/*
* linux/drivers/net/ethoc.c
*
* Copyright (C) 2007-2008 Avionic Design Development GmbH
* Copyright (C) 2008-2009 Avionic Design GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Written by Thierry Reding <thierry.reding@avionic-design.de>
*/
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/crc32.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <net/ethoc.h>
static int buffer_size = 0x8000; /* 32 KBytes */
module_param(buffer_size, int, 0);
MODULE_PARM_DESC(buffer_size, "DMA buffer allocation size");
/* register offsets */
#define MODER 0x00
#define INT_SOURCE 0x04
#define INT_MASK 0x08
#define IPGT 0x0c
#define IPGR1 0x10
#define IPGR2 0x14
#define PACKETLEN 0x18
#define COLLCONF 0x1c
#define TX_BD_NUM 0x20
#define CTRLMODER 0x24
#define MIIMODER 0x28
#define MIICOMMAND 0x2c
#define MIIADDRESS 0x30
#define MIITX_DATA 0x34
#define MIIRX_DATA 0x38
#define MIISTATUS 0x3c
#define MAC_ADDR0 0x40
#define MAC_ADDR1 0x44
#define ETH_HASH0 0x48
#define ETH_HASH1 0x4c
#define ETH_TXCTRL 0x50
/* mode register */
#define MODER_RXEN (1 << 0) /* receive enable */
#define MODER_TXEN (1 << 1) /* transmit enable */
#define MODER_NOPRE (1 << 2) /* no preamble */
#define MODER_BRO (1 << 3) /* broadcast address */
#define MODER_IAM (1 << 4) /* individual address mode */
#define MODER_PRO (1 << 5) /* promiscuous mode */
#define MODER_IFG (1 << 6) /* interframe gap for incoming frames */
#define MODER_LOOP (1 << 7) /* loopback */
#define MODER_NBO (1 << 8) /* no back-off */
#define MODER_EDE (1 << 9) /* excess defer enable */
#define MODER_FULLD (1 << 10) /* full duplex */
#define MODER_RESET (1 << 11) /* FIXME: reset (undocumented) */
#define MODER_DCRC (1 << 12) /* delayed CRC enable */
#define MODER_CRC (1 << 13) /* CRC enable */
#define MODER_HUGE (1 << 14) /* huge packets enable */
#define MODER_PAD (1 << 15) /* padding enabled */
#define MODER_RSM (1 << 16) /* receive small packets */
/* interrupt source and mask registers */
#define INT_MASK_TXF (1 << 0) /* transmit frame */
#define INT_MASK_TXE (1 << 1) /* transmit error */
#define INT_MASK_RXF (1 << 2) /* receive frame */
#define INT_MASK_RXE (1 << 3) /* receive error */
#define INT_MASK_BUSY (1 << 4)
#define INT_MASK_TXC (1 << 5) /* transmit control frame */
#define INT_MASK_RXC (1 << 6) /* receive control frame */
#define INT_MASK_TX (INT_MASK_TXF | INT_MASK_TXE)
#define INT_MASK_RX (INT_MASK_RXF | INT_MASK_RXE)
#define INT_MASK_ALL ( \
INT_MASK_TXF | INT_MASK_TXE | \
INT_MASK_RXF | INT_MASK_RXE | \
INT_MASK_TXC | INT_MASK_RXC | \
INT_MASK_BUSY \
)
/* packet length register */
#define PACKETLEN_MIN(min) (((min) & 0xffff) << 16)
#define PACKETLEN_MAX(max) (((max) & 0xffff) << 0)
#define PACKETLEN_MIN_MAX(min, max) (PACKETLEN_MIN(min) | \
PACKETLEN_MAX(max))
/* transmit buffer number register */
#define TX_BD_NUM_VAL(x) (((x) <= 0x80) ? (x) : 0x80)
/* control module mode register */
#define CTRLMODER_PASSALL (1 << 0) /* pass all receive frames */
#define CTRLMODER_RXFLOW (1 << 1) /* receive control flow */
#define CTRLMODER_TXFLOW (1 << 2) /* transmit control flow */
/* MII mode register */
#define MIIMODER_CLKDIV(x) ((x) & 0xfe) /* needs to be an even number */
#define MIIMODER_NOPRE (1 << 8) /* no preamble */
/* MII command register */
#define MIICOMMAND_SCAN (1 << 0) /* scan status */
#define MIICOMMAND_READ (1 << 1) /* read status */
#define MIICOMMAND_WRITE (1 << 2) /* write control data */
/* MII address register */
#define MIIADDRESS_FIAD(x) (((x) & 0x1f) << 0)
#define MIIADDRESS_RGAD(x) (((x) & 0x1f) << 8)
#define MIIADDRESS_ADDR(phy, reg) (MIIADDRESS_FIAD(phy) | \
MIIADDRESS_RGAD(reg))
/* MII transmit data register */
#define MIITX_DATA_VAL(x) ((x) & 0xffff)
/* MII receive data register */
#define MIIRX_DATA_VAL(x) ((x) & 0xffff)
/* MII status register */
#define MIISTATUS_LINKFAIL (1 << 0)
#define MIISTATUS_BUSY (1 << 1)
#define MIISTATUS_INVALID (1 << 2)
/* TX buffer descriptor */
#define TX_BD_CS (1 << 0) /* carrier sense lost */
#define TX_BD_DF (1 << 1) /* defer indication */
#define TX_BD_LC (1 << 2) /* late collision */
#define TX_BD_RL (1 << 3) /* retransmission limit */
#define TX_BD_RETRY_MASK (0x00f0)
#define TX_BD_RETRY(x) (((x) & 0x00f0) >> 4)
#define TX_BD_UR (1 << 8) /* transmitter underrun */
#define TX_BD_CRC (1 << 11) /* TX CRC enable */
#define TX_BD_PAD (1 << 12) /* pad enable for short packets */
#define TX_BD_WRAP (1 << 13)
#define TX_BD_IRQ (1 << 14) /* interrupt request enable */
#define TX_BD_READY (1 << 15) /* TX buffer ready */
#define TX_BD_LEN(x) (((x) & 0xffff) << 16)
#define TX_BD_LEN_MASK (0xffff << 16)
#define TX_BD_STATS (TX_BD_CS | TX_BD_DF | TX_BD_LC | \
TX_BD_RL | TX_BD_RETRY_MASK | TX_BD_UR)
/* RX buffer descriptor */
#define RX_BD_LC (1 << 0) /* late collision */
#define RX_BD_CRC (1 << 1) /* RX CRC error */
#define RX_BD_SF (1 << 2) /* short frame */
#define RX_BD_TL (1 << 3) /* too long */
#define RX_BD_DN (1 << 4) /* dribble nibble */
#define RX_BD_IS (1 << 5) /* invalid symbol */
#define RX_BD_OR (1 << 6) /* receiver overrun */
#define RX_BD_MISS (1 << 7)
#define RX_BD_CF (1 << 8) /* control frame */
#define RX_BD_WRAP (1 << 13)
#define RX_BD_IRQ (1 << 14) /* interrupt request enable */
#define RX_BD_EMPTY (1 << 15)
#define RX_BD_LEN(x) (((x) & 0xffff) << 16)
#define RX_BD_STATS (RX_BD_LC | RX_BD_CRC | RX_BD_SF | RX_BD_TL | \
RX_BD_DN | RX_BD_IS | RX_BD_OR | RX_BD_MISS)
#define ETHOC_BUFSIZ 1536
#define ETHOC_ZLEN 64
#define ETHOC_BD_BASE 0x400
#define ETHOC_TIMEOUT (HZ / 2)
#define ETHOC_MII_TIMEOUT (1 + (HZ / 5))
/**
* struct ethoc - driver-private device structure
* @iobase: pointer to I/O memory region
* @membase: pointer to buffer memory region
* @dma_alloc: dma allocated buffer size
* @io_region_size: I/O memory region size
* @num_tx: number of send buffers
* @cur_tx: last send buffer written
* @dty_tx: last buffer actually sent
* @num_rx: number of receive buffers
* @cur_rx: current receive buffer
* @vma: pointer to array of virtual memory addresses for buffers
* @netdev: pointer to network device structure
* @napi: NAPI structure
* @msg_enable: device state flags
* @lock: device lock
* @phy: attached PHY
* @mdio: MDIO bus for PHY access
* @phy_id: address of attached PHY
*/
struct ethoc {
void __iomem *iobase;
void __iomem *membase;
int dma_alloc;
resource_size_t io_region_size;
unsigned int num_tx;
unsigned int cur_tx;
unsigned int dty_tx;
unsigned int num_rx;
unsigned int cur_rx;
void** vma;
struct net_device *netdev;
struct napi_struct napi;
u32 msg_enable;
spinlock_t lock;
struct phy_device *phy;
struct mii_bus *mdio;
s8 phy_id;
};
/**
* struct ethoc_bd - buffer descriptor
* @stat: buffer statistics
* @addr: physical memory address
*/
struct ethoc_bd {
u32 stat;
u32 addr;
};
static inline u32 ethoc_read(struct ethoc *dev, loff_t offset)
{
return ioread32(dev->iobase + offset);
}
static inline void ethoc_write(struct ethoc *dev, loff_t offset, u32 data)
{
iowrite32(data, dev->iobase + offset);
}
static inline void ethoc_read_bd(struct ethoc *dev, int index,
struct ethoc_bd *bd)
{
loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
bd->stat = ethoc_read(dev, offset + 0);
bd->addr = ethoc_read(dev, offset + 4);
}
static inline void ethoc_write_bd(struct ethoc *dev, int index,
const struct ethoc_bd *bd)
{
loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
ethoc_write(dev, offset + 0, bd->stat);
ethoc_write(dev, offset + 4, bd->addr);
}
static inline void ethoc_enable_irq(struct ethoc *dev, u32 mask)
{
u32 imask = ethoc_read(dev, INT_MASK);
imask |= mask;
ethoc_write(dev, INT_MASK, imask);
}
static inline void ethoc_disable_irq(struct ethoc *dev, u32 mask)
{
u32 imask = ethoc_read(dev, INT_MASK);
imask &= ~mask;
ethoc_write(dev, INT_MASK, imask);
}
static inline void ethoc_ack_irq(struct ethoc *dev, u32 mask)
{
ethoc_write(dev, INT_SOURCE, mask);
}
static inline void ethoc_enable_rx_and_tx(struct ethoc *dev)
{
u32 mode = ethoc_read(dev, MODER);
mode |= MODER_RXEN | MODER_TXEN;
ethoc_write(dev, MODER, mode);
}
static inline void ethoc_disable_rx_and_tx(struct ethoc *dev)
{
u32 mode = ethoc_read(dev, MODER);
mode &= ~(MODER_RXEN | MODER_TXEN);
ethoc_write(dev, MODER, mode);
}
static int ethoc_init_ring(struct ethoc *dev, unsigned long mem_start)
{
struct ethoc_bd bd;
int i;
void* vma;
dev->cur_tx = 0;
dev->dty_tx = 0;
dev->cur_rx = 0;
ethoc_write(dev, TX_BD_NUM, dev->num_tx);
/* setup transmission buffers */
bd.addr = mem_start;
bd.stat = TX_BD_IRQ | TX_BD_CRC;
vma = dev->membase;
for (i = 0; i < dev->num_tx; i++) {
if (i == dev->num_tx - 1)
bd.stat |= TX_BD_WRAP;
ethoc_write_bd(dev, i, &bd);
bd.addr += ETHOC_BUFSIZ;
dev->vma[i] = vma;
vma += ETHOC_BUFSIZ;
}
bd.stat = RX_BD_EMPTY | RX_BD_IRQ;
for (i = 0; i < dev->num_rx; i++) {
if (i == dev->num_rx - 1)
bd.stat |= RX_BD_WRAP;
ethoc_write_bd(dev, dev->num_tx + i, &bd);
bd.addr += ETHOC_BUFSIZ;
dev->vma[dev->num_tx + i] = vma;
vma += ETHOC_BUFSIZ;
}
return 0;
}
static int ethoc_reset(struct ethoc *dev)
{
u32 mode;
/* TODO: reset controller? */
ethoc_disable_rx_and_tx(dev);
/* TODO: setup registers */
/* enable FCS generation and automatic padding */
mode = ethoc_read(dev, MODER);
mode |= MODER_CRC | MODER_PAD;
ethoc_write(dev, MODER, mode);
/* set full-duplex mode */
mode = ethoc_read(dev, MODER);
mode |= MODER_FULLD;
ethoc_write(dev, MODER, mode);
ethoc_write(dev, IPGT, 0x15);
ethoc_ack_irq(dev, INT_MASK_ALL);
ethoc_enable_irq(dev, INT_MASK_ALL);
ethoc_enable_rx_and_tx(dev);
return 0;
}
static unsigned int ethoc_update_rx_stats(struct ethoc *dev,
struct ethoc_bd *bd)
{
struct net_device *netdev = dev->netdev;
unsigned int ret = 0;
if (bd->stat & RX_BD_TL) {
dev_err(&netdev->dev, "RX: frame too long\n");
netdev->stats.rx_length_errors++;
ret++;
}
if (bd->stat & RX_BD_SF) {
dev_err(&netdev->dev, "RX: frame too short\n");
netdev->stats.rx_length_errors++;
ret++;
}
if (bd->stat & RX_BD_DN) {
dev_err(&netdev->dev, "RX: dribble nibble\n");
netdev->stats.rx_frame_errors++;
}
if (bd->stat & RX_BD_CRC) {
dev_err(&netdev->dev, "RX: wrong CRC\n");
netdev->stats.rx_crc_errors++;
ret++;
}
if (bd->stat & RX_BD_OR) {
dev_err(&netdev->dev, "RX: overrun\n");
netdev->stats.rx_over_errors++;
ret++;
}
if (bd->stat & RX_BD_MISS)
netdev->stats.rx_missed_errors++;
if (bd->stat & RX_BD_LC) {
dev_err(&netdev->dev, "RX: late collision\n");
netdev->stats.collisions++;
ret++;
}
return ret;
}
static int ethoc_rx(struct net_device *dev, int limit)
{
struct ethoc *priv = netdev_priv(dev);
int count;
for (count = 0; count < limit; ++count) {
unsigned int entry;
struct ethoc_bd bd;
entry = priv->num_tx + priv->cur_rx;
ethoc_read_bd(priv, entry, &bd);
if (bd.stat & RX_BD_EMPTY) {
ethoc_ack_irq(priv, INT_MASK_RX);
/* If packet (interrupt) came in between checking
* BD_EMTPY and clearing the interrupt source, then we
* risk missing the packet as the RX interrupt won't
* trigger right away when we reenable it; hence, check
* BD_EMTPY here again to make sure there isn't such a
* packet waiting for us...
*/
ethoc_read_bd(priv, entry, &bd);
if (bd.stat & RX_BD_EMPTY)
break;
}
if (ethoc_update_rx_stats(priv, &bd) == 0) {
int size = bd.stat >> 16;
struct sk_buff *skb;
size -= 4; /* strip the CRC */
skb = netdev_alloc_skb_ip_align(dev, size);
if (likely(skb)) {
void *src = priv->vma[entry];
memcpy_fromio(skb_put(skb, size), src, size);
skb->protocol = eth_type_trans(skb, dev);
dev->stats.rx_packets++;
dev->stats.rx_bytes += size;
netif_receive_skb(skb);
} else {
if (net_ratelimit())
dev_warn(&dev->dev, "low on memory - "
"packet dropped\n");
dev->stats.rx_dropped++;
break;
}
}
/* clear the buffer descriptor so it can be reused */
bd.stat &= ~RX_BD_STATS;
bd.stat |= RX_BD_EMPTY;
ethoc_write_bd(priv, entry, &bd);
if (++priv->cur_rx == priv->num_rx)
priv->cur_rx = 0;
}
return count;
}
static void ethoc_update_tx_stats(struct ethoc *dev, struct ethoc_bd *bd)
{
struct net_device *netdev = dev->netdev;
if (bd->stat & TX_BD_LC) {
dev_err(&netdev->dev, "TX: late collision\n");
netdev->stats.tx_window_errors++;
}
if (bd->stat & TX_BD_RL) {
dev_err(&netdev->dev, "TX: retransmit limit\n");
netdev->stats.tx_aborted_errors++;
}
if (bd->stat & TX_BD_UR) {
dev_err(&netdev->dev, "TX: underrun\n");
netdev->stats.tx_fifo_errors++;
}
if (bd->stat & TX_BD_CS) {
dev_err(&netdev->dev, "TX: carrier sense lost\n");
netdev->stats.tx_carrier_errors++;
}
if (bd->stat & TX_BD_STATS)
netdev->stats.tx_errors++;
netdev->stats.collisions += (bd->stat >> 4) & 0xf;
netdev->stats.tx_bytes += bd->stat >> 16;
netdev->stats.tx_packets++;
}
static int ethoc_tx(struct net_device *dev, int limit)
{
struct ethoc *priv = netdev_priv(dev);
int count;
struct ethoc_bd bd;
for (count = 0; count < limit; ++count) {
unsigned int entry;
entry = priv->dty_tx & (priv->num_tx-1);
ethoc_read_bd(priv, entry, &bd);
if (bd.stat & TX_BD_READY || (priv->dty_tx == priv->cur_tx)) {
ethoc_ack_irq(priv, INT_MASK_TX);
/* If interrupt came in between reading in the BD
* and clearing the interrupt source, then we risk
* missing the event as the TX interrupt won't trigger
* right away when we reenable it; hence, check
* BD_EMPTY here again to make sure there isn't such an
* event pending...
*/
ethoc_read_bd(priv, entry, &bd);
if (bd.stat & TX_BD_READY ||
(priv->dty_tx == priv->cur_tx))
break;
}
ethoc_update_tx_stats(priv, &bd);
priv->dty_tx++;
}
if ((priv->cur_tx - priv->dty_tx) <= (priv->num_tx / 2))
netif_wake_queue(dev);
return count;
}
static irqreturn_t ethoc_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct ethoc *priv = netdev_priv(dev);
u32 pending;
u32 mask;
/* Figure out what triggered the interrupt...
* The tricky bit here is that the interrupt source bits get
* set in INT_SOURCE for an event regardless of whether that
* event is masked or not. Thus, in order to figure out what
* triggered the interrupt, we need to remove the sources
* for all events that are currently masked. This behaviour
* is not particularly well documented but reasonable...
*/
mask = ethoc_read(priv, INT_MASK);
pending = ethoc_read(priv, INT_SOURCE);
pending &= mask;
if (unlikely(pending == 0)) {
return IRQ_NONE;
}
ethoc_ack_irq(priv, pending);
/* We always handle the dropped packet interrupt */
if (pending & INT_MASK_BUSY) {
dev_err(&dev->dev, "packet dropped\n");
dev->stats.rx_dropped++;
}
/* Handle receive/transmit event by switching to polling */
if (pending & (INT_MASK_TX | INT_MASK_RX)) {
ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX);
napi_schedule(&priv->napi);
}
return IRQ_HANDLED;
}
static int ethoc_get_mac_address(struct net_device *dev, void *addr)
{
struct ethoc *priv = netdev_priv(dev);
u8 *mac = (u8 *)addr;
u32 reg;
reg = ethoc_read(priv, MAC_ADDR0);
mac[2] = (reg >> 24) & 0xff;
mac[3] = (reg >> 16) & 0xff;
mac[4] = (reg >> 8) & 0xff;
mac[5] = (reg >> 0) & 0xff;
reg = ethoc_read(priv, MAC_ADDR1);
mac[0] = (reg >> 8) & 0xff;
mac[1] = (reg >> 0) & 0xff;
return 0;
}
static int ethoc_poll(struct napi_struct *napi, int budget)
{
struct ethoc *priv = container_of(napi, struct ethoc, napi);
int rx_work_done = 0;
int tx_work_done = 0;
rx_work_done = ethoc_rx(priv->netdev, budget);
tx_work_done = ethoc_tx(priv->netdev, budget);
if (rx_work_done < budget && tx_work_done < budget) {
napi_complete(napi);
ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX);
}
return rx_work_done;
}
static int ethoc_mdio_read(struct mii_bus *bus, int phy, int reg)
{
struct ethoc *priv = bus->priv;
int i;
ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg));
ethoc_write(priv, MIICOMMAND, MIICOMMAND_READ);
for (i=0; i < 5; i++) {
u32 status = ethoc_read(priv, MIISTATUS);
if (!(status & MIISTATUS_BUSY)) {
u32 data = ethoc_read(priv, MIIRX_DATA);
/* reset MII command register */
ethoc_write(priv, MIICOMMAND, 0);
return data;
}
usleep_range(100,200);
}
return -EBUSY;
}
static int ethoc_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
{
struct ethoc *priv = bus->priv;
int i;
ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg));
ethoc_write(priv, MIITX_DATA, val);
ethoc_write(priv, MIICOMMAND, MIICOMMAND_WRITE);
for (i=0; i < 5; i++) {
u32 stat = ethoc_read(priv, MIISTATUS);
if (!(stat & MIISTATUS_BUSY)) {
/* reset MII command register */
ethoc_write(priv, MIICOMMAND, 0);
return 0;
}
usleep_range(100,200);
}
return -EBUSY;
}
static int ethoc_mdio_reset(struct mii_bus *bus)
{
return 0;
}
static void ethoc_mdio_poll(struct net_device *dev)
{
}
static int __devinit ethoc_mdio_probe(struct net_device *dev)
{
struct ethoc *priv = netdev_priv(dev);
struct phy_device *phy;
int err;
if (priv->phy_id != -1) {
phy = priv->mdio->phy_map[priv->phy_id];
} else {
phy = phy_find_first(priv->mdio);
}
if (!phy) {
dev_err(&dev->dev, "no PHY found\n");
return -ENXIO;
}
err = phy_connect_direct(dev, phy, ethoc_mdio_poll, 0,
PHY_INTERFACE_MODE_GMII);
if (err) {
dev_err(&dev->dev, "could not attach to PHY\n");
return err;
}
priv->phy = phy;
return 0;
}
static int ethoc_open(struct net_device *dev)
{
struct ethoc *priv = netdev_priv(dev);
int ret;
ret = request_irq(dev->irq, ethoc_interrupt, IRQF_SHARED,
dev->name, dev);
if (ret)
return ret;
ethoc_init_ring(priv, dev->mem_start);
ethoc_reset(priv);
if (netif_queue_stopped(dev)) {
dev_dbg(&dev->dev, " resuming queue\n");
netif_wake_queue(dev);
} else {
dev_dbg(&dev->dev, " starting queue\n");
netif_start_queue(dev);
}
phy_start(priv->phy);
napi_enable(&priv->napi);
if (netif_msg_ifup(priv)) {
dev_info(&dev->dev, "I/O: %08lx Memory: %08lx-%08lx\n",
dev->base_addr, dev->mem_start, dev->mem_end);
}
return 0;
}
static int ethoc_stop(struct net_device *dev)
{
struct ethoc *priv = netdev_priv(dev);
napi_disable(&priv->napi);
if (priv->phy)
phy_stop(priv->phy);
ethoc_disable_rx_and_tx(priv);
free_irq(dev->irq, dev);
if (!netif_queue_stopped(dev))
netif_stop_queue(dev);
return 0;
}
static int ethoc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct ethoc *priv = netdev_priv(dev);
struct mii_ioctl_data *mdio = if_mii(ifr);
struct phy_device *phy = NULL;
if (!netif_running(dev))
return -EINVAL;
if (cmd != SIOCGMIIPHY) {
if (mdio->phy_id >= PHY_MAX_ADDR)
return -ERANGE;
phy = priv->mdio->phy_map[mdio->phy_id];
if (!phy)
return -ENODEV;
} else {
phy = priv->phy;
}
return phy_mii_ioctl(phy, ifr, cmd);
}
static int ethoc_config(struct net_device *dev, struct ifmap *map)
{
return -ENOSYS;
}
static int ethoc_set_mac_address(struct net_device *dev, void *addr)
{
struct ethoc *priv = netdev_priv(dev);
u8 *mac = (u8 *)addr;
ethoc_write(priv, MAC_ADDR0, (mac[2] << 24) | (mac[3] << 16) |
(mac[4] << 8) | (mac[5] << 0));
ethoc_write(priv, MAC_ADDR1, (mac[0] << 8) | (mac[1] << 0));
return 0;
}
static void ethoc_set_multicast_list(struct net_device *dev)
{
struct ethoc *priv = netdev_priv(dev);
u32 mode = ethoc_read(priv, MODER);
struct netdev_hw_addr *ha;
u32 hash[2] = { 0, 0 };
/* set loopback mode if requested */
if (dev->flags & IFF_LOOPBACK)
mode |= MODER_LOOP;
else
mode &= ~MODER_LOOP;
/* receive broadcast frames if requested */
if (dev->flags & IFF_BROADCAST)
mode &= ~MODER_BRO;
else
mode |= MODER_BRO;
/* enable promiscuous mode if requested */
if (dev->flags & IFF_PROMISC)
mode |= MODER_PRO;
else
mode &= ~MODER_PRO;
ethoc_write(priv, MODER, mode);
/* receive multicast frames */
if (dev->flags & IFF_ALLMULTI) {
hash[0] = 0xffffffff;
hash[1] = 0xffffffff;
} else {
netdev_for_each_mc_addr(ha, dev) {
u32 crc = ether_crc(ETH_ALEN, ha->addr);
int bit = (crc >> 26) & 0x3f;
hash[bit >> 5] |= 1 << (bit & 0x1f);
}
}
ethoc_write(priv, ETH_HASH0, hash[0]);
ethoc_write(priv, ETH_HASH1, hash[1]);
}
static int ethoc_change_mtu(struct net_device *dev, int new_mtu)
{
return -ENOSYS;
}
static void ethoc_tx_timeout(struct net_device *dev)
{
struct ethoc *priv = netdev_priv(dev);
u32 pending = ethoc_read(priv, INT_SOURCE);
if (likely(pending))
ethoc_interrupt(dev->irq, dev);
}
static netdev_tx_t ethoc_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ethoc *priv = netdev_priv(dev);
struct ethoc_bd bd;
unsigned int entry;
void *dest;
if (unlikely(skb->len > ETHOC_BUFSIZ)) {
dev->stats.tx_errors++;
goto out;
}
entry = priv->cur_tx % priv->num_tx;
spin_lock_irq(&priv->lock);
priv->cur_tx++;
ethoc_read_bd(priv, entry, &bd);
if (unlikely(skb->len < ETHOC_ZLEN))
bd.stat |= TX_BD_PAD;
else
bd.stat &= ~TX_BD_PAD;
dest = priv->vma[entry];
memcpy_toio(dest, skb->data, skb->len);
bd.stat &= ~(TX_BD_STATS | TX_BD_LEN_MASK);
bd.stat |= TX_BD_LEN(skb->len);
ethoc_write_bd(priv, entry, &bd);
bd.stat |= TX_BD_READY;
ethoc_write_bd(priv, entry, &bd);
if (priv->cur_tx == (priv->dty_tx + priv->num_tx)) {
dev_dbg(&dev->dev, "stopping queue\n");
netif_stop_queue(dev);
}
spin_unlock_irq(&priv->lock);
skb_tx_timestamp(skb);
out:
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static const struct net_device_ops ethoc_netdev_ops = {
.ndo_open = ethoc_open,
.ndo_stop = ethoc_stop,
.ndo_do_ioctl = ethoc_ioctl,
.ndo_set_config = ethoc_config,
.ndo_set_mac_address = ethoc_set_mac_address,
.ndo_set_multicast_list = ethoc_set_multicast_list,
.ndo_change_mtu = ethoc_change_mtu,
.ndo_tx_timeout = ethoc_tx_timeout,
.ndo_start_xmit = ethoc_start_xmit,
};
/**
* ethoc_probe() - initialize OpenCores ethernet MAC
* pdev: platform device
*/
static int __devinit ethoc_probe(struct platform_device *pdev)
{
struct net_device *netdev = NULL;
struct resource *res = NULL;
struct resource *mmio = NULL;
struct resource *mem = NULL;
struct ethoc *priv = NULL;
unsigned int phy;
int num_bd;
int ret = 0;
/* allocate networking device */
netdev = alloc_etherdev(sizeof(struct ethoc));
if (!netdev) {
dev_err(&pdev->dev, "cannot allocate network device\n");
ret = -ENOMEM;
goto out;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
platform_set_drvdata(pdev, netdev);
/* obtain I/O memory space */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "cannot obtain I/O memory space\n");
ret = -ENXIO;
goto free;
}
mmio = devm_request_mem_region(&pdev->dev, res->start,
resource_size(res), res->name);
if (!mmio) {
dev_err(&pdev->dev, "cannot request I/O memory space\n");
ret = -ENXIO;
goto free;
}
netdev->base_addr = mmio->start;
/* obtain buffer memory space */
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (res) {
mem = devm_request_mem_region(&pdev->dev, res->start,
resource_size(res), res->name);
if (!mem) {
dev_err(&pdev->dev, "cannot request memory space\n");
ret = -ENXIO;
goto free;
}
netdev->mem_start = mem->start;
netdev->mem_end = mem->end;
}
/* obtain device IRQ number */
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!res) {
dev_err(&pdev->dev, "cannot obtain IRQ\n");
ret = -ENXIO;
goto free;
}
netdev->irq = res->start;
/* setup driver-private data */
priv = netdev_priv(netdev);
priv->netdev = netdev;
priv->dma_alloc = 0;
priv->io_region_size = mmio->end - mmio->start + 1;
priv->iobase = devm_ioremap_nocache(&pdev->dev, netdev->base_addr,
resource_size(mmio));
if (!priv->iobase) {
dev_err(&pdev->dev, "cannot remap I/O memory space\n");
ret = -ENXIO;
goto error;
}
if (netdev->mem_end) {
priv->membase = devm_ioremap_nocache(&pdev->dev,
netdev->mem_start, resource_size(mem));
if (!priv->membase) {
dev_err(&pdev->dev, "cannot remap memory space\n");
ret = -ENXIO;
goto error;
}
} else {
/* Allocate buffer memory */
priv->membase = dmam_alloc_coherent(&pdev->dev,
buffer_size, (void *)&netdev->mem_start,
GFP_KERNEL);
if (!priv->membase) {
dev_err(&pdev->dev, "cannot allocate %dB buffer\n",
buffer_size);
ret = -ENOMEM;
goto error;
}
netdev->mem_end = netdev->mem_start + buffer_size;
priv->dma_alloc = buffer_size;
}
/* calculate the number of TX/RX buffers, maximum 128 supported */
num_bd = min_t(unsigned int,
128, (netdev->mem_end - netdev->mem_start + 1) / ETHOC_BUFSIZ);
if (num_bd < 4) {
ret = -ENODEV;
goto error;
}
/* num_tx must be a power of two */
priv->num_tx = rounddown_pow_of_two(num_bd >> 1);
priv->num_rx = num_bd - priv->num_tx;
dev_dbg(&pdev->dev, "ethoc: num_tx: %d num_rx: %d\n",
priv->num_tx, priv->num_rx);
priv->vma = devm_kzalloc(&pdev->dev, num_bd*sizeof(void*), GFP_KERNEL);
if (!priv->vma) {
ret = -ENOMEM;
goto error;
}
/* Allow the platform setup code to pass in a MAC address. */
if (pdev->dev.platform_data) {
struct ethoc_platform_data *pdata = pdev->dev.platform_data;
memcpy(netdev->dev_addr, pdata->hwaddr, IFHWADDRLEN);
priv->phy_id = pdata->phy_id;
} else {
priv->phy_id = -1;
#ifdef CONFIG_OF
{
const uint8_t* mac;
mac = of_get_property(pdev->dev.of_node,
"local-mac-address",
NULL);
if (mac)
memcpy(netdev->dev_addr, mac, IFHWADDRLEN);
}
#endif
}
/* Check that the given MAC address is valid. If it isn't, read the
* current MAC from the controller. */
if (!is_valid_ether_addr(netdev->dev_addr))
ethoc_get_mac_address(netdev, netdev->dev_addr);
/* Check the MAC again for validity, if it still isn't choose and
* program a random one. */
if (!is_valid_ether_addr(netdev->dev_addr))
random_ether_addr(netdev->dev_addr);
ethoc_set_mac_address(netdev, netdev->dev_addr);
/* register MII bus */
priv->mdio = mdiobus_alloc();
if (!priv->mdio) {
ret = -ENOMEM;
goto free;
}
priv->mdio->name = "ethoc-mdio";
snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%d",
priv->mdio->name, pdev->id);
priv->mdio->read = ethoc_mdio_read;
priv->mdio->write = ethoc_mdio_write;
priv->mdio->reset = ethoc_mdio_reset;
priv->mdio->priv = priv;
priv->mdio->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
if (!priv->mdio->irq) {
ret = -ENOMEM;
goto free_mdio;
}
for (phy = 0; phy < PHY_MAX_ADDR; phy++)
priv->mdio->irq[phy] = PHY_POLL;
ret = mdiobus_register(priv->mdio);
if (ret) {
dev_err(&netdev->dev, "failed to register MDIO bus\n");
goto free_mdio;
}
ret = ethoc_mdio_probe(netdev);
if (ret) {
dev_err(&netdev->dev, "failed to probe MDIO bus\n");
goto error;
}
ether_setup(netdev);
/* setup the net_device structure */
netdev->netdev_ops = ðoc_netdev_ops;
netdev->watchdog_timeo = ETHOC_TIMEOUT;
netdev->features |= 0;
/* setup NAPI */
netif_napi_add(netdev, &priv->napi, ethoc_poll, 64);
spin_lock_init(&priv->lock);
ret = register_netdev(netdev);
if (ret < 0) {
dev_err(&netdev->dev, "failed to register interface\n");
goto error2;
}
goto out;
error2:
netif_napi_del(&priv->napi);
error:
mdiobus_unregister(priv->mdio);
free_mdio:
kfree(priv->mdio->irq);
mdiobus_free(priv->mdio);
free:
free_netdev(netdev);
out:
return ret;
}
/**
* ethoc_remove() - shutdown OpenCores ethernet MAC
* @pdev: platform device
*/
static int __devexit ethoc_remove(struct platform_device *pdev)
{
struct net_device *netdev = platform_get_drvdata(pdev);
struct ethoc *priv = netdev_priv(netdev);
platform_set_drvdata(pdev, NULL);
if (netdev) {
netif_napi_del(&priv->napi);
phy_disconnect(priv->phy);
priv->phy = NULL;
if (priv->mdio) {
mdiobus_unregister(priv->mdio);
kfree(priv->mdio->irq);
mdiobus_free(priv->mdio);
}
unregister_netdev(netdev);
free_netdev(netdev);
}
return 0;
}
#ifdef CONFIG_PM
static int ethoc_suspend(struct platform_device *pdev, pm_message_t state)
{
return -ENOSYS;
}
static int ethoc_resume(struct platform_device *pdev)
{
return -ENOSYS;
}
#else
# define ethoc_suspend NULL
# define ethoc_resume NULL
#endif
static struct of_device_id ethoc_match[] = {
{ .compatible = "opencores,ethoc", },
{},
};
MODULE_DEVICE_TABLE(of, ethoc_match);
static struct platform_driver ethoc_driver = {
.probe = ethoc_probe,
.remove = __devexit_p(ethoc_remove),
.suspend = ethoc_suspend,
.resume = ethoc_resume,
.driver = {
.name = "ethoc",
.owner = THIS_MODULE,
.of_match_table = ethoc_match,
},
};
static int __init ethoc_init(void)
{
return platform_driver_register(ðoc_driver);
}
static void __exit ethoc_exit(void)
{
platform_driver_unregister(ðoc_driver);
}
module_init(ethoc_init);
module_exit(ethoc_exit);
MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>");
MODULE_DESCRIPTION("OpenCores Ethernet MAC driver");
MODULE_LICENSE("GPL v2");