EPU
83 Interrupt Status Register (EPISR0,EPISR1).
84
85 Interrupt numbers are lised in order (perfmon, event0, event1).
86
87 - interrupt-parent
88 Usage: required
89 Value type: <phandle>
90 Definition: A single <phandle> value that points
91 to the interrupt parent to which the child domain
92 is being mapped. Value must be "&mpic"
93
94 - reg
95 Usage: required
96 Value type: <prop-encoded-array>
97 Definition: A standard property. Specifies the physical address
98 offset and length of the DCSR space registers of the device
99 configuration block.
100
101EXAMPLE
102 dcsr-epu@0 {
103 compatible = "fsl,dcsr-epu";
104 interrupts = <52 2 0 0
105 84 2 0 0
106 85 2 0 0>;
107 interrupt-parent = <&mpic>;
108 reg = <0x0 0x1000>;
109 };
110
111=======================================================================
112Nexus Port Controller
113
114This node represents the region of DCSR space allocated to the NPC
115
116PROPERTIES
117
118 - compatible
119 Usage: required
120 Value type: <string>
121 Definition: Must include "fsl,dcsr-npc"
122
123 - reg
124 Usage: required
125 Value type: <prop-encoded-array>
126 Definition: A standard property. Specifies the physical address
127 offset and length of the DCSR space registers of the device
128 configuration block.
129 The Nexus Port controller occupies two regions in the DCSR space
130 with distinct functionality.
131
132 The first register range describes the Nexus Port Controller
133 control and status registers.
134
135 The second register range describes the Nexus Port Controller
136 internal trace buffer. The NPC trace buffer is a small memory buffer
137 which stages the nexus trace data for transmission via the Aurora port
138 or to a DDR based trace buffer. In some configurations the NPC trace
139 buffer can be the only trace buffer used.
140
141
142EXAMPLE
143 dcsr-npc {
144 compatible = "fsl,dcsr-npc";
145 reg = <0x1000 0x1000 0x1000000 0x8000>;
146 };
147
148=======================================================================
149Nexus Concentrator
150
151This node represents the region of DCSR space allocated to the NXC
152
153PROPERTIES
154
155 - compatible
156 Usage: required
157 Value type: <string>
158 Definition: Must include "fsl,dcsr-nxc"
159
160 - reg
161 Usage: required
162 Value type: <prop-encoded-array>
163 Definition: A standard property. Specifies the physical address
164 offset and length of the DCSR space registers of the device
165 configuration block.
166
167EXAMPLE
168 dcsr-nxc@2000 {
169 compatible = "fsl,dcsr-nxc";
170 reg = <0x2000 0x1000>;
171 };
172=======================================================================
173CoreNet Debug Controller
174
175This node represents the region of DCSR space allocated to
176the CoreNet Debug controller.
177
178PROPERTIES
179
180 - compatible
181 Usage: required
182 Value type: <string>
183 Definition: Must include "fsl,dcsr-corenet"
184
185 - reg
186 Usage: required
187 Value type: <prop-encoded-array>
188 Definition: A standard property. Specifies the physical address
189 offset and length of the DCSR space registers of the device
190 configuration block.
191 The CoreNet Debug controller occupies two regions in the DCSR space
192 with distinct functionality.
193
194 The first register range describes the CoreNet Debug Controller
195 functionalty to perform transaction and transaction attribute matches.
196
197 The second register range describes the CoreNet Debug Controller
198 functionalty to trigger event notifications and debug traces.
199
200EXAMPLE
201 dcsr-corenet {
202 compatible = "fsl,dcsr-corenet";
203 reg = <0x8000 0x1000 0xB0000 0x1000>;
204 };
205
206=======================================================================
207Data Path Debug controller
208
209This node represents the region of DCSR space allocated to
210the DPAA Debug Controller. This controller controls debug configuration
211for the QMAN and FMAN blocks.
212
213PROPERTIES
214
215 - compatible
216 Usage: required
217 Value type: <string>
218 Definition: Must include both an identifier specific to the SoC
219 or Debug IP of the form "fsl,<soc>-dcsr-dpaa" in addition to the
220 generic compatible string "fsl,dcsr-dpaa".
221
222 - reg
223 Usage: required
224 Value type: <prop-encoded-array>
225 Definition: A standard property. Specifies the physical address
226 offset and length of the DCSR space registers of the device
227 configuration block.
228
229EXAMPLE
230 dcsr-dpaa@9000 {
231 compatible = "fsl,p4080-dcsr-dpaa", "fsl,dcsr-dpaa";
232 reg = <0x9000 0x1000>;
233 };
234
235=======================================================================
236OCeaN Debug controller
237
238This node represents the region of DCSR space allocated to
239the OCN Debug Controller.
240
241PROPERTIES
242
243 - compatible
244 Usage: required
245 Value type: <string>
246 Definition: Must include both an identifier specific to the SoC
247 or Debug IP of the form "fsl,<soc>-dcsr-ocn" in addition to the
248 generic compatible string "fsl,dcsr-ocn".
249
250 - reg
251 Usage: required
252 Value type: <prop-encoded-array>
253 Definition: A standard property. Specifies the physical address
254 offset and length of the DCSR space registers of the device
255 configuration block.
256
257EXAMPLE
258 dcsr-ocn@11000 {
259 compatible = "fsl,p4080-dcsr-ocn", "fsl,dcsr-ocn";
260 reg = <0x11000 0x1000>;
261 };
262
263=======================================================================
264DDR Controller Debug controller
265
266This node represents the region of DCSR space allocated to
267the OCN Debug Controller.
268
269PROPERTIES
270
271 - compatible
272 Usage: required
273 Value type: <string>
274 Definition: Must include "fsl,dcsr-ddr"
275
276 - dev-handle
277 Usage: required
278 Definition: A phandle to associate this debug node with its
279 component controller.
280
281 - reg
282 Usage: required
283 Value type: <prop-encoded-array>
284 Definition: A standard property. Specifies the physical address
285 offset and length of the DCSR space registers of the device
286 configuration block.
287
288EXAMPLE
289 dcsr-ddr@12000 {
290 compatible = "fsl,dcsr-ddr";
291 dev-handle = <&ddr1>;
292 reg = <0x12000 0x1000>;
293 };
294
295=======================================================================
296Nexus Aurora Link Controller
297
298This node represents the region of DCSR space allocated to
299the NAL Controller.
300
301PROPERTIES
302
303 - compatible
304 Usage: required
305 Value type: <string>
306 Definition: Must include both an identifier specific to the SoC
307 or Debug IP of the form "fsl,<soc>-dcsr-nal" in addition to the
308 generic compatible string "fsl,dcsr-nal".
309
310 - reg
311 Usage: required
312 Value type: <prop-encoded-array>
313 Definition: A standard property. Specifies the physical address
314 offset and length of the DCSR space registers of the device
315 configuration block.
316
317EXAMPLE
318 dcsr-nal@18000 {
319 compatible = "fsl,p4080-dcsr-nal", "fsl,dcsr-nal";
320 reg = <0x18000 0x1000>;
321 };
322
323
324=======================================================================
325Run Control and Power Management
326
327This node represents the region of DCSR space allocated to
328the RCPM Debug Controller. This functionlity is limited to the
329control the debug operations of the SoC and cores.
330
331PROPERTIES
332
333 - compatible
334 Usage: required
335 Value type: <string>
336 Definition: Must include both an identifier specific to the SoC
337 or Debug IP of the form "fsl,<soc>-dcsr-rcpm" in addition to the
338 generic compatible string "fsl,dcsr-rcpm".
339
340 - reg
341 Usage: required
342 Value type: <prop-encoded-array>
343 Definition: A standard property. Specifies the physical address
344 offset and length of the DCSR space registers of the device
345 configuration block.
346
347EXAMPLE
348 dcsr-rcpm@22000 {
349 compatible = "fsl,p4080-dcsr-rcpm", "fsl,dcsr-rcpm";
350 reg = <0x22000 0x1000>;
351 };
352
353=======================================================================
354Core Service Bridge Proxy
355
356This node represents the region of DCSR space allocated to
357the Core Service Bridge Proxies.
358There is one Core Service Bridge Proxy device for each CPU in the system.
359This functionlity provides access to the debug operations of the CPU.
360
361PROPERTIES
362
363 - compatible
364 Usage: required
365 Value type: <string>
366 Definition: Must include both an identifier specific to the cpu
367 of the form "fsl,dcsr-<cpu>-sb-proxy" in addition to the
368 generic compatible string "fsl,dcsr-cpu-sb-proxy".
369
370 - cpu-handle
371 Usage: required
372 Definition: A phandle to associate this debug node with its cpu.
373
374 - reg
375 Usage: required
376 Value type: <prop-encoded-array>
377 Definition: A standard property. Specifies the physical address
378 offset and length of the DCSR space registers of the device
379 configuration block.
380
381EXAMPLE
382 dcsr-cpu-sb-proxy@40000 {
383 compatible = "fsl,dcsr-e500mc-sb-proxy",
384 "fsl,dcsr-cpu-sb-proxy";
385 cpu-handle = <&cpu0>;
386 reg = <0x40000 0x1000>;
387 };
388 dcsr-cpu-sb-proxy@41000 {
389 compatible = "fsl,dcsr-e500mc-sb-proxy",
390 "fsl,dcsr-cpu-sb-proxy";
391 cpu-handle = <&cpu1>;
392 reg = <0x41000 0x1000>;
393 };
394
395=======================================================================
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt b/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt
index 70558c3f3682..5d586e1ccaf5 100644
--- a/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt
+++ b/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt
@@ -25,6 +25,16 @@ Required properties:
25 are routed to IPIC, and for 85xx/86xx cpu the interrupts are routed 25 are routed to IPIC, and for 85xx/86xx cpu the interrupts are routed
26 to MPIC. 26 to MPIC.
27 27
28Optional properties:
29- msi-address-64: 64-bit PCI address of the MSIIR register. The MSIIR register
30 is used for MSI messaging. The address of MSIIR in PCI address space is
31 the MSI message address.
32
33 This property may be used in virtualized environments where the hypervisor
34 has created an alternate mapping for the MSIR block. See below for an
35 explanation.
36
37
28Example: 38Example:
29 msi@41600 { 39 msi@41600 {
30 compatible = "fsl,mpc8610-msi", "fsl,mpic-msi"; 40 compatible = "fsl,mpc8610-msi", "fsl,mpic-msi";
@@ -41,3 +51,35 @@ Example:
41 0xe7 0>; 51 0xe7 0>;
42 interrupt-parent = <&mpic>; 52 interrupt-parent = <&mpic>;
43 }; 53 };
54
55The Freescale hypervisor and msi-address-64
56-------------------------------------------
57Normally, PCI devices have access to all of CCSR via an ATMU mapping. The
58Freescale MSI driver calculates the address of MSIIR (in the MSI register
59block) and sets that address as the MSI message address.
60
61In a virtualized environment, the hypervisor may need to create an IOMMU
62mapping for MSIIR. The Freescale ePAPR hypervisor has this requirement
63because of hardware limitations of the Peripheral Access Management Unit
64(PAMU), which is currently the only IOMMU that the hypervisor supports.
65The ATMU is programmed with the guest physical address, and the PAMU
66intercepts transactions and reroutes them to the true physical address.
67
68In the PAMU, each PCI controller is given only one primary window. The
69PAMU restricts DMA operations so that they can only occur within a window.
70Because PCI devices must be able to DMA to memory, the primary window must
71be used to cover all of the guest's memory space.
72
73PAMU primary windows can be divided into 256 subwindows, and each
74subwindow can have its own address mapping ("guest physical" to "true
75physical"). However, each subwindow has to have the same alignment, which
76means they cannot be located at just any address. Because of these
77restrictions, it is usually impossible to create a 4KB subwindow that
78covers MSIIR where it's normally located.
79
80Therefore, the hypervisor has to create a subwindow inside the same
81primary window used for memory, but mapped to the MSIR block (where MSIIR
82lives). The first subwindow after the end of guest memory is used for
83this. The address specified in the msi-address-64 property is the PCI
84address of MSIIR. The hypervisor configures the PAMU to map that address to
85the true physical address of MSIIR.