aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAfzal Mohammed <afzal@ti.com>2012-08-02 10:32:10 -0400
committerAfzal Mohammed <afzal@ti.com>2012-11-09 07:37:11 -0500
commit246da26d37311cd1b1489575f305042dcdecfd50 (patch)
treeeefb42b4e84cdc1ee8b0f984eba17aca8ba036ce
parent559d94b00c4dca74b060bae1feeb81cac38628a6 (diff)
ARM: OMAP2+: gpmc: generic timing calculation
Presently there are three peripherals that gets it timing by runtime calculation. Those peripherals can work with frequency scaling that affects gpmc clock. But timing calculation for them are in different ways. Here a generic runtime calculation method is proposed. Input to this function were selected so that they represent timing variables that are present in peripheral datasheets. Motive behind this was to achieve DT bindings for the inputs as is. Even though a few of the tusb6010 timings could not be made directly related to timings normally found on peripherals, expressions used were translated to those that could be justified. There are possibilities of improving the calculations, like calculating timing for read & write operations in a more similar way. Expressions derived here were tested for async onenand on omap3evm (as vanilla Kernel does not have omap3evm onenand support, local patch was used). Other peripherals, tusb6010, smc91x calculations were validated by simulating on omap3evm. Regarding "we_on" for onenand async, it was found that even for muxed address/data, it need not be greater than "adv_wr_off", but rather could be derived from write setup time for peripheral from start of access time, hence would more be in line with peripheral timings. With this method it was working fine. If it is required in some cases to have "we_on" same as "wr_data_mux_bus" (i.e. greater than "adv_wr_off"), another variable could be added to indicate it. But such a requirement is not expected though. It has been observed that "adv_rd_off" & "adv_wr_off" are currently calculated by adding an offset over "oe_on" and "we_on" respectively in the case of smc91x. But peripheral datasheet does not specify so and so "adv_rd(wr)_off" has been derived (to be specific, made ignorant of "oe_on" and "we_on") observing datasheet rather than adding an offset. Hence this generic routine is expected to work for smc91x (91C96 RX51 board). This was verified on smsc911x (9220 on OMAP3EVM) - a similar ethernet controller. Timings are calculated in ps to prevent rounding errors and converted to ns at final stage so that these values can be directly fed to gpmc_cs_set_timings(). gpmc_cs_set_timings() would be modified to take ps once all custom timing routines are replaced by the generic routine, at the same time generic timing routine would be modified to provide timings in ps. struct gpmc_timings field types are upgraded from u16 => u32 so that it can hold ps values. Whole of this exercise is being done to achieve driver and DT conversion. If timings could not be calculated in a peripheral agnostic way, either gpmc driver would have to be peripheral gnostic or a wrapper arrangement over gpmc driver would be required. Signed-off-by: Afzal Mohammed <afzal@ti.com>
-rw-r--r--Documentation/bus-devices/ti-gpmc.txt122
-rw-r--r--arch/arm/mach-omap2/gpmc.c325
-rw-r--r--arch/arm/mach-omap2/gpmc.h102
3 files changed, 529 insertions, 20 deletions
diff --git a/Documentation/bus-devices/ti-gpmc.txt b/Documentation/bus-devices/ti-gpmc.txt
new file mode 100644
index 000000000000..cc9ce57e0a26
--- /dev/null
+++ b/Documentation/bus-devices/ti-gpmc.txt
@@ -0,0 +1,122 @@
1GPMC (General Purpose Memory Controller):
2=========================================
3
4GPMC is an unified memory controller dedicated to interfacing external
5memory devices like
6 * Asynchronous SRAM like memories and application specific integrated
7 circuit devices.
8 * Asynchronous, synchronous, and page mode burst NOR flash devices
9 NAND flash
10 * Pseudo-SRAM devices
11
12GPMC is found on Texas Instruments SoC's (OMAP based)
13IP details: http://www.ti.com/lit/pdf/spruh73 section 7.1
14
15
16GPMC generic timing calculation:
17================================
18
19GPMC has certain timings that has to be programmed for proper
20functioning of the peripheral, while peripheral has another set of
21timings. To have peripheral work with gpmc, peripheral timings has to
22be translated to the form gpmc can understand. The way it has to be
23translated depends on the connected peripheral. Also there is a
24dependency for certain gpmc timings on gpmc clock frequency. Hence a
25generic timing routine was developed to achieve above requirements.
26
27Generic routine provides a generic method to calculate gpmc timings
28from gpmc peripheral timings. struct gpmc_device_timings fields has to
29be updated with timings from the datasheet of the peripheral that is
30connected to gpmc. A few of the peripheral timings can be fed either
31in time or in cycles, provision to handle this scenario has been
32provided (refer struct gpmc_device_timings definition). It may so
33happen that timing as specified by peripheral datasheet is not present
34in timing structure, in this scenario, try to correlate peripheral
35timing to the one available. If that doesn't work, try to add a new
36field as required by peripheral, educate generic timing routine to
37handle it, make sure that it does not break any of the existing.
38Then there may be cases where peripheral datasheet doesn't mention
39certain fields of struct gpmc_device_timings, zero those entries.
40
41Generic timing routine has been verified to work properly on
42multiple onenand's and tusb6010 peripherals.
43
44A word of caution: generic timing routine has been developed based
45on understanding of gpmc timings, peripheral timings, available
46custom timing routines, a kind of reverse engineering without
47most of the datasheets & hardware (to be exact none of those supported
48in mainline having custom timing routine) and by simulation.
49
50gpmc timing dependency on peripheral timings:
51[<gpmc_timing>: <peripheral timing1>, <peripheral timing2> ...]
52
531. common
54cs_on: t_ceasu
55adv_on: t_avdasu, t_ceavd
56
572. sync common
58sync_clk: clk
59page_burst_access: t_bacc
60clk_activation: t_ces, t_avds
61
623. read async muxed
63adv_rd_off: t_avdp_r
64oe_on: t_oeasu, t_aavdh
65access: t_iaa, t_oe, t_ce, t_aa
66rd_cycle: t_rd_cycle, t_cez_r, t_oez
67
684. read async non-muxed
69adv_rd_off: t_avdp_r
70oe_on: t_oeasu
71access: t_iaa, t_oe, t_ce, t_aa
72rd_cycle: t_rd_cycle, t_cez_r, t_oez
73
745. read sync muxed
75adv_rd_off: t_avdp_r, t_avdh
76oe_on: t_oeasu, t_ach, cyc_aavdh_oe
77access: t_iaa, cyc_iaa, cyc_oe
78rd_cycle: t_cez_r, t_oez, t_ce_rdyz
79
806. read sync non-muxed
81adv_rd_off: t_avdp_r
82oe_on: t_oeasu
83access: t_iaa, cyc_iaa, cyc_oe
84rd_cycle: t_cez_r, t_oez, t_ce_rdyz
85
867. write async muxed
87adv_wr_off: t_avdp_w
88we_on, wr_data_mux_bus: t_weasu, t_aavdh, cyc_aavhd_we
89we_off: t_wpl
90cs_wr_off: t_wph
91wr_cycle: t_cez_w, t_wr_cycle
92
938. write async non-muxed
94adv_wr_off: t_avdp_w
95we_on, wr_data_mux_bus: t_weasu
96we_off: t_wpl
97cs_wr_off: t_wph
98wr_cycle: t_cez_w, t_wr_cycle
99
1009. write sync muxed
101adv_wr_off: t_avdp_w, t_avdh
102we_on, wr_data_mux_bus: t_weasu, t_rdyo, t_aavdh, cyc_aavhd_we
103we_off: t_wpl, cyc_wpl
104cs_wr_off: t_wph
105wr_cycle: t_cez_w, t_ce_rdyz
106
10710. write sync non-muxed
108adv_wr_off: t_avdp_w
109we_on, wr_data_mux_bus: t_weasu, t_rdyo
110we_off: t_wpl, cyc_wpl
111cs_wr_off: t_wph
112wr_cycle: t_cez_w, t_ce_rdyz
113
114
115Note: Many of gpmc timings are dependent on other gpmc timings (a few
116gpmc timings purely dependent on other gpmc timings, a reason that
117some of the gpmc timings are missing above), and it will result in
118indirect dependency of peripheral timings to gpmc timings other than
119mentioned above, refer timing routine for more details. To know what
120these peripheral timings correspond to, please see explanations in
121struct gpmc_device_timings definition. And for gpmc timings refer
122IP details (link above).
diff --git a/arch/arm/mach-omap2/gpmc.c b/arch/arm/mach-omap2/gpmc.c
index 5619d1b48668..65468f6d7f0e 100644
--- a/arch/arm/mach-omap2/gpmc.c
+++ b/arch/arm/mach-omap2/gpmc.c
@@ -230,6 +230,18 @@ unsigned int gpmc_round_ns_to_ticks(unsigned int time_ns)
230 return ticks * gpmc_get_fclk_period() / 1000; 230 return ticks * gpmc_get_fclk_period() / 1000;
231} 231}
232 232
233static unsigned int gpmc_ticks_to_ps(unsigned int ticks)
234{
235 return ticks * gpmc_get_fclk_period();
236}
237
238static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps)
239{
240 unsigned long ticks = gpmc_ps_to_ticks(time_ps);
241
242 return ticks * gpmc_get_fclk_period();
243}
244
233static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value) 245static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value)
234{ 246{
235 u32 l; 247 u32 l;
@@ -796,6 +808,319 @@ static int __devinit gpmc_mem_init(void)
796 return 0; 808 return 0;
797} 809}
798 810
811static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk)
812{
813 u32 temp;
814 int div;
815
816 div = gpmc_calc_divider(sync_clk);
817 temp = gpmc_ps_to_ticks(time_ps);
818 temp = (temp + div - 1) / div;
819 return gpmc_ticks_to_ps(temp * div);
820}
821
822/* XXX: can the cycles be avoided ? */
823static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t,
824 struct gpmc_device_timings *dev_t)
825{
826 bool mux = dev_t->mux;
827 u32 temp;
828
829 /* adv_rd_off */
830 temp = dev_t->t_avdp_r;
831 /* XXX: mux check required ? */
832 if (mux) {
833 /* XXX: t_avdp not to be required for sync, only added for tusb
834 * this indirectly necessitates requirement of t_avdp_r and
835 * t_avdp_w instead of having a single t_avdp
836 */
837 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_avdh);
838 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
839 }
840 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
841
842 /* oe_on */
843 temp = dev_t->t_oeasu; /* XXX: remove this ? */
844 if (mux) {
845 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_ach);
846 temp = max_t(u32, temp, gpmc_t->adv_rd_off +
847 gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe));
848 }
849 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
850
851 /* access */
852 /* XXX: any scope for improvement ?, by combining oe_on
853 * and clk_activation, need to check whether
854 * access = clk_activation + round to sync clk ?
855 */
856 temp = max_t(u32, dev_t->t_iaa, dev_t->cyc_iaa * gpmc_t->sync_clk);
857 temp += gpmc_t->clk_activation;
858 if (dev_t->cyc_oe)
859 temp = max_t(u32, temp, gpmc_t->oe_on +
860 gpmc_ticks_to_ps(dev_t->cyc_oe));
861 gpmc_t->access = gpmc_round_ps_to_ticks(temp);
862
863 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
864 gpmc_t->cs_rd_off = gpmc_t->oe_off;
865
866 /* rd_cycle */
867 temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez);
868 temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) +
869 gpmc_t->access;
870 /* XXX: barter t_ce_rdyz with t_cez_r ? */
871 if (dev_t->t_ce_rdyz)
872 temp = max_t(u32, temp, gpmc_t->cs_rd_off + dev_t->t_ce_rdyz);
873 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
874
875 return 0;
876}
877
878static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t,
879 struct gpmc_device_timings *dev_t)
880{
881 bool mux = dev_t->mux;
882 u32 temp;
883
884 /* adv_wr_off */
885 temp = dev_t->t_avdp_w;
886 if (mux) {
887 temp = max_t(u32, temp,
888 gpmc_t->clk_activation + dev_t->t_avdh);
889 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
890 }
891 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
892
893 /* wr_data_mux_bus */
894 temp = max_t(u32, dev_t->t_weasu,
895 gpmc_t->clk_activation + dev_t->t_rdyo);
896 /* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?,
897 * and in that case remember to handle we_on properly
898 */
899 if (mux) {
900 temp = max_t(u32, temp,
901 gpmc_t->adv_wr_off + dev_t->t_aavdh);
902 temp = max_t(u32, temp, gpmc_t->adv_wr_off +
903 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
904 }
905 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
906
907 /* we_on */
908 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
909 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
910 else
911 gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
912
913 /* wr_access */
914 /* XXX: gpmc_capability check reqd ? , even if not, will not harm */
915 gpmc_t->wr_access = gpmc_t->access;
916
917 /* we_off */
918 temp = gpmc_t->we_on + dev_t->t_wpl;
919 temp = max_t(u32, temp,
920 gpmc_t->wr_access + gpmc_ticks_to_ps(1));
921 temp = max_t(u32, temp,
922 gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl));
923 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
924
925 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
926 dev_t->t_wph);
927
928 /* wr_cycle */
929 temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk);
930 temp += gpmc_t->wr_access;
931 /* XXX: barter t_ce_rdyz with t_cez_w ? */
932 if (dev_t->t_ce_rdyz)
933 temp = max_t(u32, temp,
934 gpmc_t->cs_wr_off + dev_t->t_ce_rdyz);
935 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
936
937 return 0;
938}
939
940static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t,
941 struct gpmc_device_timings *dev_t)
942{
943 bool mux = dev_t->mux;
944 u32 temp;
945
946 /* adv_rd_off */
947 temp = dev_t->t_avdp_r;
948 if (mux)
949 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
950 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
951
952 /* oe_on */
953 temp = dev_t->t_oeasu;
954 if (mux)
955 temp = max_t(u32, temp,
956 gpmc_t->adv_rd_off + dev_t->t_aavdh);
957 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
958
959 /* access */
960 temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */
961 gpmc_t->oe_on + dev_t->t_oe);
962 temp = max_t(u32, temp,
963 gpmc_t->cs_on + dev_t->t_ce);
964 temp = max_t(u32, temp,
965 gpmc_t->adv_on + dev_t->t_aa);
966 gpmc_t->access = gpmc_round_ps_to_ticks(temp);
967
968 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
969 gpmc_t->cs_rd_off = gpmc_t->oe_off;
970
971 /* rd_cycle */
972 temp = max_t(u32, dev_t->t_rd_cycle,
973 gpmc_t->cs_rd_off + dev_t->t_cez_r);
974 temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez);
975 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
976
977 return 0;
978}
979
980static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t,
981 struct gpmc_device_timings *dev_t)
982{
983 bool mux = dev_t->mux;
984 u32 temp;
985
986 /* adv_wr_off */
987 temp = dev_t->t_avdp_w;
988 if (mux)
989 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
990 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
991
992 /* wr_data_mux_bus */
993 temp = dev_t->t_weasu;
994 if (mux) {
995 temp = max_t(u32, temp, gpmc_t->adv_wr_off + dev_t->t_aavdh);
996 temp = max_t(u32, temp, gpmc_t->adv_wr_off +
997 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
998 }
999 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1000
1001 /* we_on */
1002 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1003 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1004 else
1005 gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1006
1007 /* we_off */
1008 temp = gpmc_t->we_on + dev_t->t_wpl;
1009 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1010
1011 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1012 dev_t->t_wph);
1013
1014 /* wr_cycle */
1015 temp = max_t(u32, dev_t->t_wr_cycle,
1016 gpmc_t->cs_wr_off + dev_t->t_cez_w);
1017 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1018
1019 return 0;
1020}
1021
1022static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t,
1023 struct gpmc_device_timings *dev_t)
1024{
1025 u32 temp;
1026
1027 gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) *
1028 gpmc_get_fclk_period();
1029
1030 gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk(
1031 dev_t->t_bacc,
1032 gpmc_t->sync_clk);
1033
1034 temp = max_t(u32, dev_t->t_ces, dev_t->t_avds);
1035 gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp);
1036
1037 if (gpmc_calc_divider(gpmc_t->sync_clk) != 1)
1038 return 0;
1039
1040 if (dev_t->ce_xdelay)
1041 gpmc_t->bool_timings.cs_extra_delay = true;
1042 if (dev_t->avd_xdelay)
1043 gpmc_t->bool_timings.adv_extra_delay = true;
1044 if (dev_t->oe_xdelay)
1045 gpmc_t->bool_timings.oe_extra_delay = true;
1046 if (dev_t->we_xdelay)
1047 gpmc_t->bool_timings.we_extra_delay = true;
1048
1049 return 0;
1050}
1051
1052static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t,
1053 struct gpmc_device_timings *dev_t)
1054{
1055 u32 temp;
1056
1057 /* cs_on */
1058 gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu);
1059
1060 /* adv_on */
1061 temp = dev_t->t_avdasu;
1062 if (dev_t->t_ce_avd)
1063 temp = max_t(u32, temp,
1064 gpmc_t->cs_on + dev_t->t_ce_avd);
1065 gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp);
1066
1067 if (dev_t->sync_write || dev_t->sync_read)
1068 gpmc_calc_sync_common_timings(gpmc_t, dev_t);
1069
1070 return 0;
1071}
1072
1073/* TODO: remove this function once all peripherals are confirmed to
1074 * work with generic timing. Simultaneously gpmc_cs_set_timings()
1075 * has to be modified to handle timings in ps instead of ns
1076*/
1077static void gpmc_convert_ps_to_ns(struct gpmc_timings *t)
1078{
1079 t->cs_on /= 1000;
1080 t->cs_rd_off /= 1000;
1081 t->cs_wr_off /= 1000;
1082 t->adv_on /= 1000;
1083 t->adv_rd_off /= 1000;
1084 t->adv_wr_off /= 1000;
1085 t->we_on /= 1000;
1086 t->we_off /= 1000;
1087 t->oe_on /= 1000;
1088 t->oe_off /= 1000;
1089 t->page_burst_access /= 1000;
1090 t->access /= 1000;
1091 t->rd_cycle /= 1000;
1092 t->wr_cycle /= 1000;
1093 t->bus_turnaround /= 1000;
1094 t->cycle2cycle_delay /= 1000;
1095 t->wait_monitoring /= 1000;
1096 t->clk_activation /= 1000;
1097 t->wr_access /= 1000;
1098 t->wr_data_mux_bus /= 1000;
1099}
1100
1101int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
1102 struct gpmc_device_timings *dev_t)
1103{
1104 memset(gpmc_t, 0, sizeof(*gpmc_t));
1105
1106 gpmc_calc_common_timings(gpmc_t, dev_t);
1107
1108 if (dev_t->sync_read)
1109 gpmc_calc_sync_read_timings(gpmc_t, dev_t);
1110 else
1111 gpmc_calc_async_read_timings(gpmc_t, dev_t);
1112
1113 if (dev_t->sync_write)
1114 gpmc_calc_sync_write_timings(gpmc_t, dev_t);
1115 else
1116 gpmc_calc_async_write_timings(gpmc_t, dev_t);
1117
1118 /* TODO: remove, see function definition */
1119 gpmc_convert_ps_to_ns(gpmc_t);
1120
1121 return 0;
1122}
1123
799static __devinit int gpmc_probe(struct platform_device *pdev) 1124static __devinit int gpmc_probe(struct platform_device *pdev)
800{ 1125{
801 int rc; 1126 int rc;
diff --git a/arch/arm/mach-omap2/gpmc.h b/arch/arm/mach-omap2/gpmc.h
index e08a51a7a76a..fe0a844d5007 100644
--- a/arch/arm/mach-omap2/gpmc.h
+++ b/arch/arm/mach-omap2/gpmc.h
@@ -94,42 +94,104 @@ struct gpmc_timings {
94 u32 sync_clk; 94 u32 sync_clk;
95 95
96 /* Chip-select signal timings corresponding to GPMC_CS_CONFIG2 */ 96 /* Chip-select signal timings corresponding to GPMC_CS_CONFIG2 */
97 u16 cs_on; /* Assertion time */ 97 u32 cs_on; /* Assertion time */
98 u16 cs_rd_off; /* Read deassertion time */ 98 u32 cs_rd_off; /* Read deassertion time */
99 u16 cs_wr_off; /* Write deassertion time */ 99 u32 cs_wr_off; /* Write deassertion time */
100 100
101 /* ADV signal timings corresponding to GPMC_CONFIG3 */ 101 /* ADV signal timings corresponding to GPMC_CONFIG3 */
102 u16 adv_on; /* Assertion time */ 102 u32 adv_on; /* Assertion time */
103 u16 adv_rd_off; /* Read deassertion time */ 103 u32 adv_rd_off; /* Read deassertion time */
104 u16 adv_wr_off; /* Write deassertion time */ 104 u32 adv_wr_off; /* Write deassertion time */
105 105
106 /* WE signals timings corresponding to GPMC_CONFIG4 */ 106 /* WE signals timings corresponding to GPMC_CONFIG4 */
107 u16 we_on; /* WE assertion time */ 107 u32 we_on; /* WE assertion time */
108 u16 we_off; /* WE deassertion time */ 108 u32 we_off; /* WE deassertion time */
109 109
110 /* OE signals timings corresponding to GPMC_CONFIG4 */ 110 /* OE signals timings corresponding to GPMC_CONFIG4 */
111 u16 oe_on; /* OE assertion time */ 111 u32 oe_on; /* OE assertion time */
112 u16 oe_off; /* OE deassertion time */ 112 u32 oe_off; /* OE deassertion time */
113 113
114 /* Access time and cycle time timings corresponding to GPMC_CONFIG5 */ 114 /* Access time and cycle time timings corresponding to GPMC_CONFIG5 */
115 u16 page_burst_access; /* Multiple access word delay */ 115 u32 page_burst_access; /* Multiple access word delay */
116 u16 access; /* Start-cycle to first data valid delay */ 116 u32 access; /* Start-cycle to first data valid delay */
117 u16 rd_cycle; /* Total read cycle time */ 117 u32 rd_cycle; /* Total read cycle time */
118 u16 wr_cycle; /* Total write cycle time */ 118 u32 wr_cycle; /* Total write cycle time */
119 119
120 u16 bus_turnaround; 120 u32 bus_turnaround;
121 u16 cycle2cycle_delay; 121 u32 cycle2cycle_delay;
122 122
123 u16 wait_monitoring; 123 u32 wait_monitoring;
124 u16 clk_activation; 124 u32 clk_activation;
125 125
126 /* The following are only on OMAP3430 */ 126 /* The following are only on OMAP3430 */
127 u16 wr_access; /* WRACCESSTIME */ 127 u32 wr_access; /* WRACCESSTIME */
128 u16 wr_data_mux_bus; /* WRDATAONADMUXBUS */ 128 u32 wr_data_mux_bus; /* WRDATAONADMUXBUS */
129 129
130 struct gpmc_bool_timings bool_timings; 130 struct gpmc_bool_timings bool_timings;
131}; 131};
132 132
133/* Device timings in picoseconds */
134struct gpmc_device_timings {
135 u32 t_ceasu; /* address setup to CS valid */
136 u32 t_avdasu; /* address setup to ADV valid */
137 /* XXX: try to combine t_avdp_r & t_avdp_w. Issue is
138 * of tusb using these timings even for sync whilst
139 * ideally for adv_rd/(wr)_off it should have considered
140 * t_avdh instead. This indirectly necessitates r/w
141 * variations of t_avdp as it is possible to have one
142 * sync & other async
143 */
144 u32 t_avdp_r; /* ADV low time (what about t_cer ?) */
145 u32 t_avdp_w;
146 u32 t_aavdh; /* address hold time */
147 u32 t_oeasu; /* address setup to OE valid */
148 u32 t_aa; /* access time from ADV assertion */
149 u32 t_iaa; /* initial access time */
150 u32 t_oe; /* access time from OE assertion */
151 u32 t_ce; /* access time from CS asertion */
152 u32 t_rd_cycle; /* read cycle time */
153 u32 t_cez_r; /* read CS deassertion to high Z */
154 u32 t_cez_w; /* write CS deassertion to high Z */
155 u32 t_oez; /* OE deassertion to high Z */
156 u32 t_weasu; /* address setup to WE valid */
157 u32 t_wpl; /* write assertion time */
158 u32 t_wph; /* write deassertion time */
159 u32 t_wr_cycle; /* write cycle time */
160
161 u32 clk;
162 u32 t_bacc; /* burst access valid clock to output delay */
163 u32 t_ces; /* CS setup time to clk */
164 u32 t_avds; /* ADV setup time to clk */
165 u32 t_avdh; /* ADV hold time from clk */
166 u32 t_ach; /* address hold time from clk */
167 u32 t_rdyo; /* clk to ready valid */
168
169 u32 t_ce_rdyz; /* XXX: description ?, or use t_cez instead */
170 u32 t_ce_avd; /* CS on to ADV on delay */
171
172 /* XXX: check the possibility of combining
173 * cyc_aavhd_oe & cyc_aavdh_we
174 */
175 u8 cyc_aavdh_oe;/* read address hold time in cycles */
176 u8 cyc_aavdh_we;/* write address hold time in cycles */
177 u8 cyc_oe; /* access time from OE assertion in cycles */
178 u8 cyc_wpl; /* write deassertion time in cycles */
179 u32 cyc_iaa; /* initial access time in cycles */
180
181 bool mux; /* address & data muxed */
182 bool sync_write;/* synchronous write */
183 bool sync_read; /* synchronous read */
184
185 /* extra delays */
186 bool ce_xdelay;
187 bool avd_xdelay;
188 bool oe_xdelay;
189 bool we_xdelay;
190};
191
192extern int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
193 struct gpmc_device_timings *dev_t);
194
133extern void gpmc_update_nand_reg(struct gpmc_nand_regs *reg, int cs); 195extern void gpmc_update_nand_reg(struct gpmc_nand_regs *reg, int cs);
134extern int gpmc_get_client_irq(unsigned irq_config); 196extern int gpmc_get_client_irq(unsigned irq_config);
135 197