aboutsummaryrefslogtreecommitdiffstats
path: root/litmus/sched_pfair.c
blob: f75cc8c7e441d7b991c29bc20bcca4126dd1cfcb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
/*
 * kernel/sched_pfair.c
 *
 * Implementation of the PD^2 pfair scheduling algorithm. This
 * implementation realizes "early releasing," i.e., it is work-conserving.
 *
 */

#include <asm/div64.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/slab.h>

#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/preempt.h>
#include <litmus/rt_domain.h>
#include <litmus/sched_plugin.h>
#include <litmus/sched_trace.h>
#include <litmus/trace.h>

#include <litmus/bheap.h>

/* to configure the cluster size */
#include <litmus/litmus_proc.h>

#include <litmus/clustered.h>

static enum cache_level pfair_cluster_level = GLOBAL_CLUSTER;

struct subtask {
	/* measured in quanta relative to job release */
	quanta_t release;
        quanta_t deadline;
	quanta_t overlap; /* called "b bit" by PD^2 */
	quanta_t group_deadline;
};

struct pfair_param   {
	quanta_t	quanta;       /* number of subtasks */
	quanta_t	cur;          /* index of current subtask */

	quanta_t	release;      /* in quanta */
	quanta_t	period;       /* in quanta */

	quanta_t	last_quantum; /* when scheduled last */
	int		last_cpu;     /* where scheduled last */

	unsigned int	needs_requeue:1;

	struct pfair_cluster* cluster; /* where this task is scheduled */

	struct subtask subtasks[0];   /* allocate together with pfair_param */
};

#define tsk_pfair(tsk) ((tsk)->rt_param.pfair)

struct pfair_state {
	struct cluster_cpu topology;

	struct hrtimer quantum_timer;

	volatile quanta_t cur_tick;    /* updated by the CPU that is advancing
				        * the time */
	volatile quanta_t local_tick;  /* What tick is the local CPU currently
				        * executing? Updated only by the local
				        * CPU. In QEMU, this may lag behind the
				        * current tick. In a real system, with
				        * proper timers and aligned quanta,
				        * that should only be the case for a
				        * very short time after the time
				        * advanced. With staggered quanta, it
				        * will lag for the duration of the
				        * offset.
					*/

	struct task_struct* linked;    /* the task that should be executing */
	struct task_struct* local;     /* the local copy of linked          */
	struct task_struct* scheduled; /* what is actually scheduled        */

	struct list_head    out_of_budget; /* list of tasks that exhausted their allocation */

	lt_t offset;			/* stagger offset */
	unsigned int missed_updates;
	unsigned int missed_quanta;
};

struct pfair_cluster {
	struct scheduling_cluster topology;

	/* The "global" time in this cluster. */
	quanta_t pfair_time; /* the "official" PFAIR clock */

	/* The ready queue for this cluster. */
	rt_domain_t pfair;

	/* The set of jobs that should have their release enacted at the next
	 * quantum boundary.
	 */
	struct bheap release_queue;
	raw_spinlock_t release_lock;
};

static inline struct pfair_cluster* cpu_cluster(struct pfair_state* state)
{
	return container_of(state->topology.cluster, struct pfair_cluster, topology);
}

static inline int cpu_id(struct pfair_state* state)
{
	return state->topology.id;
}

static inline struct pfair_state* from_cluster_list(struct list_head* pos)
{
	return list_entry(pos, struct pfair_state, topology.cluster_list);
}

static inline struct pfair_cluster* from_domain(rt_domain_t* rt)
{
	return container_of(rt, struct pfair_cluster, pfair);
}

static inline raw_spinlock_t* cluster_lock(struct pfair_cluster* cluster)
{
	/* The ready_lock is used to serialize all scheduling events. */
	return &cluster->pfair.ready_lock;
}

static inline raw_spinlock_t* cpu_lock(struct pfair_state* state)
{
	return cluster_lock(cpu_cluster(state));
}

DEFINE_PER_CPU(struct pfair_state, pfair_state);
struct pfair_state* *pstate; /* short cut */

static struct pfair_cluster* pfair_clusters;
static int num_pfair_clusters;

/* Enable for lots of trace info.
 * #define PFAIR_DEBUG
 */

#ifdef PFAIR_DEBUG
#define PTRACE_TASK(t, f, args...)  TRACE_TASK(t, f, ## args)
#define PTRACE(f, args...) TRACE(f, ## args)
#else
#define PTRACE_TASK(t, f, args...)
#define PTRACE(f, args...)
#endif

/* gcc will inline all of these accessor functions... */
static struct subtask* cur_subtask(struct task_struct* t)
{
	return tsk_pfair(t)->subtasks + tsk_pfair(t)->cur;
}

static quanta_t cur_deadline(struct task_struct* t)
{
	return cur_subtask(t)->deadline +  tsk_pfair(t)->release;
}

static quanta_t cur_release(struct task_struct* t)
{
	/* This is early releasing: only the release of the first subtask
	 * counts. */
	return tsk_pfair(t)->release;
}

static quanta_t cur_overlap(struct task_struct* t)
{
	return cur_subtask(t)->overlap;
}

static quanta_t cur_group_deadline(struct task_struct* t)
{
	quanta_t gdl = cur_subtask(t)->group_deadline;
	if (gdl)
		return gdl + tsk_pfair(t)->release;
	else
		return gdl;
}


static int pfair_higher_prio(struct task_struct* first,
			     struct task_struct* second)
{
	return  /* first task must exist */
		first && (
		/* Does the second task exist and is it a real-time task?  If
		 * not, the first task (which is a RT task) has higher
		 * priority.
		 */
		!second || !is_realtime(second)  ||

		/* Is the (subtask) deadline of the first task earlier?
		 * Then it has higher priority.
		 */
		time_before(cur_deadline(first), cur_deadline(second)) ||

		/* Do we have a deadline tie?
		 * Then break by B-bit.
		 */
		(cur_deadline(first) == cur_deadline(second) &&
		 (cur_overlap(first) > cur_overlap(second) ||

		/* Do we have a B-bit tie?
		 * Then break by group deadline.
		 */
		(cur_overlap(first) == cur_overlap(second) &&
		 (time_after(cur_group_deadline(first),
			     cur_group_deadline(second)) ||

		/* Do we have a group deadline tie?
		 * Then break by PID, which are unique.
		 */
		(cur_group_deadline(first) ==
		 cur_group_deadline(second) &&
		 first->pid < second->pid))))));
}

int pfair_ready_order(struct bheap_node* a, struct bheap_node* b)
{
	return pfair_higher_prio(bheap2task(a), bheap2task(b));
}

static void pfair_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
	struct pfair_cluster* cluster = from_domain(rt);
	unsigned long flags;

	raw_spin_lock_irqsave(&cluster->release_lock, flags);

	bheap_union(pfair_ready_order, &cluster->release_queue, tasks);

	raw_spin_unlock_irqrestore(&cluster->release_lock, flags);
}

static void prepare_release(struct task_struct* t, quanta_t at)
{
	tsk_pfair(t)->release    = at;
	tsk_pfair(t)->cur        = 0;
}

/* pull released tasks from the release queue */
static void poll_releases(struct pfair_cluster* cluster)
{
	raw_spin_lock(&cluster->release_lock);
	__merge_ready(&cluster->pfair, &cluster->release_queue);
	raw_spin_unlock(&cluster->release_lock);
}

static void check_preempt(struct task_struct* t)
{
	int cpu = NO_CPU;
	if (tsk_rt(t)->linked_on != tsk_rt(t)->scheduled_on &&
	    is_present(t)) {
		/* the task can be scheduled and
		 * is not scheduled where it ought to be scheduled
		 */
		cpu = tsk_rt(t)->linked_on != NO_CPU ?
			tsk_rt(t)->linked_on         :
			tsk_rt(t)->scheduled_on;
		PTRACE_TASK(t, "linked_on:%d, scheduled_on:%d\n",
			   tsk_rt(t)->linked_on, tsk_rt(t)->scheduled_on);
		/* preempt */
		litmus_reschedule(cpu);
	}
}

/* caller must hold pfair.ready_lock */
static void drop_all_references(struct task_struct *t)
{
        int cpu;
        struct pfair_state* s;
	struct pfair_cluster* cluster;
        if (bheap_node_in_heap(tsk_rt(t)->heap_node)) {
                /* It must be in the ready queue; drop references isn't called
		 * when the job is in a release queue. */
		cluster = tsk_pfair(t)->cluster;
                bheap_delete(pfair_ready_order, &cluster->pfair.ready_queue,
                            tsk_rt(t)->heap_node);
        }
        for (cpu = 0; cpu < num_online_cpus(); cpu++) {
                s = &per_cpu(pfair_state, cpu);
                if (s->linked == t)
                        s->linked = NULL;
                if (s->local  == t)
                        s->local  = NULL;
                if (s->scheduled  == t)
                        s->scheduled = NULL;
        }
	/* make sure we don't have a stale linked_on field */
	tsk_rt(t)->linked_on = NO_CPU;

	/* make sure we're not queued for re-releasing */
	if (in_list(&tsk_rt(t)->list))
	{
		TRACE_TASK(t, "removing from out_of_budget queue\n");
		list_del(&tsk_rt(t)->list);
	}
}

static void pfair_prepare_next_period(struct task_struct* t)
{
	struct pfair_param* p = tsk_pfair(t);

	prepare_for_next_period(t);
	tsk_rt(t)->completed = 0;
	p->release = time2quanta(get_release(t), CEIL);
}

/* returns 1 if the task needs to go the release queue */
static int advance_subtask(quanta_t time, struct task_struct* t, int cpu)
{
	struct pfair_param* p = tsk_pfair(t);
	int to_relq;
	p->cur = (p->cur + 1) % p->quanta;
	if (!p->cur) {
		if (is_present(t)) {
			/* The job overran; we start a new budget allocation. */
			TRACE_TASK(t, "overran budget, preparing next period\n");
			sched_trace_task_completion(t, 1);
			pfair_prepare_next_period(t);
		} else {
			/* remove task from system until it wakes */
			drop_all_references(t);
			p->needs_requeue = 1;
			TRACE_TASK(t, "on %d advanced to subtask %lu (not present)\n",
				   cpu, p->cur);
			return 0;
		}
	}
	to_relq = time_after(cur_release(t), time);
	TRACE_TASK(t, "on %d advanced to subtask %lu -> to_relq=%d "
		"(cur_release:%lu time:%lu present:%d on_cpu=%d)\n",
		cpu, p->cur, to_relq, cur_release(t), time,
		tsk_rt(t)->present, tsk_rt(t)->scheduled_on);
	return to_relq;
}

static void advance_subtasks(struct pfair_cluster *cluster, quanta_t time)
{
	struct task_struct* l;
	struct pfair_param* p;
	struct list_head* pos;
	struct pfair_state* cpu;

	list_for_each(pos, &cluster->topology.cpus) {
		cpu = from_cluster_list(pos);
		l = cpu->linked;
		cpu->missed_updates += cpu->linked != cpu->local;
		if (l) {
			p = tsk_pfair(l);
			p->last_quantum = time;
			p->last_cpu     =  cpu_id(cpu);
			if (advance_subtask(time, l, cpu_id(cpu))) {
				cpu->linked = NULL;
				tsk_rt(l)->linked_on = NO_CPU;
				PTRACE_TASK(l, "should go to release queue. "
					    "scheduled_on=%d present=%d\n",
					    tsk_rt(l)->scheduled_on,
					    tsk_rt(l)->present);
				list_add(&tsk_rt(l)->list, &cpu->out_of_budget);
			}
		}
	}
}

static int target_cpu(quanta_t time, struct task_struct* t, int default_cpu)
{
	int cpu;
	if (tsk_rt(t)->scheduled_on != NO_CPU) {
		/* always observe scheduled_on linkage */
		default_cpu = tsk_rt(t)->scheduled_on;
	} else if (tsk_pfair(t)->last_quantum == time - 1) {
		/* back2back quanta */
		/* Only observe last_quantum if no scheduled_on is in the way.
		 * This should only kick in if a CPU missed quanta, and that
		 * *should* only happen in QEMU.
		 */
		cpu = tsk_pfair(t)->last_cpu;
		if (!pstate[cpu]->linked ||
		    tsk_rt(pstate[cpu]->linked)->scheduled_on != cpu) {
			default_cpu = cpu;
		}
	}
	return default_cpu;
}

/* returns one if linking was redirected */
static int pfair_link(quanta_t time, int cpu,
		      struct task_struct* t)
{
	int target = target_cpu(time, t, cpu);
	struct task_struct* prev  = pstate[cpu]->linked;
	struct task_struct* other;
	struct pfair_cluster* cluster = cpu_cluster(pstate[cpu]);

	if (target != cpu) {
		BUG_ON(pstate[target]->topology.cluster != pstate[cpu]->topology.cluster);
		other = pstate[target]->linked;
		pstate[target]->linked = t;
		tsk_rt(t)->linked_on   = target;
		if (!other)
			/* linked ok, but reschedule this CPU */
			return 1;
		if (target < cpu) {
			/* link other to cpu instead */
			tsk_rt(other)->linked_on = cpu;
			pstate[cpu]->linked      = other;
			if (prev) {
				/* prev got pushed back into the ready queue */
				tsk_rt(prev)->linked_on = NO_CPU;
				__add_ready(&cluster->pfair, prev);
			}
			/* we are done with this cpu */
			return 0;
		} else {
			/* re-add other, it's original CPU was not considered yet */
			tsk_rt(other)->linked_on = NO_CPU;
			__add_ready(&cluster->pfair, other);
			/* reschedule this CPU */
			return 1;
		}
	} else {
		pstate[cpu]->linked  = t;
		tsk_rt(t)->linked_on = cpu;
		if (prev) {
			/* prev got pushed back into the ready queue */
			tsk_rt(prev)->linked_on = NO_CPU;
			__add_ready(&cluster->pfair, prev);
		}
		/* we are done with this CPU */
		return 0;
	}
}

static void schedule_subtasks(struct pfair_cluster *cluster, quanta_t time)
{
	int retry;
	struct list_head *pos;
	struct pfair_state *cpu_state;

	list_for_each(pos, &cluster->topology.cpus) {
		cpu_state = from_cluster_list(pos);
		retry = 1;
#ifdef CONFIG_RELEASE_MASTER
		/* skip release master */
		if (cluster->pfair.release_master == cpu_id(cpu_state))
			continue;
#endif
		while (retry) {
			if (pfair_higher_prio(__peek_ready(&cluster->pfair),
					      cpu_state->linked))
				retry = pfair_link(time, cpu_id(cpu_state),
						   __take_ready(&cluster->pfair));
			else
				retry = 0;
		}
	}
}

static void schedule_next_quantum(struct pfair_cluster *cluster, quanta_t time)
{
	struct pfair_state *cpu;
	struct list_head* pos;

	/* called with interrupts disabled */
	PTRACE("--- Q %lu at %llu PRE-SPIN\n",
	       time, litmus_clock());
	raw_spin_lock(cluster_lock(cluster));
	PTRACE("<<< Q %lu at %llu\n",
	       time, litmus_clock());

	sched_trace_quantum_boundary();

	advance_subtasks(cluster, time);
	poll_releases(cluster);
	schedule_subtasks(cluster, time);

	list_for_each(pos, &cluster->topology.cpus) {
		cpu = from_cluster_list(pos);
		if (cpu->linked)
			PTRACE_TASK(cpu->linked,
				    " linked on %d.\n", cpu_id(cpu));
		else
			PTRACE("(null) linked on %d.\n", cpu_id(cpu));
	}
	/* We are done. Advance time. */
	mb();
	list_for_each(pos, &cluster->topology.cpus) {
		cpu = from_cluster_list(pos);
		if (cpu->local_tick != cpu->cur_tick) {
			TRACE("BAD Quantum not acked on %d "
			      "(l:%lu c:%lu p:%lu)\n",
			      cpu_id(cpu),
			      cpu->local_tick,
			      cpu->cur_tick,
			      cluster->pfair_time);
			cpu->missed_quanta++;
		}
		cpu->cur_tick = time;
	}
	PTRACE(">>> Q %lu at %llu\n",
	       time, litmus_clock());
	raw_spin_unlock(cluster_lock(cluster));
}

static noinline void wait_for_quantum(quanta_t q, struct pfair_state* state)
{
	quanta_t loc;

	goto first; /* skip mb() on first iteration */
	do {
		cpu_relax();
		mb();
	first:	loc = state->cur_tick;
		/* FIXME: what if loc > cur? */
	} while (time_before(loc, q));
	PTRACE("observed cur_tick:%lu >= q:%lu\n",
	       loc, q);
}

static quanta_t current_quantum(struct pfair_state* state)
{
	lt_t t = litmus_clock() - state->offset;
	return time2quanta(t, FLOOR);
}

static void catchup_quanta(quanta_t from, quanta_t target,
			   struct pfair_state* state)
{
	quanta_t cur = from, time;
	TRACE("+++< BAD catching up quanta from %lu to %lu\n",
	      from, target);
	while (time_before(cur, target)) {
		wait_for_quantum(cur, state);
		cur++;
		time = cmpxchg(&cpu_cluster(state)->pfair_time,
			       cur - 1,   /* expected */
			       cur        /* next     */
			);
		if (time == cur - 1)
			schedule_next_quantum(cpu_cluster(state), cur);
	}
	TRACE("+++> catching up done\n");
}

/* pfair_tick - this function is called for every local timer
 *                         interrupt.
 */
static void pfair_tick(struct task_struct* t)
{
	struct pfair_state* state = this_cpu_ptr(&pfair_state);
	quanta_t time, cur;
	int retry = 10;

	do {
		cur  = current_quantum(state);
		PTRACE("q %lu at %llu\n", cur, litmus_clock());

		/* Attempt to advance time. First CPU to get here
		 * will prepare the next quantum.
		 */
		time = cpu_cluster(state)->pfair_time;
		if (time == cur - 1)
		{
			/* looks good, see if we can advance the time */
			time = cmpxchg(&cpu_cluster(state)->pfair_time,
				       cur - 1,   /* expected */
				       cur        /* next     */
				);
		}

		if (time == cur - 1) {
			/* exchange succeeded */
			wait_for_quantum(cur - 1, state);
			schedule_next_quantum(cpu_cluster(state), cur);
			retry = 0;
		} else if (time_before(time, cur - 1)) {
			/* the whole system missed a tick !? */
			catchup_quanta(time, cur, state);
			retry--;
		} else if (time_after(time, cur)) {
			/* our timer lagging behind!? */
			TRACE("BAD pfair_time:%lu > cur:%lu\n", time, cur);
			retry--;
		} else {
			/* Some other CPU already started scheduling
			 * this quantum. Let it do its job and then update.
			 */
			retry = 0;
		}
	} while (retry);

	/* Spin locally until time advances. */
	wait_for_quantum(cur, state);

	/* copy assignment */
	/* FIXME: what if we race with a future update? Corrupted state? */
	state->local      = state->linked;
	/* signal that we are done */
	mb();
	state->local_tick = state->cur_tick;

	if (state->local != current
	    && (is_realtime(current) || is_present(state->local)))
		litmus_reschedule_local();
}

static void process_out_of_budget_tasks(
	struct pfair_state* state,
	struct task_struct* prev,
	unsigned int blocks)
{
	struct task_struct *t;

	while (!list_empty(&state->out_of_budget))
	{

		t = list_first_entry(&state->out_of_budget,
		                     struct task_struct, rt_param.list);
		TRACE_TASK(t, "found on out_of_budget queue is_prev=%d\n", t == prev);
		list_del(&tsk_rt(t)->list);
		if (t != prev || !blocks)
		{
			if (time_after(cur_release(t), state->local_tick)) {
				TRACE_TASK(t, "adding to release queue (budget exhausted)\n");
				add_release(&cpu_cluster(state)->pfair, t);
			} else {
				TRACE_TASK(t, "adding to ready queue (budget exhausted)\n");
				sched_trace_task_release(t);
				__add_ready(&cpu_cluster(state)->pfair, t);
			}
		} else {
			TRACE_TASK(t, "not added to release queue (blocks=%d)\n", blocks);
			tsk_pfair(t)->needs_requeue = 1;
		}
		if (unlikely(state->local == t)) {
			TRACE_TASK(t, "still linked as ->local, cleaning up\n");
			state->local = NULL;
		}
	}
}

/* Custom scheduling tick: called on each quantum boundary. */
static enum hrtimer_restart on_quantum_boundary(struct hrtimer *timer)
{
	TS_QUANTUM_BOUNDARY_START;

	pfair_tick(current);
	hrtimer_add_expires_ns(timer, LITMUS_QUANTUM_LENGTH_NS);

	TS_QUANTUM_BOUNDARY_END;
	return  HRTIMER_RESTART;
}

static int safe_to_schedule(struct task_struct* t, int cpu)
{
	int where = tsk_rt(t)->scheduled_on;
	if (where != NO_CPU && where != cpu) {
		TRACE_TASK(t, "BAD: can't be scheduled on %d, "
			   "scheduled already on %d.\n", cpu, where);
		return 0;
	} else
		return is_present(t) && !is_completed(t);
}

static struct task_struct* pfair_schedule(struct task_struct * prev)
{
	struct pfair_state* state = this_cpu_ptr(&pfair_state);
	struct pfair_cluster* cluster = cpu_cluster(state);
	int blocks, completion, out_of_time;
	struct task_struct* next = NULL;

#ifdef CONFIG_RELEASE_MASTER
	/* Bail out early if we are the release master.
	 * The release master never schedules any real-time tasks.
	 */
	if (unlikely(cluster->pfair.release_master == cpu_id(state))) {
		goto out;
	}
#endif

	raw_spin_lock(cpu_lock(state));

	blocks      = is_realtime(prev) && !is_current_running();
	completion  = is_realtime(prev) && is_completed(prev);
	out_of_time = is_realtime(prev) && time_after(cur_release(prev),
						      state->local_tick);

	if (is_realtime(prev))
	    PTRACE_TASK(prev, "blocks:%d completion:%d out_of_time:%d\n",
			blocks, completion, out_of_time);

	if (completion && !out_of_time) {
		sched_trace_task_completion(prev, 0);
		pfair_prepare_next_period(prev);
		prepare_release(prev, cur_release(prev));
		drop_all_references(prev);
		list_add(&tsk_rt(prev)->list, &state->out_of_budget);
	}

	process_out_of_budget_tasks(state, prev, blocks);

	if (state->local && safe_to_schedule(state->local, cpu_id(state)))
		next = state->local;

	if (prev != next) {
		tsk_rt(prev)->scheduled_on = NO_CPU;
		if (next)
			tsk_rt(next)->scheduled_on = cpu_id(state);
	}
	sched_state_task_picked();
	raw_spin_unlock(cpu_lock(state));

	if (next)
		TRACE_TASK(next, "scheduled rel=%lu at %lu (%llu)\n",
			   tsk_pfair(next)->release, cpu_cluster(state)->pfair_time, litmus_clock());
	else if (is_realtime(prev))
		TRACE("Becomes idle at %lu (%llu)\n", cpu_cluster(state)->pfair_time, litmus_clock());

#ifdef CONFIG_RELEASE_MASTER
out:
#endif

	if (unlikely(!hrtimer_active(&state->quantum_timer))) {
		TRACE("activating quantum timer start=%llu\n",
			hrtimer_get_expires(&state->quantum_timer));
		hrtimer_start(&state->quantum_timer,
			hrtimer_get_expires(&state->quantum_timer),
			HRTIMER_MODE_ABS);
	}

	return next;
}

static void pfair_task_new(struct task_struct * t, int on_rq, int is_scheduled)
{
	unsigned long flags;
	struct pfair_cluster* cluster;

	TRACE("pfair: task new %d state:%d\n", t->pid, t->state);

	cluster = tsk_pfair(t)->cluster;

	raw_spin_lock_irqsave(cluster_lock(cluster), flags);

	prepare_release(t, cluster->pfair_time + 1);
	release_at(t, quanta2time(cur_release(t)));

	t->rt_param.scheduled_on = NO_CPU;
	t->rt_param.linked_on    = NO_CPU;

	if (is_scheduled) {
#ifdef CONFIG_RELEASE_MASTER
		if (task_cpu(t) != cluster->pfair.release_master)
#endif
			t->rt_param.scheduled_on = task_cpu(t);
	}

	if (on_rq || is_scheduled) {
		tsk_rt(t)->present = 1;
		__add_ready(&cluster->pfair, t);
	} else {
		tsk_rt(t)->present = 0;
		tsk_pfair(t)->needs_requeue = 1;
	}

	check_preempt(t);

	raw_spin_unlock_irqrestore(cluster_lock(cluster), flags);
}

static void pfair_task_wake_up(struct task_struct *t)
{
	unsigned long flags;
	lt_t now;
	struct pfair_cluster* cluster;
	struct pfair_state* state;
	int sporadic_release = 0;

	cluster = tsk_pfair(t)->cluster;

	TRACE_TASK(t, "wakes at %llu, release=%lu, pfair_time:%lu\n",
		   litmus_clock(), cur_release(t), cluster->pfair_time);

	raw_spin_lock_irqsave(cluster_lock(cluster), flags);

	state = this_cpu_ptr(&pfair_state);

	/* If a task blocks and wakes before its next job release,
	 * then it may resume if it is currently linked somewhere
	 * (as if it never blocked at all). Otherwise, we have a
	 * new sporadic job release.
	 */
	now = litmus_clock();
	if (is_tardy(t, now)) {
		TRACE_TASK(t, "sporadic release!\n");
		sporadic_release = 1;
		inferred_sporadic_job_release_at(t, now);
		prepare_release(t, time2quanta(now, CEIL));
	}

	/* only add to ready queue if the task isn't still linked somewhere */
	if (tsk_pfair(t)->needs_requeue) {
		tsk_pfair(t)->needs_requeue = 0;
		TRACE_TASK(t, "requeueing required (released:%d)\n",
			!time_after(cur_release(t), state->local_tick));
		tsk_rt(t)->completed = 0;
		if (time_after(cur_release(t), state->local_tick)
		    && !sporadic_release)
			add_release(&cluster->pfair, t);
		else
			__add_ready(&cluster->pfair, t);
	}

	check_preempt(t);

	raw_spin_unlock_irqrestore(cluster_lock(cluster), flags);
	TRACE_TASK(t, "wake up done at %llu\n", litmus_clock());
}

static void pfair_task_block(struct task_struct *t)
{
	BUG_ON(!is_realtime(t));
	TRACE_TASK(t, "blocks at %llu, state:%d\n",
		   litmus_clock(), t->state);
}

static void pfair_task_exit(struct task_struct * t)
{
	unsigned long flags;
	struct pfair_cluster *cluster;

	BUG_ON(!is_realtime(t));

	cluster = tsk_pfair(t)->cluster;

	/* Remote task from release or ready queue, and ensure
	 * that it is not the scheduled task for ANY CPU. We
	 * do this blanket check because occassionally when
	 * tasks exit while blocked, the task_cpu of the task
	 * might not be the same as the CPU that the PFAIR scheduler
	 * has chosen for it.
	 */
	raw_spin_lock_irqsave(cluster_lock(cluster), flags);

	TRACE_TASK(t, "RIP, state:%d\n", t->state);
	drop_all_references(t);

	raw_spin_unlock_irqrestore(cluster_lock(cluster), flags);

	kfree(t->rt_param.pfair);
	t->rt_param.pfair = NULL;
}

static void init_subtask(struct subtask* sub, unsigned long i,
			 lt_t quanta, lt_t period)
{
	/* since i is zero-based, the formulas are shifted by one */
	lt_t tmp;

	/* release */
	tmp = period * i;
	do_div(tmp, quanta); /* floor */
	sub->release = (quanta_t) tmp;

	/* deadline */
	tmp = period * (i + 1);
	if (do_div(tmp, quanta)) /* ceil */
		tmp++;
	sub->deadline = (quanta_t) tmp;

	/* next release */
	tmp = period * (i + 1);
	do_div(tmp, quanta); /* floor */
	sub->overlap =  sub->deadline - (quanta_t) tmp;

	/* Group deadline.
	 * Based on the formula given in Uma's thesis.
	 */
	if (2 * quanta >= period) {
		/* heavy */
		tmp = (sub->deadline - (i + 1)) * period;
		if (period > quanta &&
		    do_div(tmp, (period - quanta))) /* ceil */
			tmp++;
		sub->group_deadline = (quanta_t) tmp;
	} else
		sub->group_deadline = 0;
}

static void dump_subtasks(struct task_struct* t)
{
	unsigned long i;
	for (i = 0; i < t->rt_param.pfair->quanta; i++)
		TRACE_TASK(t, "SUBTASK %lu: rel=%lu dl=%lu bbit:%lu gdl:%lu\n",
			   i + 1,
			   t->rt_param.pfair->subtasks[i].release,
			   t->rt_param.pfair->subtasks[i].deadline,
			   t->rt_param.pfair->subtasks[i].overlap,
			   t->rt_param.pfair->subtasks[i].group_deadline);
}

static long pfair_admit_task(struct task_struct* t)
{
	lt_t quanta;
	lt_t period;
	s64  quantum_length = LITMUS_QUANTUM_LENGTH_NS;
	struct pfair_param* param;
	unsigned long i;

	/* first check that the task is in the right cluster */
	if (cpu_cluster(pstate[tsk_rt(t)->task_params.cpu]) !=
	    cpu_cluster(pstate[task_cpu(t)]))
		return -EINVAL;

	if (get_rt_period(t) != get_rt_relative_deadline(t)) {
		printk(KERN_INFO "%s: Admission rejected. "
			"Only implicit deadlines are currently supported.\n",
			litmus->plugin_name);
		return -EINVAL;
	}

	/* Pfair is a tick-based scheduler, so the unit of time
	 * is one quantum. Calculate quantum-based parameters for everything.
	 * (Ceiling of exec cost, floor of period.)
	 */

	quanta = get_exec_cost(t);
	period = get_rt_period(t);

	quanta = time2quanta(get_exec_cost(t), CEIL);

	if (do_div(period, quantum_length))
		printk(KERN_WARNING
		       "The period of %s/%d is not a multiple of %llu.\n",
		       t->comm, t->pid, (unsigned long long) quantum_length);

	if (quanta == period) {
		PTRACE_TASK(t, "Admitting weight 1.0 task. (%llu, %llu).\n", quanta, period);
	}

	param = kzalloc(sizeof(*param) +
			quanta * sizeof(struct subtask), GFP_ATOMIC);

	if (!param)
		return -ENOMEM;

	param->quanta  = quanta;
	param->period  = period;

	param->cluster = cpu_cluster(pstate[tsk_rt(t)->task_params.cpu]);

	for (i = 0; i < quanta; i++)
		init_subtask(param->subtasks + i, i, quanta, period);

	if (t->rt_param.pfair)
		/* get rid of stale allocation */
		kfree(t->rt_param.pfair);

	t->rt_param.pfair = param;

	/* spew out some debug info */
	dump_subtasks(t);

	/* Disable generic budget enforcement (if enabled).
	 * The plugin provides its own (non-optional) enforcement
	 * of allocations at quantum granularity. */
	tsk_rt(t)->task_params.budget_policy = NO_ENFORCEMENT;

	return 0;
}

static void pfair_init_cluster(struct pfair_cluster* cluster)
{
	rt_domain_init(&cluster->pfair, pfair_ready_order, NULL, pfair_release_jobs);
	bheap_init(&cluster->release_queue);
	raw_spin_lock_init(&cluster->release_lock);
	INIT_LIST_HEAD(&cluster->topology.cpus);
}

static void cleanup_clusters(void)
{
	int i;

	if (num_pfair_clusters)
		kfree(pfair_clusters);
	pfair_clusters = NULL;
	num_pfair_clusters = 0;

	/* avoid stale pointers */
	for (i = 0; i < num_online_cpus(); i++) {
		pstate[i]->topology.cluster = NULL;
		printk("P%d missed %u updates and %u quanta.\n", cpu_id(pstate[i]),
		       pstate[i]->missed_updates, pstate[i]->missed_quanta);
	}
}

static struct domain_proc_info pfair_domain_proc_info;
static long pfair_get_domain_proc_info(struct domain_proc_info **ret)
{
	*ret = &pfair_domain_proc_info;
	return 0;
}

static void pfair_setup_domain_proc(void)
{
	int i, cpu, domain;
#ifdef CONFIG_RELEASE_MASTER
	int release_master = atomic_read(&release_master_cpu);
	/* skip over the domain with the release master if cluster size is 1 */
	int cluster_size = num_online_cpus() / num_pfair_clusters;
	int skip_domain = (1 == cluster_size && release_master != NO_CPU) ?
			release_master : NO_CPU;
#else
	int release_master = NO_CPU;
	int skip_domain = NO_CPU;
#endif
	int num_rt_cpus = num_online_cpus() - (release_master != NO_CPU);
	int num_rt_domains = num_pfair_clusters - (skip_domain != NO_CPU);
	struct cd_mapping *map;

	memset(&pfair_domain_proc_info, 0, sizeof(pfair_domain_proc_info));
	init_domain_proc_info(&pfair_domain_proc_info, num_rt_cpus, num_pfair_clusters);
	pfair_domain_proc_info.num_cpus = num_rt_cpus;
	pfair_domain_proc_info.num_domains = num_rt_domains;

	for (cpu = 0, i = 0; cpu < num_online_cpus(); ++cpu) {
		if (cpu == release_master)
			continue;
		map = &pfair_domain_proc_info.cpu_to_domains[i];
		/* pointer math to figure out the domain index */
		domain = cpu_cluster(&per_cpu(pfair_state, cpu)) - pfair_clusters;
		map->id = cpu;
		cpumask_set_cpu(domain, map->mask);
		++i;
	}

	for (domain = 0, i = 0; domain < num_pfair_clusters; ++domain) {
		struct pfair_cluster *cluster;
		struct list_head *pos;

		if (domain == skip_domain)
			continue;

		cluster = &pfair_clusters[domain];
		map = &pfair_domain_proc_info.domain_to_cpus[i];
		map->id = i;

		list_for_each(pos, &cluster->topology.cpus) {
			cpu = cpu_id(from_cluster_list(pos));
			if (cpu != release_master)
				cpumask_set_cpu(cpu, map->mask);
		}
		++i;
	}
}

static long pfair_activate_plugin(void)
{
	int err, i;
	struct pfair_state* state;
	struct pfair_cluster* cluster;
	quanta_t now, start;
	int cluster_size;
	struct cluster_cpu* cpus[NR_CPUS];
	struct scheduling_cluster* clust[NR_CPUS];
	lt_t quantum_timer_start;

	cluster_size = get_cluster_size(pfair_cluster_level);

	if (cluster_size <= 0 || num_online_cpus() % cluster_size != 0)
		return -EINVAL;

	num_pfair_clusters = num_online_cpus() / cluster_size;

	pfair_clusters = kzalloc(num_pfair_clusters * sizeof(struct pfair_cluster), GFP_ATOMIC);
	if (!pfair_clusters) {
		num_pfair_clusters = 0;
		printk(KERN_ERR "Could not allocate Pfair clusters!\n");
		return -ENOMEM;
	}

	state = this_cpu_ptr(&pfair_state);
	now   = current_quantum(state);
	start = now + 50;
	quantum_timer_start = quanta2time(start);
	TRACE("Activating PFAIR at %llu (q=%lu), first tick at %llu (q=%lu)\n",
		litmus_clock(),
		now,
		quantum_timer_start,
		time2quanta(quantum_timer_start, CEIL));

	for (i = 0; i < num_pfair_clusters; i++) {
		cluster = &pfair_clusters[i];
		pfair_init_cluster(cluster);
		cluster->pfair_time = start;
		clust[i] = &cluster->topology;
#ifdef CONFIG_RELEASE_MASTER
		cluster->pfair.release_master = atomic_read(&release_master_cpu);
#endif
	}

	for_each_online_cpu(i) {
		state = &per_cpu(pfair_state, i);
		state->cur_tick   = start;
		state->local_tick = start;
		state->missed_quanta = 0;
		state->missed_updates = 0;
		state->offset     = cpu_stagger_offset(i);
		hrtimer_set_expires(&state->quantum_timer,
			ns_to_ktime(quantum_timer_start + state->offset));
		cpus[i] = &state->topology;
		TRACE("cpus[%d] set; offset=%llu; %d\n", i, state->offset, num_online_cpus());
		INIT_LIST_HEAD(&state->out_of_budget);
		/* force rescheduling to start quantum timer */
		litmus_reschedule(i);

		WARN_ONCE(!hrtimer_is_hres_active(&state->quantum_timer),
			KERN_ERR "WARNING: no high resolution timers available!?\n");
	}

	err = assign_cpus_to_clusters(pfair_cluster_level, clust, num_pfair_clusters,
				      cpus, num_online_cpus());

	if (err < 0)
		cleanup_clusters();
	else
		pfair_setup_domain_proc();

	return err;
}

static long pfair_deactivate_plugin(void)
{
	int cpu;
	struct pfair_state* state;

	for_each_online_cpu(cpu) {
		state = &per_cpu(pfair_state, cpu);
		TRACE("stopping quantum timer on CPU%d\n", cpu);
		hrtimer_cancel(&state->quantum_timer);
	}
	cleanup_clusters();
	destroy_domain_proc_info(&pfair_domain_proc_info);
	return 0;
}

/*	Plugin object	*/
static struct sched_plugin pfair_plugin __cacheline_aligned_in_smp = {
	.plugin_name		= "PFAIR",
	.task_new		= pfair_task_new,
	.task_exit		= pfair_task_exit,
	.schedule		= pfair_schedule,
	.task_wake_up		= pfair_task_wake_up,
	.task_block		= pfair_task_block,
	.admit_task		= pfair_admit_task,
	.complete_job		= complete_job,
	.activate_plugin	= pfair_activate_plugin,
	.deactivate_plugin	= pfair_deactivate_plugin,
	.get_domain_proc_info	= pfair_get_domain_proc_info,
};


static struct proc_dir_entry *cluster_file = NULL, *pfair_dir = NULL;

static int __init init_pfair(void)
{
	int cpu, err, fs;
	struct pfair_state *state;

	/*
	 * initialize short_cut for per-cpu pfair state;
	 * there may be a problem here if someone removes a cpu
	 * while we are doing this initialization... and if cpus
	 * are added / removed later... but we don't support CPU hotplug atm anyway.
	 */
	pstate = kmalloc(sizeof(struct pfair_state*) * num_online_cpus(), GFP_KERNEL);

	/* initialize CPU state */
	for (cpu = 0; cpu < num_online_cpus(); cpu++)  {
		state = &per_cpu(pfair_state, cpu);
		hrtimer_init(&state->quantum_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
		state->quantum_timer.function = on_quantum_boundary;
		state->topology.id = cpu;
		state->cur_tick   = 0;
		state->local_tick = 0;
		state->linked     = NULL;
		state->local      = NULL;
		state->scheduled  = NULL;
		state->missed_quanta = 0;
		state->offset     = cpu_stagger_offset(cpu);
		pstate[cpu] = state;
	}

	pfair_clusters = NULL;
	num_pfair_clusters = 0;

	err = register_sched_plugin(&pfair_plugin);
	if (!err) {
		fs = make_plugin_proc_dir(&pfair_plugin, &pfair_dir);
		if (!fs)
			cluster_file = create_cluster_file(pfair_dir, &pfair_cluster_level);
		else
			printk(KERN_ERR "Could not allocate PFAIR procfs dir.\n");
	}

	return err;
}

static void __exit clean_pfair(void)
{
	kfree(pstate);

	if (cluster_file)
		remove_proc_entry("cluster", pfair_dir);
	if (pfair_dir)
		remove_plugin_proc_dir(&pfair_plugin);
}

module_init(init_pfair);
module_exit(clean_pfair);