aboutsummaryrefslogblamecommitdiffstats
path: root/drivers/isdn/hardware/mISDN/hfcmulti.c
blob: ff5ec3cbeb775a6db7b38714795abd122fee661d (plain) (tree)
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572













































































































































                                                                                
                                      























                                                     

                                    
                                                             
                                                                   



































                                                                             
                                  



















































































































































































































                                                                                
           



                                                             
                                                                



                          
                                                                









                                            
           


                                                              

                                                        



                          

                                                        



                          
                                                              




                            
           



                                                            
                                                                



                          
                                                                










                                            
           



                                                             
                                                                           




                              
                                                                           



                          
                                                              









































































































































































































                                                                               
           

















































































                                                                                
             
           








                                                                          
                   












                                                             
           






























                                                                              
           









































                                                                              
                                                       

                                 


























                                                                         
                                                                 




















                                                                             
                                                         




























                                                                                
                                                                 











































                                                                              

                                 


















                                                                        
                                                         




















                                                                           
                                         
                            
                                         





















                                                                           

                                            








































































                                                                                
                                                         


































                                                                               
                                                                          















































                                                                               
                                                         














































































































                                                                                
                                                                         


































                                                                                
                                                         


























                                                                           






























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                



                                                                               

                                         


















                                                                    
                                                       























































































                                                                               
                                              



                                                                           



















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                
                                                                   




















































































































                                                                               
                                 




















                                                                           
                                                       















































                                                                                
                                                       









































































































































































































































































































































































































































                                                                                  
                                                             






































































































































































                                                                              
                                                             























































































































































































                                                                                
                                                             

















                                                                     

                                                         





















































































                                                                             
                                                             



                                                                        
                                                                











































































                                                                              
                                                                          
















































                                                                              









                                                                             





















                                                             
                                                   

                                                            







                                                   

                                                                            
                
                                                                   







                                                                  




                               




























                                                                           







                              
/*
 * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
 *
 * Author	Andreas Eversberg (jolly@eversberg.eu)
 * ported to mqueue mechanism:
 *		Peter Sprenger (sprengermoving-bytes.de)
 *
 * inspired by existing hfc-pci driver:
 * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
 * Copyright 2008  by Karsten Keil (kkeil@suse.de)
 * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *
 * Thanks to Cologne Chip AG for this great controller!
 */

/*
 * module parameters:
 * type:
 *	By default (0), the card is automatically detected.
 *	Or use the following combinations:
 *	Bit 0-7   = 0x00001 = HFC-E1 (1 port)
 * or	Bit 0-7   = 0x00004 = HFC-4S (4 ports)
 * or	Bit 0-7   = 0x00008 = HFC-8S (8 ports)
 *	Bit 8     = 0x00100 = uLaw (instead of aLaw)
 *	Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
 *	Bit 10    = spare
 *	Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
 * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
 *	Bit 13	  = spare
 *	Bit 14    = 0x04000 = Use external ram (128K)
 *	Bit 15    = 0x08000 = Use external ram (512K)
 *	Bit 16    = 0x10000 = Use 64 timeslots instead of 32
 * or	Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
 *	Bit 18    = spare
 *	Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
 * (all other bits are reserved and shall be 0)
 *	example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
 *		 bus (PCM master)
 *
 * port: (optional or required for all ports on all installed cards)
 *	HFC-4S/HFC-8S only bits:
 *	Bit 0	  = 0x001 = Use master clock for this S/T interface
 *			    (ony once per chip).
 *	Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
 *			    Don't use this unless you know what you are doing!
 *	Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
 *	example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
 *		 received from port 1
 *
 *	HFC-E1 only bits:
 *	Bit 0     = 0x0001 = interface: 0=copper, 1=optical
 *	Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
 *	Bit 2     = 0x0004 = Report LOS
 *	Bit 3     = 0x0008 = Report AIS
 *	Bit 4     = 0x0010 = Report SLIP
 *	Bit 5     = 0x0020 = Report RDI
 *	Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
 *			     mode instead.
 *	Bit 9	  = 0x0200 = Force get clock from interface, even in NT mode.
 * or	Bit 10	  = 0x0400 = Force put clock to interface, even in TE mode.
 *	Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
 *			     (E1 only)
 *	Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
 *			     for default.
 * (all other bits are reserved and shall be 0)
 *
 * debug:
 *	NOTE: only one debug value must be given for all cards
 *	enable debugging (see hfc_multi.h for debug options)
 *
 * poll:
 *	NOTE: only one poll value must be given for all cards
 *	Give the number of samples for each fifo process.
 *	By default 128 is used. Decrease to reduce delay, increase to
 *	reduce cpu load. If unsure, don't mess with it!
 *	Valid is 8, 16, 32, 64, 128, 256.
 *
 * pcm:
 *	NOTE: only one pcm value must be given for every card.
 *	The PCM bus id tells the mISDNdsp module about the connected PCM bus.
 *	By default (0), the PCM bus id is 100 for the card that is PCM master.
 *	If multiple cards are PCM master (because they are not interconnected),
 *	each card with PCM master will have increasing PCM id.
 *	All PCM busses with the same ID are expected to be connected and have
 *	common time slots slots.
 *	Only one chip of the PCM bus must be master, the others slave.
 *	-1 means no support of PCM bus not even.
 *	Omit this value, if all cards are interconnected or none is connected.
 *	If unsure, don't give this parameter.
 *
 * dslot:
 *	NOTE: only one poll value must be given for every card.
 *	Also this value must be given for non-E1 cards. If omitted, the E1
 *	card has D-channel on time slot 16, which is default.
 *	If 1..15 or 17..31, an alternate time slot is used for D-channel.
 *	In this case, the application must be able to handle this.
 *	If -1 is given, the D-channel is disabled and all 31 slots can be used
 *	for B-channel. (only for specific applications)
 *	If you don't know how to use it, you don't need it!
 *
 * iomode:
 *	NOTE: only one mode value must be given for every card.
 *	-> See hfc_multi.h for HFC_IO_MODE_* values
 *	By default, the IO mode is pci memory IO (MEMIO).
 *	Some cards requre specific IO mode, so it cannot be changed.
 *	It may be usefull to set IO mode to register io (REGIO) to solve
 *	PCI bridge problems.
 *	If unsure, don't give this parameter.
 *
 * clockdelay_nt:
 *	NOTE: only one clockdelay_nt value must be given once for all cards.
 *	Give the value of the clock control register (A_ST_CLK_DLY)
 *	of the S/T interfaces in NT mode.
 *	This register is needed for the TBR3 certification, so don't change it.
 *
 * clockdelay_te:
 *	NOTE: only one clockdelay_te value must be given once
 *	Give the value of the clock control register (A_ST_CLK_DLY)
 *	of the S/T interfaces in TE mode.
 *	This register is needed for the TBR3 certification, so don't change it.
 */

/*
 * debug register access (never use this, it will flood your system log)
 * #define HFC_REGISTER_DEBUG
 */

#define HFC_MULTI_VERSION	"2.03"

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/mISDNhw.h>
#include <linux/mISDNdsp.h>

/*
#define IRQCOUNT_DEBUG
#define IRQ_DEBUG
*/

#include "hfc_multi.h"
#ifdef ECHOPREP
#include "gaintab.h"
#endif

#define	MAX_CARDS	8
#define	MAX_PORTS	(8 * MAX_CARDS)

static LIST_HEAD(HFClist);
static spinlock_t HFClock; /* global hfc list lock */

static void ph_state_change(struct dchannel *);

static struct hfc_multi *syncmaster;
static int plxsd_master; /* if we have a master card (yet) */
static spinlock_t plx_lock; /* may not acquire other lock inside */

#define	TYP_E1		1
#define	TYP_4S		4
#define TYP_8S		8

static int poll_timer = 6;	/* default = 128 samples = 16ms */
/* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
#define	CLKDEL_TE	0x0f	/* CLKDEL in TE mode */
#define	CLKDEL_NT	0x6c	/* CLKDEL in NT mode
				   (0x60 MUST be included!) */
static u_char silence =	0xff;	/* silence by LAW */

#define	DIP_4S	0x1		/* DIP Switches for Beronet 1S/2S/4S cards */
#define	DIP_8S	0x2		/* DIP Switches for Beronet 8S+ cards */
#define	DIP_E1	0x3		/* DIP Switches for Beronet E1 cards */

/*
 * module stuff
 */

static uint	type[MAX_CARDS];
static uint	pcm[MAX_CARDS];
static uint	dslot[MAX_CARDS];
static uint	iomode[MAX_CARDS];
static uint	port[MAX_PORTS];
static uint	debug;
static uint	poll;
static uint	timer;
static uint	clockdelay_te = CLKDEL_TE;
static uint	clockdelay_nt = CLKDEL_NT;

static int	HFC_cnt, Port_cnt, PCM_cnt = 99;

MODULE_AUTHOR("Andreas Eversberg");
MODULE_LICENSE("GPL");
MODULE_VERSION(HFC_MULTI_VERSION);
module_param(debug, uint, S_IRUGO | S_IWUSR);
module_param(poll, uint, S_IRUGO | S_IWUSR);
module_param(timer, uint, S_IRUGO | S_IWUSR);
module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
module_param_array(pcm, uint, NULL, S_IRUGO | S_IWUSR);
module_param_array(dslot, uint, NULL, S_IRUGO | S_IWUSR);
module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);

#ifdef HFC_REGISTER_DEBUG
#define HFC_outb(hc, reg, val) \
	(hc->HFC_outb(hc, reg, val, __func__, __LINE__))
#define HFC_outb_nodebug(hc, reg, val) \
	(hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
#define HFC_inb(hc, reg) \
	(hc->HFC_inb(hc, reg, __func__, __LINE__))
#define HFC_inb_nodebug(hc, reg) \
	(hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
#define HFC_inw(hc, reg) \
	(hc->HFC_inw(hc, reg, __func__, __LINE__))
#define HFC_inw_nodebug(hc, reg) \
	(hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
#define HFC_wait(hc) \
	(hc->HFC_wait(hc, __func__, __LINE__))
#define HFC_wait_nodebug(hc) \
	(hc->HFC_wait_nodebug(hc, __func__, __LINE__))
#else
#define HFC_outb(hc, reg, val)		(hc->HFC_outb(hc, reg, val))
#define HFC_outb_nodebug(hc, reg, val)	(hc->HFC_outb_nodebug(hc, reg, val))
#define HFC_inb(hc, reg)		(hc->HFC_inb(hc, reg))
#define HFC_inb_nodebug(hc, reg)	(hc->HFC_inb_nodebug(hc, reg))
#define HFC_inw(hc, reg)		(hc->HFC_inw(hc, reg))
#define HFC_inw_nodebug(hc, reg)	(hc->HFC_inw_nodebug(hc, reg))
#define HFC_wait(hc)			(hc->HFC_wait(hc))
#define HFC_wait_nodebug(hc)		(hc->HFC_wait_nodebug(hc))
#endif

/* HFC_IO_MODE_PCIMEM */
static void
#ifdef HFC_REGISTER_DEBUG
HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
		const char *function, int line)
#else
HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
#endif
{
	writeb(val, (hc->pci_membase)+reg);
}
static u_char
#ifdef HFC_REGISTER_DEBUG
HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
#else
HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
#endif
{
	return readb((hc->pci_membase)+reg);
}
static u_short
#ifdef HFC_REGISTER_DEBUG
HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
#else
HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
#endif
{
	return readw((hc->pci_membase)+reg);
}
static void
#ifdef HFC_REGISTER_DEBUG
HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
#else
HFC_wait_pcimem(struct hfc_multi *hc)
#endif
{
	while (readb((hc->pci_membase)+R_STATUS) & V_BUSY);
}

/* HFC_IO_MODE_REGIO */
static void
#ifdef HFC_REGISTER_DEBUG
HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
	const char *function, int line)
#else
HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
#endif
{
	outb(reg, (hc->pci_iobase)+4);
	outb(val, hc->pci_iobase);
}
static u_char
#ifdef HFC_REGISTER_DEBUG
HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
#else
HFC_inb_regio(struct hfc_multi *hc, u_char reg)
#endif
{
	outb(reg, (hc->pci_iobase)+4);
	return inb(hc->pci_iobase);
}
static u_short
#ifdef HFC_REGISTER_DEBUG
HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
#else
HFC_inw_regio(struct hfc_multi *hc, u_char reg)
#endif
{
	outb(reg, (hc->pci_iobase)+4);
	return inw(hc->pci_iobase);
}
static void
#ifdef HFC_REGISTER_DEBUG
HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
#else
HFC_wait_regio(struct hfc_multi *hc)
#endif
{
	outb(R_STATUS, (hc->pci_iobase)+4);
	while (inb(hc->pci_iobase) & V_BUSY);
}

#ifdef HFC_REGISTER_DEBUG
static void
HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
		const char *function, int line)
{
	char regname[256] = "", bits[9] = "xxxxxxxx";
	int i;

	i = -1;
	while (hfc_register_names[++i].name) {
		if (hfc_register_names[i].reg == reg)
			strcat(regname, hfc_register_names[i].name);
	}
	if (regname[0] == '\0')
		strcpy(regname, "register");

	bits[7] = '0'+(!!(val&1));
	bits[6] = '0'+(!!(val&2));
	bits[5] = '0'+(!!(val&4));
	bits[4] = '0'+(!!(val&8));
	bits[3] = '0'+(!!(val&16));
	bits[2] = '0'+(!!(val&32));
	bits[1] = '0'+(!!(val&64));
	bits[0] = '0'+(!!(val&128));
	printk(KERN_DEBUG
	    "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
	    hc->id, reg, regname, val, bits, function, line);
	HFC_outb_nodebug(hc, reg, val);
}
static u_char
HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
{
	char regname[256] = "", bits[9] = "xxxxxxxx";
	u_char val = HFC_inb_nodebug(hc, reg);
	int i;

	i = 0;
	while (hfc_register_names[i++].name)
		;
	while (hfc_register_names[++i].name) {
		if (hfc_register_names[i].reg == reg)
			strcat(regname, hfc_register_names[i].name);
	}
	if (regname[0] == '\0')
		strcpy(regname, "register");

	bits[7] = '0'+(!!(val&1));
	bits[6] = '0'+(!!(val&2));
	bits[5] = '0'+(!!(val&4));
	bits[4] = '0'+(!!(val&8));
	bits[3] = '0'+(!!(val&16));
	bits[2] = '0'+(!!(val&32));
	bits[1] = '0'+(!!(val&64));
	bits[0] = '0'+(!!(val&128));
	printk(KERN_DEBUG
	    "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
	    hc->id, reg, regname, val, bits, function, line);
	return val;
}
static u_short
HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
{
	char regname[256] = "";
	u_short val = HFC_inw_nodebug(hc, reg);
	int i;

	i = 0;
	while (hfc_register_names[i++].name)
		;
	while (hfc_register_names[++i].name) {
		if (hfc_register_names[i].reg == reg)
			strcat(regname, hfc_register_names[i].name);
	}
	if (regname[0] == '\0')
		strcpy(regname, "register");

	printk(KERN_DEBUG
	    "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
	    hc->id, reg, regname, val, function, line);
	return val;
}
static void
HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
{
	printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
	    hc->id, function, line);
	HFC_wait_nodebug(hc);
}
#endif

/* write fifo data (REGIO) */
static void
write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
{
	outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
	while (len>>2) {
		outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
		data += 4;
		len -= 4;
	}
	while (len>>1) {
		outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
		data += 2;
		len -= 2;
	}
	while (len) {
		outb(*data, hc->pci_iobase);
		data++;
		len--;
	}
}
/* write fifo data (PCIMEM) */
static void
write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
{
	while (len>>2) {
		writel(cpu_to_le32(*(u32 *)data),
			hc->pci_membase + A_FIFO_DATA0);
		data += 4;
		len -= 4;
	}
	while (len>>1) {
		writew(cpu_to_le16(*(u16 *)data),
			hc->pci_membase + A_FIFO_DATA0);
		data += 2;
		len -= 2;
	}
	while (len) {
		writeb(*data, hc->pci_membase + A_FIFO_DATA0);
		data++;
		len--;
	}
}
/* read fifo data (REGIO) */
static void
read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
{
	outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
	while (len>>2) {
		*(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
		data += 4;
		len -= 4;
	}
	while (len>>1) {
		*(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
		data += 2;
		len -= 2;
	}
	while (len) {
		*data = inb(hc->pci_iobase);
		data++;
		len--;
	}
}

/* read fifo data (PCIMEM) */
static void
read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
{
	while (len>>2) {
		*(u32 *)data =
			le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
		data += 4;
		len -= 4;
	}
	while (len>>1) {
		*(u16 *)data =
			le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
		data += 2;
		len -= 2;
	}
	while (len) {
		*data = readb(hc->pci_membase + A_FIFO_DATA0);
		data++;
		len--;
	}
}


static void
enable_hwirq(struct hfc_multi *hc)
{
	hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
}

static void
disable_hwirq(struct hfc_multi *hc)
{
	hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
}

#define	NUM_EC 2
#define	MAX_TDM_CHAN 32


inline void
enablepcibridge(struct hfc_multi *c)
{
	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
}

inline void
disablepcibridge(struct hfc_multi *c)
{
	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
}

inline unsigned char
readpcibridge(struct hfc_multi *hc, unsigned char address)
{
	unsigned short cipv;
	unsigned char data;

	if (!hc->pci_iobase)
		return 0;

	/* slow down a PCI read access by 1 PCI clock cycle */
	HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/

	if (address == 0)
		cipv = 0x4000;
	else
		cipv = 0x5800;

	/* select local bridge port address by writing to CIP port */
	/* data = HFC_inb(c, cipv); * was _io before */
	outw(cipv, hc->pci_iobase + 4);
	data = inb(hc->pci_iobase);

	/* restore R_CTRL for normal PCI read cycle speed */
	HFC_outb(hc, R_CTRL, 0x0); /* was _io before */

	return data;
}

inline void
writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
{
	unsigned short cipv;
	unsigned int datav;

	if (!hc->pci_iobase)
		return;

	if (address == 0)
		cipv = 0x4000;
	else
		cipv = 0x5800;

	/* select local bridge port address by writing to CIP port */
	outw(cipv, hc->pci_iobase + 4);
	/* define a 32 bit dword with 4 identical bytes for write sequence */
	datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
	    ((__u32) data << 24);

	/*
	 * write this 32 bit dword to the bridge data port
	 * this will initiate a write sequence of up to 4 writes to the same
	 * address on the local bus interface the number of write accesses
	 * is undefined but >=1 and depends on the next PCI transaction
	 * during write sequence on the local bus
	 */
	outl(datav, hc->pci_iobase);
}

inline void
cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
{
	/* Do data pin read low byte */
	HFC_outb(hc, R_GPIO_OUT1, reg);
}

inline void
cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
{
	cpld_set_reg(hc, reg);

	enablepcibridge(hc);
	writepcibridge(hc, 1, val);
	disablepcibridge(hc);

	return;
}

inline unsigned char
cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
{
	unsigned char bytein;

	cpld_set_reg(hc, reg);

	/* Do data pin read low byte */
	HFC_outb(hc, R_GPIO_OUT1, reg);

	enablepcibridge(hc);
	bytein = readpcibridge(hc, 1);
	disablepcibridge(hc);

	return bytein;
}

inline void
vpm_write_address(struct hfc_multi *hc, unsigned short addr)
{
	cpld_write_reg(hc, 0, 0xff & addr);
	cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
}

inline unsigned short
vpm_read_address(struct hfc_multi *c)
{
	unsigned short addr;
	unsigned short highbit;

	addr = cpld_read_reg(c, 0);
	highbit = cpld_read_reg(c, 1);

	addr = addr | (highbit << 8);

	return addr & 0x1ff;
}

inline unsigned char
vpm_in(struct hfc_multi *c, int which, unsigned short addr)
{
	unsigned char res;

	vpm_write_address(c, addr);

	if (!which)
		cpld_set_reg(c, 2);
	else
		cpld_set_reg(c, 3);

	enablepcibridge(c);
	res = readpcibridge(c, 1);
	disablepcibridge(c);

	cpld_set_reg(c, 0);

	return res;
}

inline void
vpm_out(struct hfc_multi *c, int which, unsigned short addr,
    unsigned char data)
{
	vpm_write_address(c, addr);

	enablepcibridge(c);

	if (!which)
		cpld_set_reg(c, 2);
	else
		cpld_set_reg(c, 3);

	writepcibridge(c, 1, data);

	cpld_set_reg(c, 0);

	disablepcibridge(c);

	{
	unsigned char regin;
	regin = vpm_in(c, which, addr);
	if (regin != data)
		printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
			"0x%x\n", data, addr, regin);
	}

}


static void
vpm_init(struct hfc_multi *wc)
{
	unsigned char reg;
	unsigned int mask;
	unsigned int i, x, y;
	unsigned int ver;

	for (x = 0; x < NUM_EC; x++) {
		/* Setup GPIO's */
		if (!x) {
			ver = vpm_in(wc, x, 0x1a0);
			printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
		}

		for (y = 0; y < 4; y++) {
			vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
			vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
			vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
		}

		/* Setup TDM path - sets fsync and tdm_clk as inputs */
		reg = vpm_in(wc, x, 0x1a3); /* misc_con */
		vpm_out(wc, x, 0x1a3, reg & ~2);

		/* Setup Echo length (256 taps) */
		vpm_out(wc, x, 0x022, 1);
		vpm_out(wc, x, 0x023, 0xff);

		/* Setup timeslots */
		vpm_out(wc, x, 0x02f, 0x00);
		mask = 0x02020202 << (x * 4);

		/* Setup the tdm channel masks for all chips */
		for (i = 0; i < 4; i++)
			vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);

		/* Setup convergence rate */
		printk(KERN_DEBUG "VPM: A-law mode\n");
		reg = 0x00 | 0x10 | 0x01;
		vpm_out(wc, x, 0x20, reg);
		printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
		/*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */

		vpm_out(wc, x, 0x24, 0x02);
		reg = vpm_in(wc, x, 0x24);
		printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);

		/* Initialize echo cans */
		for (i = 0; i < MAX_TDM_CHAN; i++) {
			if (mask & (0x00000001 << i))
				vpm_out(wc, x, i, 0x00);
		}

		/*
		 * ARM arch at least disallows a udelay of
		 * more than 2ms... it gives a fake "__bad_udelay"
		 * reference at link-time.
		 * long delays in kernel code are pretty sucky anyway
		 * for now work around it using 5 x 2ms instead of 1 x 10ms
		 */

		udelay(2000);
		udelay(2000);
		udelay(2000);
		udelay(2000);
		udelay(2000);

		/* Put in bypass mode */
		for (i = 0; i < MAX_TDM_CHAN; i++) {
			if (mask & (0x00000001 << i))
				vpm_out(wc, x, i, 0x01);
		}

		/* Enable bypass */
		for (i = 0; i < MAX_TDM_CHAN; i++) {
			if (mask & (0x00000001 << i))
				vpm_out(wc, x, 0x78 + i, 0x01);
		}

	}
}

#ifdef UNUSED
static void
vpm_check(struct hfc_multi *hctmp)
{
	unsigned char gpi2;

	gpi2 = HFC_inb(hctmp, R_GPI_IN2);

	if ((gpi2 & 0x3) != 0x3)
		printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
}
#endif /* UNUSED */


/*
 * Interface to enable/disable the HW Echocan
 *
 * these functions are called within a spin_lock_irqsave on
 * the channel instance lock, so we are not disturbed by irqs
 *
 * we can later easily change the interface to make  other
 * things configurable, for now we configure the taps
 *
 */

static void
vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
{
	unsigned int timeslot;
	unsigned int unit;
	struct bchannel *bch = hc->chan[ch].bch;
#ifdef TXADJ
	int txadj = -4;
	struct sk_buff *skb;
#endif
	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
		return;

	if (!bch)
		return;

#ifdef TXADJ
	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
		sizeof(int), &txadj, GFP_ATOMIC);
	if (skb)
		recv_Bchannel_skb(bch, skb);
#endif

	timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
	unit = ch % 4;

	printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
	    taps, timeslot);

	vpm_out(hc, unit, timeslot, 0x7e);
}

static void
vpm_echocan_off(struct hfc_multi *hc, int ch)
{
	unsigned int timeslot;
	unsigned int unit;
	struct bchannel *bch = hc->chan[ch].bch;
#ifdef TXADJ
	int txadj = 0;
	struct sk_buff *skb;
#endif

	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
		return;

	if (!bch)
		return;

#ifdef TXADJ
	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
		sizeof(int), &txadj, GFP_ATOMIC);
	if (skb)
		recv_Bchannel_skb(bch, skb);
#endif

	timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
	unit = ch % 4;

	printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
	    timeslot);
	/* FILLME */
	vpm_out(hc, unit, timeslot, 0x01);
}


/*
 * Speech Design resync feature
 * NOTE: This is called sometimes outside interrupt handler.
 * We must lock irqsave, so no other interrupt (other card) will occurr!
 * Also multiple interrupts may nest, so must lock each access (lists, card)!
 */
static inline void
hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
{
	struct hfc_multi *hc, *next, *pcmmaster = NULL;
	void __iomem *plx_acc_32;
	u_int pv;
	u_long flags;

	spin_lock_irqsave(&HFClock, flags);
	spin_lock(&plx_lock); /* must be locked inside other locks */

	if (debug & DEBUG_HFCMULTI_PLXSD)
		printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
			__func__, syncmaster);

	/* select new master */
	if (newmaster) {
		if (debug & DEBUG_HFCMULTI_PLXSD)
			printk(KERN_DEBUG "using provided controller\n");
	} else {
		list_for_each_entry_safe(hc, next, &HFClist, list) {
			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
				if (hc->syncronized) {
					newmaster = hc;
					break;
				}
			}
		}
	}

	/* Disable sync of all cards */
	list_for_each_entry_safe(hc, next, &HFClist, list) {
		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
			pv = readl(plx_acc_32);
			pv &= ~PLX_SYNC_O_EN;
			writel(pv, plx_acc_32);
			if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
				pcmmaster = hc;
				if (hc->type == 1) {
					if (debug & DEBUG_HFCMULTI_PLXSD)
						printk(KERN_DEBUG
							"Schedule SYNC_I\n");
					hc->e1_resync |= 1; /* get SYNC_I */
				}
			}
		}
	}

	if (newmaster) {
		hc = newmaster;
		if (debug & DEBUG_HFCMULTI_PLXSD)
			printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
				"interface.\n", hc->id, hc);
		/* Enable new sync master */
		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
		pv = readl(plx_acc_32);
		pv |= PLX_SYNC_O_EN;
		writel(pv, plx_acc_32);
		/* switch to jatt PLL, if not disabled by RX_SYNC */
		if (hc->type == 1 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
			if (debug & DEBUG_HFCMULTI_PLXSD)
				printk(KERN_DEBUG "Schedule jatt PLL\n");
			hc->e1_resync |= 2; /* switch to jatt */
		}
	} else {
		if (pcmmaster) {
			hc = pcmmaster;
			if (debug & DEBUG_HFCMULTI_PLXSD)
				printk(KERN_DEBUG
					"id=%d (0x%p) = PCM master syncronized "
					"with QUARTZ\n", hc->id, hc);
			if (hc->type == 1) {
				/* Use the crystal clock for the PCM
				   master card */
				if (debug & DEBUG_HFCMULTI_PLXSD)
					printk(KERN_DEBUG
					    "Schedule QUARTZ for HFC-E1\n");
				hc->e1_resync |= 4; /* switch quartz */
			} else {
				if (debug & DEBUG_HFCMULTI_PLXSD)
					printk(KERN_DEBUG
					    "QUARTZ is automatically "
					    "enabled by HFC-%dS\n", hc->type);
			}
			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
			pv = readl(plx_acc_32);
			pv |= PLX_SYNC_O_EN;
			writel(pv, plx_acc_32);
		} else
			if (!rm)
				printk(KERN_ERR "%s no pcm master, this MUST "
					"not happen!\n", __func__);
	}
	syncmaster = newmaster;

	spin_unlock(&plx_lock);
	spin_unlock_irqrestore(&HFClock, flags);
}

/* This must be called AND hc must be locked irqsave!!! */
inline void
plxsd_checksync(struct hfc_multi *hc, int rm)
{
	if (hc->syncronized) {
		if (syncmaster == NULL) {
			if (debug & DEBUG_HFCMULTI_PLXSD)
				printk(KERN_WARNING "%s: GOT sync on card %d"
					" (id=%d)\n", __func__, hc->id + 1,
					hc->id);
			hfcmulti_resync(hc, hc, rm);
		}
	} else {
		if (syncmaster == hc) {
			if (debug & DEBUG_HFCMULTI_PLXSD)
				printk(KERN_WARNING "%s: LOST sync on card %d"
					" (id=%d)\n", __func__, hc->id + 1,
					hc->id);
			hfcmulti_resync(hc, NULL, rm);
		}
	}
}


/*
 * free hardware resources used by driver
 */
static void
release_io_hfcmulti(struct hfc_multi *hc)
{
	void __iomem *plx_acc_32;
	u_int	pv;
	u_long	plx_flags;

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: entered\n", __func__);

	/* soft reset also masks all interrupts */
	hc->hw.r_cirm |= V_SRES;
	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
	udelay(1000);
	hc->hw.r_cirm &= ~V_SRES;
	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
	udelay(1000); /* instead of 'wait' that may cause locking */

	/* release Speech Design card, if PLX was initialized */
	if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
		if (debug & DEBUG_HFCMULTI_PLXSD)
			printk(KERN_DEBUG "%s: release PLXSD card %d\n",
			    __func__, hc->id + 1);
		spin_lock_irqsave(&plx_lock, plx_flags);
		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
		writel(PLX_GPIOC_INIT, plx_acc_32);
		pv = readl(plx_acc_32);
		/* Termination off */
		pv &= ~PLX_TERM_ON;
		/* Disconnect the PCM */
		pv |= PLX_SLAVE_EN_N;
		pv &= ~PLX_MASTER_EN;
		pv &= ~PLX_SYNC_O_EN;
		/* Put the DSP in Reset */
		pv &= ~PLX_DSP_RES_N;
		writel(pv, plx_acc_32);
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_WARNING "%s: PCM off: PLX_GPIO=%x\n",
				__func__, pv);
		spin_unlock_irqrestore(&plx_lock, plx_flags);
	}

	/* disable memory mapped ports / io ports */
	test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
	pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
	if (hc->pci_membase)
		iounmap(hc->pci_membase);
	if (hc->plx_membase)
		iounmap(hc->plx_membase);
	if (hc->pci_iobase)
		release_region(hc->pci_iobase, 8);

	if (hc->pci_dev) {
		pci_disable_device(hc->pci_dev);
		pci_set_drvdata(hc->pci_dev, NULL);
	}
	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: done\n", __func__);
}

/*
 * function called to reset the HFC chip. A complete software reset of chip
 * and fifos is done. All configuration of the chip is done.
 */

static int
init_chip(struct hfc_multi *hc)
{
	u_long			flags, val, val2 = 0, rev;
	int			i, err = 0;
	u_char			r_conf_en, rval;
	void __iomem		*plx_acc_32;
	u_int			pv;
	u_long			plx_flags, hfc_flags;
	int			plx_count;
	struct hfc_multi	*pos, *next, *plx_last_hc;

	spin_lock_irqsave(&hc->lock, flags);
	/* reset all registers */
	memset(&hc->hw, 0, sizeof(struct hfcm_hw));

	/* revision check */
	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: entered\n", __func__);
	val = HFC_inb(hc, R_CHIP_ID)>>4;
	if (val != 0x8 && val != 0xc && val != 0xe) {
		printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
		err = -EIO;
		goto out;
	}
	rev = HFC_inb(hc, R_CHIP_RV);
	printk(KERN_INFO
	    "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
	    val, rev, (rev == 0) ? " (old FIFO handling)" : "");
	if (rev == 0) {
		test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
		printk(KERN_WARNING
		    "HFC_multi: NOTE: Your chip is revision 0, "
		    "ask Cologne Chip for update. Newer chips "
		    "have a better FIFO handling. Old chips "
		    "still work but may have slightly lower "
		    "HDLC transmit performance.\n");
	}
	if (rev > 1) {
		printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
		    "consider chip revision = %ld. The chip / "
		    "bridge may not work.\n", rev);
	}

	/* set s-ram size */
	hc->Flen = 0x10;
	hc->Zmin = 0x80;
	hc->Zlen = 384;
	hc->DTMFbase = 0x1000;
	if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
			    __func__);
		hc->hw.r_ctrl |= V_EXT_RAM;
		hc->hw.r_ram_sz = 1;
		hc->Flen = 0x20;
		hc->Zmin = 0xc0;
		hc->Zlen = 1856;
		hc->DTMFbase = 0x2000;
	}
	if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
			    __func__);
		hc->hw.r_ctrl |= V_EXT_RAM;
		hc->hw.r_ram_sz = 2;
		hc->Flen = 0x20;
		hc->Zmin = 0xc0;
		hc->Zlen = 8000;
		hc->DTMFbase = 0x2000;
	}
	hc->max_trans = poll << 1;
	if (hc->max_trans > hc->Zlen)
		hc->max_trans = hc->Zlen;

	/* Speech Design PLX bridge */
	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
		if (debug & DEBUG_HFCMULTI_PLXSD)
			printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
			    __func__, hc->id + 1);
		spin_lock_irqsave(&plx_lock, plx_flags);
		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
		writel(PLX_GPIOC_INIT, plx_acc_32);
		pv = readl(plx_acc_32);
		/* The first and the last cards are terminating the PCM bus */
		pv |= PLX_TERM_ON; /* hc is currently the last */
		/* Disconnect the PCM */
		pv |= PLX_SLAVE_EN_N;
		pv &= ~PLX_MASTER_EN;
		pv &= ~PLX_SYNC_O_EN;
		/* Put the DSP in Reset */
		pv &= ~PLX_DSP_RES_N;
		writel(pv, plx_acc_32);
		spin_unlock_irqrestore(&plx_lock, plx_flags);
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_WARNING "%s: slave/term: PLX_GPIO=%x\n",
				__func__, pv);
		/*
		 * If we are the 3rd PLXSD card or higher, we must turn
		 * termination of last PLXSD card off.
		 */
		spin_lock_irqsave(&HFClock, hfc_flags);
		plx_count = 0;
		plx_last_hc = NULL;
		list_for_each_entry_safe(pos, next, &HFClist, list) {
			if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
				plx_count++;
				if (pos != hc)
					plx_last_hc = pos;
			}
		}
		if (plx_count >= 3) {
			if (debug & DEBUG_HFCMULTI_PLXSD)
				printk(KERN_DEBUG "%s: card %d is between, so "
					"we disable termination\n",
				    __func__, plx_last_hc->id + 1);
			spin_lock_irqsave(&plx_lock, plx_flags);
			plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
			pv = readl(plx_acc_32);
			pv &= ~PLX_TERM_ON;
			writel(pv, plx_acc_32);
			spin_unlock_irqrestore(&plx_lock, plx_flags);
			if (debug & DEBUG_HFCMULTI_INIT)
			    printk(KERN_WARNING "%s: term off: PLX_GPIO=%x\n",
					__func__, pv);
		}
		spin_unlock_irqrestore(&HFClock, hfc_flags);
		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
	}

	/* we only want the real Z2 read-pointer for revision > 0 */
	if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
		hc->hw.r_ram_sz |= V_FZ_MD;

	/* select pcm mode */
	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
			    __func__);
	} else
	if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: setting PCM into master mode\n",
			    __func__);
		hc->hw.r_pcm_md0 |= V_PCM_MD;
	} else {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: performing PCM auto detect\n",
			    __func__);
	}

	/* soft reset */
	HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
	HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
	HFC_outb(hc, R_FIFO_MD, 0);
	hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES | V_RLD_EPR;
	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
	udelay(100);
	hc->hw.r_cirm = 0;
	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
	udelay(100);
	HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);

	/* Speech Design PLX bridge pcm and sync mode */
	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
		spin_lock_irqsave(&plx_lock, plx_flags);
		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
		pv = readl(plx_acc_32);
		/* Connect PCM */
		if (hc->hw.r_pcm_md0 & V_PCM_MD) {
			pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
			pv |= PLX_SYNC_O_EN;
			if (debug & DEBUG_HFCMULTI_INIT)
				printk(KERN_WARNING "%s: master: PLX_GPIO=%x\n",
					__func__, pv);
		} else {
			pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
			pv &= ~PLX_SYNC_O_EN;
			if (debug & DEBUG_HFCMULTI_INIT)
				printk(KERN_WARNING "%s: slave: PLX_GPIO=%x\n",
					__func__, pv);
		}
		writel(pv, plx_acc_32);
		spin_unlock_irqrestore(&plx_lock, plx_flags);
	}

	/* PCM setup */
	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
	if (hc->slots == 32)
		HFC_outb(hc, R_PCM_MD1, 0x00);
	if (hc->slots == 64)
		HFC_outb(hc, R_PCM_MD1, 0x10);
	if (hc->slots == 128)
		HFC_outb(hc, R_PCM_MD1, 0x20);
	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
		HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
	else
		HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
	for (i = 0; i < 256; i++) {
		HFC_outb_nodebug(hc, R_SLOT, i);
		HFC_outb_nodebug(hc, A_SL_CFG, 0);
		HFC_outb_nodebug(hc, A_CONF, 0);
		hc->slot_owner[i] = -1;
	}

	/* set clock speed */
	if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG
			    "%s: setting double clock\n", __func__);
		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
	}

	/* B410P GPIO */
	if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
		printk(KERN_NOTICE "Setting GPIOs\n");
		HFC_outb(hc, R_GPIO_SEL, 0x30);
		HFC_outb(hc, R_GPIO_EN1, 0x3);
		udelay(1000);
		printk(KERN_NOTICE "calling vpm_init\n");
		vpm_init(hc);
	}

	/* check if R_F0_CNT counts (8 kHz frame count) */
	val = HFC_inb(hc, R_F0_CNTL);
	val += HFC_inb(hc, R_F0_CNTH) << 8;
	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG
		    "HFC_multi F0_CNT %ld after reset\n", val);
	spin_unlock_irqrestore(&hc->lock, flags);
	set_current_state(TASK_UNINTERRUPTIBLE);
	schedule_timeout((HZ/100)?:1); /* Timeout minimum 10ms */
	spin_lock_irqsave(&hc->lock, flags);
	val2 = HFC_inb(hc, R_F0_CNTL);
	val2 += HFC_inb(hc, R_F0_CNTH) << 8;
	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG
			"HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
		    val2);
	if (val2 >= val+8) { /* 1 ms */
		/* it counts, so we keep the pcm mode */
		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
			printk(KERN_INFO "controller is PCM bus MASTER\n");
		else
		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
			printk(KERN_INFO "controller is PCM bus SLAVE\n");
		else {
			test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
			printk(KERN_INFO "controller is PCM bus SLAVE "
				"(auto detected)\n");
		}
	} else {
		/* does not count */
		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
controller_fail:
			printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
			    "pulse. Seems that controller fails.\n");
			err = -EIO;
			goto out;
		}
		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
			printk(KERN_INFO "controller is PCM bus SLAVE "
				"(ignoring missing PCM clock)\n");
		} else {
			/* only one pcm master */
			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
				&& plxsd_master) {
				printk(KERN_ERR "HFC_multi ERROR, no clock "
				    "on another Speech Design card found. "
				    "Please be sure to connect PCM cable.\n");
				err = -EIO;
				goto out;
			}
			/* retry with master clock */
			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
				spin_lock_irqsave(&plx_lock, plx_flags);
				plx_acc_32 = hc->plx_membase + PLX_GPIOC;
				pv = readl(plx_acc_32);
				pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
				pv |= PLX_SYNC_O_EN;
				writel(pv, plx_acc_32);
				spin_unlock_irqrestore(&plx_lock, plx_flags);
				if (debug & DEBUG_HFCMULTI_INIT)
				    printk(KERN_WARNING "%s: master: PLX_GPIO"
					"=%x\n", __func__, pv);
			}
			hc->hw.r_pcm_md0 |= V_PCM_MD;
			HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
			spin_unlock_irqrestore(&hc->lock, flags);
			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_timeout((HZ/100)?:1); /* Timeout min. 10ms */
			spin_lock_irqsave(&hc->lock, flags);
			val2 = HFC_inb(hc, R_F0_CNTL);
			val2 += HFC_inb(hc, R_F0_CNTH) << 8;
			if (debug & DEBUG_HFCMULTI_INIT)
				printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
					"10 ms (2nd try)\n", val2);
			if (val2 >= val+8) { /* 1 ms */
				test_and_set_bit(HFC_CHIP_PCM_MASTER,
					&hc->chip);
				printk(KERN_INFO "controller is PCM bus MASTER "
					"(auto detected)\n");
			} else
				goto controller_fail;
		}
	}

	/* Release the DSP Reset */
	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
			plxsd_master = 1;
		spin_lock_irqsave(&plx_lock, plx_flags);
		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
		pv = readl(plx_acc_32);
		pv |=  PLX_DSP_RES_N;
		writel(pv, plx_acc_32);
		spin_unlock_irqrestore(&plx_lock, plx_flags);
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_WARNING "%s: reset off: PLX_GPIO=%x\n",
				__func__, pv);
	}

	/* pcm id */
	if (hc->pcm)
		printk(KERN_INFO "controller has given PCM BUS ID %d\n",
			hc->pcm);
	else {
		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
		 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
			PCM_cnt++; /* SD has proprietary bridging */
		}
		hc->pcm = PCM_cnt;
		printk(KERN_INFO "controller has PCM BUS ID %d "
			"(auto selected)\n", hc->pcm);
	}

	/* set up timer */
	HFC_outb(hc, R_TI_WD, poll_timer);
	hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;

	/* set E1 state machine IRQ */
	if (hc->type == 1)
		hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;

	/* set DTMF detection */
	if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: enabling DTMF detection "
			    "for all B-channel\n", __func__);
		hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
		if (test_bit(HFC_CHIP_ULAW, &hc->chip))
			hc->hw.r_dtmf |= V_ULAW_SEL;
		HFC_outb(hc, R_DTMF_N, 102 - 1);
		hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
	}

	/* conference engine */
	if (test_bit(HFC_CHIP_ULAW, &hc->chip))
		r_conf_en = V_CONF_EN | V_ULAW;
	else
		r_conf_en = V_CONF_EN;
	HFC_outb(hc, R_CONF_EN, r_conf_en);

	/* setting leds */
	switch (hc->leds) {
	case 1: /* HFC-E1 OEM */
		if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
			HFC_outb(hc, R_GPIO_SEL, 0x32);
		else
			HFC_outb(hc, R_GPIO_SEL, 0x30);

		HFC_outb(hc, R_GPIO_EN1, 0x0f);
		HFC_outb(hc, R_GPIO_OUT1, 0x00);

		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
		break;

	case 2: /* HFC-4S OEM */
	case 3:
		HFC_outb(hc, R_GPIO_SEL, 0xf0);
		HFC_outb(hc, R_GPIO_EN1, 0xff);
		HFC_outb(hc, R_GPIO_OUT1, 0x00);
		break;
	}

	/* set master clock */
	if (hc->masterclk >= 0) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: setting ST master clock "
			    "to port %d (0..%d)\n",
			    __func__, hc->masterclk, hc->ports-1);
		hc->hw.r_st_sync = hc->masterclk | V_AUTO_SYNC;
		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
	}

	/* setting misc irq */
	HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
		    hc->hw.r_irqmsk_misc);

	/* RAM access test */
	HFC_outb(hc, R_RAM_ADDR0, 0);
	HFC_outb(hc, R_RAM_ADDR1, 0);
	HFC_outb(hc, R_RAM_ADDR2, 0);
	for (i = 0; i < 256; i++) {
		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
		HFC_outb_nodebug(hc, R_RAM_DATA, ((i*3)&0xff));
	}
	for (i = 0; i < 256; i++) {
		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
		HFC_inb_nodebug(hc, R_RAM_DATA);
		rval = HFC_inb_nodebug(hc, R_INT_DATA);
		if (rval != ((i * 3) & 0xff)) {
			printk(KERN_DEBUG
			    "addr:%x val:%x should:%x\n", i, rval,
			    (i * 3) & 0xff);
			err++;
		}
	}
	if (err) {
		printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
		err = -EIO;
		goto out;
	}

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: done\n", __func__);
out:
	spin_unlock_irqrestore(&hc->lock, flags);
	return err;
}


/*
 * control the watchdog
 */
static void
hfcmulti_watchdog(struct hfc_multi *hc)
{
	hc->wdcount++;

	if (hc->wdcount > 10) {
		hc->wdcount = 0;
		hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
		    V_GPIO_OUT3 : V_GPIO_OUT2;

	/* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
		HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
	}
}



/*
 * output leds
 */
static void
hfcmulti_leds(struct hfc_multi *hc)
{
	unsigned long lled;
	unsigned long leddw;
	int i, state, active, leds;
	struct dchannel *dch;
	int led[4];

	hc->ledcount += poll;
	if (hc->ledcount > 4096) {
		hc->ledcount -= 4096;
		hc->ledstate = 0xAFFEAFFE;
	}

	switch (hc->leds) {
	case 1: /* HFC-E1 OEM */
		/* 2 red blinking: NT mode deactivate
		 * 2 red steady:   TE mode deactivate
		 * left green:     L1 active
		 * left red:       frame sync, but no L1
		 * right green:    L2 active
		 */
		if (hc->chan[hc->dslot].sync != 2) { /* no frame sync */
			if (hc->chan[hc->dslot].dch->dev.D.protocol
				!= ISDN_P_NT_E1) {
				led[0] = 1;
				led[1] = 1;
			} else if (hc->ledcount>>11) {
				led[0] = 1;
				led[1] = 1;
			} else {
				led[0] = 0;
				led[1] = 0;
			}
			led[2] = 0;
			led[3] = 0;
		} else { /* with frame sync */
			/* TODO make it work */
			led[0] = 0;
			led[1] = 0;
			led[2] = 0;
			led[3] = 1;
		}
		leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
			/* leds are inverted */
		if (leds != (int)hc->ledstate) {
			HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
			hc->ledstate = leds;
		}
		break;

	case 2: /* HFC-4S OEM */
		/* red blinking = PH_DEACTIVATE NT Mode
		 * red steady   = PH_DEACTIVATE TE Mode
		 * green steady = PH_ACTIVATE
		 */
		for (i = 0; i < 4; i++) {
			state = 0;
			active = -1;
			dch = hc->chan[(i << 2) | 2].dch;
			if (dch) {
				state = dch->state;
				if (dch->dev.D.protocol == ISDN_P_NT_S0)
					active = 3;
				else
					active = 7;
			}
			if (state) {
				if (state == active) {
					led[i] = 1; /* led green */
				} else
					if (dch->dev.D.protocol == ISDN_P_TE_S0)
						/* TE mode: led red */
						led[i] = 2;
					else
						if (hc->ledcount>>11)
							/* led red */
							led[i] = 2;
						else
							/* led off */
							led[i] = 0;
			} else
				led[i] = 0; /* led off */
		}
		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
			leds = 0;
			for (i = 0; i < 4; i++) {
				if (led[i] == 1) {
					/*green*/
					leds |= (0x2 << (i * 2));
				} else if (led[i] == 2) {
					/*red*/
					leds |= (0x1 << (i * 2));
				}
			}
			if (leds != (int)hc->ledstate) {
				vpm_out(hc, 0, 0x1a8 + 3, leds);
				hc->ledstate = leds;
			}
		} else {
			leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
			    ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
			    ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
			    ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
			if (leds != (int)hc->ledstate) {
				HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
				HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
				hc->ledstate = leds;
			}
		}
		break;

	case 3: /* HFC 1S/2S Beronet */
		/* red blinking = PH_DEACTIVATE NT Mode
		 * red steady   = PH_DEACTIVATE TE Mode
		 * green steady = PH_ACTIVATE
		 */
		for (i = 0; i < 2; i++) {
			state = 0;
			active = -1;
			dch = hc->chan[(i << 2) | 2].dch;
			if (dch) {
				state = dch->state;
				if (dch->dev.D.protocol == ISDN_P_NT_S0)
					active = 3;
				else
					active = 7;
			}
			if (state) {
				if (state == active) {
					led[i] = 1; /* led green */
				} else
					if (dch->dev.D.protocol == ISDN_P_TE_S0)
						/* TE mode: led red */
						led[i] = 2;
					else
						if (hc->ledcount >> 11)
							/* led red */
							led[i] = 2;
						else
							/* led off */
							led[i] = 0;
			} else
				led[i] = 0; /* led off */
		}


		leds = (led[0] > 0) | ((led[1] > 0)<<1) | ((led[0]&1)<<2)
			| ((led[1]&1)<<3);
		if (leds != (int)hc->ledstate) {
			HFC_outb_nodebug(hc, R_GPIO_EN1,
			    ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
			HFC_outb_nodebug(hc, R_GPIO_OUT1,
			    ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
			hc->ledstate = leds;
		}
		break;
	case 8: /* HFC 8S+ Beronet */
		lled = 0;

		for (i = 0; i < 8; i++) {
			state = 0;
			active = -1;
			dch = hc->chan[(i << 2) | 2].dch;
			if (dch) {
				state = dch->state;
				if (dch->dev.D.protocol == ISDN_P_NT_S0)
					active = 3;
				else
					active = 7;
			}
			if (state) {
				if (state == active) {
					lled |= 0 << i;
				} else
					if (hc->ledcount >> 11)
						lled |= 0 << i;
					else
						lled |= 1 << i;
			} else
				lled |= 1 << i;
		}
		leddw = lled << 24 | lled << 16 | lled << 8 | lled;
		if (leddw != hc->ledstate) {
			/* HFC_outb(hc, R_BRG_PCM_CFG, 1);
			HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
			/* was _io before */
			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
			outw(0x4000, hc->pci_iobase + 4);
			outl(leddw, hc->pci_iobase);
			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
			hc->ledstate = leddw;
		}
		break;
	}
}
/*
 * read dtmf coefficients
 */

static void
hfcmulti_dtmf(struct hfc_multi *hc)
{
	s32		*coeff;
	u_int		mantissa;
	int		co, ch;
	struct bchannel	*bch = NULL;
	u8		exponent;
	int		dtmf = 0;
	int		addr;
	u16		w_float;
	struct sk_buff	*skb;
	struct mISDNhead *hh;

	if (debug & DEBUG_HFCMULTI_DTMF)
		printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
	for (ch = 0; ch <= 31; ch++) {
		/* only process enabled B-channels */
		bch = hc->chan[ch].bch;
		if (!bch)
			continue;
		if (!hc->created[hc->chan[ch].port])
			continue;
		if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
			continue;
		if (debug & DEBUG_HFCMULTI_DTMF)
			printk(KERN_DEBUG "%s: dtmf channel %d:",
				__func__, ch);
		coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
		dtmf = 1;
		for (co = 0; co < 8; co++) {
			/* read W(n-1) coefficient */
			addr = hc->DTMFbase + ((co<<7) | (ch<<2));
			HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
			HFC_outb_nodebug(hc, R_RAM_ADDR1, addr>>8);
			HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr>>16)
				| V_ADDR_INC);
			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
			if (debug & DEBUG_HFCMULTI_DTMF)
				printk(" %04x", w_float);

			/* decode float (see chip doc) */
			mantissa = w_float & 0x0fff;
			if (w_float & 0x8000)
				mantissa |= 0xfffff000;
			exponent = (w_float>>12) & 0x7;
			if (exponent) {
				mantissa ^= 0x1000;
				mantissa <<= (exponent-1);
			}

			/* store coefficient */
			coeff[co<<1] = mantissa;

			/* read W(n) coefficient */
			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
			if (debug & DEBUG_HFCMULTI_DTMF)
				printk(" %04x", w_float);

			/* decode float (see chip doc) */
			mantissa = w_float & 0x0fff;
			if (w_float & 0x8000)
				mantissa |= 0xfffff000;
			exponent = (w_float>>12) & 0x7;
			if (exponent) {
				mantissa ^= 0x1000;
				mantissa <<= (exponent-1);
			}

			/* store coefficient */
			coeff[(co<<1)|1] = mantissa;
		}
		if (debug & DEBUG_HFCMULTI_DTMF)
			printk("%s: DTMF ready %08x %08x %08x %08x "
			    "%08x %08x %08x %08x\n", __func__,
			    coeff[0], coeff[1], coeff[2], coeff[3],
			    coeff[4], coeff[5], coeff[6], coeff[7]);
		hc->chan[ch].coeff_count++;
		if (hc->chan[ch].coeff_count == 8) {
			hc->chan[ch].coeff_count = 0;
			skb = mI_alloc_skb(512, GFP_ATOMIC);
			if (!skb) {
				printk(KERN_WARNING "%s: No memory for skb\n",
				    __func__);
				continue;
			}
			hh = mISDN_HEAD_P(skb);
			hh->prim = PH_CONTROL_IND;
			hh->id = DTMF_HFC_COEF;
			memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
			recv_Bchannel_skb(bch, skb);
		}
	}

	/* restart DTMF processing */
	hc->dtmf = dtmf;
	if (dtmf)
		HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
}


/*
 * fill fifo as much as possible
 */

static void
hfcmulti_tx(struct hfc_multi *hc, int ch)
{
	int i, ii, temp, len = 0;
	int Zspace, z1, z2; /* must be int for calculation */
	int Fspace, f1, f2;
	u_char *d;
	int *txpending, slot_tx;
	struct	bchannel *bch;
	struct  dchannel *dch;
	struct  sk_buff **sp = NULL;
	int *idxp;

	bch = hc->chan[ch].bch;
	dch = hc->chan[ch].dch;
	if ((!dch) && (!bch))
		return;

	txpending = &hc->chan[ch].txpending;
	slot_tx = hc->chan[ch].slot_tx;
	if (dch) {
		if (!test_bit(FLG_ACTIVE, &dch->Flags))
			return;
		sp = &dch->tx_skb;
		idxp = &dch->tx_idx;
	} else {
		if (!test_bit(FLG_ACTIVE, &bch->Flags))
			return;
		sp = &bch->tx_skb;
		idxp = &bch->tx_idx;
	}
	if (*sp)
		len = (*sp)->len;

	if ((!len) && *txpending != 1)
		return; /* no data */

	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
	    (hc->chan[ch].slot_rx < 0) &&
	    (hc->chan[ch].slot_tx < 0))
		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
	else
		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
	HFC_wait_nodebug(hc);

	if (*txpending == 2) {
		/* reset fifo */
		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
		HFC_wait_nodebug(hc);
		HFC_outb(hc, A_SUBCH_CFG, 0);
		*txpending = 1;
	}
next_frame:
	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
		f1 = HFC_inb_nodebug(hc, A_F1);
		f2 = HFC_inb_nodebug(hc, A_F2);
		while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
			if (debug & DEBUG_HFCMULTI_FIFO)
				printk(KERN_DEBUG
				    "%s(card %d): reread f2 because %d!=%d\n",
				    __func__, hc->id + 1, temp, f2);
			f2 = temp; /* repeat until F2 is equal */
		}
		Fspace = f2 - f1 - 1;
		if (Fspace < 0)
			Fspace += hc->Flen;
		/*
		 * Old FIFO handling doesn't give us the current Z2 read
		 * pointer, so we cannot send the next frame before the fifo
		 * is empty. It makes no difference except for a slightly
		 * lower performance.
		 */
		if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
			if (f1 != f2)
				Fspace = 0;
			else
				Fspace = 1;
		}
		/* one frame only for ST D-channels, to allow resending */
		if (hc->type != 1 && dch) {
			if (f1 != f2)
				Fspace = 0;
		}
		/* F-counter full condition */
		if (Fspace == 0)
			return;
	}
	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
	while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
		if (debug & DEBUG_HFCMULTI_FIFO)
			printk(KERN_DEBUG "%s(card %d): reread z2 because "
				"%d!=%d\n", __func__, hc->id + 1, temp, z2);
		z2 = temp; /* repeat unti Z2 is equal */
	}
	Zspace = z2 - z1;
	if (Zspace <= 0)
		Zspace += hc->Zlen;
	Zspace -= 4; /* keep not too full, so pointers will not overrun */
	/* fill transparent data only to maxinum transparent load (minus 4) */
	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
		Zspace = Zspace - hc->Zlen + hc->max_trans;
	if (Zspace <= 0) /* no space of 4 bytes */
		return;

	/* if no data */
	if (!len) {
		if (z1 == z2) { /* empty */
			/* if done with FIFO audio data during PCM connection */
			if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
			    *txpending && slot_tx >= 0) {
				if (debug & DEBUG_HFCMULTI_MODE)
					printk(KERN_DEBUG
					    "%s: reconnecting PCM due to no "
					    "more FIFO data: channel %d "
					    "slot_tx %d\n",
					    __func__, ch, slot_tx);
				/* connect slot */
				HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
				    V_HDLC_TRP | V_IFF);
				HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
				HFC_wait_nodebug(hc);
				HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
				    V_HDLC_TRP | V_IFF);
				HFC_outb_nodebug(hc, R_FIFO, ch<<1);
				HFC_wait_nodebug(hc);
			}
			*txpending = 0;
		}
		return; /* no data */
	}

	/* if audio data and connected slot */
	if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
		&& slot_tx >= 0) {
		if (debug & DEBUG_HFCMULTI_MODE)
			printk(KERN_DEBUG "%s: disconnecting PCM due to "
			    "FIFO data: channel %d slot_tx %d\n",
			    __func__, ch, slot_tx);
		/* disconnect slot */
		HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
		HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
		HFC_wait_nodebug(hc);
		HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
		HFC_outb_nodebug(hc, R_FIFO, ch<<1);
		HFC_wait_nodebug(hc);
	}
	*txpending = 1;

	/* show activity */
	hc->activity[hc->chan[ch].port] = 1;

	/* fill fifo to what we have left */
	ii = len;
	if (dch || test_bit(FLG_HDLC, &bch->Flags))
		temp = 1;
	else
		temp = 0;
	i = *idxp;
	d = (*sp)->data + i;
	if (ii - i > Zspace)
		ii = Zspace + i;
	if (debug & DEBUG_HFCMULTI_FIFO)
		printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
		    "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
			__func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
			temp ? "HDLC":"TRANS");


	/* Have to prep the audio data */
	hc->write_fifo(hc, d, ii - i);
	*idxp = ii;

	/* if not all data has been written */
	if (ii != len) {
		/* NOTE: fifo is started by the calling function */
		return;
	}

	/* if all data has been written, terminate frame */
	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
		/* increment f-counter */
		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
		HFC_wait_nodebug(hc);
	}

	/* send confirm, since get_net_bframe will not do it with trans */
	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
		confirm_Bsend(bch);

	/* check for next frame */
	dev_kfree_skb(*sp);
	if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
		len = (*sp)->len;
		goto next_frame;
	}
	if (dch && get_next_dframe(dch)) {
		len = (*sp)->len;
		goto next_frame;
	}

	/*
	 * now we have no more data, so in case of transparent,
	 * we set the last byte in fifo to 'silence' in case we will get
	 * no more data at all. this prevents sending an undefined value.
	 */
	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
		HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
}


/* NOTE: only called if E1 card is in active state */
static void
hfcmulti_rx(struct hfc_multi *hc, int ch)
{
	int temp;
	int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
	int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
	int again = 0;
	struct	bchannel *bch;
	struct  dchannel *dch;
	struct sk_buff	*skb, **sp = NULL;
	int	maxlen;

	bch = hc->chan[ch].bch;
	dch = hc->chan[ch].dch;
	if ((!dch) && (!bch))
		return;
	if (dch) {
		if (!test_bit(FLG_ACTIVE, &dch->Flags))
			return;
		sp = &dch->rx_skb;
		maxlen = dch->maxlen;
	} else {
		if (!test_bit(FLG_ACTIVE, &bch->Flags))
			return;
		sp = &bch->rx_skb;
		maxlen = bch->maxlen;
	}
next_frame:
	/* on first AND before getting next valid frame, R_FIFO must be written
	   to. */
	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
	    (hc->chan[ch].slot_rx < 0) &&
	    (hc->chan[ch].slot_tx < 0))
		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch<<1) | 1);
	else
		HFC_outb_nodebug(hc, R_FIFO, (ch<<1)|1);
	HFC_wait_nodebug(hc);

	/* ignore if rx is off BUT change fifo (above) to start pending TX */
	if (hc->chan[ch].rx_off)
		return;

	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
		f1 = HFC_inb_nodebug(hc, A_F1);
		while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
			if (debug & DEBUG_HFCMULTI_FIFO)
				printk(KERN_DEBUG
				    "%s(card %d): reread f1 because %d!=%d\n",
				    __func__, hc->id + 1, temp, f1);
			f1 = temp; /* repeat until F1 is equal */
		}
		f2 = HFC_inb_nodebug(hc, A_F2);
	}
	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
	while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
		if (debug & DEBUG_HFCMULTI_FIFO)
			printk(KERN_DEBUG "%s(card %d): reread z2 because "
				"%d!=%d\n", __func__, hc->id + 1, temp, z2);
		z1 = temp; /* repeat until Z1 is equal */
	}
	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
	Zsize = z1 - z2;
	if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
		/* complete hdlc frame */
		Zsize++;
	if (Zsize < 0)
		Zsize += hc->Zlen;
	/* if buffer is empty */
	if (Zsize <= 0)
		return;

	if (*sp == NULL) {
		*sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
		if (*sp == NULL) {
			printk(KERN_DEBUG "%s: No mem for rx_skb\n",
			    __func__);
			return;
		}
	}
	/* show activity */
	hc->activity[hc->chan[ch].port] = 1;

	/* empty fifo with what we have */
	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
		if (debug & DEBUG_HFCMULTI_FIFO)
			printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
			    "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
			    "got=%d (again %d)\n", __func__, hc->id + 1, ch,
			    Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
			    f1, f2, Zsize + (*sp)->len, again);
		/* HDLC */
		if ((Zsize + (*sp)->len) > (maxlen + 3)) {
			if (debug & DEBUG_HFCMULTI_FIFO)
				printk(KERN_DEBUG
				    "%s(card %d): hdlc-frame too large.\n",
				    __func__, hc->id + 1);
			skb_trim(*sp, 0);
			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
			HFC_wait_nodebug(hc);
			return;
		}

		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);

		if (f1 != f2) {
			/* increment Z2,F2-counter */
			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
			HFC_wait_nodebug(hc);
			/* check size */
			if ((*sp)->len < 4) {
				if (debug & DEBUG_HFCMULTI_FIFO)
					printk(KERN_DEBUG
					    "%s(card %d): Frame below minimum "
					    "size\n", __func__, hc->id + 1);
				skb_trim(*sp, 0);
				goto next_frame;
			}
			/* there is at least one complete frame, check crc */
			if ((*sp)->data[(*sp)->len - 1]) {
				if (debug & DEBUG_HFCMULTI_CRC)
					printk(KERN_DEBUG
					    "%s: CRC-error\n", __func__);
				skb_trim(*sp, 0);
				goto next_frame;
			}
			skb_trim(*sp, (*sp)->len - 3);
			if ((*sp)->len < MISDN_COPY_SIZE) {
				skb = *sp;
				*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
				if (*sp) {
					memcpy(skb_put(*sp, skb->len),
					    skb->data, skb->len);
					skb_trim(skb, 0);
				} else {
					printk(KERN_DEBUG "%s: No mem\n",
					    __func__);
					*sp = skb;
					skb = NULL;
				}
			} else {
				skb = NULL;
			}
			if (debug & DEBUG_HFCMULTI_FIFO) {
				printk(KERN_DEBUG "%s(card %d):",
					__func__, hc->id + 1);
				temp = 0;
				while (temp < (*sp)->len)
					printk(" %02x", (*sp)->data[temp++]);
				printk("\n");
			}
			if (dch)
				recv_Dchannel(dch);
			else
				recv_Bchannel(bch);
			*sp = skb;
			again++;
			goto next_frame;
		}
		/* there is an incomplete frame */
	} else {
		/* transparent */
		if (Zsize > skb_tailroom(*sp))
			Zsize = skb_tailroom(*sp);
		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
		if (((*sp)->len) < MISDN_COPY_SIZE) {
			skb = *sp;
			*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
			if (*sp) {
				memcpy(skb_put(*sp, skb->len),
				    skb->data, skb->len);
				skb_trim(skb, 0);
			} else {
				printk(KERN_DEBUG "%s: No mem\n", __func__);
				*sp = skb;
				skb = NULL;
			}
		} else {
			skb = NULL;
		}
		if (debug & DEBUG_HFCMULTI_FIFO)
			printk(KERN_DEBUG
			    "%s(card %d): fifo(%d) reading %d bytes "
			    "(z1=%04x, z2=%04x) TRANS\n",
				__func__, hc->id + 1, ch, Zsize, z1, z2);
		/* only bch is transparent */
		recv_Bchannel(bch);
		*sp = skb;
	}
}


/*
 * Interrupt handler
 */
static void
signal_state_up(struct dchannel *dch, int info, char *msg)
{
	struct sk_buff	*skb;
	int		id, data = info;

	if (debug & DEBUG_HFCMULTI_STATE)
		printk(KERN_DEBUG "%s: %s\n", __func__, msg);

	id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */

	skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
		GFP_ATOMIC);
	if (!skb)
		return;
	recv_Dchannel_skb(dch, skb);
}

static inline void
handle_timer_irq(struct hfc_multi *hc)
{
	int		ch, temp;
	struct dchannel	*dch;
	u_long		flags;

	/* process queued resync jobs */
	if (hc->e1_resync) {
		/* lock, so e1_resync gets not changed */
		spin_lock_irqsave(&HFClock, flags);
		if (hc->e1_resync & 1) {
			if (debug & DEBUG_HFCMULTI_PLXSD)
				printk(KERN_DEBUG "Enable SYNC_I\n");
			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
			/* disable JATT, if RX_SYNC is set */
			if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
				HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
		}
		if (hc->e1_resync & 2) {
			if (debug & DEBUG_HFCMULTI_PLXSD)
				printk(KERN_DEBUG "Enable jatt PLL\n");
			HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
		}
		if (hc->e1_resync & 4) {
			if (debug & DEBUG_HFCMULTI_PLXSD)
				printk(KERN_DEBUG
				    "Enable QUARTZ for HFC-E1\n");
			/* set jatt to quartz */
			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
				| V_JATT_OFF);
			/* switch to JATT, in case it is not already */
			HFC_outb(hc, R_SYNC_OUT, 0);
		}
		hc->e1_resync = 0;
		spin_unlock_irqrestore(&HFClock, flags);
	}

	if (hc->type != 1 || hc->e1_state == 1)
		for (ch = 0; ch <= 31; ch++) {
			if (hc->created[hc->chan[ch].port]) {
				hfcmulti_tx(hc, ch);
				/* fifo is started when switching to rx-fifo */
				hfcmulti_rx(hc, ch);
				if (hc->chan[ch].dch &&
				    hc->chan[ch].nt_timer > -1) {
					dch = hc->chan[ch].dch;
					if (!(--hc->chan[ch].nt_timer)) {
						schedule_event(dch,
						    FLG_PHCHANGE);
						if (debug &
						    DEBUG_HFCMULTI_STATE)
							printk(KERN_DEBUG
							    "%s: nt_timer at "
							    "state %x\n",
							    __func__,
							    dch->state);
					}
				}
			}
		}
	if (hc->type == 1 && hc->created[0]) {
		dch = hc->chan[hc->dslot].dch;
		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
			/* LOS */
			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
			if (!temp && hc->chan[hc->dslot].los)
				signal_state_up(dch, L1_SIGNAL_LOS_ON,
				    "LOS detected");
			if (temp && !hc->chan[hc->dslot].los)
				signal_state_up(dch, L1_SIGNAL_LOS_OFF,
				    "LOS gone");
			hc->chan[hc->dslot].los = temp;
		}
		if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dslot].cfg)) {
			/* AIS */
			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
			if (!temp && hc->chan[hc->dslot].ais)
				signal_state_up(dch, L1_SIGNAL_AIS_ON,
				    "AIS detected");
			if (temp && !hc->chan[hc->dslot].ais)
				signal_state_up(dch, L1_SIGNAL_AIS_OFF,
				    "AIS gone");
			hc->chan[hc->dslot].ais = temp;
		}
		if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dslot].cfg)) {
			/* SLIP */
			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
			if (!temp && hc->chan[hc->dslot].slip_rx)
				signal_state_up(dch, L1_SIGNAL_SLIP_RX,
				    " bit SLIP detected RX");
			hc->chan[hc->dslot].slip_rx = temp;
			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
			if (!temp && hc->chan[hc->dslot].slip_tx)
				signal_state_up(dch, L1_SIGNAL_SLIP_TX,
				    " bit SLIP detected TX");
			hc->chan[hc->dslot].slip_tx = temp;
		}
		if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dslot].cfg)) {
			/* RDI */
			temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
			if (!temp && hc->chan[hc->dslot].rdi)
				signal_state_up(dch, L1_SIGNAL_RDI_ON,
				    "RDI detected");
			if (temp && !hc->chan[hc->dslot].rdi)
				signal_state_up(dch, L1_SIGNAL_RDI_OFF,
				    "RDI gone");
			hc->chan[hc->dslot].rdi = temp;
		}
		temp = HFC_inb_nodebug(hc, R_JATT_DIR);
		switch (hc->chan[hc->dslot].sync) {
		case 0:
			if ((temp & 0x60) == 0x60) {
				if (debug & DEBUG_HFCMULTI_SYNC)
					printk(KERN_DEBUG
					    "%s: (id=%d) E1 now "
					    "in clock sync\n",
					    __func__, hc->id);
				HFC_outb(hc, R_RX_OFF,
				    hc->chan[hc->dslot].jitter | V_RX_INIT);
				HFC_outb(hc, R_TX_OFF,
				    hc->chan[hc->dslot].jitter | V_RX_INIT);
				hc->chan[hc->dslot].sync = 1;
				goto check_framesync;
			}
			break;
		case 1:
			if ((temp & 0x60) != 0x60) {
				if (debug & DEBUG_HFCMULTI_SYNC)
					printk(KERN_DEBUG
					    "%s: (id=%d) E1 "
					    "lost clock sync\n",
					    __func__, hc->id);
				hc->chan[hc->dslot].sync = 0;
				break;
			}
check_framesync:
			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
			if (temp == 0x27) {
				if (debug & DEBUG_HFCMULTI_SYNC)
					printk(KERN_DEBUG
					    "%s: (id=%d) E1 "
					    "now in frame sync\n",
					    __func__, hc->id);
				hc->chan[hc->dslot].sync = 2;
			}
			break;
		case 2:
			if ((temp & 0x60) != 0x60) {
				if (debug & DEBUG_HFCMULTI_SYNC)
					printk(KERN_DEBUG
					    "%s: (id=%d) E1 lost "
					    "clock & frame sync\n",
					    __func__, hc->id);
				hc->chan[hc->dslot].sync = 0;
				break;
			}
			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
			if (temp != 0x27) {
				if (debug & DEBUG_HFCMULTI_SYNC)
					printk(KERN_DEBUG
					    "%s: (id=%d) E1 "
					    "lost frame sync\n",
					    __func__, hc->id);
				hc->chan[hc->dslot].sync = 1;
			}
			break;
		}
	}

	if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
		hfcmulti_watchdog(hc);

	if (hc->leds)
		hfcmulti_leds(hc);
}

static void
ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
{
	struct dchannel	*dch;
	int		ch;
	int		active;
	u_char		st_status, temp;

	/* state machine */
	for (ch = 0; ch <= 31; ch++) {
		if (hc->chan[ch].dch) {
			dch = hc->chan[ch].dch;
			if (r_irq_statech & 1) {
				HFC_outb_nodebug(hc, R_ST_SEL,
					hc->chan[ch].port);
				/* undocumented: delay after R_ST_SEL */
				udelay(1);
				/* undocumented: status changes during read */
				st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
				while (st_status != (temp =
					HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
					if (debug & DEBUG_HFCMULTI_STATE)
						printk(KERN_DEBUG "%s: reread "
						    "STATE because %d!=%d\n",
						    __func__, temp,
						    st_status);
					st_status = temp; /* repeat */
				}

				/* Speech Design TE-sync indication */
				if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
					dch->dev.D.protocol == ISDN_P_TE_S0) {
					if (st_status & V_FR_SYNC_ST)
						hc->syncronized |=
						    (1 << hc->chan[ch].port);
					else
						hc->syncronized &=
						   ~(1 << hc->chan[ch].port);
				}
				dch->state = st_status & 0x0f;
				if (dch->dev.D.protocol == ISDN_P_NT_S0)
					active = 3;
				else
					active = 7;
				if (dch->state == active) {
					HFC_outb_nodebug(hc, R_FIFO,
						(ch << 1) | 1);
					HFC_wait_nodebug(hc);
					HFC_outb_nodebug(hc,
						R_INC_RES_FIFO, V_RES_F);
					HFC_wait_nodebug(hc);
					dch->tx_idx = 0;
				}
				schedule_event(dch, FLG_PHCHANGE);
				if (debug & DEBUG_HFCMULTI_STATE)
					printk(KERN_DEBUG
					    "%s: S/T newstate %x port %d\n",
					    __func__, dch->state,
					    hc->chan[ch].port);
			}
			r_irq_statech >>= 1;
		}
	}
	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
		plxsd_checksync(hc, 0);
}

static void
fifo_irq(struct hfc_multi *hc, int block)
{
	int	ch, j;
	struct dchannel	*dch;
	struct bchannel	*bch;
	u_char r_irq_fifo_bl;

	r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
	j = 0;
	while (j < 8) {
		ch = (block << 2) + (j >> 1);
		dch = hc->chan[ch].dch;
		bch = hc->chan[ch].bch;
		if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
			j += 2;
			continue;
		}
		if (dch && (r_irq_fifo_bl & (1 << j)) &&
		    test_bit(FLG_ACTIVE, &dch->Flags)) {
			hfcmulti_tx(hc, ch);
			/* start fifo */
			HFC_outb_nodebug(hc, R_FIFO, 0);
			HFC_wait_nodebug(hc);
		}
		if (bch && (r_irq_fifo_bl & (1 << j)) &&
		    test_bit(FLG_ACTIVE, &bch->Flags)) {
			hfcmulti_tx(hc, ch);
			/* start fifo */
			HFC_outb_nodebug(hc, R_FIFO, 0);
			HFC_wait_nodebug(hc);
		}
		j++;
		if (dch && (r_irq_fifo_bl & (1 << j)) &&
		    test_bit(FLG_ACTIVE, &dch->Flags)) {
			hfcmulti_rx(hc, ch);
		}
		if (bch && (r_irq_fifo_bl & (1 << j)) &&
		    test_bit(FLG_ACTIVE, &bch->Flags)) {
			hfcmulti_rx(hc, ch);
		}
		j++;
	}
}

#ifdef IRQ_DEBUG
int irqsem;
#endif
static irqreturn_t
hfcmulti_interrupt(int intno, void *dev_id)
{
#ifdef IRQCOUNT_DEBUG
	static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
	    iq5 = 0, iq6 = 0, iqcnt = 0;
#endif
	struct hfc_multi	*hc = dev_id;
	struct dchannel		*dch;
	u_char			r_irq_statech, status, r_irq_misc, r_irq_oview;
	int			i;
	void __iomem		*plx_acc;
	u_short			wval;
	u_char			e1_syncsta, temp;
	u_long			flags;

	if (!hc) {
		printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
		return IRQ_NONE;
	}

	spin_lock(&hc->lock);

#ifdef IRQ_DEBUG
	if (irqsem)
		printk(KERN_ERR "irq for card %d during irq from "
		"card %d, this is no bug.\n", hc->id + 1, irqsem);
	irqsem = hc->id + 1;
#endif

	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
		spin_lock_irqsave(&plx_lock, flags);
		plx_acc = hc->plx_membase + PLX_INTCSR;
		wval = readw(plx_acc);
		spin_unlock_irqrestore(&plx_lock, flags);
		if (!(wval & PLX_INTCSR_LINTI1_STATUS))
			goto irq_notforus;
	}

	status = HFC_inb_nodebug(hc, R_STATUS);
	r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
#ifdef IRQCOUNT_DEBUG
	if (r_irq_statech)
		iq1++;
	if (status & V_DTMF_STA)
		iq2++;
	if (status & V_LOST_STA)
		iq3++;
	if (status & V_EXT_IRQSTA)
		iq4++;
	if (status & V_MISC_IRQSTA)
		iq5++;
	if (status & V_FR_IRQSTA)
		iq6++;
	if (iqcnt++ > 5000) {
		printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
		    iq1, iq2, iq3, iq4, iq5, iq6);
		iqcnt = 0;
	}
#endif
	if (!r_irq_statech &&
	    !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
	    V_MISC_IRQSTA | V_FR_IRQSTA))) {
		/* irq is not for us */
		goto irq_notforus;
	}
	hc->irqcnt++;
	if (r_irq_statech) {
		if (hc->type != 1)
			ph_state_irq(hc, r_irq_statech);
	}
	if (status & V_EXT_IRQSTA)
		; /* external IRQ */
	if (status & V_LOST_STA) {
		/* LOST IRQ */
		HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
	}
	if (status & V_MISC_IRQSTA) {
		/* misc IRQ */
		r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
		if (r_irq_misc & V_STA_IRQ) {
			if (hc->type == 1) {
				/* state machine */
				dch = hc->chan[hc->dslot].dch;
				e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
				if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
				 && hc->e1_getclock) {
					if (e1_syncsta & V_FR_SYNC_E1)
						hc->syncronized = 1;
					else
						hc->syncronized = 0;
				}
				/* undocumented: status changes during read */
				dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA);
				while (dch->state != (temp =
					HFC_inb_nodebug(hc, R_E1_RD_STA))) {
					if (debug & DEBUG_HFCMULTI_STATE)
						printk(KERN_DEBUG "%s: reread "
						    "STATE because %d!=%d\n",
						    __func__, temp,
						    dch->state);
					dch->state = temp; /* repeat */
				}
				dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA)
					& 0x7;
				schedule_event(dch, FLG_PHCHANGE);
				if (debug & DEBUG_HFCMULTI_STATE)
					printk(KERN_DEBUG
					    "%s: E1 (id=%d) newstate %x\n",
					    __func__, hc->id, dch->state);
				if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
					plxsd_checksync(hc, 0);
			}
		}
		if (r_irq_misc & V_TI_IRQ)
			handle_timer_irq(hc);

		if (r_irq_misc & V_DTMF_IRQ) {
			/* -> DTMF IRQ */
			hfcmulti_dtmf(hc);
		}
		if (r_irq_misc & V_IRQ_PROC) {
			static int irq_proc_cnt;
			if (!irq_proc_cnt++)
				printk(KERN_WARNING "%s: got V_IRQ_PROC -"
				    " this should not happen\n", __func__);
		}

	}
	if (status & V_FR_IRQSTA) {
		/* FIFO IRQ */
		r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
		for (i = 0; i < 8; i++) {
			if (r_irq_oview & (1 << i))
				fifo_irq(hc, i);
		}
	}

#ifdef IRQ_DEBUG
	irqsem = 0;
#endif
	spin_unlock(&hc->lock);
	return IRQ_HANDLED;

irq_notforus:
#ifdef IRQ_DEBUG
	irqsem = 0;
#endif
	spin_unlock(&hc->lock);
	return IRQ_NONE;
}


/*
 * timer callback for D-chan busy resolution. Currently no function
 */

static void
hfcmulti_dbusy_timer(struct hfc_multi *hc)
{
}


/*
 * activate/deactivate hardware for selected channels and mode
 *
 * configure B-channel with the given protocol
 * ch eqals to the HFC-channel (0-31)
 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
 * for S/T, 1-31 for E1)
 * the hdlc interrupts will be set/unset
 */
static int
mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
    int bank_tx, int slot_rx, int bank_rx)
{
	int flow_tx = 0, flow_rx = 0, routing = 0;
	int oslot_tx, oslot_rx;
	int conf;

	if (ch < 0 || ch > 31)
		return EINVAL;
	oslot_tx = hc->chan[ch].slot_tx;
	oslot_rx = hc->chan[ch].slot_rx;
	conf = hc->chan[ch].conf;

	if (debug & DEBUG_HFCMULTI_MODE)
		printk(KERN_DEBUG
		    "%s: card %d channel %d protocol %x slot old=%d new=%d "
		    "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
		    __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
		    bank_tx, oslot_rx, slot_rx, bank_rx);

	if (oslot_tx >= 0 && slot_tx != oslot_tx) {
		/* remove from slot */
		if (debug & DEBUG_HFCMULTI_MODE)
			printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
			    __func__, oslot_tx);
		if (hc->slot_owner[oslot_tx<<1] == ch) {
			HFC_outb(hc, R_SLOT, oslot_tx << 1);
			HFC_outb(hc, A_SL_CFG, 0);
			HFC_outb(hc, A_CONF, 0);
			hc->slot_owner[oslot_tx<<1] = -1;
		} else {
			if (debug & DEBUG_HFCMULTI_MODE)
				printk(KERN_DEBUG
				    "%s: we are not owner of this tx slot "
				    "anymore, channel %d is.\n",
				    __func__, hc->slot_owner[oslot_tx<<1]);
		}
	}

	if (oslot_rx >= 0 && slot_rx != oslot_rx) {
		/* remove from slot */
		if (debug & DEBUG_HFCMULTI_MODE)
			printk(KERN_DEBUG
			    "%s: remove from slot %d (RX)\n",
			    __func__, oslot_rx);
		if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
			HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
			HFC_outb(hc, A_SL_CFG, 0);
			hc->slot_owner[(oslot_rx << 1) | 1] = -1;
		} else {
			if (debug & DEBUG_HFCMULTI_MODE)
				printk(KERN_DEBUG
				    "%s: we are not owner of this rx slot "
				    "anymore, channel %d is.\n",
				    __func__,
				    hc->slot_owner[(oslot_rx << 1) | 1]);
		}
	}

	if (slot_tx < 0) {
		flow_tx = 0x80; /* FIFO->ST */
		/* disable pcm slot */
		hc->chan[ch].slot_tx = -1;
		hc->chan[ch].bank_tx = 0;
	} else {
		/* set pcm slot */
		if (hc->chan[ch].txpending)
			flow_tx = 0x80; /* FIFO->ST */
		else
			flow_tx = 0xc0; /* PCM->ST */
		/* put on slot */
		routing = bank_tx ? 0xc0 : 0x80;
		if (conf >= 0 || bank_tx > 1)
			routing = 0x40; /* loop */
		if (debug & DEBUG_HFCMULTI_MODE)
			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
			    " %d flow %02x routing %02x conf %d (TX)\n",
			    __func__, ch, slot_tx, bank_tx,
			    flow_tx, routing, conf);
		HFC_outb(hc, R_SLOT, slot_tx << 1);
		HFC_outb(hc, A_SL_CFG, (ch<<1) | routing);
		HFC_outb(hc, A_CONF, (conf < 0) ? 0 : (conf | V_CONF_SL));
		hc->slot_owner[slot_tx << 1] = ch;
		hc->chan[ch].slot_tx = slot_tx;
		hc->chan[ch].bank_tx = bank_tx;
	}
	if (slot_rx < 0) {
		/* disable pcm slot */
		flow_rx = 0x80; /* ST->FIFO */
		hc->chan[ch].slot_rx = -1;
		hc->chan[ch].bank_rx = 0;
	} else {
		/* set pcm slot */
		if (hc->chan[ch].txpending)
			flow_rx = 0x80; /* ST->FIFO */
		else
			flow_rx = 0xc0; /* ST->(FIFO,PCM) */
		/* put on slot */
		routing = bank_rx?0x80:0xc0; /* reversed */
		if (conf >= 0 || bank_rx > 1)
			routing = 0x40; /* loop */
		if (debug & DEBUG_HFCMULTI_MODE)
			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
			    " %d flow %02x routing %02x conf %d (RX)\n",
			    __func__, ch, slot_rx, bank_rx,
			    flow_rx, routing, conf);
		HFC_outb(hc, R_SLOT, (slot_rx<<1) | V_SL_DIR);
		HFC_outb(hc, A_SL_CFG, (ch<<1) | V_CH_DIR | routing);
		hc->slot_owner[(slot_rx<<1)|1] = ch;
		hc->chan[ch].slot_rx = slot_rx;
		hc->chan[ch].bank_rx = bank_rx;
	}

	switch (protocol) {
	case (ISDN_P_NONE):
		/* disable TX fifo */
		HFC_outb(hc, R_FIFO, ch << 1);
		HFC_wait(hc);
		HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
		HFC_outb(hc, A_SUBCH_CFG, 0);
		HFC_outb(hc, A_IRQ_MSK, 0);
		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
		HFC_wait(hc);
		/* disable RX fifo */
		HFC_outb(hc, R_FIFO, (ch<<1)|1);
		HFC_wait(hc);
		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
		HFC_outb(hc, A_SUBCH_CFG, 0);
		HFC_outb(hc, A_IRQ_MSK, 0);
		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
		HFC_wait(hc);
		if (hc->chan[ch].bch && hc->type != 1) {
			hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
			    ((ch & 0x3) == 0)? ~V_B1_EN: ~V_B2_EN;
			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
			/* undocumented: delay after R_ST_SEL */
			udelay(1);
			HFC_outb(hc, A_ST_CTRL0,
			    hc->hw.a_st_ctrl0[hc->chan[ch].port]);
		}
		if (hc->chan[ch].bch) {
			test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
			test_and_clear_bit(FLG_TRANSPARENT,
			    &hc->chan[ch].bch->Flags);
		}
		break;
	case (ISDN_P_B_RAW): /* B-channel */

		if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
		    (hc->chan[ch].slot_rx < 0) &&
		    (hc->chan[ch].slot_tx < 0)) {

			printk(KERN_DEBUG
			    "Setting B-channel %d to echo cancelable "
			    "state on PCM slot %d\n", ch,
			    ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
			printk(KERN_DEBUG
			    "Enabling pass through for channel\n");
			vpm_out(hc, ch, ((ch / 4) * 8) +
			    ((ch % 4) * 4) + 1, 0x01);
			/* rx path */
			/* S/T -> PCM */
			HFC_outb(hc, R_FIFO, (ch << 1));
			HFC_wait(hc);
			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
			    ((ch % 4) * 4) + 1) << 1);
			HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));

			/* PCM -> FIFO */
			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
			HFC_wait(hc);
			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
			HFC_outb(hc, A_SUBCH_CFG, 0);
			HFC_outb(hc, A_IRQ_MSK, 0);
			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
			HFC_wait(hc);
			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
			    ((ch % 4) * 4) + 1) << 1) | 1);
			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);

			/* tx path */
			/* PCM -> S/T */
			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
			HFC_wait(hc);
			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
			    ((ch % 4) * 4)) << 1) | 1);
			HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);

			/* FIFO -> PCM */
			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
			HFC_wait(hc);
			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
			HFC_outb(hc, A_SUBCH_CFG, 0);
			HFC_outb(hc, A_IRQ_MSK, 0);
			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
			HFC_wait(hc);
			/* tx silence */
			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
			    ((ch % 4) * 4)) << 1);
			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
		} else {
			/* enable TX fifo */
			HFC_outb(hc, R_FIFO, ch << 1);
			HFC_wait(hc);
			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
			    V_HDLC_TRP | V_IFF);
			HFC_outb(hc, A_SUBCH_CFG, 0);
			HFC_outb(hc, A_IRQ_MSK, 0);
			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
			HFC_wait(hc);
			/* tx silence */
			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, silence);
			/* enable RX fifo */
			HFC_outb(hc, R_FIFO, (ch<<1)|1);
			HFC_wait(hc);
			HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 | V_HDLC_TRP);
			HFC_outb(hc, A_SUBCH_CFG, 0);
			HFC_outb(hc, A_IRQ_MSK, 0);
			HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
			HFC_wait(hc);
		}
		if (hc->type != 1) {
			hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
			    ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
			/* undocumented: delay after R_ST_SEL */
			udelay(1);
			HFC_outb(hc, A_ST_CTRL0,
			    hc->hw.a_st_ctrl0[hc->chan[ch].port]);
		}
		if (hc->chan[ch].bch)
			test_and_set_bit(FLG_TRANSPARENT,
			    &hc->chan[ch].bch->Flags);
		break;
	case (ISDN_P_B_HDLC): /* B-channel */
	case (ISDN_P_TE_S0): /* D-channel */
	case (ISDN_P_NT_S0):
	case (ISDN_P_TE_E1):
	case (ISDN_P_NT_E1):
		/* enable TX fifo */
		HFC_outb(hc, R_FIFO, ch<<1);
		HFC_wait(hc);
		if (hc->type == 1 || hc->chan[ch].bch) {
			/* E1 or B-channel */
			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
			HFC_outb(hc, A_SUBCH_CFG, 0);
		} else {
			/* D-Channel without HDLC fill flags */
			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
			HFC_outb(hc, A_SUBCH_CFG, 2);
		}
		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
		HFC_wait(hc);
		/* enable RX fifo */
		HFC_outb(hc, R_FIFO, (ch<<1)|1);
		HFC_wait(hc);
		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
		if (hc->type == 1 || hc->chan[ch].bch)
			HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
		else
			HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
		HFC_wait(hc);
		if (hc->chan[ch].bch) {
			test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
			if (hc->type != 1) {
				hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
				  ((ch&0x3) == 0) ? V_B1_EN : V_B2_EN;
				HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
				/* undocumented: delay after R_ST_SEL */
				udelay(1);
				HFC_outb(hc, A_ST_CTRL0,
				  hc->hw.a_st_ctrl0[hc->chan[ch].port]);
			}
		}
		break;
	default:
		printk(KERN_DEBUG "%s: protocol not known %x\n",
		    __func__, protocol);
		hc->chan[ch].protocol = ISDN_P_NONE;
		return -ENOPROTOOPT;
	}
	hc->chan[ch].protocol = protocol;
	return 0;
}


/*
 * connect/disconnect PCM
 */

static void
hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
    int slot_rx, int bank_rx)
{
	if (slot_rx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
		/* disable PCM */
		mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
		return;
	}

	/* enable pcm */
	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
		slot_rx, bank_rx);
}

/*
 * set/disable conference
 */

static void
hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
{
	if (num >= 0 && num <= 7)
		hc->chan[ch].conf = num;
	else
		hc->chan[ch].conf = -1;
	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
	    hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
	    hc->chan[ch].bank_rx);
}


/*
 * set/disable sample loop
 */

/* NOTE: this function is experimental and therefore disabled */

/*
 * Layer 1 callback function
 */
static int
hfcm_l1callback(struct dchannel *dch, u_int cmd)
{
	struct hfc_multi	*hc = dch->hw;
	u_long	flags;

	switch (cmd) {
	case INFO3_P8:
	case INFO3_P10:
		break;
	case HW_RESET_REQ:
		/* start activation */
		spin_lock_irqsave(&hc->lock, flags);
		if (hc->type == 1) {
			if (debug & DEBUG_HFCMULTI_MSG)
				printk(KERN_DEBUG
				    "%s: HW_RESET_REQ no BRI\n",
				    __func__);
		} else {
			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
			/* undocumented: delay after R_ST_SEL */
			udelay(1);
			HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
			udelay(6); /* wait at least 5,21us */
			HFC_outb(hc, A_ST_WR_STATE, 3);
			HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT*3));
				/* activate */
		}
		spin_unlock_irqrestore(&hc->lock, flags);
		l1_event(dch->l1, HW_POWERUP_IND);
		break;
	case HW_DEACT_REQ:
		/* start deactivation */
		spin_lock_irqsave(&hc->lock, flags);
		if (hc->type == 1) {
			if (debug & DEBUG_HFCMULTI_MSG)
				printk(KERN_DEBUG
				    "%s: HW_DEACT_REQ no BRI\n",
				    __func__);
		} else {
			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
			/* undocumented: delay after R_ST_SEL */
			udelay(1);
			HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT*2);
				/* deactivate */
			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
				hc->syncronized &=
				   ~(1 << hc->chan[dch->slot].port);
				plxsd_checksync(hc, 0);
			}
		}
		skb_queue_purge(&dch->squeue);
		if (dch->tx_skb) {
			dev_kfree_skb(dch->tx_skb);
			dch->tx_skb = NULL;
		}
		dch->tx_idx = 0;
		if (dch->rx_skb) {
			dev_kfree_skb(dch->rx_skb);
			dch->rx_skb = NULL;
		}
		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
			del_timer(&dch->timer);
		spin_unlock_irqrestore(&hc->lock, flags);
		break;
	case HW_POWERUP_REQ:
		spin_lock_irqsave(&hc->lock, flags);
		if (hc->type == 1) {
			if (debug & DEBUG_HFCMULTI_MSG)
				printk(KERN_DEBUG
				    "%s: HW_POWERUP_REQ no BRI\n",
				    __func__);
		} else {
			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
			/* undocumented: delay after R_ST_SEL */
			udelay(1);
			HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
			udelay(6); /* wait at least 5,21us */
			HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
		}
		spin_unlock_irqrestore(&hc->lock, flags);
		break;
	case PH_ACTIVATE_IND:
		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
			GFP_ATOMIC);
		break;
	case PH_DEACTIVATE_IND:
		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
			GFP_ATOMIC);
		break;
	default:
		if (dch->debug & DEBUG_HW)
			printk(KERN_DEBUG "%s: unknown command %x\n",
			    __func__, cmd);
		return -1;
	}
	return 0;
}

/*
 * Layer2 -> Layer 1 Transfer
 */

static int
handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
{
	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
	struct hfc_multi	*hc = dch->hw;
	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
	int			ret = -EINVAL;
	unsigned int		id;
	u_long			flags;

	switch (hh->prim) {
	case PH_DATA_REQ:
		if (skb->len < 1)
			break;
		spin_lock_irqsave(&hc->lock, flags);
		ret = dchannel_senddata(dch, skb);
		if (ret > 0) { /* direct TX */
			id = hh->id; /* skb can be freed */
			hfcmulti_tx(hc, dch->slot);
			ret = 0;
			/* start fifo */
			HFC_outb(hc, R_FIFO, 0);
			HFC_wait(hc);
			spin_unlock_irqrestore(&hc->lock, flags);
			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
		} else
			spin_unlock_irqrestore(&hc->lock, flags);
		return ret;
	case PH_ACTIVATE_REQ:
		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
			spin_lock_irqsave(&hc->lock, flags);
			ret = 0;
			if (debug & DEBUG_HFCMULTI_MSG)
				printk(KERN_DEBUG
				    "%s: PH_ACTIVATE port %d (0..%d)\n",
				    __func__, hc->chan[dch->slot].port,
				    hc->ports-1);
			/* start activation */
			if (hc->type == 1) {
				ph_state_change(dch);
				if (debug & DEBUG_HFCMULTI_STATE)
					printk(KERN_DEBUG
					    "%s: E1 report state %x \n",
					    __func__, dch->state);
			} else {
				HFC_outb(hc, R_ST_SEL,
				    hc->chan[dch->slot].port);
				/* undocumented: delay after R_ST_SEL */
				udelay(1);
				HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
				    /* G1 */
				udelay(6); /* wait at least 5,21us */
				HFC_outb(hc, A_ST_WR_STATE, 1);
				HFC_outb(hc, A_ST_WR_STATE, 1 |
				    (V_ST_ACT*3)); /* activate */
				dch->state = 1;
			}
			spin_unlock_irqrestore(&hc->lock, flags);
		} else
			ret = l1_event(dch->l1, hh->prim);
		break;
	case PH_DEACTIVATE_REQ:
		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
			spin_lock_irqsave(&hc->lock, flags);
			if (debug & DEBUG_HFCMULTI_MSG)
				printk(KERN_DEBUG
				    "%s: PH_DEACTIVATE port %d (0..%d)\n",
				    __func__, hc->chan[dch->slot].port,
				    hc->ports-1);
			/* start deactivation */
			if (hc->type == 1) {
				if (debug & DEBUG_HFCMULTI_MSG)
					printk(KERN_DEBUG
					    "%s: PH_DEACTIVATE no BRI\n",
					    __func__);
			} else {
				HFC_outb(hc, R_ST_SEL,
				    hc->chan[dch->slot].port);
				/* undocumented: delay after R_ST_SEL */
				udelay(1);
				HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
				    /* deactivate */
				dch->state = 1;
			}
			skb_queue_purge(&dch->squeue);
			if (dch->tx_skb) {
				dev_kfree_skb(dch->tx_skb);
				dch->tx_skb = NULL;
			}
			dch->tx_idx = 0;
			if (dch->rx_skb) {
				dev_kfree_skb(dch->rx_skb);
				dch->rx_skb = NULL;
			}
			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
				del_timer(&dch->timer);
#ifdef FIXME
			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
#endif
			ret = 0;
			spin_unlock_irqrestore(&hc->lock, flags);
		} else
			ret = l1_event(dch->l1, hh->prim);
		break;
	}
	if (!ret)
		dev_kfree_skb(skb);
	return ret;
}

static void
deactivate_bchannel(struct bchannel *bch)
{
	struct hfc_multi	*hc = bch->hw;
	u_long			flags;

	spin_lock_irqsave(&hc->lock, flags);
	if (test_and_clear_bit(FLG_TX_NEXT, &bch->Flags)) {
		dev_kfree_skb(bch->next_skb);
		bch->next_skb = NULL;
	}
	if (bch->tx_skb) {
		dev_kfree_skb(bch->tx_skb);
		bch->tx_skb = NULL;
	}
	bch->tx_idx = 0;
	if (bch->rx_skb) {
		dev_kfree_skb(bch->rx_skb);
		bch->rx_skb = NULL;
	}
	hc->chan[bch->slot].coeff_count = 0;
	test_and_clear_bit(FLG_ACTIVE, &bch->Flags);
	test_and_clear_bit(FLG_TX_BUSY, &bch->Flags);
	hc->chan[bch->slot].rx_off = 0;
	hc->chan[bch->slot].conf = -1;
	mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
	spin_unlock_irqrestore(&hc->lock, flags);
}

static int
handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
{
	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
	struct hfc_multi	*hc = bch->hw;
	int			ret = -EINVAL;
	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
	unsigned int		id;
	u_long			flags;

	switch (hh->prim) {
	case PH_DATA_REQ:
		if (!skb->len)
			break;
		spin_lock_irqsave(&hc->lock, flags);
		ret = bchannel_senddata(bch, skb);
		if (ret > 0) { /* direct TX */
			id = hh->id; /* skb can be freed */
			hfcmulti_tx(hc, bch->slot);
			ret = 0;
			/* start fifo */
			HFC_outb_nodebug(hc, R_FIFO, 0);
			HFC_wait_nodebug(hc);
			if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
				spin_unlock_irqrestore(&hc->lock, flags);
				queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
			} else
				spin_unlock_irqrestore(&hc->lock, flags);
		} else
			spin_unlock_irqrestore(&hc->lock, flags);
		return ret;
	case PH_ACTIVATE_REQ:
		if (debug & DEBUG_HFCMULTI_MSG)
			printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
				__func__, bch->slot);
		spin_lock_irqsave(&hc->lock, flags);
		/* activate B-channel if not already activated */
		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
			hc->chan[bch->slot].txpending = 0;
			ret = mode_hfcmulti(hc, bch->slot,
				ch->protocol,
				hc->chan[bch->slot].slot_tx,
				hc->chan[bch->slot].bank_tx,
				hc->chan[bch->slot].slot_rx,
				hc->chan[bch->slot].bank_rx);
			if (!ret) {
				if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
					&& test_bit(HFC_CHIP_DTMF, &hc->chip)) {
					/* start decoder */
					hc->dtmf = 1;
					if (debug & DEBUG_HFCMULTI_DTMF)
						printk(KERN_DEBUG
						    "%s: start dtmf decoder\n",
							__func__);
					HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
					    V_RST_DTMF);
				}
			}
		} else
			ret = 0;
		spin_unlock_irqrestore(&hc->lock, flags);
		if (!ret)
			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
				GFP_KERNEL);
		break;
	case PH_CONTROL_REQ:
		spin_lock_irqsave(&hc->lock, flags);
		switch (hh->id) {
		case HFC_SPL_LOOP_ON: /* set sample loop */
			if (debug & DEBUG_HFCMULTI_MSG)
			printk(KERN_DEBUG
			    "%s: HFC_SPL_LOOP_ON (len = %d)\n",
			    __func__, skb->len);
			ret = 0;
			break;
		case HFC_SPL_LOOP_OFF: /* set silence */
			if (debug & DEBUG_HFCMULTI_MSG)
				printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
				    __func__);
			ret = 0;
			break;
		default:
			printk(KERN_ERR
			     "%s: unknown PH_CONTROL_REQ info %x\n",
			     __func__, hh->id);
			ret = -EINVAL;
		}
		spin_unlock_irqrestore(&hc->lock, flags);
		break;
	case PH_DEACTIVATE_REQ:
		deactivate_bchannel(bch); /* locked there */
		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
			GFP_KERNEL);
		ret = 0;
		break;
	}
	if (!ret)
		dev_kfree_skb(skb);
	return ret;
}

/*
 * bchannel control function
 */
static int
channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
{
	int			ret = 0;
	struct dsp_features	*features =
		(struct dsp_features *)(*((u_long *)&cq->p1));
	struct hfc_multi	*hc = bch->hw;
	int			slot_tx;
	int			bank_tx;
	int			slot_rx;
	int			bank_rx;
	int			num;

	switch (cq->op) {
	case MISDN_CTRL_GETOP:
		cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
			| MISDN_CTRL_RX_OFF;
		break;
	case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
		hc->chan[bch->slot].rx_off = !!cq->p1;
		if (!hc->chan[bch->slot].rx_off) {
			/* reset fifo on rx on */
			HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
			HFC_wait_nodebug(hc);
			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
			HFC_wait_nodebug(hc);
		}
		if (debug & DEBUG_HFCMULTI_MSG)
			printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
			    __func__, bch->nr, hc->chan[bch->slot].rx_off);
		break;
	case MISDN_CTRL_HW_FEATURES: /* fill features structure */
		if (debug & DEBUG_HFCMULTI_MSG)
			printk(KERN_DEBUG "%s: HW_FEATURE request\n",
			    __func__);
		/* create confirm */
		features->hfc_id = hc->id;
		if (test_bit(HFC_CHIP_DTMF, &hc->chip))
			features->hfc_dtmf = 1;
		features->hfc_loops = 0;
		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
			features->hfc_echocanhw = 1;
		} else {
			features->pcm_id = hc->pcm;
			features->pcm_slots = hc->slots;
			features->pcm_banks = 2;
		}
		break;
	case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
		slot_tx = cq->p1 & 0xff;
		bank_tx = cq->p1 >> 8;
		slot_rx = cq->p2 & 0xff;
		bank_rx = cq->p2 >> 8;
		if (debug & DEBUG_HFCMULTI_MSG)
			printk(KERN_DEBUG
			    "%s: HFC_PCM_CONN slot %d bank %d (TX) "
			    "slot %d bank %d (RX)\n",
			    __func__, slot_tx, bank_tx,
			    slot_rx, bank_rx);
		if (slot_tx < hc->slots && bank_tx <= 2 &&
		    slot_rx < hc->slots && bank_rx <= 2)
			hfcmulti_pcm(hc, bch->slot,
			    slot_tx, bank_tx, slot_rx, bank_rx);
		else {
			printk(KERN_WARNING
			    "%s: HFC_PCM_CONN slot %d bank %d (TX) "
			    "slot %d bank %d (RX) out of range\n",
			    __func__, slot_tx, bank_tx,
			    slot_rx, bank_rx);
			ret = -EINVAL;
		}
		break;
	case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
		if (debug & DEBUG_HFCMULTI_MSG)
			printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
			    __func__);
		hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
		break;
	case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
		num = cq->p1 & 0xff;
		if (debug & DEBUG_HFCMULTI_MSG)
			printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
			    __func__, num);
		if (num <= 7)
			hfcmulti_conf(hc, bch->slot, num);
		else {
			printk(KERN_WARNING
			    "%s: HW_CONF_JOIN conf %d out of range\n",
			    __func__, num);
			ret = -EINVAL;
		}
		break;
	case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
		if (debug & DEBUG_HFCMULTI_MSG)
			printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
		hfcmulti_conf(hc, bch->slot, -1);
		break;
	case MISDN_CTRL_HFC_ECHOCAN_ON:
		if (debug & DEBUG_HFCMULTI_MSG)
			printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
		if (test_bit(HFC_CHIP_B410P, &hc->chip))
			vpm_echocan_on(hc, bch->slot, cq->p1);
		else
			ret = -EINVAL;
		break;

	case MISDN_CTRL_HFC_ECHOCAN_OFF:
		if (debug & DEBUG_HFCMULTI_MSG)
			printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
				__func__);
		if (test_bit(HFC_CHIP_B410P, &hc->chip))
			vpm_echocan_off(hc, bch->slot);
		else
			ret = -EINVAL;
		break;
	default:
		printk(KERN_WARNING "%s: unknown Op %x\n",
		    __func__, cq->op);
		ret = -EINVAL;
		break;
	}
	return ret;
}

static int
hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
{
	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
	struct hfc_multi	*hc = bch->hw;
	int			err = -EINVAL;
	u_long	flags;

	if (bch->debug & DEBUG_HW)
		printk(KERN_DEBUG "%s: cmd:%x %p\n",
		    __func__, cmd, arg);
	switch (cmd) {
	case CLOSE_CHANNEL:
		test_and_clear_bit(FLG_OPEN, &bch->Flags);
		if (test_bit(FLG_ACTIVE, &bch->Flags))
			deactivate_bchannel(bch); /* locked there */
		ch->protocol = ISDN_P_NONE;
		ch->peer = NULL;
		module_put(THIS_MODULE);
		err = 0;
		break;
	case CONTROL_CHANNEL:
		spin_lock_irqsave(&hc->lock, flags);
		err = channel_bctrl(bch, arg);
		spin_unlock_irqrestore(&hc->lock, flags);
		break;
	default:
		printk(KERN_WARNING "%s: unknown prim(%x)\n",
			__func__, cmd);
	}
	return err;
}

/*
 * handle D-channel events
 *
 * handle state change event
 */
static void
ph_state_change(struct dchannel *dch)
{
	struct hfc_multi *hc = dch->hw;
	int ch, i;

	if (!dch) {
		printk(KERN_WARNING "%s: ERROR given dch is NULL\n",
		    __func__);
		return;
	}
	ch = dch->slot;

	if (hc->type == 1) {
		if (dch->dev.D.protocol == ISDN_P_TE_E1) {
			if (debug & DEBUG_HFCMULTI_STATE)
				printk(KERN_DEBUG
				    "%s: E1 TE (id=%d) newstate %x\n",
				    __func__, hc->id, dch->state);
		} else {
			if (debug & DEBUG_HFCMULTI_STATE)
				printk(KERN_DEBUG
				    "%s: E1 NT (id=%d) newstate %x\n",
				    __func__, hc->id, dch->state);
		}
		switch (dch->state) {
		case (1):
			if (hc->e1_state != 1) {
			    for (i = 1; i <= 31; i++) {
				/* reset fifos on e1 activation */
				HFC_outb_nodebug(hc, R_FIFO, (i << 1) | 1);
				HFC_wait_nodebug(hc);
				HFC_outb_nodebug(hc,
					R_INC_RES_FIFO, V_RES_F);
				HFC_wait_nodebug(hc);
			    }
			}
			test_and_set_bit(FLG_ACTIVE, &dch->Flags);
			_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
			break;

		default:
			if (hc->e1_state != 1)
				return;
			test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
			_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
		}
		hc->e1_state = dch->state;
	} else {
		if (dch->dev.D.protocol == ISDN_P_TE_S0) {
			if (debug & DEBUG_HFCMULTI_STATE)
				printk(KERN_DEBUG
				    "%s: S/T TE newstate %x\n",
				    __func__, dch->state);
			switch (dch->state) {
			case (0):
				l1_event(dch->l1, HW_RESET_IND);
				break;
			case (3):
				l1_event(dch->l1, HW_DEACT_IND);
				break;
			case (5):
			case (8):
				l1_event(dch->l1, ANYSIGNAL);
				break;
			case (6):
				l1_event(dch->l1, INFO2);
				break;
			case (7):
				l1_event(dch->l1, INFO4_P8);
				break;
			}
		} else {
			if (debug & DEBUG_HFCMULTI_STATE)
				printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
				    __func__, dch->state);
			switch (dch->state) {
			case (2):
				if (hc->chan[ch].nt_timer == 0) {
					hc->chan[ch].nt_timer = -1;
					HFC_outb(hc, R_ST_SEL,
					    hc->chan[ch].port);
					/* undocumented: delay after R_ST_SEL */
					udelay(1);
					HFC_outb(hc, A_ST_WR_STATE, 4 |
					    V_ST_LD_STA); /* G4 */
					udelay(6); /* wait at least 5,21us */
					HFC_outb(hc, A_ST_WR_STATE, 4);
					dch->state = 4;
				} else {
					/* one extra count for the next event */
					hc->chan[ch].nt_timer =
					    nt_t1_count[poll_timer] + 1;
					HFC_outb(hc, R_ST_SEL,
					    hc->chan[ch].port);
					/* undocumented: delay after R_ST_SEL */
					udelay(1);
					/* allow G2 -> G3 transition */
					HFC_outb(hc, A_ST_WR_STATE, 2 |
					    V_SET_G2_G3);
				}
				break;
			case (1):
				hc->chan[ch].nt_timer = -1;
				test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
				_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
				break;
			case (4):
				hc->chan[ch].nt_timer = -1;
				break;
			case (3):
				hc->chan[ch].nt_timer = -1;
				test_and_set_bit(FLG_ACTIVE, &dch->Flags);
				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
				break;
			}
		}
	}
}

/*
 * called for card mode init message
 */

static void
hfcmulti_initmode(struct dchannel *dch)
{
	struct hfc_multi *hc = dch->hw;
	u_char		a_st_wr_state, r_e1_wr_sta;
	int		i, pt;

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: entered\n", __func__);

	if (hc->type == 1) {
		hc->chan[hc->dslot].slot_tx = -1;
		hc->chan[hc->dslot].slot_rx = -1;
		hc->chan[hc->dslot].conf = -1;
		if (hc->dslot) {
			mode_hfcmulti(hc, hc->dslot, dch->dev.D.protocol,
				-1, 0, -1, 0);
			dch->timer.function = (void *) hfcmulti_dbusy_timer;
			dch->timer.data = (long) dch;
			init_timer(&dch->timer);
		}
		for (i = 1; i <= 31; i++) {
			if (i == hc->dslot)
				continue;
			hc->chan[i].slot_tx = -1;
			hc->chan[i].slot_rx = -1;
			hc->chan[i].conf = -1;
			mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
		}
		/* E1 */
		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
			HFC_outb(hc, R_LOS0, 255); /* 2 ms */
			HFC_outb(hc, R_LOS1, 255); /* 512 ms */
		}
		if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dslot].cfg)) {
			HFC_outb(hc, R_RX0, 0);
			hc->hw.r_tx0 = 0 | V_OUT_EN;
		} else {
			HFC_outb(hc, R_RX0, 1);
			hc->hw.r_tx0 = 1 | V_OUT_EN;
		}
		hc->hw.r_tx1 = V_ATX | V_NTRI;
		HFC_outb(hc, R_TX0, hc->hw.r_tx0);
		HFC_outb(hc, R_TX1, hc->hw.r_tx1);
		HFC_outb(hc, R_TX_FR0, 0x00);
		HFC_outb(hc, R_TX_FR1, 0xf8);

		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
			HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);

		HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);

		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
			HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);

		if (dch->dev.D.protocol == ISDN_P_NT_E1) {
			if (debug & DEBUG_HFCMULTI_INIT)
				printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
				    __func__);
			r_e1_wr_sta = 0; /* G0 */
			hc->e1_getclock = 0;
		} else {
			if (debug & DEBUG_HFCMULTI_INIT)
				printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
				    __func__);
			r_e1_wr_sta = 0; /* F0 */
			hc->e1_getclock = 1;
		}
		if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
			HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
		else
			HFC_outb(hc, R_SYNC_OUT, 0);
		if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
			hc->e1_getclock = 1;
		if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
			hc->e1_getclock = 0;
		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
			/* SLAVE (clock master) */
			if (debug & DEBUG_HFCMULTI_INIT)
				printk(KERN_DEBUG
				    "%s: E1 port is clock master "
				    "(clock from PCM)\n", __func__);
			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
		} else {
			if (hc->e1_getclock) {
				/* MASTER (clock slave) */
				if (debug & DEBUG_HFCMULTI_INIT)
					printk(KERN_DEBUG
					    "%s: E1 port is clock slave "
					    "(clock to PCM)\n", __func__);
				HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
			} else {
				/* MASTER (clock master) */
				if (debug & DEBUG_HFCMULTI_INIT)
					printk(KERN_DEBUG "%s: E1 port is "
					    "clock master "
					    "(clock from QUARTZ)\n",
					    __func__);
				HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
				    V_PCM_SYNC | V_JATT_OFF);
				HFC_outb(hc, R_SYNC_OUT, 0);
			}
		}
		HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
		HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
		HFC_outb(hc, R_PWM0, 0x50);
		HFC_outb(hc, R_PWM1, 0xff);
		/* state machine setup */
		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
		udelay(6); /* wait at least 5,21us */
		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
			hc->syncronized = 0;
			plxsd_checksync(hc, 0);
		}
	} else {
		i = dch->slot;
		hc->chan[i].slot_tx = -1;
		hc->chan[i].slot_rx = -1;
		hc->chan[i].conf = -1;
		mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
		dch->timer.function = (void *)hfcmulti_dbusy_timer;
		dch->timer.data = (long) dch;
		init_timer(&dch->timer);
		hc->chan[i - 2].slot_tx = -1;
		hc->chan[i - 2].slot_rx = -1;
		hc->chan[i - 2].conf = -1;
		mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
		hc->chan[i - 1].slot_tx = -1;
		hc->chan[i - 1].slot_rx = -1;
		hc->chan[i - 1].conf = -1;
		mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
		/* ST */
		pt = hc->chan[i].port;
		/* select interface */
		HFC_outb(hc, R_ST_SEL, pt);
		/* undocumented: delay after R_ST_SEL */
		udelay(1);
		if (dch->dev.D.protocol == ISDN_P_NT_S0) {
			if (debug & DEBUG_HFCMULTI_INIT)
				printk(KERN_DEBUG
				    "%s: ST port %d is NT-mode\n",
				    __func__, pt);
			/* clock delay */
			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
			a_st_wr_state = 1; /* G1 */
			hc->hw.a_st_ctrl0[pt] = V_ST_MD;
		} else {
			if (debug & DEBUG_HFCMULTI_INIT)
				printk(KERN_DEBUG
				    "%s: ST port %d is TE-mode\n",
				    __func__, pt);
			/* clock delay */
			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
			a_st_wr_state = 2; /* F2 */
			hc->hw.a_st_ctrl0[pt] = 0;
		}
		if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
			hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
		/* line setup */
		HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
		/* disable E-channel */
		if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
		    test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
			HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
		else
			HFC_outb(hc, A_ST_CTRL1, 0);
		/* enable B-channel receive */
		HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
		/* state machine setup */
		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
		udelay(6); /* wait at least 5,21us */
		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
		hc->hw.r_sci_msk |= 1 << pt;
		/* state machine interrupts */
		HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
		/* unset sync on port */
		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
			hc->syncronized &=
			   ~(1 << hc->chan[dch->slot].port);
			plxsd_checksync(hc, 0);
		}
	}
	if (debug & DEBUG_HFCMULTI_INIT)
		printk("%s: done\n", __func__);
}


static int
open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
    struct channel_req *rq)
{
	int	err = 0;
	u_long	flags;

	if (debug & DEBUG_HW_OPEN)
		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
		    dch->dev.id, __builtin_return_address(0));
	if (rq->protocol == ISDN_P_NONE)
		return -EINVAL;
	if ((dch->dev.D.protocol != ISDN_P_NONE) &&
	    (dch->dev.D.protocol != rq->protocol)) {
	    if (debug & DEBUG_HFCMULTI_MODE)
		printk(KERN_WARNING "%s: change protocol %x to %x\n",
		    __func__, dch->dev.D.protocol, rq->protocol);
	}
	if ((dch->dev.D.protocol == ISDN_P_TE_S0)
	 && (rq->protocol != ISDN_P_TE_S0))
		l1_event(dch->l1, CLOSE_CHANNEL);
	if (dch->dev.D.protocol != rq->protocol) {
		if (rq->protocol == ISDN_P_TE_S0) {
			err = create_l1(dch, hfcm_l1callback);
			if (err)
				return err;
		}
		dch->dev.D.protocol = rq->protocol;
		spin_lock_irqsave(&hc->lock, flags);
		hfcmulti_initmode(dch);
		spin_unlock_irqrestore(&hc->lock, flags);
	}

	if (((rq->protocol == ISDN_P_NT_S0) && (dch->state == 3)) ||
	    ((rq->protocol == ISDN_P_TE_S0) && (dch->state == 7)) ||
	    ((rq->protocol == ISDN_P_NT_E1) && (dch->state == 1)) ||
	    ((rq->protocol == ISDN_P_TE_E1) && (dch->state == 1))) {
		_queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
		    0, NULL, GFP_KERNEL);
	}
	rq->ch = &dch->dev.D;
	if (!try_module_get(THIS_MODULE))
		printk(KERN_WARNING "%s:cannot get module\n", __func__);
	return 0;
}

static int
open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
    struct channel_req *rq)
{
	struct bchannel	*bch;
	int		ch;

	if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
		return -EINVAL;
	if (rq->protocol == ISDN_P_NONE)
		return -EINVAL;
	if (hc->type == 1)
		ch = rq->adr.channel;
	else
		ch = (rq->adr.channel - 1) + (dch->slot - 2);
	bch = hc->chan[ch].bch;
	if (!bch) {
		printk(KERN_ERR "%s:internal error ch %d has no bch\n",
		    __func__, ch);
		return -EINVAL;
	}
	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
		return -EBUSY; /* b-channel can be only open once */
	bch->ch.protocol = rq->protocol;
	hc->chan[ch].rx_off = 0;
	rq->ch = &bch->ch;
	if (!try_module_get(THIS_MODULE))
		printk(KERN_WARNING "%s:cannot get module\n", __func__);
	return 0;
}

/*
 * device control function
 */
static int
channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
{
	int	ret = 0;

	switch (cq->op) {
	case MISDN_CTRL_GETOP:
		cq->op = 0;
		break;
	default:
		printk(KERN_WARNING "%s: unknown Op %x\n",
		    __func__, cq->op);
		ret = -EINVAL;
		break;
	}
	return ret;
}

static int
hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
{
	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
	struct hfc_multi	*hc = dch->hw;
	struct channel_req	*rq;
	int			err = 0;
	u_long			flags;

	if (dch->debug & DEBUG_HW)
		printk(KERN_DEBUG "%s: cmd:%x %p\n",
		    __func__, cmd, arg);
	switch (cmd) {
	case OPEN_CHANNEL:
		rq = arg;
		switch (rq->protocol) {
		case ISDN_P_TE_S0:
		case ISDN_P_NT_S0:
			if (hc->type == 1) {
				err = -EINVAL;
				break;
			}
			err = open_dchannel(hc, dch, rq); /* locked there */
			break;
		case ISDN_P_TE_E1:
		case ISDN_P_NT_E1:
			if (hc->type != 1) {
				err = -EINVAL;
				break;
			}
			err = open_dchannel(hc, dch, rq); /* locked there */
			break;
		default:
			spin_lock_irqsave(&hc->lock, flags);
			err = open_bchannel(hc, dch, rq);
			spin_unlock_irqrestore(&hc->lock, flags);
		}
		break;
	case CLOSE_CHANNEL:
		if (debug & DEBUG_HW_OPEN)
			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
			    __func__, dch->dev.id,
			    __builtin_return_address(0));
		module_put(THIS_MODULE);
		break;
	case CONTROL_CHANNEL:
		spin_lock_irqsave(&hc->lock, flags);
		err = channel_dctrl(dch, arg);
		spin_unlock_irqrestore(&hc->lock, flags);
		break;
	default:
		if (dch->debug & DEBUG_HW)
			printk(KERN_DEBUG "%s: unknown command %x\n",
			    __func__, cmd);
		err = -EINVAL;
	}
	return err;
}

/*
 * initialize the card
 */

/*
 * start timer irq, wait some time and check if we have interrupts.
 * if not, reset chip and try again.
 */
static int
init_card(struct hfc_multi *hc)
{
	int	err = -EIO;
	u_long	flags;
	void	__iomem *plx_acc;
	u_long	plx_flags;

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: entered\n", __func__);

	spin_lock_irqsave(&hc->lock, flags);
	/* set interrupts but leave global interrupt disabled */
	hc->hw.r_irq_ctrl = V_FIFO_IRQ;
	disable_hwirq(hc);
	spin_unlock_irqrestore(&hc->lock, flags);

	if (request_irq(hc->pci_dev->irq, hfcmulti_interrupt, IRQF_SHARED,
	    "HFC-multi", hc)) {
		printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
		    hc->pci_dev->irq);
		return -EIO;
	}
	hc->irq = hc->pci_dev->irq;

	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
		spin_lock_irqsave(&plx_lock, plx_flags);
		plx_acc = hc->plx_membase + PLX_INTCSR;
		writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
			plx_acc); /* enable PCI & LINT1 irq */
		spin_unlock_irqrestore(&plx_lock, plx_flags);
	}

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
		    __func__, hc->irq, hc->irqcnt);
	err = init_chip(hc);
	if (err)
		goto error;
	/*
	 * Finally enable IRQ output
	 * this is only allowed, if an IRQ routine is allready
	 * established for this HFC, so don't do that earlier
	 */
	spin_lock_irqsave(&hc->lock, flags);
	enable_hwirq(hc);
	spin_unlock_irqrestore(&hc->lock, flags);
	/* printk(KERN_DEBUG "no master irq set!!!\n"); */
	set_current_state(TASK_UNINTERRUPTIBLE);
	schedule_timeout((100*HZ)/1000); /* Timeout 100ms */
	/* turn IRQ off until chip is completely initialized */
	spin_lock_irqsave(&hc->lock, flags);
	disable_hwirq(hc);
	spin_unlock_irqrestore(&hc->lock, flags);
	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
		    __func__, hc->irq, hc->irqcnt);
	if (hc->irqcnt) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: done\n", __func__);

		return 0;
	}
	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
		printk(KERN_INFO "ignoring missing interrupts\n");
		return 0;
	}

	printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
		hc->irq);

	err = -EIO;

error:
	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
		spin_lock_irqsave(&plx_lock, plx_flags);
		plx_acc = hc->plx_membase + PLX_INTCSR;
		writew(0x00, plx_acc); /*disable IRQs*/
		spin_unlock_irqrestore(&plx_lock, plx_flags);
	}

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_WARNING "%s: free irq %d\n", __func__, hc->irq);
	if (hc->irq) {
		free_irq(hc->irq, hc);
		hc->irq = 0;
	}

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
	return err;
}

/*
 * find pci device and set it up
 */

static int
setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
		const struct pci_device_id *ent)
{
	struct hm_map	*m = (struct hm_map *)ent->driver_data;

	printk(KERN_INFO
	    "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
	    m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");

	hc->pci_dev = pdev;
	if (m->clock2)
		test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);

	if (ent->device == 0xB410) {
		test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
		hc->slots = 32;
	}

	if (hc->pci_dev->irq <= 0) {
		printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
		return -EIO;
	}
	if (pci_enable_device(hc->pci_dev)) {
		printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
		return -EIO;
	}
	hc->leds = m->leds;
	hc->ledstate = 0xAFFEAFFE;
	hc->opticalsupport = m->opticalsupport;

	/* set memory access methods */
	if (m->io_mode) /* use mode from card config */
		hc->io_mode = m->io_mode;
	switch (hc->io_mode) {
	case HFC_IO_MODE_PLXSD:
		test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
		hc->slots = 128; /* required */
		/* fall through */
	case HFC_IO_MODE_PCIMEM:
		hc->HFC_outb = HFC_outb_pcimem;
		hc->HFC_inb = HFC_inb_pcimem;
		hc->HFC_inw = HFC_inw_pcimem;
		hc->HFC_wait = HFC_wait_pcimem;
		hc->read_fifo = read_fifo_pcimem;
		hc->write_fifo = write_fifo_pcimem;
		break;
	case HFC_IO_MODE_REGIO:
		hc->HFC_outb = HFC_outb_regio;
		hc->HFC_inb = HFC_inb_regio;
		hc->HFC_inw = HFC_inw_regio;
		hc->HFC_wait = HFC_wait_regio;
		hc->read_fifo = read_fifo_regio;
		hc->write_fifo = write_fifo_regio;
		break;
	default:
		printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
		pci_disable_device(hc->pci_dev);
		return -EIO;
	}
	hc->HFC_outb_nodebug = hc->HFC_outb;
	hc->HFC_inb_nodebug = hc->HFC_inb;
	hc->HFC_inw_nodebug = hc->HFC_inw;
	hc->HFC_wait_nodebug = hc->HFC_wait;
#ifdef HFC_REGISTER_DEBUG
	hc->HFC_outb = HFC_outb_debug;
	hc->HFC_inb = HFC_inb_debug;
	hc->HFC_inw = HFC_inw_debug;
	hc->HFC_wait = HFC_wait_debug;
#endif
	hc->pci_iobase = 0;
	hc->pci_membase = NULL;
	hc->plx_membase = NULL;

	switch (hc->io_mode) {
	case HFC_IO_MODE_PLXSD:
		hc->plx_origmembase =  hc->pci_dev->resource[0].start;
		/* MEMBASE 1 is PLX PCI Bridge */

		if (!hc->plx_origmembase) {
			printk(KERN_WARNING
			  "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
			pci_disable_device(hc->pci_dev);
			return -EIO;
		}

		hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
		if (!hc->plx_membase) {
			printk(KERN_WARNING
			    "HFC-multi: failed to remap plx address space. "
			    "(internal error)\n");
			pci_disable_device(hc->pci_dev);
			return -EIO;
		}
		printk(KERN_INFO
		    "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
		    (u_long)hc->plx_membase, hc->plx_origmembase);

		hc->pci_origmembase =  hc->pci_dev->resource[2].start;
		    /* MEMBASE 1 is PLX PCI Bridge */
		if (!hc->pci_origmembase) {
			printk(KERN_WARNING
			    "HFC-multi: No IO-Memory for PCI card found\n");
			pci_disable_device(hc->pci_dev);
			return -EIO;
		}

		hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
		if (!hc->pci_membase) {
			printk(KERN_WARNING "HFC-multi: failed to remap io "
			    "address space. (internal error)\n");
			pci_disable_device(hc->pci_dev);
			return -EIO;
		}

		printk(KERN_INFO
		    "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
		    "leds-type %d\n",
		    hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
		    hc->pci_dev->irq, HZ, hc->leds);
		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
		break;
	case HFC_IO_MODE_PCIMEM:
		hc->pci_origmembase = hc->pci_dev->resource[1].start;
		if (!hc->pci_origmembase) {
			printk(KERN_WARNING
			    "HFC-multi: No IO-Memory for PCI card found\n");
			pci_disable_device(hc->pci_dev);
			return -EIO;
		}

		hc->pci_membase = ioremap(hc->pci_origmembase, 256);
		if (!hc->pci_membase) {
			printk(KERN_WARNING
			    "HFC-multi: failed to remap io address space. "
			    "(internal error)\n");
			pci_disable_device(hc->pci_dev);
			return -EIO;
		}
		printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d "
		    "HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
		    hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
		break;
	case HFC_IO_MODE_REGIO:
		hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
		if (!hc->pci_iobase) {
			printk(KERN_WARNING
				"HFC-multi: No IO for PCI card found\n");
			pci_disable_device(hc->pci_dev);
			return -EIO;
		}

		if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
			printk(KERN_WARNING "HFC-multi: failed to request "
			    "address space at 0x%08lx (internal error)\n",
			    hc->pci_iobase);
			pci_disable_device(hc->pci_dev);
			return -EIO;
		}

		printk(KERN_INFO
		    "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
		    m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
		    hc->pci_dev->irq, HZ, hc->leds);
		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
		break;
	default:
		printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
		pci_disable_device(hc->pci_dev);
		return -EIO;
	}

	pci_set_drvdata(hc->pci_dev, hc);

	/* At this point the needed PCI config is done */
	/* fifos are still not enabled */
	return 0;
}


/*
 * remove port
 */

static void
release_port(struct hfc_multi *hc, struct dchannel *dch)
{
	int	pt, ci, i = 0;
	u_long	flags;
	struct bchannel *pb;

	ci = dch->slot;
	pt = hc->chan[ci].port;

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: entered for port %d\n",
			__func__, pt + 1);

	if (pt >= hc->ports) {
		printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
		     __func__, pt + 1);
		return;
	}

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: releasing port=%d\n",
		    __func__, pt + 1);

	if (dch->dev.D.protocol == ISDN_P_TE_S0)
		l1_event(dch->l1, CLOSE_CHANNEL);

	hc->chan[ci].dch = NULL;

	if (hc->created[pt]) {
		hc->created[pt] = 0;
		mISDN_unregister_device(&dch->dev);
	}

	spin_lock_irqsave(&hc->lock, flags);

	if (dch->timer.function) {
		del_timer(&dch->timer);
		dch->timer.function = NULL;
	}

	if (hc->type == 1) { /* E1 */
		/* remove sync */
		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
			hc->syncronized = 0;
			plxsd_checksync(hc, 1);
		}
		/* free channels */
		for (i = 0; i <= 31; i++) {
			if (hc->chan[i].bch) {
				if (debug & DEBUG_HFCMULTI_INIT)
					printk(KERN_DEBUG
					    "%s: free port %d channel %d\n",
					    __func__, hc->chan[i].port+1, i);
				pb = hc->chan[i].bch;
				hc->chan[i].bch = NULL;
				spin_unlock_irqrestore(&hc->lock, flags);
				mISDN_freebchannel(pb);
				kfree(pb);
				kfree(hc->chan[i].coeff);
				spin_lock_irqsave(&hc->lock, flags);
			}
		}
	} else {
		/* remove sync */
		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
			hc->syncronized &=
			   ~(1 << hc->chan[ci].port);
			plxsd_checksync(hc, 1);
		}
		/* free channels */
		if (hc->chan[ci - 2].bch) {
			if (debug & DEBUG_HFCMULTI_INIT)
				printk(KERN_DEBUG
				    "%s: free port %d channel %d\n",
				    __func__, hc->chan[ci - 2].port+1,
				    ci - 2);
			pb = hc->chan[ci - 2].bch;
			hc->chan[ci - 2].bch = NULL;
			spin_unlock_irqrestore(&hc->lock, flags);
			mISDN_freebchannel(pb);
			kfree(pb);
			kfree(hc->chan[ci - 2].coeff);
			spin_lock_irqsave(&hc->lock, flags);
		}
		if (hc->chan[ci - 1].bch) {
			if (debug & DEBUG_HFCMULTI_INIT)
				printk(KERN_DEBUG
				    "%s: free port %d channel %d\n",
				    __func__, hc->chan[ci - 1].port+1,
				    ci - 1);
			pb = hc->chan[ci - 1].bch;
			hc->chan[ci - 1].bch = NULL;
			spin_unlock_irqrestore(&hc->lock, flags);
			mISDN_freebchannel(pb);
			kfree(pb);
			kfree(hc->chan[ci - 1].coeff);
			spin_lock_irqsave(&hc->lock, flags);
		}
	}

	spin_unlock_irqrestore(&hc->lock, flags);

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: free port %d channel D\n", __func__, pt);
	mISDN_freedchannel(dch);
	kfree(dch);

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: done!\n", __func__);
}

static void
release_card(struct hfc_multi *hc)
{
	u_long	flags;
	int	ch;

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_WARNING "%s: release card (%d) entered\n",
		    __func__, hc->id);

	spin_lock_irqsave(&hc->lock, flags);
	disable_hwirq(hc);
	spin_unlock_irqrestore(&hc->lock, flags);

	udelay(1000);

	/* dimm leds */
	if (hc->leds)
		hfcmulti_leds(hc);

	/* disable D-channels & B-channels */
	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
		    __func__);
	for (ch = 0; ch <= 31; ch++) {
		if (hc->chan[ch].dch)
			release_port(hc, hc->chan[ch].dch);
	}

	/* release hardware & irq */
	if (hc->irq) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_WARNING "%s: free irq %d\n",
			    __func__, hc->irq);
		free_irq(hc->irq, hc);
		hc->irq = 0;

	}
	release_io_hfcmulti(hc);

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_WARNING "%s: remove instance from list\n",
		     __func__);
	list_del(&hc->list);

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_WARNING "%s: delete instance\n", __func__);
	if (hc == syncmaster)
		syncmaster = NULL;
	kfree(hc);
	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_WARNING "%s: card successfully removed\n",
		    __func__);
}

static int
init_e1_port(struct hfc_multi *hc, struct hm_map *m)
{
	struct dchannel	*dch;
	struct bchannel	*bch;
	int		ch, ret = 0;
	char		name[MISDN_MAX_IDLEN];

	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
	if (!dch)
		return -ENOMEM;
	dch->debug = debug;
	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
	dch->hw = hc;
	dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
	dch->dev.D.send = handle_dmsg;
	dch->dev.D.ctrl = hfcm_dctrl;
	dch->dev.nrbchan = (hc->dslot)?30:31;
	dch->slot = hc->dslot;
	hc->chan[hc->dslot].dch = dch;
	hc->chan[hc->dslot].port = 0;
	hc->chan[hc->dslot].nt_timer = -1;
	for (ch = 1; ch <= 31; ch++) {
		if (ch == hc->dslot) /* skip dchannel */
			continue;
		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
		if (!bch) {
			printk(KERN_ERR "%s: no memory for bchannel\n",
			    __func__);
			ret = -ENOMEM;
			goto free_chan;
		}
		hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
		if (!hc->chan[ch].coeff) {
			printk(KERN_ERR "%s: no memory for coeffs\n",
			    __func__);
			ret = -ENOMEM;
			goto free_chan;
		}
		bch->nr = ch;
		bch->slot = ch;
		bch->debug = debug;
		mISDN_initbchannel(bch, MAX_DATA_MEM);
		bch->hw = hc;
		bch->ch.send = handle_bmsg;
		bch->ch.ctrl = hfcm_bctrl;
		bch->ch.nr = ch;
		list_add(&bch->ch.list, &dch->dev.bchannels);
		hc->chan[ch].bch = bch;
		hc->chan[ch].port = 0;
		set_channelmap(bch->nr, dch->dev.channelmap);
	}
	/* set optical line type */
	if (port[Port_cnt] & 0x001) {
		if (!m->opticalsupport)  {
			printk(KERN_INFO
			    "This board has no optical "
			    "support\n");
		} else {
			if (debug & DEBUG_HFCMULTI_INIT)
				printk(KERN_DEBUG
				    "%s: PORT set optical "
				    "interfacs: card(%d) "
				    "port(%d)\n",
				    __func__,
				    HFC_cnt + 1, 1);
			test_and_set_bit(HFC_CFG_OPTICAL,
			    &hc->chan[hc->dslot].cfg);
		}
	}
	/* set LOS report */
	if (port[Port_cnt] & 0x004) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: PORT set "
			    "LOS report: card(%d) port(%d)\n",
			    __func__, HFC_cnt + 1, 1);
		test_and_set_bit(HFC_CFG_REPORT_LOS,
		    &hc->chan[hc->dslot].cfg);
	}
	/* set AIS report */
	if (port[Port_cnt] & 0x008) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: PORT set "
			    "AIS report: card(%d) port(%d)\n",
			    __func__, HFC_cnt + 1, 1);
		test_and_set_bit(HFC_CFG_REPORT_AIS,
		    &hc->chan[hc->dslot].cfg);
	}
	/* set SLIP report */
	if (port[Port_cnt] & 0x010) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG
			    "%s: PORT set SLIP report: "
			    "card(%d) port(%d)\n",
			    __func__, HFC_cnt + 1, 1);
		test_and_set_bit(HFC_CFG_REPORT_SLIP,
		    &hc->chan[hc->dslot].cfg);
	}
	/* set RDI report */
	if (port[Port_cnt] & 0x020) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG
			    "%s: PORT set RDI report: "
			    "card(%d) port(%d)\n",
			    __func__, HFC_cnt + 1, 1);
		test_and_set_bit(HFC_CFG_REPORT_RDI,
		    &hc->chan[hc->dslot].cfg);
	}
	/* set CRC-4 Mode */
	if (!(port[Port_cnt] & 0x100)) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
				" card(%d) port(%d)\n",
				__func__, HFC_cnt + 1, 1);
		test_and_set_bit(HFC_CFG_CRC4,
		    &hc->chan[hc->dslot].cfg);
	} else {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: PORT turn off CRC4"
				" report: card(%d) port(%d)\n",
				__func__, HFC_cnt + 1, 1);
	}
	/* set forced clock */
	if (port[Port_cnt] & 0x0200) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: PORT force getting clock from "
				"E1: card(%d) port(%d)\n",
				__func__, HFC_cnt + 1, 1);
		test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
	} else
	if (port[Port_cnt] & 0x0400) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: PORT force putting clock to "
				"E1: card(%d) port(%d)\n",
				__func__, HFC_cnt + 1, 1);
		test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
	}
	/* set JATT PLL */
	if (port[Port_cnt] & 0x0800) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
				"E1: card(%d) port(%d)\n",
				__func__, HFC_cnt + 1, 1);
		test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
	}
	/* set elastic jitter buffer */
	if (port[Port_cnt] & 0x3000) {
		hc->chan[hc->dslot].jitter = (port[Port_cnt]>>12) & 0x3;
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG
			    "%s: PORT set elastic "
			    "buffer to %d: card(%d) port(%d)\n",
			    __func__, hc->chan[hc->dslot].jitter,
			    HFC_cnt + 1, 1);
	} else
		hc->chan[hc->dslot].jitter = 2; /* default */
	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
	ret = mISDN_register_device(&dch->dev, name);
	if (ret)
		goto free_chan;
	hc->created[0] = 1;
	return ret;
free_chan:
	release_port(hc, dch);
	return ret;
}

static int
init_multi_port(struct hfc_multi *hc, int pt)
{
	struct dchannel	*dch;
	struct bchannel	*bch;
	int		ch, i, ret = 0;
	char		name[MISDN_MAX_IDLEN];

	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
	if (!dch)
		return -ENOMEM;
	dch->debug = debug;
	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
	dch->hw = hc;
	dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
	dch->dev.D.send = handle_dmsg;
	dch->dev.D.ctrl = hfcm_dctrl;
	dch->dev.nrbchan = 2;
	i = pt << 2;
	dch->slot = i + 2;
	hc->chan[i + 2].dch = dch;
	hc->chan[i + 2].port = pt;
	hc->chan[i + 2].nt_timer = -1;
	for (ch = 0; ch < dch->dev.nrbchan; ch++) {
		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
		if (!bch) {
			printk(KERN_ERR "%s: no memory for bchannel\n",
			    __func__);
			ret = -ENOMEM;
			goto free_chan;
		}
		hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
		if (!hc->chan[i + ch].coeff) {
			printk(KERN_ERR "%s: no memory for coeffs\n",
			    __func__);
			ret = -ENOMEM;
			goto free_chan;
		}
		bch->nr = ch + 1;
		bch->slot = i + ch;
		bch->debug = debug;
		mISDN_initbchannel(bch, MAX_DATA_MEM);
		bch->hw = hc;
		bch->ch.send = handle_bmsg;
		bch->ch.ctrl = hfcm_bctrl;
		bch->ch.nr = ch + 1;
		list_add(&bch->ch.list, &dch->dev.bchannels);
		hc->chan[i + ch].bch = bch;
		hc->chan[i + ch].port = pt;
		set_channelmap(bch->nr, dch->dev.channelmap);
	}
	/* set master clock */
	if (port[Port_cnt] & 0x001) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG
			    "%s: PROTOCOL set master clock: "
			    "card(%d) port(%d)\n",
			    __func__, HFC_cnt + 1, pt + 1);
		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
			printk(KERN_ERR "Error: Master clock "
			    "for port(%d) of card(%d) is only"
			    " possible with TE-mode\n",
			    pt + 1, HFC_cnt + 1);
			ret = -EINVAL;
			goto free_chan;
		}
		if (hc->masterclk >= 0) {
			printk(KERN_ERR "Error: Master clock "
			    "for port(%d) of card(%d) already "
			    "defined for port(%d)\n",
			    pt + 1, HFC_cnt + 1, hc->masterclk+1);
			ret = -EINVAL;
			goto free_chan;
		}
		hc->masterclk = pt;
	}
	/* set transmitter line to non capacitive */
	if (port[Port_cnt] & 0x002) {
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG
			    "%s: PROTOCOL set non capacitive "
			    "transmitter: card(%d) port(%d)\n",
			    __func__, HFC_cnt + 1, pt + 1);
		test_and_set_bit(HFC_CFG_NONCAP_TX,
		    &hc->chan[i + 2].cfg);
	}
	/* disable E-channel */
	if (port[Port_cnt] & 0x004) {
	if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG
			    "%s: PROTOCOL disable E-channel: "
			    "card(%d) port(%d)\n",
			    __func__, HFC_cnt + 1, pt + 1);
		test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
		    &hc->chan[i + 2].cfg);
	}
	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d/%d",
		hc->type, HFC_cnt + 1, pt + 1);
	ret = mISDN_register_device(&dch->dev, name);
	if (ret)
		goto free_chan;
	hc->created[pt] = 1;
	return ret;
free_chan:
	release_port(hc, dch);
	return ret;
}

static int
hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct hm_map	*m = (struct hm_map *)ent->driver_data;
	int		ret_err = 0;
	int		pt;
	struct hfc_multi	*hc;
	u_long		flags;
	u_char		dips = 0, pmj = 0; /* dip settings, port mode Jumpers */

	if (HFC_cnt >= MAX_CARDS) {
		printk(KERN_ERR "too many cards (max=%d).\n",
			MAX_CARDS);
		return -EINVAL;
	}
	if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
		printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
		    "type[%d] %d was supplied as module parameter\n",
		    m->vendor_name, m->card_name, m->type, HFC_cnt,
		    type[HFC_cnt] & 0xff);
		printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
			"first, to see cards and their types.");
		return -EINVAL;
	}
	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
		    __func__, m->vendor_name, m->card_name, m->type,
		    type[HFC_cnt]);

	/* allocate card+fifo structure */
	hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
	if (!hc) {
		printk(KERN_ERR "No kmem for HFC-Multi card\n");
		return -ENOMEM;
	}
	spin_lock_init(&hc->lock);
	hc->mtyp = m;
	hc->type =  m->type;
	hc->ports = m->ports;
	hc->id = HFC_cnt;
	hc->pcm = pcm[HFC_cnt];
	hc->io_mode = iomode[HFC_cnt];
	if (dslot[HFC_cnt] < 0) {
		hc->dslot = 0;
		printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
			"31 B-channels\n");
	} if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32) {
		hc->dslot = dslot[HFC_cnt];
		printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
			"time slot %d\n", dslot[HFC_cnt]);
	} else
		hc->dslot = 16;

	/* set chip specific features */
	hc->masterclk = -1;
	if (type[HFC_cnt] & 0x100) {
		test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
		silence = 0xff; /* ulaw silence */
	} else
		silence = 0x2a; /* alaw silence */
	if (!(type[HFC_cnt] & 0x200))
		test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);

	if (type[HFC_cnt] & 0x800)
		test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
	if (type[HFC_cnt] & 0x1000) {
		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
	}
	if (type[HFC_cnt] & 0x4000)
		test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
	if (type[HFC_cnt] & 0x8000)
		test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
	hc->slots = 32;
	if (type[HFC_cnt] & 0x10000)
		hc->slots = 64;
	if (type[HFC_cnt] & 0x20000)
		hc->slots = 128;
	if (type[HFC_cnt] & 0x80000) {
		test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
		hc->wdcount = 0;
		hc->wdbyte = V_GPIO_OUT2;
		printk(KERN_NOTICE "Watchdog enabled\n");
	}

	/* setup pci, hc->slots may change due to PLXSD */
	ret_err = setup_pci(hc, pdev, ent);
	if (ret_err) {
		if (hc == syncmaster)
			syncmaster = NULL;
		kfree(hc);
		return ret_err;
	}

	/* crate channels */
	for (pt = 0; pt < hc->ports; pt++) {
		if (Port_cnt >= MAX_PORTS) {
			printk(KERN_ERR "too many ports (max=%d).\n",
				MAX_PORTS);
			ret_err = -EINVAL;
			goto free_card;
		}
		if (hc->type == 1)
			ret_err = init_e1_port(hc, m);
		else
			ret_err = init_multi_port(hc, pt);
		if (debug & DEBUG_HFCMULTI_INIT)
			printk(KERN_DEBUG
			    "%s: Registering D-channel, card(%d) port(%d)"
			    "result %d\n",
			    __func__, HFC_cnt + 1, pt, ret_err);

		if (ret_err) {
			while (pt) { /* release already registered ports */
				pt--;
				release_port(hc, hc->chan[(pt << 2) + 2].dch);
			}
			goto free_card;
		}
		Port_cnt++;
	}

	/* disp switches */
	switch (m->dip_type) {
	case DIP_4S:
		/*
		 * Get DIP setting for beroNet 1S/2S/4S cards
		 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
		 * GPI 19/23 (R_GPI_IN2))
		 */
		dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
			((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
			(~HFC_inb(hc, R_GPI_IN2) & 0x08);

		/* Port mode (TE/NT) jumpers */
		pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);

		if (test_bit(HFC_CHIP_B410P, &hc->chip))
			pmj = ~pmj & 0xf;

		printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
			m->vendor_name, m->card_name, dips, pmj);
		break;
	case DIP_8S:
		/*
		 * Get DIP Setting for beroNet 8S0+ cards
		 * Enable PCI auxbridge function
		 */
		HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
		/* prepare access to auxport */
		outw(0x4000, hc->pci_iobase + 4);
		/*
		 * some dummy reads are required to
		 * read valid DIP switch data
		 */
		dips = inb(hc->pci_iobase);
		dips = inb(hc->pci_iobase);
		dips = inb(hc->pci_iobase);
		dips = ~inb(hc->pci_iobase) & 0x3F;
		outw(0x0, hc->pci_iobase + 4);
		/* disable PCI auxbridge function */
		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
		    m->vendor_name, m->card_name, dips);
		break;
	case DIP_E1:
		/*
		 * get DIP Setting for beroNet E1 cards
		 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
		 */
		dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0)>>4;
		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
		    m->vendor_name, m->card_name, dips);
		break;
	}

	/* add to list */
	spin_lock_irqsave(&HFClock, flags);
	list_add_tail(&hc->list, &HFClist);
	spin_unlock_irqrestore(&HFClock, flags);

	/* initialize hardware */
	ret_err = init_card(hc);
	if (ret_err) {
		printk(KERN_ERR "init card returns %d\n", ret_err);
		release_card(hc);
		return ret_err;
	}

	/* start IRQ and return */
	spin_lock_irqsave(&hc->lock, flags);
	enable_hwirq(hc);
	spin_unlock_irqrestore(&hc->lock, flags);
	return 0;

free_card:
	release_io_hfcmulti(hc);
	if (hc == syncmaster)
		syncmaster = NULL;
	kfree(hc);
	return ret_err;
}

static void __devexit hfc_remove_pci(struct pci_dev *pdev)
{
	struct hfc_multi	*card = pci_get_drvdata(pdev);
	u_long			flags;

	if (debug)
		printk(KERN_INFO "removing hfc_multi card vendor:%x "
		    "device:%x subvendor:%x subdevice:%x\n",
		    pdev->vendor, pdev->device,
		    pdev->subsystem_vendor, pdev->subsystem_device);

	if (card) {
		spin_lock_irqsave(&HFClock, flags);
		release_card(card);
		spin_unlock_irqrestore(&HFClock, flags);
	}  else {
		if (debug)
			printk(KERN_WARNING "%s: drvdata allready removed\n",
			    __func__);
	}
}

#define	VENDOR_CCD	"Cologne Chip AG"
#define	VENDOR_BN	"beroNet GmbH"
#define	VENDOR_DIG	"Digium Inc."
#define VENDOR_JH	"Junghanns.NET GmbH"
#define VENDOR_PRIM	"PrimuX"

static const struct hm_map hfcm_map[] = {
/*0*/	{VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0},
/*1*/	{VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0},
/*2*/	{VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0},
/*3*/	{VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0},
/*4*/	{VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0},
/*5*/	{VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0},
/*6*/	{VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0},
/*7*/	{VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0},
/*8*/	{VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO},
/*9*/	{VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0},
/*10*/	{VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0},
/*11*/	{VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0},

/*12*/	{VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0},
/*13*/	{VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
		HFC_IO_MODE_REGIO},
/*14*/	{VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0},
/*15*/	{VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0},

/*16*/	{VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0},
/*17*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
/*18*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},

/*19*/	{VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0},
/*20*/	{VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0},
/*21*/	{VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
/*22*/	{VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},

/*23*/	{VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0},
/*24*/	{VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0},
/*25*/	{VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0},

/*26*/	{VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
		HFC_IO_MODE_PLXSD},
/*27*/	{VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
		HFC_IO_MODE_PLXSD},
/*28*/	{VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0},
/*29*/	{VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0},
/*30*/	{VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0},
};

#undef H
#define H(x)	((unsigned long)&hfcm_map[x])
static struct pci_device_id hfmultipci_ids[] __devinitdata = {

	/* Cards with HFC-4S Chip */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
		PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
	{ PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
		PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */

	/* Cards with HFC-8S Chip */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
	PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
	PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
	PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
	PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */


	/* Cards with HFC-E1 Chip */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */

	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
		PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */

	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
		PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_ANY_ID, PCI_ANY_ID,
		0, 0, 0},
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_ANY_ID, PCI_ANY_ID,
		0, 0, 0},
	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_ANY_ID, PCI_ANY_ID,
		0, 0, 0},
	{0, }
};
#undef H

MODULE_DEVICE_TABLE(pci, hfmultipci_ids);

static int
hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct hm_map	*m = (struct hm_map *)ent->driver_data;
	int		ret;

	if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
	    ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
	    ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
	    ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
		printk(KERN_ERR
		    "Unknown HFC multiport controller (vendor:%x device:%x "
		    "subvendor:%x subdevice:%x)\n", ent->vendor, ent->device,
		    ent->subvendor, ent->subdevice);
		printk(KERN_ERR
		    "Please contact the driver maintainer for support.\n");
		return -ENODEV;
	}
	ret = hfcmulti_init(pdev, ent);
	if (ret)
		return ret;
	HFC_cnt++;
	printk(KERN_INFO "%d devices registered\n", HFC_cnt);
	return 0;
}

static struct pci_driver hfcmultipci_driver = {
	.name		= "hfc_multi",
	.probe		= hfcmulti_probe,
	.remove		= __devexit_p(hfc_remove_pci),
	.id_table	= hfmultipci_ids,
};

static void __exit
HFCmulti_cleanup(void)
{
	struct hfc_multi *card, *next;

	/* get rid of all devices of this driver */
	list_for_each_entry_safe(card, next, &HFClist, list)
		release_card(card);
	pci_unregister_driver(&hfcmultipci_driver);
}

static int __init
HFCmulti_init(void)
{
	int err;

	printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);

#ifdef IRQ_DEBUG
	printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
#endif

	spin_lock_init(&HFClock);
	spin_lock_init(&plx_lock);

	if (debug & DEBUG_HFCMULTI_INIT)
		printk(KERN_DEBUG "%s: init entered\n", __func__);

	switch (poll) {
	case 0:
		poll_timer = 6;
		poll = 128;
		break;
	case 8:
		poll_timer = 2;
		break;
	case 16:
		poll_timer = 3;
		break;
	case 32:
		poll_timer = 4;
		break;
	case 64:
		poll_timer = 5;
		break;
	case 128:
		poll_timer = 6;
		break;
	case 256:
		poll_timer = 7;
		break;
	default:
		printk(KERN_ERR
		    "%s: Wrong poll value (%d).\n", __func__, poll);
		err = -EINVAL;
		return err;

	}

	err = pci_register_driver(&hfcmultipci_driver);
	if (err < 0) {
		printk(KERN_ERR "error registering pci driver: %x\n", err);
		return err;
	}
	return 0;
}


module_init(HFCmulti_init);
module_exit(HFCmulti_cleanup);