diff options
Diffstat (limited to 'tools/lib/bpf/btf_dump.c')
-rw-r--r-- | tools/lib/bpf/btf_dump.c | 1336 |
1 files changed, 1336 insertions, 0 deletions
diff --git a/tools/lib/bpf/btf_dump.c b/tools/lib/bpf/btf_dump.c new file mode 100644 index 000000000000..4b22db77e2cc --- /dev/null +++ b/tools/lib/bpf/btf_dump.c | |||
@@ -0,0 +1,1336 @@ | |||
1 | // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) | ||
2 | |||
3 | /* | ||
4 | * BTF-to-C type converter. | ||
5 | * | ||
6 | * Copyright (c) 2019 Facebook | ||
7 | */ | ||
8 | |||
9 | #include <stdbool.h> | ||
10 | #include <stddef.h> | ||
11 | #include <stdlib.h> | ||
12 | #include <string.h> | ||
13 | #include <errno.h> | ||
14 | #include <linux/err.h> | ||
15 | #include <linux/btf.h> | ||
16 | #include "btf.h" | ||
17 | #include "hashmap.h" | ||
18 | #include "libbpf.h" | ||
19 | #include "libbpf_internal.h" | ||
20 | |||
21 | #define min(x, y) ((x) < (y) ? (x) : (y)) | ||
22 | #define max(x, y) ((x) < (y) ? (y) : (x)) | ||
23 | |||
24 | static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; | ||
25 | static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; | ||
26 | |||
27 | static const char *pfx(int lvl) | ||
28 | { | ||
29 | return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; | ||
30 | } | ||
31 | |||
32 | enum btf_dump_type_order_state { | ||
33 | NOT_ORDERED, | ||
34 | ORDERING, | ||
35 | ORDERED, | ||
36 | }; | ||
37 | |||
38 | enum btf_dump_type_emit_state { | ||
39 | NOT_EMITTED, | ||
40 | EMITTING, | ||
41 | EMITTED, | ||
42 | }; | ||
43 | |||
44 | /* per-type auxiliary state */ | ||
45 | struct btf_dump_type_aux_state { | ||
46 | /* topological sorting state */ | ||
47 | enum btf_dump_type_order_state order_state: 2; | ||
48 | /* emitting state used to determine the need for forward declaration */ | ||
49 | enum btf_dump_type_emit_state emit_state: 2; | ||
50 | /* whether forward declaration was already emitted */ | ||
51 | __u8 fwd_emitted: 1; | ||
52 | /* whether unique non-duplicate name was already assigned */ | ||
53 | __u8 name_resolved: 1; | ||
54 | }; | ||
55 | |||
56 | struct btf_dump { | ||
57 | const struct btf *btf; | ||
58 | const struct btf_ext *btf_ext; | ||
59 | btf_dump_printf_fn_t printf_fn; | ||
60 | struct btf_dump_opts opts; | ||
61 | |||
62 | /* per-type auxiliary state */ | ||
63 | struct btf_dump_type_aux_state *type_states; | ||
64 | /* per-type optional cached unique name, must be freed, if present */ | ||
65 | const char **cached_names; | ||
66 | |||
67 | /* topo-sorted list of dependent type definitions */ | ||
68 | __u32 *emit_queue; | ||
69 | int emit_queue_cap; | ||
70 | int emit_queue_cnt; | ||
71 | |||
72 | /* | ||
73 | * stack of type declarations (e.g., chain of modifiers, arrays, | ||
74 | * funcs, etc) | ||
75 | */ | ||
76 | __u32 *decl_stack; | ||
77 | int decl_stack_cap; | ||
78 | int decl_stack_cnt; | ||
79 | |||
80 | /* maps struct/union/enum name to a number of name occurrences */ | ||
81 | struct hashmap *type_names; | ||
82 | /* | ||
83 | * maps typedef identifiers and enum value names to a number of such | ||
84 | * name occurrences | ||
85 | */ | ||
86 | struct hashmap *ident_names; | ||
87 | }; | ||
88 | |||
89 | static size_t str_hash_fn(const void *key, void *ctx) | ||
90 | { | ||
91 | const char *s = key; | ||
92 | size_t h = 0; | ||
93 | |||
94 | while (*s) { | ||
95 | h = h * 31 + *s; | ||
96 | s++; | ||
97 | } | ||
98 | return h; | ||
99 | } | ||
100 | |||
101 | static bool str_equal_fn(const void *a, const void *b, void *ctx) | ||
102 | { | ||
103 | return strcmp(a, b) == 0; | ||
104 | } | ||
105 | |||
106 | static __u16 btf_kind_of(const struct btf_type *t) | ||
107 | { | ||
108 | return BTF_INFO_KIND(t->info); | ||
109 | } | ||
110 | |||
111 | static __u16 btf_vlen_of(const struct btf_type *t) | ||
112 | { | ||
113 | return BTF_INFO_VLEN(t->info); | ||
114 | } | ||
115 | |||
116 | static bool btf_kflag_of(const struct btf_type *t) | ||
117 | { | ||
118 | return BTF_INFO_KFLAG(t->info); | ||
119 | } | ||
120 | |||
121 | static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) | ||
122 | { | ||
123 | return btf__name_by_offset(d->btf, name_off); | ||
124 | } | ||
125 | |||
126 | static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) | ||
127 | { | ||
128 | va_list args; | ||
129 | |||
130 | va_start(args, fmt); | ||
131 | d->printf_fn(d->opts.ctx, fmt, args); | ||
132 | va_end(args); | ||
133 | } | ||
134 | |||
135 | struct btf_dump *btf_dump__new(const struct btf *btf, | ||
136 | const struct btf_ext *btf_ext, | ||
137 | const struct btf_dump_opts *opts, | ||
138 | btf_dump_printf_fn_t printf_fn) | ||
139 | { | ||
140 | struct btf_dump *d; | ||
141 | int err; | ||
142 | |||
143 | d = calloc(1, sizeof(struct btf_dump)); | ||
144 | if (!d) | ||
145 | return ERR_PTR(-ENOMEM); | ||
146 | |||
147 | d->btf = btf; | ||
148 | d->btf_ext = btf_ext; | ||
149 | d->printf_fn = printf_fn; | ||
150 | d->opts.ctx = opts ? opts->ctx : NULL; | ||
151 | |||
152 | d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); | ||
153 | if (IS_ERR(d->type_names)) { | ||
154 | err = PTR_ERR(d->type_names); | ||
155 | d->type_names = NULL; | ||
156 | btf_dump__free(d); | ||
157 | return ERR_PTR(err); | ||
158 | } | ||
159 | d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); | ||
160 | if (IS_ERR(d->ident_names)) { | ||
161 | err = PTR_ERR(d->ident_names); | ||
162 | d->ident_names = NULL; | ||
163 | btf_dump__free(d); | ||
164 | return ERR_PTR(err); | ||
165 | } | ||
166 | |||
167 | return d; | ||
168 | } | ||
169 | |||
170 | void btf_dump__free(struct btf_dump *d) | ||
171 | { | ||
172 | int i, cnt; | ||
173 | |||
174 | if (!d) | ||
175 | return; | ||
176 | |||
177 | free(d->type_states); | ||
178 | if (d->cached_names) { | ||
179 | /* any set cached name is owned by us and should be freed */ | ||
180 | for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) { | ||
181 | if (d->cached_names[i]) | ||
182 | free((void *)d->cached_names[i]); | ||
183 | } | ||
184 | } | ||
185 | free(d->cached_names); | ||
186 | free(d->emit_queue); | ||
187 | free(d->decl_stack); | ||
188 | hashmap__free(d->type_names); | ||
189 | hashmap__free(d->ident_names); | ||
190 | |||
191 | free(d); | ||
192 | } | ||
193 | |||
194 | static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); | ||
195 | static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); | ||
196 | |||
197 | /* | ||
198 | * Dump BTF type in a compilable C syntax, including all the necessary | ||
199 | * dependent types, necessary for compilation. If some of the dependent types | ||
200 | * were already emitted as part of previous btf_dump__dump_type() invocation | ||
201 | * for another type, they won't be emitted again. This API allows callers to | ||
202 | * filter out BTF types according to user-defined criterias and emitted only | ||
203 | * minimal subset of types, necessary to compile everything. Full struct/union | ||
204 | * definitions will still be emitted, even if the only usage is through | ||
205 | * pointer and could be satisfied with just a forward declaration. | ||
206 | * | ||
207 | * Dumping is done in two high-level passes: | ||
208 | * 1. Topologically sort type definitions to satisfy C rules of compilation. | ||
209 | * 2. Emit type definitions in C syntax. | ||
210 | * | ||
211 | * Returns 0 on success; <0, otherwise. | ||
212 | */ | ||
213 | int btf_dump__dump_type(struct btf_dump *d, __u32 id) | ||
214 | { | ||
215 | int err, i; | ||
216 | |||
217 | if (id > btf__get_nr_types(d->btf)) | ||
218 | return -EINVAL; | ||
219 | |||
220 | /* type states are lazily allocated, as they might not be needed */ | ||
221 | if (!d->type_states) { | ||
222 | d->type_states = calloc(1 + btf__get_nr_types(d->btf), | ||
223 | sizeof(d->type_states[0])); | ||
224 | if (!d->type_states) | ||
225 | return -ENOMEM; | ||
226 | d->cached_names = calloc(1 + btf__get_nr_types(d->btf), | ||
227 | sizeof(d->cached_names[0])); | ||
228 | if (!d->cached_names) | ||
229 | return -ENOMEM; | ||
230 | |||
231 | /* VOID is special */ | ||
232 | d->type_states[0].order_state = ORDERED; | ||
233 | d->type_states[0].emit_state = EMITTED; | ||
234 | } | ||
235 | |||
236 | d->emit_queue_cnt = 0; | ||
237 | err = btf_dump_order_type(d, id, false); | ||
238 | if (err < 0) | ||
239 | return err; | ||
240 | |||
241 | for (i = 0; i < d->emit_queue_cnt; i++) | ||
242 | btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); | ||
243 | |||
244 | return 0; | ||
245 | } | ||
246 | |||
247 | static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) | ||
248 | { | ||
249 | __u32 *new_queue; | ||
250 | size_t new_cap; | ||
251 | |||
252 | if (d->emit_queue_cnt >= d->emit_queue_cap) { | ||
253 | new_cap = max(16, d->emit_queue_cap * 3 / 2); | ||
254 | new_queue = realloc(d->emit_queue, | ||
255 | new_cap * sizeof(new_queue[0])); | ||
256 | if (!new_queue) | ||
257 | return -ENOMEM; | ||
258 | d->emit_queue = new_queue; | ||
259 | d->emit_queue_cap = new_cap; | ||
260 | } | ||
261 | |||
262 | d->emit_queue[d->emit_queue_cnt++] = id; | ||
263 | return 0; | ||
264 | } | ||
265 | |||
266 | /* | ||
267 | * Determine order of emitting dependent types and specified type to satisfy | ||
268 | * C compilation rules. This is done through topological sorting with an | ||
269 | * additional complication which comes from C rules. The main idea for C is | ||
270 | * that if some type is "embedded" into a struct/union, it's size needs to be | ||
271 | * known at the time of definition of containing type. E.g., for: | ||
272 | * | ||
273 | * struct A {}; | ||
274 | * struct B { struct A x; } | ||
275 | * | ||
276 | * struct A *HAS* to be defined before struct B, because it's "embedded", | ||
277 | * i.e., it is part of struct B layout. But in the following case: | ||
278 | * | ||
279 | * struct A; | ||
280 | * struct B { struct A *x; } | ||
281 | * struct A {}; | ||
282 | * | ||
283 | * it's enough to just have a forward declaration of struct A at the time of | ||
284 | * struct B definition, as struct B has a pointer to struct A, so the size of | ||
285 | * field x is known without knowing struct A size: it's sizeof(void *). | ||
286 | * | ||
287 | * Unfortunately, there are some trickier cases we need to handle, e.g.: | ||
288 | * | ||
289 | * struct A {}; // if this was forward-declaration: compilation error | ||
290 | * struct B { | ||
291 | * struct { // anonymous struct | ||
292 | * struct A y; | ||
293 | * } *x; | ||
294 | * }; | ||
295 | * | ||
296 | * In this case, struct B's field x is a pointer, so it's size is known | ||
297 | * regardless of the size of (anonymous) struct it points to. But because this | ||
298 | * struct is anonymous and thus defined inline inside struct B, *and* it | ||
299 | * embeds struct A, compiler requires full definition of struct A to be known | ||
300 | * before struct B can be defined. This creates a transitive dependency | ||
301 | * between struct A and struct B. If struct A was forward-declared before | ||
302 | * struct B definition and fully defined after struct B definition, that would | ||
303 | * trigger compilation error. | ||
304 | * | ||
305 | * All this means that while we are doing topological sorting on BTF type | ||
306 | * graph, we need to determine relationships between different types (graph | ||
307 | * nodes): | ||
308 | * - weak link (relationship) between X and Y, if Y *CAN* be | ||
309 | * forward-declared at the point of X definition; | ||
310 | * - strong link, if Y *HAS* to be fully-defined before X can be defined. | ||
311 | * | ||
312 | * The rule is as follows. Given a chain of BTF types from X to Y, if there is | ||
313 | * BTF_KIND_PTR type in the chain and at least one non-anonymous type | ||
314 | * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. | ||
315 | * Weak/strong relationship is determined recursively during DFS traversal and | ||
316 | * is returned as a result from btf_dump_order_type(). | ||
317 | * | ||
318 | * btf_dump_order_type() is trying to avoid unnecessary forward declarations, | ||
319 | * but it is not guaranteeing that no extraneous forward declarations will be | ||
320 | * emitted. | ||
321 | * | ||
322 | * To avoid extra work, algorithm marks some of BTF types as ORDERED, when | ||
323 | * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, | ||
324 | * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the | ||
325 | * entire graph path, so depending where from one came to that BTF type, it | ||
326 | * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, | ||
327 | * once they are processed, there is no need to do it again, so they are | ||
328 | * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces | ||
329 | * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But | ||
330 | * in any case, once those are processed, no need to do it again, as the | ||
331 | * result won't change. | ||
332 | * | ||
333 | * Returns: | ||
334 | * - 1, if type is part of strong link (so there is strong topological | ||
335 | * ordering requirements); | ||
336 | * - 0, if type is part of weak link (so can be satisfied through forward | ||
337 | * declaration); | ||
338 | * - <0, on error (e.g., unsatisfiable type loop detected). | ||
339 | */ | ||
340 | static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) | ||
341 | { | ||
342 | /* | ||
343 | * Order state is used to detect strong link cycles, but only for BTF | ||
344 | * kinds that are or could be an independent definition (i.e., | ||
345 | * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, | ||
346 | * func_protos, modifiers are just means to get to these definitions. | ||
347 | * Int/void don't need definitions, they are assumed to be always | ||
348 | * properly defined. We also ignore datasec, var, and funcs for now. | ||
349 | * So for all non-defining kinds, we never even set ordering state, | ||
350 | * for defining kinds we set ORDERING and subsequently ORDERED if it | ||
351 | * forms a strong link. | ||
352 | */ | ||
353 | struct btf_dump_type_aux_state *tstate = &d->type_states[id]; | ||
354 | const struct btf_type *t; | ||
355 | __u16 kind, vlen; | ||
356 | int err, i; | ||
357 | |||
358 | /* return true, letting typedefs know that it's ok to be emitted */ | ||
359 | if (tstate->order_state == ORDERED) | ||
360 | return 1; | ||
361 | |||
362 | t = btf__type_by_id(d->btf, id); | ||
363 | kind = btf_kind_of(t); | ||
364 | |||
365 | if (tstate->order_state == ORDERING) { | ||
366 | /* type loop, but resolvable through fwd declaration */ | ||
367 | if ((kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION) && | ||
368 | through_ptr && t->name_off != 0) | ||
369 | return 0; | ||
370 | pr_warning("unsatisfiable type cycle, id:[%u]\n", id); | ||
371 | return -ELOOP; | ||
372 | } | ||
373 | |||
374 | switch (kind) { | ||
375 | case BTF_KIND_INT: | ||
376 | tstate->order_state = ORDERED; | ||
377 | return 0; | ||
378 | |||
379 | case BTF_KIND_PTR: | ||
380 | err = btf_dump_order_type(d, t->type, true); | ||
381 | tstate->order_state = ORDERED; | ||
382 | return err; | ||
383 | |||
384 | case BTF_KIND_ARRAY: { | ||
385 | const struct btf_array *a = (void *)(t + 1); | ||
386 | |||
387 | return btf_dump_order_type(d, a->type, through_ptr); | ||
388 | } | ||
389 | case BTF_KIND_STRUCT: | ||
390 | case BTF_KIND_UNION: { | ||
391 | const struct btf_member *m = (void *)(t + 1); | ||
392 | /* | ||
393 | * struct/union is part of strong link, only if it's embedded | ||
394 | * (so no ptr in a path) or it's anonymous (so has to be | ||
395 | * defined inline, even if declared through ptr) | ||
396 | */ | ||
397 | if (through_ptr && t->name_off != 0) | ||
398 | return 0; | ||
399 | |||
400 | tstate->order_state = ORDERING; | ||
401 | |||
402 | vlen = btf_vlen_of(t); | ||
403 | for (i = 0; i < vlen; i++, m++) { | ||
404 | err = btf_dump_order_type(d, m->type, false); | ||
405 | if (err < 0) | ||
406 | return err; | ||
407 | } | ||
408 | |||
409 | if (t->name_off != 0) { | ||
410 | err = btf_dump_add_emit_queue_id(d, id); | ||
411 | if (err < 0) | ||
412 | return err; | ||
413 | } | ||
414 | |||
415 | tstate->order_state = ORDERED; | ||
416 | return 1; | ||
417 | } | ||
418 | case BTF_KIND_ENUM: | ||
419 | case BTF_KIND_FWD: | ||
420 | if (t->name_off != 0) { | ||
421 | err = btf_dump_add_emit_queue_id(d, id); | ||
422 | if (err) | ||
423 | return err; | ||
424 | } | ||
425 | tstate->order_state = ORDERED; | ||
426 | return 1; | ||
427 | |||
428 | case BTF_KIND_TYPEDEF: { | ||
429 | int is_strong; | ||
430 | |||
431 | is_strong = btf_dump_order_type(d, t->type, through_ptr); | ||
432 | if (is_strong < 0) | ||
433 | return is_strong; | ||
434 | |||
435 | /* typedef is similar to struct/union w.r.t. fwd-decls */ | ||
436 | if (through_ptr && !is_strong) | ||
437 | return 0; | ||
438 | |||
439 | /* typedef is always a named definition */ | ||
440 | err = btf_dump_add_emit_queue_id(d, id); | ||
441 | if (err) | ||
442 | return err; | ||
443 | |||
444 | d->type_states[id].order_state = ORDERED; | ||
445 | return 1; | ||
446 | } | ||
447 | case BTF_KIND_VOLATILE: | ||
448 | case BTF_KIND_CONST: | ||
449 | case BTF_KIND_RESTRICT: | ||
450 | return btf_dump_order_type(d, t->type, through_ptr); | ||
451 | |||
452 | case BTF_KIND_FUNC_PROTO: { | ||
453 | const struct btf_param *p = (void *)(t + 1); | ||
454 | bool is_strong; | ||
455 | |||
456 | err = btf_dump_order_type(d, t->type, through_ptr); | ||
457 | if (err < 0) | ||
458 | return err; | ||
459 | is_strong = err > 0; | ||
460 | |||
461 | vlen = btf_vlen_of(t); | ||
462 | for (i = 0; i < vlen; i++, p++) { | ||
463 | err = btf_dump_order_type(d, p->type, through_ptr); | ||
464 | if (err < 0) | ||
465 | return err; | ||
466 | if (err > 0) | ||
467 | is_strong = true; | ||
468 | } | ||
469 | return is_strong; | ||
470 | } | ||
471 | case BTF_KIND_FUNC: | ||
472 | case BTF_KIND_VAR: | ||
473 | case BTF_KIND_DATASEC: | ||
474 | d->type_states[id].order_state = ORDERED; | ||
475 | return 0; | ||
476 | |||
477 | default: | ||
478 | return -EINVAL; | ||
479 | } | ||
480 | } | ||
481 | |||
482 | static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, | ||
483 | const struct btf_type *t); | ||
484 | static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, | ||
485 | const struct btf_type *t, int lvl); | ||
486 | |||
487 | static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, | ||
488 | const struct btf_type *t); | ||
489 | static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, | ||
490 | const struct btf_type *t, int lvl); | ||
491 | |||
492 | static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, | ||
493 | const struct btf_type *t); | ||
494 | |||
495 | static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, | ||
496 | const struct btf_type *t, int lvl); | ||
497 | |||
498 | /* a local view into a shared stack */ | ||
499 | struct id_stack { | ||
500 | const __u32 *ids; | ||
501 | int cnt; | ||
502 | }; | ||
503 | |||
504 | static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, | ||
505 | const char *fname, int lvl); | ||
506 | static void btf_dump_emit_type_chain(struct btf_dump *d, | ||
507 | struct id_stack *decl_stack, | ||
508 | const char *fname, int lvl); | ||
509 | |||
510 | static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); | ||
511 | static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); | ||
512 | static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, | ||
513 | const char *orig_name); | ||
514 | |||
515 | static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) | ||
516 | { | ||
517 | const struct btf_type *t = btf__type_by_id(d->btf, id); | ||
518 | |||
519 | /* __builtin_va_list is a compiler built-in, which causes compilation | ||
520 | * errors, when compiling w/ different compiler, then used to compile | ||
521 | * original code (e.g., GCC to compile kernel, Clang to use generated | ||
522 | * C header from BTF). As it is built-in, it should be already defined | ||
523 | * properly internally in compiler. | ||
524 | */ | ||
525 | if (t->name_off == 0) | ||
526 | return false; | ||
527 | return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; | ||
528 | } | ||
529 | |||
530 | /* | ||
531 | * Emit C-syntax definitions of types from chains of BTF types. | ||
532 | * | ||
533 | * High-level handling of determining necessary forward declarations are handled | ||
534 | * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type | ||
535 | * declarations/definitions in C syntax are handled by a combo of | ||
536 | * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to | ||
537 | * corresponding btf_dump_emit_*_{def,fwd}() functions. | ||
538 | * | ||
539 | * We also keep track of "containing struct/union type ID" to determine when | ||
540 | * we reference it from inside and thus can avoid emitting unnecessary forward | ||
541 | * declaration. | ||
542 | * | ||
543 | * This algorithm is designed in such a way, that even if some error occurs | ||
544 | * (either technical, e.g., out of memory, or logical, i.e., malformed BTF | ||
545 | * that doesn't comply to C rules completely), algorithm will try to proceed | ||
546 | * and produce as much meaningful output as possible. | ||
547 | */ | ||
548 | static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) | ||
549 | { | ||
550 | struct btf_dump_type_aux_state *tstate = &d->type_states[id]; | ||
551 | bool top_level_def = cont_id == 0; | ||
552 | const struct btf_type *t; | ||
553 | __u16 kind; | ||
554 | |||
555 | if (tstate->emit_state == EMITTED) | ||
556 | return; | ||
557 | |||
558 | t = btf__type_by_id(d->btf, id); | ||
559 | kind = btf_kind_of(t); | ||
560 | |||
561 | if (top_level_def && t->name_off == 0) { | ||
562 | pr_warning("unexpected nameless definition, id:[%u]\n", id); | ||
563 | return; | ||
564 | } | ||
565 | |||
566 | if (tstate->emit_state == EMITTING) { | ||
567 | if (tstate->fwd_emitted) | ||
568 | return; | ||
569 | |||
570 | switch (kind) { | ||
571 | case BTF_KIND_STRUCT: | ||
572 | case BTF_KIND_UNION: | ||
573 | /* | ||
574 | * if we are referencing a struct/union that we are | ||
575 | * part of - then no need for fwd declaration | ||
576 | */ | ||
577 | if (id == cont_id) | ||
578 | return; | ||
579 | if (t->name_off == 0) { | ||
580 | pr_warning("anonymous struct/union loop, id:[%u]\n", | ||
581 | id); | ||
582 | return; | ||
583 | } | ||
584 | btf_dump_emit_struct_fwd(d, id, t); | ||
585 | btf_dump_printf(d, ";\n\n"); | ||
586 | tstate->fwd_emitted = 1; | ||
587 | break; | ||
588 | case BTF_KIND_TYPEDEF: | ||
589 | /* | ||
590 | * for typedef fwd_emitted means typedef definition | ||
591 | * was emitted, but it can be used only for "weak" | ||
592 | * references through pointer only, not for embedding | ||
593 | */ | ||
594 | if (!btf_dump_is_blacklisted(d, id)) { | ||
595 | btf_dump_emit_typedef_def(d, id, t, 0); | ||
596 | btf_dump_printf(d, ";\n\n"); | ||
597 | }; | ||
598 | tstate->fwd_emitted = 1; | ||
599 | break; | ||
600 | default: | ||
601 | break; | ||
602 | } | ||
603 | |||
604 | return; | ||
605 | } | ||
606 | |||
607 | switch (kind) { | ||
608 | case BTF_KIND_INT: | ||
609 | tstate->emit_state = EMITTED; | ||
610 | break; | ||
611 | case BTF_KIND_ENUM: | ||
612 | if (top_level_def) { | ||
613 | btf_dump_emit_enum_def(d, id, t, 0); | ||
614 | btf_dump_printf(d, ";\n\n"); | ||
615 | } | ||
616 | tstate->emit_state = EMITTED; | ||
617 | break; | ||
618 | case BTF_KIND_PTR: | ||
619 | case BTF_KIND_VOLATILE: | ||
620 | case BTF_KIND_CONST: | ||
621 | case BTF_KIND_RESTRICT: | ||
622 | btf_dump_emit_type(d, t->type, cont_id); | ||
623 | break; | ||
624 | case BTF_KIND_ARRAY: { | ||
625 | const struct btf_array *a = (void *)(t + 1); | ||
626 | |||
627 | btf_dump_emit_type(d, a->type, cont_id); | ||
628 | break; | ||
629 | } | ||
630 | case BTF_KIND_FWD: | ||
631 | btf_dump_emit_fwd_def(d, id, t); | ||
632 | btf_dump_printf(d, ";\n\n"); | ||
633 | tstate->emit_state = EMITTED; | ||
634 | break; | ||
635 | case BTF_KIND_TYPEDEF: | ||
636 | tstate->emit_state = EMITTING; | ||
637 | btf_dump_emit_type(d, t->type, id); | ||
638 | /* | ||
639 | * typedef can server as both definition and forward | ||
640 | * declaration; at this stage someone depends on | ||
641 | * typedef as a forward declaration (refers to it | ||
642 | * through pointer), so unless we already did it, | ||
643 | * emit typedef as a forward declaration | ||
644 | */ | ||
645 | if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { | ||
646 | btf_dump_emit_typedef_def(d, id, t, 0); | ||
647 | btf_dump_printf(d, ";\n\n"); | ||
648 | } | ||
649 | tstate->emit_state = EMITTED; | ||
650 | break; | ||
651 | case BTF_KIND_STRUCT: | ||
652 | case BTF_KIND_UNION: | ||
653 | tstate->emit_state = EMITTING; | ||
654 | /* if it's a top-level struct/union definition or struct/union | ||
655 | * is anonymous, then in C we'll be emitting all fields and | ||
656 | * their types (as opposed to just `struct X`), so we need to | ||
657 | * make sure that all types, referenced from struct/union | ||
658 | * members have necessary forward-declarations, where | ||
659 | * applicable | ||
660 | */ | ||
661 | if (top_level_def || t->name_off == 0) { | ||
662 | const struct btf_member *m = (void *)(t + 1); | ||
663 | __u16 vlen = btf_vlen_of(t); | ||
664 | int i, new_cont_id; | ||
665 | |||
666 | new_cont_id = t->name_off == 0 ? cont_id : id; | ||
667 | for (i = 0; i < vlen; i++, m++) | ||
668 | btf_dump_emit_type(d, m->type, new_cont_id); | ||
669 | } else if (!tstate->fwd_emitted && id != cont_id) { | ||
670 | btf_dump_emit_struct_fwd(d, id, t); | ||
671 | btf_dump_printf(d, ";\n\n"); | ||
672 | tstate->fwd_emitted = 1; | ||
673 | } | ||
674 | |||
675 | if (top_level_def) { | ||
676 | btf_dump_emit_struct_def(d, id, t, 0); | ||
677 | btf_dump_printf(d, ";\n\n"); | ||
678 | tstate->emit_state = EMITTED; | ||
679 | } else { | ||
680 | tstate->emit_state = NOT_EMITTED; | ||
681 | } | ||
682 | break; | ||
683 | case BTF_KIND_FUNC_PROTO: { | ||
684 | const struct btf_param *p = (void *)(t + 1); | ||
685 | __u16 vlen = btf_vlen_of(t); | ||
686 | int i; | ||
687 | |||
688 | btf_dump_emit_type(d, t->type, cont_id); | ||
689 | for (i = 0; i < vlen; i++, p++) | ||
690 | btf_dump_emit_type(d, p->type, cont_id); | ||
691 | |||
692 | break; | ||
693 | } | ||
694 | default: | ||
695 | break; | ||
696 | } | ||
697 | } | ||
698 | |||
699 | static int btf_align_of(const struct btf *btf, __u32 id) | ||
700 | { | ||
701 | const struct btf_type *t = btf__type_by_id(btf, id); | ||
702 | __u16 kind = btf_kind_of(t); | ||
703 | |||
704 | switch (kind) { | ||
705 | case BTF_KIND_INT: | ||
706 | case BTF_KIND_ENUM: | ||
707 | return min(sizeof(void *), t->size); | ||
708 | case BTF_KIND_PTR: | ||
709 | return sizeof(void *); | ||
710 | case BTF_KIND_TYPEDEF: | ||
711 | case BTF_KIND_VOLATILE: | ||
712 | case BTF_KIND_CONST: | ||
713 | case BTF_KIND_RESTRICT: | ||
714 | return btf_align_of(btf, t->type); | ||
715 | case BTF_KIND_ARRAY: { | ||
716 | const struct btf_array *a = (void *)(t + 1); | ||
717 | |||
718 | return btf_align_of(btf, a->type); | ||
719 | } | ||
720 | case BTF_KIND_STRUCT: | ||
721 | case BTF_KIND_UNION: { | ||
722 | const struct btf_member *m = (void *)(t + 1); | ||
723 | __u16 vlen = btf_vlen_of(t); | ||
724 | int i, align = 1; | ||
725 | |||
726 | for (i = 0; i < vlen; i++, m++) | ||
727 | align = max(align, btf_align_of(btf, m->type)); | ||
728 | |||
729 | return align; | ||
730 | } | ||
731 | default: | ||
732 | pr_warning("unsupported BTF_KIND:%u\n", btf_kind_of(t)); | ||
733 | return 1; | ||
734 | } | ||
735 | } | ||
736 | |||
737 | static bool btf_is_struct_packed(const struct btf *btf, __u32 id, | ||
738 | const struct btf_type *t) | ||
739 | { | ||
740 | const struct btf_member *m; | ||
741 | int align, i, bit_sz; | ||
742 | __u16 vlen; | ||
743 | bool kflag; | ||
744 | |||
745 | align = btf_align_of(btf, id); | ||
746 | /* size of a non-packed struct has to be a multiple of its alignment*/ | ||
747 | if (t->size % align) | ||
748 | return true; | ||
749 | |||
750 | m = (void *)(t + 1); | ||
751 | kflag = btf_kflag_of(t); | ||
752 | vlen = btf_vlen_of(t); | ||
753 | /* all non-bitfield fields have to be naturally aligned */ | ||
754 | for (i = 0; i < vlen; i++, m++) { | ||
755 | align = btf_align_of(btf, m->type); | ||
756 | bit_sz = kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0; | ||
757 | if (bit_sz == 0 && m->offset % (8 * align) != 0) | ||
758 | return true; | ||
759 | } | ||
760 | |||
761 | /* | ||
762 | * if original struct was marked as packed, but its layout is | ||
763 | * naturally aligned, we'll detect that it's not packed | ||
764 | */ | ||
765 | return false; | ||
766 | } | ||
767 | |||
768 | static int chip_away_bits(int total, int at_most) | ||
769 | { | ||
770 | return total % at_most ? : at_most; | ||
771 | } | ||
772 | |||
773 | static void btf_dump_emit_bit_padding(const struct btf_dump *d, | ||
774 | int cur_off, int m_off, int m_bit_sz, | ||
775 | int align, int lvl) | ||
776 | { | ||
777 | int off_diff = m_off - cur_off; | ||
778 | int ptr_bits = sizeof(void *) * 8; | ||
779 | |||
780 | if (off_diff <= 0) | ||
781 | /* no gap */ | ||
782 | return; | ||
783 | if (m_bit_sz == 0 && off_diff < align * 8) | ||
784 | /* natural padding will take care of a gap */ | ||
785 | return; | ||
786 | |||
787 | while (off_diff > 0) { | ||
788 | const char *pad_type; | ||
789 | int pad_bits; | ||
790 | |||
791 | if (ptr_bits > 32 && off_diff > 32) { | ||
792 | pad_type = "long"; | ||
793 | pad_bits = chip_away_bits(off_diff, ptr_bits); | ||
794 | } else if (off_diff > 16) { | ||
795 | pad_type = "int"; | ||
796 | pad_bits = chip_away_bits(off_diff, 32); | ||
797 | } else if (off_diff > 8) { | ||
798 | pad_type = "short"; | ||
799 | pad_bits = chip_away_bits(off_diff, 16); | ||
800 | } else { | ||
801 | pad_type = "char"; | ||
802 | pad_bits = chip_away_bits(off_diff, 8); | ||
803 | } | ||
804 | btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); | ||
805 | off_diff -= pad_bits; | ||
806 | } | ||
807 | } | ||
808 | |||
809 | static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, | ||
810 | const struct btf_type *t) | ||
811 | { | ||
812 | btf_dump_printf(d, "%s %s", | ||
813 | btf_kind_of(t) == BTF_KIND_STRUCT ? "struct" : "union", | ||
814 | btf_dump_type_name(d, id)); | ||
815 | } | ||
816 | |||
817 | static void btf_dump_emit_struct_def(struct btf_dump *d, | ||
818 | __u32 id, | ||
819 | const struct btf_type *t, | ||
820 | int lvl) | ||
821 | { | ||
822 | const struct btf_member *m = (void *)(t + 1); | ||
823 | bool kflag = btf_kflag_of(t), is_struct; | ||
824 | int align, i, packed, off = 0; | ||
825 | __u16 vlen = btf_vlen_of(t); | ||
826 | |||
827 | is_struct = btf_kind_of(t) == BTF_KIND_STRUCT; | ||
828 | packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; | ||
829 | align = packed ? 1 : btf_align_of(d->btf, id); | ||
830 | |||
831 | btf_dump_printf(d, "%s%s%s {", | ||
832 | is_struct ? "struct" : "union", | ||
833 | t->name_off ? " " : "", | ||
834 | btf_dump_type_name(d, id)); | ||
835 | |||
836 | for (i = 0; i < vlen; i++, m++) { | ||
837 | const char *fname; | ||
838 | int m_off, m_sz; | ||
839 | |||
840 | fname = btf_name_of(d, m->name_off); | ||
841 | m_sz = kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0; | ||
842 | m_off = kflag ? BTF_MEMBER_BIT_OFFSET(m->offset) : m->offset; | ||
843 | align = packed ? 1 : btf_align_of(d->btf, m->type); | ||
844 | |||
845 | btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1); | ||
846 | btf_dump_printf(d, "\n%s", pfx(lvl + 1)); | ||
847 | btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); | ||
848 | |||
849 | if (m_sz) { | ||
850 | btf_dump_printf(d, ": %d", m_sz); | ||
851 | off = m_off + m_sz; | ||
852 | } else { | ||
853 | m_sz = max(0, btf__resolve_size(d->btf, m->type)); | ||
854 | off = m_off + m_sz * 8; | ||
855 | } | ||
856 | btf_dump_printf(d, ";"); | ||
857 | } | ||
858 | |||
859 | if (vlen) | ||
860 | btf_dump_printf(d, "\n"); | ||
861 | btf_dump_printf(d, "%s}", pfx(lvl)); | ||
862 | if (packed) | ||
863 | btf_dump_printf(d, " __attribute__((packed))"); | ||
864 | } | ||
865 | |||
866 | static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, | ||
867 | const struct btf_type *t) | ||
868 | { | ||
869 | btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); | ||
870 | } | ||
871 | |||
872 | static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, | ||
873 | const struct btf_type *t, | ||
874 | int lvl) | ||
875 | { | ||
876 | const struct btf_enum *v = (void *)(t+1); | ||
877 | __u16 vlen = btf_vlen_of(t); | ||
878 | const char *name; | ||
879 | size_t dup_cnt; | ||
880 | int i; | ||
881 | |||
882 | btf_dump_printf(d, "enum%s%s", | ||
883 | t->name_off ? " " : "", | ||
884 | btf_dump_type_name(d, id)); | ||
885 | |||
886 | if (vlen) { | ||
887 | btf_dump_printf(d, " {"); | ||
888 | for (i = 0; i < vlen; i++, v++) { | ||
889 | name = btf_name_of(d, v->name_off); | ||
890 | /* enumerators share namespace with typedef idents */ | ||
891 | dup_cnt = btf_dump_name_dups(d, d->ident_names, name); | ||
892 | if (dup_cnt > 1) { | ||
893 | btf_dump_printf(d, "\n%s%s___%zu = %d,", | ||
894 | pfx(lvl + 1), name, dup_cnt, | ||
895 | (__s32)v->val); | ||
896 | } else { | ||
897 | btf_dump_printf(d, "\n%s%s = %d,", | ||
898 | pfx(lvl + 1), name, | ||
899 | (__s32)v->val); | ||
900 | } | ||
901 | } | ||
902 | btf_dump_printf(d, "\n%s}", pfx(lvl)); | ||
903 | } | ||
904 | } | ||
905 | |||
906 | static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, | ||
907 | const struct btf_type *t) | ||
908 | { | ||
909 | const char *name = btf_dump_type_name(d, id); | ||
910 | |||
911 | if (btf_kflag_of(t)) | ||
912 | btf_dump_printf(d, "union %s", name); | ||
913 | else | ||
914 | btf_dump_printf(d, "struct %s", name); | ||
915 | } | ||
916 | |||
917 | static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, | ||
918 | const struct btf_type *t, int lvl) | ||
919 | { | ||
920 | const char *name = btf_dump_ident_name(d, id); | ||
921 | |||
922 | btf_dump_printf(d, "typedef "); | ||
923 | btf_dump_emit_type_decl(d, t->type, name, lvl); | ||
924 | } | ||
925 | |||
926 | static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) | ||
927 | { | ||
928 | __u32 *new_stack; | ||
929 | size_t new_cap; | ||
930 | |||
931 | if (d->decl_stack_cnt >= d->decl_stack_cap) { | ||
932 | new_cap = max(16, d->decl_stack_cap * 3 / 2); | ||
933 | new_stack = realloc(d->decl_stack, | ||
934 | new_cap * sizeof(new_stack[0])); | ||
935 | if (!new_stack) | ||
936 | return -ENOMEM; | ||
937 | d->decl_stack = new_stack; | ||
938 | d->decl_stack_cap = new_cap; | ||
939 | } | ||
940 | |||
941 | d->decl_stack[d->decl_stack_cnt++] = id; | ||
942 | |||
943 | return 0; | ||
944 | } | ||
945 | |||
946 | /* | ||
947 | * Emit type declaration (e.g., field type declaration in a struct or argument | ||
948 | * declaration in function prototype) in correct C syntax. | ||
949 | * | ||
950 | * For most types it's trivial, but there are few quirky type declaration | ||
951 | * cases worth mentioning: | ||
952 | * - function prototypes (especially nesting of function prototypes); | ||
953 | * - arrays; | ||
954 | * - const/volatile/restrict for pointers vs other types. | ||
955 | * | ||
956 | * For a good discussion of *PARSING* C syntax (as a human), see | ||
957 | * Peter van der Linden's "Expert C Programming: Deep C Secrets", | ||
958 | * Ch.3 "Unscrambling Declarations in C". | ||
959 | * | ||
960 | * It won't help with BTF to C conversion much, though, as it's an opposite | ||
961 | * problem. So we came up with this algorithm in reverse to van der Linden's | ||
962 | * parsing algorithm. It goes from structured BTF representation of type | ||
963 | * declaration to a valid compilable C syntax. | ||
964 | * | ||
965 | * For instance, consider this C typedef: | ||
966 | * typedef const int * const * arr[10] arr_t; | ||
967 | * It will be represented in BTF with this chain of BTF types: | ||
968 | * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] | ||
969 | * | ||
970 | * Notice how [const] modifier always goes before type it modifies in BTF type | ||
971 | * graph, but in C syntax, const/volatile/restrict modifiers are written to | ||
972 | * the right of pointers, but to the left of other types. There are also other | ||
973 | * quirks, like function pointers, arrays of them, functions returning other | ||
974 | * functions, etc. | ||
975 | * | ||
976 | * We handle that by pushing all the types to a stack, until we hit "terminal" | ||
977 | * type (int/enum/struct/union/fwd). Then depending on the kind of a type on | ||
978 | * top of a stack, modifiers are handled differently. Array/function pointers | ||
979 | * have also wildly different syntax and how nesting of them are done. See | ||
980 | * code for authoritative definition. | ||
981 | * | ||
982 | * To avoid allocating new stack for each independent chain of BTF types, we | ||
983 | * share one bigger stack, with each chain working only on its own local view | ||
984 | * of a stack frame. Some care is required to "pop" stack frames after | ||
985 | * processing type declaration chain. | ||
986 | */ | ||
987 | static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, | ||
988 | const char *fname, int lvl) | ||
989 | { | ||
990 | struct id_stack decl_stack; | ||
991 | const struct btf_type *t; | ||
992 | int err, stack_start; | ||
993 | __u16 kind; | ||
994 | |||
995 | stack_start = d->decl_stack_cnt; | ||
996 | for (;;) { | ||
997 | err = btf_dump_push_decl_stack_id(d, id); | ||
998 | if (err < 0) { | ||
999 | /* | ||
1000 | * if we don't have enough memory for entire type decl | ||
1001 | * chain, restore stack, emit warning, and try to | ||
1002 | * proceed nevertheless | ||
1003 | */ | ||
1004 | pr_warning("not enough memory for decl stack:%d", err); | ||
1005 | d->decl_stack_cnt = stack_start; | ||
1006 | return; | ||
1007 | } | ||
1008 | |||
1009 | /* VOID */ | ||
1010 | if (id == 0) | ||
1011 | break; | ||
1012 | |||
1013 | t = btf__type_by_id(d->btf, id); | ||
1014 | kind = btf_kind_of(t); | ||
1015 | switch (kind) { | ||
1016 | case BTF_KIND_PTR: | ||
1017 | case BTF_KIND_VOLATILE: | ||
1018 | case BTF_KIND_CONST: | ||
1019 | case BTF_KIND_RESTRICT: | ||
1020 | case BTF_KIND_FUNC_PROTO: | ||
1021 | id = t->type; | ||
1022 | break; | ||
1023 | case BTF_KIND_ARRAY: { | ||
1024 | const struct btf_array *a = (void *)(t + 1); | ||
1025 | |||
1026 | id = a->type; | ||
1027 | break; | ||
1028 | } | ||
1029 | case BTF_KIND_INT: | ||
1030 | case BTF_KIND_ENUM: | ||
1031 | case BTF_KIND_FWD: | ||
1032 | case BTF_KIND_STRUCT: | ||
1033 | case BTF_KIND_UNION: | ||
1034 | case BTF_KIND_TYPEDEF: | ||
1035 | goto done; | ||
1036 | default: | ||
1037 | pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n", | ||
1038 | kind, id); | ||
1039 | goto done; | ||
1040 | } | ||
1041 | } | ||
1042 | done: | ||
1043 | /* | ||
1044 | * We might be inside a chain of declarations (e.g., array of function | ||
1045 | * pointers returning anonymous (so inlined) structs, having another | ||
1046 | * array field). Each of those needs its own "stack frame" to handle | ||
1047 | * emitting of declarations. Those stack frames are non-overlapping | ||
1048 | * portions of shared btf_dump->decl_stack. To make it a bit nicer to | ||
1049 | * handle this set of nested stacks, we create a view corresponding to | ||
1050 | * our own "stack frame" and work with it as an independent stack. | ||
1051 | * We'll need to clean up after emit_type_chain() returns, though. | ||
1052 | */ | ||
1053 | decl_stack.ids = d->decl_stack + stack_start; | ||
1054 | decl_stack.cnt = d->decl_stack_cnt - stack_start; | ||
1055 | btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); | ||
1056 | /* | ||
1057 | * emit_type_chain() guarantees that it will pop its entire decl_stack | ||
1058 | * frame before returning. But it works with a read-only view into | ||
1059 | * decl_stack, so it doesn't actually pop anything from the | ||
1060 | * perspective of shared btf_dump->decl_stack, per se. We need to | ||
1061 | * reset decl_stack state to how it was before us to avoid it growing | ||
1062 | * all the time. | ||
1063 | */ | ||
1064 | d->decl_stack_cnt = stack_start; | ||
1065 | } | ||
1066 | |||
1067 | static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) | ||
1068 | { | ||
1069 | const struct btf_type *t; | ||
1070 | __u32 id; | ||
1071 | |||
1072 | while (decl_stack->cnt) { | ||
1073 | id = decl_stack->ids[decl_stack->cnt - 1]; | ||
1074 | t = btf__type_by_id(d->btf, id); | ||
1075 | |||
1076 | switch (btf_kind_of(t)) { | ||
1077 | case BTF_KIND_VOLATILE: | ||
1078 | btf_dump_printf(d, "volatile "); | ||
1079 | break; | ||
1080 | case BTF_KIND_CONST: | ||
1081 | btf_dump_printf(d, "const "); | ||
1082 | break; | ||
1083 | case BTF_KIND_RESTRICT: | ||
1084 | btf_dump_printf(d, "restrict "); | ||
1085 | break; | ||
1086 | default: | ||
1087 | return; | ||
1088 | } | ||
1089 | decl_stack->cnt--; | ||
1090 | } | ||
1091 | } | ||
1092 | |||
1093 | static bool btf_is_mod_kind(const struct btf *btf, __u32 id) | ||
1094 | { | ||
1095 | const struct btf_type *t = btf__type_by_id(btf, id); | ||
1096 | |||
1097 | switch (btf_kind_of(t)) { | ||
1098 | case BTF_KIND_VOLATILE: | ||
1099 | case BTF_KIND_CONST: | ||
1100 | case BTF_KIND_RESTRICT: | ||
1101 | return true; | ||
1102 | default: | ||
1103 | return false; | ||
1104 | } | ||
1105 | } | ||
1106 | |||
1107 | static void btf_dump_emit_name(const struct btf_dump *d, | ||
1108 | const char *name, bool last_was_ptr) | ||
1109 | { | ||
1110 | bool separate = name[0] && !last_was_ptr; | ||
1111 | |||
1112 | btf_dump_printf(d, "%s%s", separate ? " " : "", name); | ||
1113 | } | ||
1114 | |||
1115 | static void btf_dump_emit_type_chain(struct btf_dump *d, | ||
1116 | struct id_stack *decls, | ||
1117 | const char *fname, int lvl) | ||
1118 | { | ||
1119 | /* | ||
1120 | * last_was_ptr is used to determine if we need to separate pointer | ||
1121 | * asterisk (*) from previous part of type signature with space, so | ||
1122 | * that we get `int ***`, instead of `int * * *`. We default to true | ||
1123 | * for cases where we have single pointer in a chain. E.g., in ptr -> | ||
1124 | * func_proto case. func_proto will start a new emit_type_chain call | ||
1125 | * with just ptr, which should be emitted as (*) or (*<fname>), so we | ||
1126 | * don't want to prepend space for that last pointer. | ||
1127 | */ | ||
1128 | bool last_was_ptr = true; | ||
1129 | const struct btf_type *t; | ||
1130 | const char *name; | ||
1131 | __u16 kind; | ||
1132 | __u32 id; | ||
1133 | |||
1134 | while (decls->cnt) { | ||
1135 | id = decls->ids[--decls->cnt]; | ||
1136 | if (id == 0) { | ||
1137 | /* VOID is a special snowflake */ | ||
1138 | btf_dump_emit_mods(d, decls); | ||
1139 | btf_dump_printf(d, "void"); | ||
1140 | last_was_ptr = false; | ||
1141 | continue; | ||
1142 | } | ||
1143 | |||
1144 | t = btf__type_by_id(d->btf, id); | ||
1145 | kind = btf_kind_of(t); | ||
1146 | |||
1147 | switch (kind) { | ||
1148 | case BTF_KIND_INT: | ||
1149 | btf_dump_emit_mods(d, decls); | ||
1150 | name = btf_name_of(d, t->name_off); | ||
1151 | btf_dump_printf(d, "%s", name); | ||
1152 | break; | ||
1153 | case BTF_KIND_STRUCT: | ||
1154 | case BTF_KIND_UNION: | ||
1155 | btf_dump_emit_mods(d, decls); | ||
1156 | /* inline anonymous struct/union */ | ||
1157 | if (t->name_off == 0) | ||
1158 | btf_dump_emit_struct_def(d, id, t, lvl); | ||
1159 | else | ||
1160 | btf_dump_emit_struct_fwd(d, id, t); | ||
1161 | break; | ||
1162 | case BTF_KIND_ENUM: | ||
1163 | btf_dump_emit_mods(d, decls); | ||
1164 | /* inline anonymous enum */ | ||
1165 | if (t->name_off == 0) | ||
1166 | btf_dump_emit_enum_def(d, id, t, lvl); | ||
1167 | else | ||
1168 | btf_dump_emit_enum_fwd(d, id, t); | ||
1169 | break; | ||
1170 | case BTF_KIND_FWD: | ||
1171 | btf_dump_emit_mods(d, decls); | ||
1172 | btf_dump_emit_fwd_def(d, id, t); | ||
1173 | break; | ||
1174 | case BTF_KIND_TYPEDEF: | ||
1175 | btf_dump_emit_mods(d, decls); | ||
1176 | btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); | ||
1177 | break; | ||
1178 | case BTF_KIND_PTR: | ||
1179 | btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); | ||
1180 | break; | ||
1181 | case BTF_KIND_VOLATILE: | ||
1182 | btf_dump_printf(d, " volatile"); | ||
1183 | break; | ||
1184 | case BTF_KIND_CONST: | ||
1185 | btf_dump_printf(d, " const"); | ||
1186 | break; | ||
1187 | case BTF_KIND_RESTRICT: | ||
1188 | btf_dump_printf(d, " restrict"); | ||
1189 | break; | ||
1190 | case BTF_KIND_ARRAY: { | ||
1191 | const struct btf_array *a = (void *)(t + 1); | ||
1192 | const struct btf_type *next_t; | ||
1193 | __u32 next_id; | ||
1194 | bool multidim; | ||
1195 | /* | ||
1196 | * GCC has a bug | ||
1197 | * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) | ||
1198 | * which causes it to emit extra const/volatile | ||
1199 | * modifiers for an array, if array's element type has | ||
1200 | * const/volatile modifiers. Clang doesn't do that. | ||
1201 | * In general, it doesn't seem very meaningful to have | ||
1202 | * a const/volatile modifier for array, so we are | ||
1203 | * going to silently skip them here. | ||
1204 | */ | ||
1205 | while (decls->cnt) { | ||
1206 | next_id = decls->ids[decls->cnt - 1]; | ||
1207 | if (btf_is_mod_kind(d->btf, next_id)) | ||
1208 | decls->cnt--; | ||
1209 | else | ||
1210 | break; | ||
1211 | } | ||
1212 | |||
1213 | if (decls->cnt == 0) { | ||
1214 | btf_dump_emit_name(d, fname, last_was_ptr); | ||
1215 | btf_dump_printf(d, "[%u]", a->nelems); | ||
1216 | return; | ||
1217 | } | ||
1218 | |||
1219 | next_t = btf__type_by_id(d->btf, next_id); | ||
1220 | multidim = btf_kind_of(next_t) == BTF_KIND_ARRAY; | ||
1221 | /* we need space if we have named non-pointer */ | ||
1222 | if (fname[0] && !last_was_ptr) | ||
1223 | btf_dump_printf(d, " "); | ||
1224 | /* no parentheses for multi-dimensional array */ | ||
1225 | if (!multidim) | ||
1226 | btf_dump_printf(d, "("); | ||
1227 | btf_dump_emit_type_chain(d, decls, fname, lvl); | ||
1228 | if (!multidim) | ||
1229 | btf_dump_printf(d, ")"); | ||
1230 | btf_dump_printf(d, "[%u]", a->nelems); | ||
1231 | return; | ||
1232 | } | ||
1233 | case BTF_KIND_FUNC_PROTO: { | ||
1234 | const struct btf_param *p = (void *)(t + 1); | ||
1235 | __u16 vlen = btf_vlen_of(t); | ||
1236 | int i; | ||
1237 | |||
1238 | btf_dump_emit_mods(d, decls); | ||
1239 | if (decls->cnt) { | ||
1240 | btf_dump_printf(d, " ("); | ||
1241 | btf_dump_emit_type_chain(d, decls, fname, lvl); | ||
1242 | btf_dump_printf(d, ")"); | ||
1243 | } else { | ||
1244 | btf_dump_emit_name(d, fname, last_was_ptr); | ||
1245 | } | ||
1246 | btf_dump_printf(d, "("); | ||
1247 | /* | ||
1248 | * Clang for BPF target generates func_proto with no | ||
1249 | * args as a func_proto with a single void arg (e.g., | ||
1250 | * `int (*f)(void)` vs just `int (*f)()`). We are | ||
1251 | * going to pretend there are no args for such case. | ||
1252 | */ | ||
1253 | if (vlen == 1 && p->type == 0) { | ||
1254 | btf_dump_printf(d, ")"); | ||
1255 | return; | ||
1256 | } | ||
1257 | |||
1258 | for (i = 0; i < vlen; i++, p++) { | ||
1259 | if (i > 0) | ||
1260 | btf_dump_printf(d, ", "); | ||
1261 | |||
1262 | /* last arg of type void is vararg */ | ||
1263 | if (i == vlen - 1 && p->type == 0) { | ||
1264 | btf_dump_printf(d, "..."); | ||
1265 | break; | ||
1266 | } | ||
1267 | |||
1268 | name = btf_name_of(d, p->name_off); | ||
1269 | btf_dump_emit_type_decl(d, p->type, name, lvl); | ||
1270 | } | ||
1271 | |||
1272 | btf_dump_printf(d, ")"); | ||
1273 | return; | ||
1274 | } | ||
1275 | default: | ||
1276 | pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n", | ||
1277 | kind, id); | ||
1278 | return; | ||
1279 | } | ||
1280 | |||
1281 | last_was_ptr = kind == BTF_KIND_PTR; | ||
1282 | } | ||
1283 | |||
1284 | btf_dump_emit_name(d, fname, last_was_ptr); | ||
1285 | } | ||
1286 | |||
1287 | /* return number of duplicates (occurrences) of a given name */ | ||
1288 | static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, | ||
1289 | const char *orig_name) | ||
1290 | { | ||
1291 | size_t dup_cnt = 0; | ||
1292 | |||
1293 | hashmap__find(name_map, orig_name, (void **)&dup_cnt); | ||
1294 | dup_cnt++; | ||
1295 | hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL); | ||
1296 | |||
1297 | return dup_cnt; | ||
1298 | } | ||
1299 | |||
1300 | static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, | ||
1301 | struct hashmap *name_map) | ||
1302 | { | ||
1303 | struct btf_dump_type_aux_state *s = &d->type_states[id]; | ||
1304 | const struct btf_type *t = btf__type_by_id(d->btf, id); | ||
1305 | const char *orig_name = btf_name_of(d, t->name_off); | ||
1306 | const char **cached_name = &d->cached_names[id]; | ||
1307 | size_t dup_cnt; | ||
1308 | |||
1309 | if (t->name_off == 0) | ||
1310 | return ""; | ||
1311 | |||
1312 | if (s->name_resolved) | ||
1313 | return *cached_name ? *cached_name : orig_name; | ||
1314 | |||
1315 | dup_cnt = btf_dump_name_dups(d, name_map, orig_name); | ||
1316 | if (dup_cnt > 1) { | ||
1317 | const size_t max_len = 256; | ||
1318 | char new_name[max_len]; | ||
1319 | |||
1320 | snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); | ||
1321 | *cached_name = strdup(new_name); | ||
1322 | } | ||
1323 | |||
1324 | s->name_resolved = 1; | ||
1325 | return *cached_name ? *cached_name : orig_name; | ||
1326 | } | ||
1327 | |||
1328 | static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) | ||
1329 | { | ||
1330 | return btf_dump_resolve_name(d, id, d->type_names); | ||
1331 | } | ||
1332 | |||
1333 | static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) | ||
1334 | { | ||
1335 | return btf_dump_resolve_name(d, id, d->ident_names); | ||
1336 | } | ||