aboutsummaryrefslogtreecommitdiffstats
path: root/tools/testing/selftests/kvm/lib/kvm_util.c
diff options
context:
space:
mode:
Diffstat (limited to 'tools/testing/selftests/kvm/lib/kvm_util.c')
-rw-r--r--tools/testing/selftests/kvm/lib/kvm_util.c1480
1 files changed, 1480 insertions, 0 deletions
diff --git a/tools/testing/selftests/kvm/lib/kvm_util.c b/tools/testing/selftests/kvm/lib/kvm_util.c
new file mode 100644
index 000000000000..7ca1bb40c498
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/kvm_util.c
@@ -0,0 +1,1480 @@
1/*
2 * tools/testing/selftests/kvm/lib/kvm_util.c
3 *
4 * Copyright (C) 2018, Google LLC.
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2.
7 */
8
9#include "test_util.h"
10#include "kvm_util.h"
11#include "kvm_util_internal.h"
12
13#include <assert.h>
14#include <sys/mman.h>
15#include <sys/types.h>
16#include <sys/stat.h>
17
18#define KVM_DEV_PATH "/dev/kvm"
19
20#define KVM_UTIL_PGS_PER_HUGEPG 512
21#define KVM_UTIL_MIN_PADDR 0x2000
22
23/* Aligns x up to the next multiple of size. Size must be a power of 2. */
24static void *align(void *x, size_t size)
25{
26 size_t mask = size - 1;
27 TEST_ASSERT(size != 0 && !(size & (size - 1)),
28 "size not a power of 2: %lu", size);
29 return (void *) (((size_t) x + mask) & ~mask);
30}
31
32/* Capability
33 *
34 * Input Args:
35 * cap - Capability
36 *
37 * Output Args: None
38 *
39 * Return:
40 * On success, the Value corresponding to the capability (KVM_CAP_*)
41 * specified by the value of cap. On failure a TEST_ASSERT failure
42 * is produced.
43 *
44 * Looks up and returns the value corresponding to the capability
45 * (KVM_CAP_*) given by cap.
46 */
47int kvm_check_cap(long cap)
48{
49 int ret;
50 int kvm_fd;
51
52 kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
53 TEST_ASSERT(kvm_fd >= 0, "open %s failed, rc: %i errno: %i",
54 KVM_DEV_PATH, kvm_fd, errno);
55
56 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
57 TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
58 " rc: %i errno: %i", ret, errno);
59
60 close(kvm_fd);
61
62 return ret;
63}
64
65/* VM Create
66 *
67 * Input Args:
68 * mode - VM Mode (e.g. VM_MODE_FLAT48PG)
69 * phy_pages - Physical memory pages
70 * perm - permission
71 *
72 * Output Args: None
73 *
74 * Return:
75 * Pointer to opaque structure that describes the created VM.
76 *
77 * Creates a VM with the mode specified by mode (e.g. VM_MODE_FLAT48PG).
78 * When phy_pages is non-zero, a memory region of phy_pages physical pages
79 * is created and mapped starting at guest physical address 0. The file
80 * descriptor to control the created VM is created with the permissions
81 * given by perm (e.g. O_RDWR).
82 */
83struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
84{
85 struct kvm_vm *vm;
86 int kvm_fd;
87
88 /* Allocate memory. */
89 vm = calloc(1, sizeof(*vm));
90 TEST_ASSERT(vm != NULL, "Insufficent Memory");
91
92 vm->mode = mode;
93 kvm_fd = open(KVM_DEV_PATH, perm);
94 TEST_ASSERT(kvm_fd >= 0, "open %s failed, rc: %i errno: %i",
95 KVM_DEV_PATH, kvm_fd, errno);
96
97 /* Create VM. */
98 vm->fd = ioctl(kvm_fd, KVM_CREATE_VM, NULL);
99 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
100 "rc: %i errno: %i", vm->fd, errno);
101
102 close(kvm_fd);
103
104 /* Setup mode specific traits. */
105 switch (vm->mode) {
106 case VM_MODE_FLAT48PG:
107 vm->page_size = 0x1000;
108 vm->page_shift = 12;
109
110 /* Limit to 48-bit canonical virtual addresses. */
111 vm->vpages_valid = sparsebit_alloc();
112 sparsebit_set_num(vm->vpages_valid,
113 0, (1ULL << (48 - 1)) >> vm->page_shift);
114 sparsebit_set_num(vm->vpages_valid,
115 (~((1ULL << (48 - 1)) - 1)) >> vm->page_shift,
116 (1ULL << (48 - 1)) >> vm->page_shift);
117
118 /* Limit physical addresses to 52-bits. */
119 vm->max_gfn = ((1ULL << 52) >> vm->page_shift) - 1;
120 break;
121
122 default:
123 TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode);
124 }
125
126 /* Allocate and setup memory for guest. */
127 vm->vpages_mapped = sparsebit_alloc();
128 if (phy_pages != 0)
129 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
130 0, 0, phy_pages, 0);
131
132 return vm;
133}
134
135/* Userspace Memory Region Find
136 *
137 * Input Args:
138 * vm - Virtual Machine
139 * start - Starting VM physical address
140 * end - Ending VM physical address, inclusive.
141 *
142 * Output Args: None
143 *
144 * Return:
145 * Pointer to overlapping region, NULL if no such region.
146 *
147 * Searches for a region with any physical memory that overlaps with
148 * any portion of the guest physical addresses from start to end
149 * inclusive. If multiple overlapping regions exist, a pointer to any
150 * of the regions is returned. Null is returned only when no overlapping
151 * region exists.
152 */
153static struct userspace_mem_region *userspace_mem_region_find(
154 struct kvm_vm *vm, uint64_t start, uint64_t end)
155{
156 struct userspace_mem_region *region;
157
158 for (region = vm->userspace_mem_region_head; region;
159 region = region->next) {
160 uint64_t existing_start = region->region.guest_phys_addr;
161 uint64_t existing_end = region->region.guest_phys_addr
162 + region->region.memory_size - 1;
163 if (start <= existing_end && end >= existing_start)
164 return region;
165 }
166
167 return NULL;
168}
169
170/* KVM Userspace Memory Region Find
171 *
172 * Input Args:
173 * vm - Virtual Machine
174 * start - Starting VM physical address
175 * end - Ending VM physical address, inclusive.
176 *
177 * Output Args: None
178 *
179 * Return:
180 * Pointer to overlapping region, NULL if no such region.
181 *
182 * Public interface to userspace_mem_region_find. Allows tests to look up
183 * the memslot datastructure for a given range of guest physical memory.
184 */
185struct kvm_userspace_memory_region *
186kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
187 uint64_t end)
188{
189 struct userspace_mem_region *region;
190
191 region = userspace_mem_region_find(vm, start, end);
192 if (!region)
193 return NULL;
194
195 return &region->region;
196}
197
198/* VCPU Find
199 *
200 * Input Args:
201 * vm - Virtual Machine
202 * vcpuid - VCPU ID
203 *
204 * Output Args: None
205 *
206 * Return:
207 * Pointer to VCPU structure
208 *
209 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
210 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
211 * for the specified vcpuid.
212 */
213struct vcpu *vcpu_find(struct kvm_vm *vm,
214 uint32_t vcpuid)
215{
216 struct vcpu *vcpup;
217
218 for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) {
219 if (vcpup->id == vcpuid)
220 return vcpup;
221 }
222
223 return NULL;
224}
225
226/* VM VCPU Remove
227 *
228 * Input Args:
229 * vm - Virtual Machine
230 * vcpuid - VCPU ID
231 *
232 * Output Args: None
233 *
234 * Return: None, TEST_ASSERT failures for all error conditions
235 *
236 * Within the VM specified by vm, removes the VCPU given by vcpuid.
237 */
238static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid)
239{
240 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
241
242 int ret = close(vcpu->fd);
243 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
244 "errno: %i", ret, errno);
245
246 if (vcpu->next)
247 vcpu->next->prev = vcpu->prev;
248 if (vcpu->prev)
249 vcpu->prev->next = vcpu->next;
250 else
251 vm->vcpu_head = vcpu->next;
252 free(vcpu);
253}
254
255
256/* Destroys and frees the VM pointed to by vmp.
257 */
258void kvm_vm_free(struct kvm_vm *vmp)
259{
260 int ret;
261
262 if (vmp == NULL)
263 return;
264
265 /* Free userspace_mem_regions. */
266 while (vmp->userspace_mem_region_head) {
267 struct userspace_mem_region *region
268 = vmp->userspace_mem_region_head;
269
270 region->region.memory_size = 0;
271 ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION,
272 &region->region);
273 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
274 "rc: %i errno: %i", ret, errno);
275
276 vmp->userspace_mem_region_head = region->next;
277 sparsebit_free(&region->unused_phy_pages);
278 ret = munmap(region->mmap_start, region->mmap_size);
279 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i",
280 ret, errno);
281
282 free(region);
283 }
284
285 /* Free VCPUs. */
286 while (vmp->vcpu_head)
287 vm_vcpu_rm(vmp, vmp->vcpu_head->id);
288
289 /* Free sparsebit arrays. */
290 sparsebit_free(&vmp->vpages_valid);
291 sparsebit_free(&vmp->vpages_mapped);
292
293 /* Close file descriptor for the VM. */
294 ret = close(vmp->fd);
295 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
296 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
297
298 /* Free the structure describing the VM. */
299 free(vmp);
300}
301
302/* Memory Compare, host virtual to guest virtual
303 *
304 * Input Args:
305 * hva - Starting host virtual address
306 * vm - Virtual Machine
307 * gva - Starting guest virtual address
308 * len - number of bytes to compare
309 *
310 * Output Args: None
311 *
312 * Input/Output Args: None
313 *
314 * Return:
315 * Returns 0 if the bytes starting at hva for a length of len
316 * are equal the guest virtual bytes starting at gva. Returns
317 * a value < 0, if bytes at hva are less than those at gva.
318 * Otherwise a value > 0 is returned.
319 *
320 * Compares the bytes starting at the host virtual address hva, for
321 * a length of len, to the guest bytes starting at the guest virtual
322 * address given by gva.
323 */
324int kvm_memcmp_hva_gva(void *hva,
325 struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
326{
327 size_t amt;
328
329 /* Compare a batch of bytes until either a match is found
330 * or all the bytes have been compared.
331 */
332 for (uintptr_t offset = 0; offset < len; offset += amt) {
333 uintptr_t ptr1 = (uintptr_t)hva + offset;
334
335 /* Determine host address for guest virtual address
336 * at offset.
337 */
338 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
339
340 /* Determine amount to compare on this pass.
341 * Don't allow the comparsion to cross a page boundary.
342 */
343 amt = len - offset;
344 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
345 amt = vm->page_size - (ptr1 % vm->page_size);
346 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
347 amt = vm->page_size - (ptr2 % vm->page_size);
348
349 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
350 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
351
352 /* Perform the comparison. If there is a difference
353 * return that result to the caller, otherwise need
354 * to continue on looking for a mismatch.
355 */
356 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
357 if (ret != 0)
358 return ret;
359 }
360
361 /* No mismatch found. Let the caller know the two memory
362 * areas are equal.
363 */
364 return 0;
365}
366
367/* Allocate an instance of struct kvm_cpuid2
368 *
369 * Input Args: None
370 *
371 * Output Args: None
372 *
373 * Return: A pointer to the allocated struct. The caller is responsible
374 * for freeing this struct.
375 *
376 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
377 * array to be decided at allocation time, allocation is slightly
378 * complicated. This function uses a reasonable default length for
379 * the array and performs the appropriate allocation.
380 */
381struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
382{
383 struct kvm_cpuid2 *cpuid;
384 int nent = 100;
385 size_t size;
386
387 size = sizeof(*cpuid);
388 size += nent * sizeof(struct kvm_cpuid_entry2);
389 cpuid = malloc(size);
390 if (!cpuid) {
391 perror("malloc");
392 abort();
393 }
394
395 cpuid->nent = nent;
396
397 return cpuid;
398}
399
400/* KVM Supported CPUID Get
401 *
402 * Input Args: None
403 *
404 * Output Args:
405 * cpuid - The supported KVM CPUID
406 *
407 * Return: void
408 *
409 * Get the guest CPUID supported by KVM.
410 */
411void kvm_get_supported_cpuid(struct kvm_cpuid2 *cpuid)
412{
413 int ret;
414 int kvm_fd;
415
416 kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
417 TEST_ASSERT(kvm_fd >= 0, "open %s failed, rc: %i errno: %i",
418 KVM_DEV_PATH, kvm_fd, errno);
419
420 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
421 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
422 ret, errno);
423
424 close(kvm_fd);
425}
426
427/* Locate a cpuid entry.
428 *
429 * Input Args:
430 * cpuid: The cpuid.
431 * function: The function of the cpuid entry to find.
432 *
433 * Output Args: None
434 *
435 * Return: A pointer to the cpuid entry. Never returns NULL.
436 */
437struct kvm_cpuid_entry2 *
438find_cpuid_index_entry(struct kvm_cpuid2 *cpuid, uint32_t function,
439 uint32_t index)
440{
441 struct kvm_cpuid_entry2 *entry = NULL;
442 int i;
443
444 for (i = 0; i < cpuid->nent; i++) {
445 if (cpuid->entries[i].function == function &&
446 cpuid->entries[i].index == index) {
447 entry = &cpuid->entries[i];
448 break;
449 }
450 }
451
452 TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
453 function, index);
454 return entry;
455}
456
457/* VM Userspace Memory Region Add
458 *
459 * Input Args:
460 * vm - Virtual Machine
461 * backing_src - Storage source for this region.
462 * NULL to use anonymous memory.
463 * guest_paddr - Starting guest physical address
464 * slot - KVM region slot
465 * npages - Number of physical pages
466 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
467 *
468 * Output Args: None
469 *
470 * Return: None
471 *
472 * Allocates a memory area of the number of pages specified by npages
473 * and maps it to the VM specified by vm, at a starting physical address
474 * given by guest_paddr. The region is created with a KVM region slot
475 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
476 * region is created with the flags given by flags.
477 */
478void vm_userspace_mem_region_add(struct kvm_vm *vm,
479 enum vm_mem_backing_src_type src_type,
480 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
481 uint32_t flags)
482{
483 int ret;
484 unsigned long pmem_size = 0;
485 struct userspace_mem_region *region;
486 size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
487
488 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
489 "address not on a page boundary.\n"
490 " guest_paddr: 0x%lx vm->page_size: 0x%x",
491 guest_paddr, vm->page_size);
492 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
493 <= vm->max_gfn, "Physical range beyond maximum "
494 "supported physical address,\n"
495 " guest_paddr: 0x%lx npages: 0x%lx\n"
496 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
497 guest_paddr, npages, vm->max_gfn, vm->page_size);
498
499 /* Confirm a mem region with an overlapping address doesn't
500 * already exist.
501 */
502 region = (struct userspace_mem_region *) userspace_mem_region_find(
503 vm, guest_paddr, guest_paddr + npages * vm->page_size);
504 if (region != NULL)
505 TEST_ASSERT(false, "overlapping userspace_mem_region already "
506 "exists\n"
507 " requested guest_paddr: 0x%lx npages: 0x%lx "
508 "page_size: 0x%x\n"
509 " existing guest_paddr: 0x%lx size: 0x%lx",
510 guest_paddr, npages, vm->page_size,
511 (uint64_t) region->region.guest_phys_addr,
512 (uint64_t) region->region.memory_size);
513
514 /* Confirm no region with the requested slot already exists. */
515 for (region = vm->userspace_mem_region_head; region;
516 region = region->next) {
517 if (region->region.slot == slot)
518 break;
519 if ((guest_paddr <= (region->region.guest_phys_addr
520 + region->region.memory_size))
521 && ((guest_paddr + npages * vm->page_size)
522 >= region->region.guest_phys_addr))
523 break;
524 }
525 if (region != NULL)
526 TEST_ASSERT(false, "A mem region with the requested slot "
527 "or overlapping physical memory range already exists.\n"
528 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
529 " existing slot: %u paddr: 0x%lx size: 0x%lx",
530 slot, guest_paddr, npages,
531 region->region.slot,
532 (uint64_t) region->region.guest_phys_addr,
533 (uint64_t) region->region.memory_size);
534
535 /* Allocate and initialize new mem region structure. */
536 region = calloc(1, sizeof(*region));
537 TEST_ASSERT(region != NULL, "Insufficient Memory");
538 region->mmap_size = npages * vm->page_size;
539
540 /* Enough memory to align up to a huge page. */
541 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
542 region->mmap_size += huge_page_size;
543 region->mmap_start = mmap(NULL, region->mmap_size,
544 PROT_READ | PROT_WRITE,
545 MAP_PRIVATE | MAP_ANONYMOUS
546 | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
547 -1, 0);
548 TEST_ASSERT(region->mmap_start != MAP_FAILED,
549 "test_malloc failed, mmap_start: %p errno: %i",
550 region->mmap_start, errno);
551
552 /* Align THP allocation up to start of a huge page. */
553 region->host_mem = align(region->mmap_start,
554 src_type == VM_MEM_SRC_ANONYMOUS_THP ? huge_page_size : 1);
555
556 /* As needed perform madvise */
557 if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
558 ret = madvise(region->host_mem, npages * vm->page_size,
559 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
560 TEST_ASSERT(ret == 0, "madvise failed,\n"
561 " addr: %p\n"
562 " length: 0x%lx\n"
563 " src_type: %x",
564 region->host_mem, npages * vm->page_size, src_type);
565 }
566
567 region->unused_phy_pages = sparsebit_alloc();
568 sparsebit_set_num(region->unused_phy_pages,
569 guest_paddr >> vm->page_shift, npages);
570 region->region.slot = slot;
571 region->region.flags = flags;
572 region->region.guest_phys_addr = guest_paddr;
573 region->region.memory_size = npages * vm->page_size;
574 region->region.userspace_addr = (uintptr_t) region->host_mem;
575 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
576 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
577 " rc: %i errno: %i\n"
578 " slot: %u flags: 0x%x\n"
579 " guest_phys_addr: 0x%lx size: 0x%lx",
580 ret, errno, slot, flags,
581 guest_paddr, (uint64_t) region->region.memory_size);
582
583 /* Add to linked-list of memory regions. */
584 if (vm->userspace_mem_region_head)
585 vm->userspace_mem_region_head->prev = region;
586 region->next = vm->userspace_mem_region_head;
587 vm->userspace_mem_region_head = region;
588}
589
590/* Memslot to region
591 *
592 * Input Args:
593 * vm - Virtual Machine
594 * memslot - KVM memory slot ID
595 *
596 * Output Args: None
597 *
598 * Return:
599 * Pointer to memory region structure that describe memory region
600 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
601 * on error (e.g. currently no memory region using memslot as a KVM
602 * memory slot ID).
603 */
604static struct userspace_mem_region *memslot2region(struct kvm_vm *vm,
605 uint32_t memslot)
606{
607 struct userspace_mem_region *region;
608
609 for (region = vm->userspace_mem_region_head; region;
610 region = region->next) {
611 if (region->region.slot == memslot)
612 break;
613 }
614 if (region == NULL) {
615 fprintf(stderr, "No mem region with the requested slot found,\n"
616 " requested slot: %u\n", memslot);
617 fputs("---- vm dump ----\n", stderr);
618 vm_dump(stderr, vm, 2);
619 TEST_ASSERT(false, "Mem region not found");
620 }
621
622 return region;
623}
624
625/* VM Memory Region Flags Set
626 *
627 * Input Args:
628 * vm - Virtual Machine
629 * flags - Starting guest physical address
630 *
631 * Output Args: None
632 *
633 * Return: None
634 *
635 * Sets the flags of the memory region specified by the value of slot,
636 * to the values given by flags.
637 */
638void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
639{
640 int ret;
641 struct userspace_mem_region *region;
642
643 /* Locate memory region. */
644 region = memslot2region(vm, slot);
645
646 region->region.flags = flags;
647
648 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
649
650 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
651 " rc: %i errno: %i slot: %u flags: 0x%x",
652 ret, errno, slot, flags);
653}
654
655/* VCPU mmap Size
656 *
657 * Input Args: None
658 *
659 * Output Args: None
660 *
661 * Return:
662 * Size of VCPU state
663 *
664 * Returns the size of the structure pointed to by the return value
665 * of vcpu_state().
666 */
667static int vcpu_mmap_sz(void)
668{
669 int dev_fd, ret;
670
671 dev_fd = open(KVM_DEV_PATH, O_RDONLY);
672 TEST_ASSERT(dev_fd >= 0, "%s open %s failed, rc: %i errno: %i",
673 __func__, KVM_DEV_PATH, dev_fd, errno);
674
675 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
676 TEST_ASSERT(ret >= sizeof(struct kvm_run),
677 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
678 __func__, ret, errno);
679
680 close(dev_fd);
681
682 return ret;
683}
684
685/* VM VCPU Add
686 *
687 * Input Args:
688 * vm - Virtual Machine
689 * vcpuid - VCPU ID
690 *
691 * Output Args: None
692 *
693 * Return: None
694 *
695 * Creates and adds to the VM specified by vm and virtual CPU with
696 * the ID given by vcpuid.
697 */
698void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
699{
700 struct vcpu *vcpu;
701
702 /* Confirm a vcpu with the specified id doesn't already exist. */
703 vcpu = vcpu_find(vm, vcpuid);
704 if (vcpu != NULL)
705 TEST_ASSERT(false, "vcpu with the specified id "
706 "already exists,\n"
707 " requested vcpuid: %u\n"
708 " existing vcpuid: %u state: %p",
709 vcpuid, vcpu->id, vcpu->state);
710
711 /* Allocate and initialize new vcpu structure. */
712 vcpu = calloc(1, sizeof(*vcpu));
713 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
714 vcpu->id = vcpuid;
715 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
716 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
717 vcpu->fd, errno);
718
719 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
720 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
721 vcpu_mmap_sz(), sizeof(*vcpu->state));
722 vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
723 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
724 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
725 "vcpu id: %u errno: %i", vcpuid, errno);
726
727 /* Add to linked-list of VCPUs. */
728 if (vm->vcpu_head)
729 vm->vcpu_head->prev = vcpu;
730 vcpu->next = vm->vcpu_head;
731 vm->vcpu_head = vcpu;
732
733 vcpu_setup(vm, vcpuid);
734}
735
736/* VM Virtual Address Unused Gap
737 *
738 * Input Args:
739 * vm - Virtual Machine
740 * sz - Size (bytes)
741 * vaddr_min - Minimum Virtual Address
742 *
743 * Output Args: None
744 *
745 * Return:
746 * Lowest virtual address at or below vaddr_min, with at least
747 * sz unused bytes. TEST_ASSERT failure if no area of at least
748 * size sz is available.
749 *
750 * Within the VM specified by vm, locates the lowest starting virtual
751 * address >= vaddr_min, that has at least sz unallocated bytes. A
752 * TEST_ASSERT failure occurs for invalid input or no area of at least
753 * sz unallocated bytes >= vaddr_min is available.
754 */
755static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
756 vm_vaddr_t vaddr_min)
757{
758 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
759
760 /* Determine lowest permitted virtual page index. */
761 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
762 if ((pgidx_start * vm->page_size) < vaddr_min)
763 goto no_va_found;
764
765 /* Loop over section with enough valid virtual page indexes. */
766 if (!sparsebit_is_set_num(vm->vpages_valid,
767 pgidx_start, pages))
768 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
769 pgidx_start, pages);
770 do {
771 /*
772 * Are there enough unused virtual pages available at
773 * the currently proposed starting virtual page index.
774 * If not, adjust proposed starting index to next
775 * possible.
776 */
777 if (sparsebit_is_clear_num(vm->vpages_mapped,
778 pgidx_start, pages))
779 goto va_found;
780 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
781 pgidx_start, pages);
782 if (pgidx_start == 0)
783 goto no_va_found;
784
785 /*
786 * If needed, adjust proposed starting virtual address,
787 * to next range of valid virtual addresses.
788 */
789 if (!sparsebit_is_set_num(vm->vpages_valid,
790 pgidx_start, pages)) {
791 pgidx_start = sparsebit_next_set_num(
792 vm->vpages_valid, pgidx_start, pages);
793 if (pgidx_start == 0)
794 goto no_va_found;
795 }
796 } while (pgidx_start != 0);
797
798no_va_found:
799 TEST_ASSERT(false, "No vaddr of specified pages available, "
800 "pages: 0x%lx", pages);
801
802 /* NOT REACHED */
803 return -1;
804
805va_found:
806 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
807 pgidx_start, pages),
808 "Unexpected, invalid virtual page index range,\n"
809 " pgidx_start: 0x%lx\n"
810 " pages: 0x%lx",
811 pgidx_start, pages);
812 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
813 pgidx_start, pages),
814 "Unexpected, pages already mapped,\n"
815 " pgidx_start: 0x%lx\n"
816 " pages: 0x%lx",
817 pgidx_start, pages);
818
819 return pgidx_start * vm->page_size;
820}
821
822/* VM Virtual Address Allocate
823 *
824 * Input Args:
825 * vm - Virtual Machine
826 * sz - Size in bytes
827 * vaddr_min - Minimum starting virtual address
828 * data_memslot - Memory region slot for data pages
829 * pgd_memslot - Memory region slot for new virtual translation tables
830 *
831 * Output Args: None
832 *
833 * Return:
834 * Starting guest virtual address
835 *
836 * Allocates at least sz bytes within the virtual address space of the vm
837 * given by vm. The allocated bytes are mapped to a virtual address >=
838 * the address given by vaddr_min. Note that each allocation uses a
839 * a unique set of pages, with the minimum real allocation being at least
840 * a page.
841 */
842vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
843 uint32_t data_memslot, uint32_t pgd_memslot)
844{
845 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
846
847 virt_pgd_alloc(vm, pgd_memslot);
848
849 /* Find an unused range of virtual page addresses of at least
850 * pages in length.
851 */
852 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
853
854 /* Map the virtual pages. */
855 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
856 pages--, vaddr += vm->page_size) {
857 vm_paddr_t paddr;
858
859 paddr = vm_phy_page_alloc(vm, KVM_UTIL_MIN_PADDR, data_memslot);
860
861 virt_pg_map(vm, vaddr, paddr, pgd_memslot);
862
863 sparsebit_set(vm->vpages_mapped,
864 vaddr >> vm->page_shift);
865 }
866
867 return vaddr_start;
868}
869
870/* Address VM Physical to Host Virtual
871 *
872 * Input Args:
873 * vm - Virtual Machine
874 * gpa - VM physical address
875 *
876 * Output Args: None
877 *
878 * Return:
879 * Equivalent host virtual address
880 *
881 * Locates the memory region containing the VM physical address given
882 * by gpa, within the VM given by vm. When found, the host virtual
883 * address providing the memory to the vm physical address is returned.
884 * A TEST_ASSERT failure occurs if no region containing gpa exists.
885 */
886void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
887{
888 struct userspace_mem_region *region;
889 for (region = vm->userspace_mem_region_head; region;
890 region = region->next) {
891 if ((gpa >= region->region.guest_phys_addr)
892 && (gpa <= (region->region.guest_phys_addr
893 + region->region.memory_size - 1)))
894 return (void *) ((uintptr_t) region->host_mem
895 + (gpa - region->region.guest_phys_addr));
896 }
897
898 TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa);
899 return NULL;
900}
901
902/* Address Host Virtual to VM Physical
903 *
904 * Input Args:
905 * vm - Virtual Machine
906 * hva - Host virtual address
907 *
908 * Output Args: None
909 *
910 * Return:
911 * Equivalent VM physical address
912 *
913 * Locates the memory region containing the host virtual address given
914 * by hva, within the VM given by vm. When found, the equivalent
915 * VM physical address is returned. A TEST_ASSERT failure occurs if no
916 * region containing hva exists.
917 */
918vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
919{
920 struct userspace_mem_region *region;
921 for (region = vm->userspace_mem_region_head; region;
922 region = region->next) {
923 if ((hva >= region->host_mem)
924 && (hva <= (region->host_mem
925 + region->region.memory_size - 1)))
926 return (vm_paddr_t) ((uintptr_t)
927 region->region.guest_phys_addr
928 + (hva - (uintptr_t) region->host_mem));
929 }
930
931 TEST_ASSERT(false, "No mapping to a guest physical address, "
932 "hva: %p", hva);
933 return -1;
934}
935
936/* VM Create IRQ Chip
937 *
938 * Input Args:
939 * vm - Virtual Machine
940 *
941 * Output Args: None
942 *
943 * Return: None
944 *
945 * Creates an interrupt controller chip for the VM specified by vm.
946 */
947void vm_create_irqchip(struct kvm_vm *vm)
948{
949 int ret;
950
951 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
952 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
953 "rc: %i errno: %i", ret, errno);
954}
955
956/* VM VCPU State
957 *
958 * Input Args:
959 * vm - Virtual Machine
960 * vcpuid - VCPU ID
961 *
962 * Output Args: None
963 *
964 * Return:
965 * Pointer to structure that describes the state of the VCPU.
966 *
967 * Locates and returns a pointer to a structure that describes the
968 * state of the VCPU with the given vcpuid.
969 */
970struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
971{
972 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
973 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
974
975 return vcpu->state;
976}
977
978/* VM VCPU Run
979 *
980 * Input Args:
981 * vm - Virtual Machine
982 * vcpuid - VCPU ID
983 *
984 * Output Args: None
985 *
986 * Return: None
987 *
988 * Switch to executing the code for the VCPU given by vcpuid, within the VM
989 * given by vm.
990 */
991void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
992{
993 int ret = _vcpu_run(vm, vcpuid);
994 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
995 "rc: %i errno: %i", ret, errno);
996}
997
998int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
999{
1000 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1001 int rc;
1002
1003 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1004 do {
1005 rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1006 } while (rc == -1 && errno == EINTR);
1007 return rc;
1008}
1009
1010/* VM VCPU Set MP State
1011 *
1012 * Input Args:
1013 * vm - Virtual Machine
1014 * vcpuid - VCPU ID
1015 * mp_state - mp_state to be set
1016 *
1017 * Output Args: None
1018 *
1019 * Return: None
1020 *
1021 * Sets the MP state of the VCPU given by vcpuid, to the state given
1022 * by mp_state.
1023 */
1024void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1025 struct kvm_mp_state *mp_state)
1026{
1027 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1028 int ret;
1029
1030 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1031
1032 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1033 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1034 "rc: %i errno: %i", ret, errno);
1035}
1036
1037/* VM VCPU Regs Get
1038 *
1039 * Input Args:
1040 * vm - Virtual Machine
1041 * vcpuid - VCPU ID
1042 *
1043 * Output Args:
1044 * regs - current state of VCPU regs
1045 *
1046 * Return: None
1047 *
1048 * Obtains the current register state for the VCPU specified by vcpuid
1049 * and stores it at the location given by regs.
1050 */
1051void vcpu_regs_get(struct kvm_vm *vm,
1052 uint32_t vcpuid, struct kvm_regs *regs)
1053{
1054 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1055 int ret;
1056
1057 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1058
1059 /* Get the regs. */
1060 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1061 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1062 ret, errno);
1063}
1064
1065/* VM VCPU Regs Set
1066 *
1067 * Input Args:
1068 * vm - Virtual Machine
1069 * vcpuid - VCPU ID
1070 * regs - Values to set VCPU regs to
1071 *
1072 * Output Args: None
1073 *
1074 * Return: None
1075 *
1076 * Sets the regs of the VCPU specified by vcpuid to the values
1077 * given by regs.
1078 */
1079void vcpu_regs_set(struct kvm_vm *vm,
1080 uint32_t vcpuid, struct kvm_regs *regs)
1081{
1082 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1083 int ret;
1084
1085 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1086
1087 /* Set the regs. */
1088 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1089 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1090 ret, errno);
1091}
1092
1093void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1094 struct kvm_vcpu_events *events)
1095{
1096 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1097 int ret;
1098
1099 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1100
1101 /* Get the regs. */
1102 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1103 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1104 ret, errno);
1105}
1106
1107void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1108 struct kvm_vcpu_events *events)
1109{
1110 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1111 int ret;
1112
1113 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1114
1115 /* Set the regs. */
1116 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1117 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1118 ret, errno);
1119}
1120
1121/* VM VCPU Args Set
1122 *
1123 * Input Args:
1124 * vm - Virtual Machine
1125 * vcpuid - VCPU ID
1126 * num - number of arguments
1127 * ... - arguments, each of type uint64_t
1128 *
1129 * Output Args: None
1130 *
1131 * Return: None
1132 *
1133 * Sets the first num function input arguments to the values
1134 * given as variable args. Each of the variable args is expected to
1135 * be of type uint64_t.
1136 */
1137void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
1138{
1139 va_list ap;
1140 struct kvm_regs regs;
1141
1142 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
1143 " num: %u\n",
1144 num);
1145
1146 va_start(ap, num);
1147 vcpu_regs_get(vm, vcpuid, &regs);
1148
1149 if (num >= 1)
1150 regs.rdi = va_arg(ap, uint64_t);
1151
1152 if (num >= 2)
1153 regs.rsi = va_arg(ap, uint64_t);
1154
1155 if (num >= 3)
1156 regs.rdx = va_arg(ap, uint64_t);
1157
1158 if (num >= 4)
1159 regs.rcx = va_arg(ap, uint64_t);
1160
1161 if (num >= 5)
1162 regs.r8 = va_arg(ap, uint64_t);
1163
1164 if (num >= 6)
1165 regs.r9 = va_arg(ap, uint64_t);
1166
1167 vcpu_regs_set(vm, vcpuid, &regs);
1168 va_end(ap);
1169}
1170
1171/* VM VCPU System Regs Get
1172 *
1173 * Input Args:
1174 * vm - Virtual Machine
1175 * vcpuid - VCPU ID
1176 *
1177 * Output Args:
1178 * sregs - current state of VCPU system regs
1179 *
1180 * Return: None
1181 *
1182 * Obtains the current system register state for the VCPU specified by
1183 * vcpuid and stores it at the location given by sregs.
1184 */
1185void vcpu_sregs_get(struct kvm_vm *vm,
1186 uint32_t vcpuid, struct kvm_sregs *sregs)
1187{
1188 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1189 int ret;
1190
1191 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1192
1193 /* Get the regs. */
1194 /* Get the regs. */
1195 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1196 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1197 ret, errno);
1198}
1199
1200/* VM VCPU System Regs Set
1201 *
1202 * Input Args:
1203 * vm - Virtual Machine
1204 * vcpuid - VCPU ID
1205 * sregs - Values to set VCPU system regs to
1206 *
1207 * Output Args: None
1208 *
1209 * Return: None
1210 *
1211 * Sets the system regs of the VCPU specified by vcpuid to the values
1212 * given by sregs.
1213 */
1214void vcpu_sregs_set(struct kvm_vm *vm,
1215 uint32_t vcpuid, struct kvm_sregs *sregs)
1216{
1217 int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1218 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1219 "rc: %i errno: %i", ret, errno);
1220}
1221
1222int _vcpu_sregs_set(struct kvm_vm *vm,
1223 uint32_t vcpuid, struct kvm_sregs *sregs)
1224{
1225 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1226 int ret;
1227
1228 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1229
1230 /* Get the regs. */
1231 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1232}
1233
1234/* VCPU Ioctl
1235 *
1236 * Input Args:
1237 * vm - Virtual Machine
1238 * vcpuid - VCPU ID
1239 * cmd - Ioctl number
1240 * arg - Argument to pass to the ioctl
1241 *
1242 * Return: None
1243 *
1244 * Issues an arbitrary ioctl on a VCPU fd.
1245 */
1246void vcpu_ioctl(struct kvm_vm *vm,
1247 uint32_t vcpuid, unsigned long cmd, void *arg)
1248{
1249 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1250 int ret;
1251
1252 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1253
1254 ret = ioctl(vcpu->fd, cmd, arg);
1255 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1256 cmd, ret, errno, strerror(errno));
1257}
1258
1259/* VM Ioctl
1260 *
1261 * Input Args:
1262 * vm - Virtual Machine
1263 * cmd - Ioctl number
1264 * arg - Argument to pass to the ioctl
1265 *
1266 * Return: None
1267 *
1268 * Issues an arbitrary ioctl on a VM fd.
1269 */
1270void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1271{
1272 int ret;
1273
1274 ret = ioctl(vm->fd, cmd, arg);
1275 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1276 cmd, ret, errno, strerror(errno));
1277}
1278
1279/* VM Dump
1280 *
1281 * Input Args:
1282 * vm - Virtual Machine
1283 * indent - Left margin indent amount
1284 *
1285 * Output Args:
1286 * stream - Output FILE stream
1287 *
1288 * Return: None
1289 *
1290 * Dumps the current state of the VM given by vm, to the FILE stream
1291 * given by stream.
1292 */
1293void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1294{
1295 struct userspace_mem_region *region;
1296 struct vcpu *vcpu;
1297
1298 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1299 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1300 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1301 fprintf(stream, "%*sMem Regions:\n", indent, "");
1302 for (region = vm->userspace_mem_region_head; region;
1303 region = region->next) {
1304 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1305 "host_virt: %p\n", indent + 2, "",
1306 (uint64_t) region->region.guest_phys_addr,
1307 (uint64_t) region->region.memory_size,
1308 region->host_mem);
1309 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1310 sparsebit_dump(stream, region->unused_phy_pages, 0);
1311 }
1312 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1313 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1314 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1315 vm->pgd_created);
1316 if (vm->pgd_created) {
1317 fprintf(stream, "%*sVirtual Translation Tables:\n",
1318 indent + 2, "");
1319 virt_dump(stream, vm, indent + 4);
1320 }
1321 fprintf(stream, "%*sVCPUs:\n", indent, "");
1322 for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next)
1323 vcpu_dump(stream, vm, vcpu->id, indent + 2);
1324}
1325
1326/* VM VCPU Dump
1327 *
1328 * Input Args:
1329 * vm - Virtual Machine
1330 * vcpuid - VCPU ID
1331 * indent - Left margin indent amount
1332 *
1333 * Output Args:
1334 * stream - Output FILE stream
1335 *
1336 * Return: None
1337 *
1338 * Dumps the current state of the VCPU specified by vcpuid, within the VM
1339 * given by vm, to the FILE stream given by stream.
1340 */
1341void vcpu_dump(FILE *stream, struct kvm_vm *vm,
1342 uint32_t vcpuid, uint8_t indent)
1343{
1344 struct kvm_regs regs;
1345 struct kvm_sregs sregs;
1346
1347 fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
1348
1349 fprintf(stream, "%*sregs:\n", indent + 2, "");
1350 vcpu_regs_get(vm, vcpuid, &regs);
1351 regs_dump(stream, &regs, indent + 4);
1352
1353 fprintf(stream, "%*ssregs:\n", indent + 2, "");
1354 vcpu_sregs_get(vm, vcpuid, &sregs);
1355 sregs_dump(stream, &sregs, indent + 4);
1356}
1357
1358/* Known KVM exit reasons */
1359static struct exit_reason {
1360 unsigned int reason;
1361 const char *name;
1362} exit_reasons_known[] = {
1363 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
1364 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
1365 {KVM_EXIT_IO, "IO"},
1366 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
1367 {KVM_EXIT_DEBUG, "DEBUG"},
1368 {KVM_EXIT_HLT, "HLT"},
1369 {KVM_EXIT_MMIO, "MMIO"},
1370 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1371 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1372 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1373 {KVM_EXIT_INTR, "INTR"},
1374 {KVM_EXIT_SET_TPR, "SET_TPR"},
1375 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1376 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1377 {KVM_EXIT_S390_RESET, "S390_RESET"},
1378 {KVM_EXIT_DCR, "DCR"},
1379 {KVM_EXIT_NMI, "NMI"},
1380 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1381 {KVM_EXIT_OSI, "OSI"},
1382 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1383#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1384 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1385#endif
1386};
1387
1388/* Exit Reason String
1389 *
1390 * Input Args:
1391 * exit_reason - Exit reason
1392 *
1393 * Output Args: None
1394 *
1395 * Return:
1396 * Constant string pointer describing the exit reason.
1397 *
1398 * Locates and returns a constant string that describes the KVM exit
1399 * reason given by exit_reason. If no such string is found, a constant
1400 * string of "Unknown" is returned.
1401 */
1402const char *exit_reason_str(unsigned int exit_reason)
1403{
1404 unsigned int n1;
1405
1406 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1407 if (exit_reason == exit_reasons_known[n1].reason)
1408 return exit_reasons_known[n1].name;
1409 }
1410
1411 return "Unknown";
1412}
1413
1414/* Physical Page Allocate
1415 *
1416 * Input Args:
1417 * vm - Virtual Machine
1418 * paddr_min - Physical address minimum
1419 * memslot - Memory region to allocate page from
1420 *
1421 * Output Args: None
1422 *
1423 * Return:
1424 * Starting physical address
1425 *
1426 * Within the VM specified by vm, locates an available physical page
1427 * at or above paddr_min. If found, the page is marked as in use
1428 * and its address is returned. A TEST_ASSERT failure occurs if no
1429 * page is available at or above paddr_min.
1430 */
1431vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm,
1432 vm_paddr_t paddr_min, uint32_t memslot)
1433{
1434 struct userspace_mem_region *region;
1435 sparsebit_idx_t pg;
1436
1437 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1438 "not divisable by page size.\n"
1439 " paddr_min: 0x%lx page_size: 0x%x",
1440 paddr_min, vm->page_size);
1441
1442 /* Locate memory region. */
1443 region = memslot2region(vm, memslot);
1444
1445 /* Locate next available physical page at or above paddr_min. */
1446 pg = paddr_min >> vm->page_shift;
1447
1448 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1449 pg = sparsebit_next_set(region->unused_phy_pages, pg);
1450 if (pg == 0) {
1451 fprintf(stderr, "No guest physical page available, "
1452 "paddr_min: 0x%lx page_size: 0x%x memslot: %u",
1453 paddr_min, vm->page_size, memslot);
1454 fputs("---- vm dump ----\n", stderr);
1455 vm_dump(stderr, vm, 2);
1456 abort();
1457 }
1458 }
1459
1460 /* Specify page as in use and return its address. */
1461 sparsebit_clear(region->unused_phy_pages, pg);
1462
1463 return pg * vm->page_size;
1464}
1465
1466/* Address Guest Virtual to Host Virtual
1467 *
1468 * Input Args:
1469 * vm - Virtual Machine
1470 * gva - VM virtual address
1471 *
1472 * Output Args: None
1473 *
1474 * Return:
1475 * Equivalent host virtual address
1476 */
1477void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1478{
1479 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1480}