diff options
Diffstat (limited to 'security/keys/encrypted-keys/encrypted.c')
-rw-r--r-- | security/keys/encrypted-keys/encrypted.c | 1038 |
1 files changed, 1038 insertions, 0 deletions
diff --git a/security/keys/encrypted-keys/encrypted.c b/security/keys/encrypted-keys/encrypted.c new file mode 100644 index 000000000000..41144f71d615 --- /dev/null +++ b/security/keys/encrypted-keys/encrypted.c | |||
@@ -0,0 +1,1038 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2010 IBM Corporation | ||
3 | * Copyright (C) 2010 Politecnico di Torino, Italy | ||
4 | * TORSEC group -- http://security.polito.it | ||
5 | * | ||
6 | * Authors: | ||
7 | * Mimi Zohar <zohar@us.ibm.com> | ||
8 | * Roberto Sassu <roberto.sassu@polito.it> | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of the GNU General Public License as published by | ||
12 | * the Free Software Foundation, version 2 of the License. | ||
13 | * | ||
14 | * See Documentation/security/keys-trusted-encrypted.txt | ||
15 | */ | ||
16 | |||
17 | #include <linux/uaccess.h> | ||
18 | #include <linux/module.h> | ||
19 | #include <linux/init.h> | ||
20 | #include <linux/slab.h> | ||
21 | #include <linux/parser.h> | ||
22 | #include <linux/string.h> | ||
23 | #include <linux/err.h> | ||
24 | #include <keys/user-type.h> | ||
25 | #include <keys/trusted-type.h> | ||
26 | #include <keys/encrypted-type.h> | ||
27 | #include <linux/key-type.h> | ||
28 | #include <linux/random.h> | ||
29 | #include <linux/rcupdate.h> | ||
30 | #include <linux/scatterlist.h> | ||
31 | #include <linux/crypto.h> | ||
32 | #include <linux/ctype.h> | ||
33 | #include <crypto/hash.h> | ||
34 | #include <crypto/sha.h> | ||
35 | #include <crypto/aes.h> | ||
36 | |||
37 | #include "encrypted.h" | ||
38 | #include "ecryptfs_format.h" | ||
39 | |||
40 | static const char KEY_TRUSTED_PREFIX[] = "trusted:"; | ||
41 | static const char KEY_USER_PREFIX[] = "user:"; | ||
42 | static const char hash_alg[] = "sha256"; | ||
43 | static const char hmac_alg[] = "hmac(sha256)"; | ||
44 | static const char blkcipher_alg[] = "cbc(aes)"; | ||
45 | static const char key_format_default[] = "default"; | ||
46 | static const char key_format_ecryptfs[] = "ecryptfs"; | ||
47 | static unsigned int ivsize; | ||
48 | static int blksize; | ||
49 | |||
50 | #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1) | ||
51 | #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1) | ||
52 | #define KEY_ECRYPTFS_DESC_LEN 16 | ||
53 | #define HASH_SIZE SHA256_DIGEST_SIZE | ||
54 | #define MAX_DATA_SIZE 4096 | ||
55 | #define MIN_DATA_SIZE 20 | ||
56 | |||
57 | struct sdesc { | ||
58 | struct shash_desc shash; | ||
59 | char ctx[]; | ||
60 | }; | ||
61 | |||
62 | static struct crypto_shash *hashalg; | ||
63 | static struct crypto_shash *hmacalg; | ||
64 | |||
65 | enum { | ||
66 | Opt_err = -1, Opt_new, Opt_load, Opt_update | ||
67 | }; | ||
68 | |||
69 | enum { | ||
70 | Opt_error = -1, Opt_default, Opt_ecryptfs | ||
71 | }; | ||
72 | |||
73 | static const match_table_t key_format_tokens = { | ||
74 | {Opt_default, "default"}, | ||
75 | {Opt_ecryptfs, "ecryptfs"}, | ||
76 | {Opt_error, NULL} | ||
77 | }; | ||
78 | |||
79 | static const match_table_t key_tokens = { | ||
80 | {Opt_new, "new"}, | ||
81 | {Opt_load, "load"}, | ||
82 | {Opt_update, "update"}, | ||
83 | {Opt_err, NULL} | ||
84 | }; | ||
85 | |||
86 | static int aes_get_sizes(void) | ||
87 | { | ||
88 | struct crypto_blkcipher *tfm; | ||
89 | |||
90 | tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); | ||
91 | if (IS_ERR(tfm)) { | ||
92 | pr_err("encrypted_key: failed to alloc_cipher (%ld)\n", | ||
93 | PTR_ERR(tfm)); | ||
94 | return PTR_ERR(tfm); | ||
95 | } | ||
96 | ivsize = crypto_blkcipher_ivsize(tfm); | ||
97 | blksize = crypto_blkcipher_blocksize(tfm); | ||
98 | crypto_free_blkcipher(tfm); | ||
99 | return 0; | ||
100 | } | ||
101 | |||
102 | /* | ||
103 | * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key | ||
104 | * | ||
105 | * The description of a encrypted key with format 'ecryptfs' must contain | ||
106 | * exactly 16 hexadecimal characters. | ||
107 | * | ||
108 | */ | ||
109 | static int valid_ecryptfs_desc(const char *ecryptfs_desc) | ||
110 | { | ||
111 | int i; | ||
112 | |||
113 | if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) { | ||
114 | pr_err("encrypted_key: key description must be %d hexadecimal " | ||
115 | "characters long\n", KEY_ECRYPTFS_DESC_LEN); | ||
116 | return -EINVAL; | ||
117 | } | ||
118 | |||
119 | for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) { | ||
120 | if (!isxdigit(ecryptfs_desc[i])) { | ||
121 | pr_err("encrypted_key: key description must contain " | ||
122 | "only hexadecimal characters\n"); | ||
123 | return -EINVAL; | ||
124 | } | ||
125 | } | ||
126 | |||
127 | return 0; | ||
128 | } | ||
129 | |||
130 | /* | ||
131 | * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key | ||
132 | * | ||
133 | * key-type:= "trusted:" | "user:" | ||
134 | * desc:= master-key description | ||
135 | * | ||
136 | * Verify that 'key-type' is valid and that 'desc' exists. On key update, | ||
137 | * only the master key description is permitted to change, not the key-type. | ||
138 | * The key-type remains constant. | ||
139 | * | ||
140 | * On success returns 0, otherwise -EINVAL. | ||
141 | */ | ||
142 | static int valid_master_desc(const char *new_desc, const char *orig_desc) | ||
143 | { | ||
144 | if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) { | ||
145 | if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN) | ||
146 | goto out; | ||
147 | if (orig_desc) | ||
148 | if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN)) | ||
149 | goto out; | ||
150 | } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) { | ||
151 | if (strlen(new_desc) == KEY_USER_PREFIX_LEN) | ||
152 | goto out; | ||
153 | if (orig_desc) | ||
154 | if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN)) | ||
155 | goto out; | ||
156 | } else | ||
157 | goto out; | ||
158 | return 0; | ||
159 | out: | ||
160 | return -EINVAL; | ||
161 | } | ||
162 | |||
163 | /* | ||
164 | * datablob_parse - parse the keyctl data | ||
165 | * | ||
166 | * datablob format: | ||
167 | * new [<format>] <master-key name> <decrypted data length> | ||
168 | * load [<format>] <master-key name> <decrypted data length> | ||
169 | * <encrypted iv + data> | ||
170 | * update <new-master-key name> | ||
171 | * | ||
172 | * Tokenizes a copy of the keyctl data, returning a pointer to each token, | ||
173 | * which is null terminated. | ||
174 | * | ||
175 | * On success returns 0, otherwise -EINVAL. | ||
176 | */ | ||
177 | static int datablob_parse(char *datablob, const char **format, | ||
178 | char **master_desc, char **decrypted_datalen, | ||
179 | char **hex_encoded_iv) | ||
180 | { | ||
181 | substring_t args[MAX_OPT_ARGS]; | ||
182 | int ret = -EINVAL; | ||
183 | int key_cmd; | ||
184 | int key_format; | ||
185 | char *p, *keyword; | ||
186 | |||
187 | keyword = strsep(&datablob, " \t"); | ||
188 | if (!keyword) { | ||
189 | pr_info("encrypted_key: insufficient parameters specified\n"); | ||
190 | return ret; | ||
191 | } | ||
192 | key_cmd = match_token(keyword, key_tokens, args); | ||
193 | |||
194 | /* Get optional format: default | ecryptfs */ | ||
195 | p = strsep(&datablob, " \t"); | ||
196 | if (!p) { | ||
197 | pr_err("encrypted_key: insufficient parameters specified\n"); | ||
198 | return ret; | ||
199 | } | ||
200 | |||
201 | key_format = match_token(p, key_format_tokens, args); | ||
202 | switch (key_format) { | ||
203 | case Opt_ecryptfs: | ||
204 | case Opt_default: | ||
205 | *format = p; | ||
206 | *master_desc = strsep(&datablob, " \t"); | ||
207 | break; | ||
208 | case Opt_error: | ||
209 | *master_desc = p; | ||
210 | break; | ||
211 | } | ||
212 | |||
213 | if (!*master_desc) { | ||
214 | pr_info("encrypted_key: master key parameter is missing\n"); | ||
215 | goto out; | ||
216 | } | ||
217 | |||
218 | if (valid_master_desc(*master_desc, NULL) < 0) { | ||
219 | pr_info("encrypted_key: master key parameter \'%s\' " | ||
220 | "is invalid\n", *master_desc); | ||
221 | goto out; | ||
222 | } | ||
223 | |||
224 | if (decrypted_datalen) { | ||
225 | *decrypted_datalen = strsep(&datablob, " \t"); | ||
226 | if (!*decrypted_datalen) { | ||
227 | pr_info("encrypted_key: keylen parameter is missing\n"); | ||
228 | goto out; | ||
229 | } | ||
230 | } | ||
231 | |||
232 | switch (key_cmd) { | ||
233 | case Opt_new: | ||
234 | if (!decrypted_datalen) { | ||
235 | pr_info("encrypted_key: keyword \'%s\' not allowed " | ||
236 | "when called from .update method\n", keyword); | ||
237 | break; | ||
238 | } | ||
239 | ret = 0; | ||
240 | break; | ||
241 | case Opt_load: | ||
242 | if (!decrypted_datalen) { | ||
243 | pr_info("encrypted_key: keyword \'%s\' not allowed " | ||
244 | "when called from .update method\n", keyword); | ||
245 | break; | ||
246 | } | ||
247 | *hex_encoded_iv = strsep(&datablob, " \t"); | ||
248 | if (!*hex_encoded_iv) { | ||
249 | pr_info("encrypted_key: hex blob is missing\n"); | ||
250 | break; | ||
251 | } | ||
252 | ret = 0; | ||
253 | break; | ||
254 | case Opt_update: | ||
255 | if (decrypted_datalen) { | ||
256 | pr_info("encrypted_key: keyword \'%s\' not allowed " | ||
257 | "when called from .instantiate method\n", | ||
258 | keyword); | ||
259 | break; | ||
260 | } | ||
261 | ret = 0; | ||
262 | break; | ||
263 | case Opt_err: | ||
264 | pr_info("encrypted_key: keyword \'%s\' not recognized\n", | ||
265 | keyword); | ||
266 | break; | ||
267 | } | ||
268 | out: | ||
269 | return ret; | ||
270 | } | ||
271 | |||
272 | /* | ||
273 | * datablob_format - format as an ascii string, before copying to userspace | ||
274 | */ | ||
275 | static char *datablob_format(struct encrypted_key_payload *epayload, | ||
276 | size_t asciiblob_len) | ||
277 | { | ||
278 | char *ascii_buf, *bufp; | ||
279 | u8 *iv = epayload->iv; | ||
280 | int len; | ||
281 | int i; | ||
282 | |||
283 | ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL); | ||
284 | if (!ascii_buf) | ||
285 | goto out; | ||
286 | |||
287 | ascii_buf[asciiblob_len] = '\0'; | ||
288 | |||
289 | /* copy datablob master_desc and datalen strings */ | ||
290 | len = sprintf(ascii_buf, "%s %s %s ", epayload->format, | ||
291 | epayload->master_desc, epayload->datalen); | ||
292 | |||
293 | /* convert the hex encoded iv, encrypted-data and HMAC to ascii */ | ||
294 | bufp = &ascii_buf[len]; | ||
295 | for (i = 0; i < (asciiblob_len - len) / 2; i++) | ||
296 | bufp = hex_byte_pack(bufp, iv[i]); | ||
297 | out: | ||
298 | return ascii_buf; | ||
299 | } | ||
300 | |||
301 | /* | ||
302 | * request_user_key - request the user key | ||
303 | * | ||
304 | * Use a user provided key to encrypt/decrypt an encrypted-key. | ||
305 | */ | ||
306 | static struct key *request_user_key(const char *master_desc, u8 **master_key, | ||
307 | size_t *master_keylen) | ||
308 | { | ||
309 | struct user_key_payload *upayload; | ||
310 | struct key *ukey; | ||
311 | |||
312 | ukey = request_key(&key_type_user, master_desc, NULL); | ||
313 | if (IS_ERR(ukey)) | ||
314 | goto error; | ||
315 | |||
316 | down_read(&ukey->sem); | ||
317 | upayload = rcu_dereference(ukey->payload.data); | ||
318 | *master_key = upayload->data; | ||
319 | *master_keylen = upayload->datalen; | ||
320 | error: | ||
321 | return ukey; | ||
322 | } | ||
323 | |||
324 | static struct sdesc *alloc_sdesc(struct crypto_shash *alg) | ||
325 | { | ||
326 | struct sdesc *sdesc; | ||
327 | int size; | ||
328 | |||
329 | size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); | ||
330 | sdesc = kmalloc(size, GFP_KERNEL); | ||
331 | if (!sdesc) | ||
332 | return ERR_PTR(-ENOMEM); | ||
333 | sdesc->shash.tfm = alg; | ||
334 | sdesc->shash.flags = 0x0; | ||
335 | return sdesc; | ||
336 | } | ||
337 | |||
338 | static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen, | ||
339 | const u8 *buf, unsigned int buflen) | ||
340 | { | ||
341 | struct sdesc *sdesc; | ||
342 | int ret; | ||
343 | |||
344 | sdesc = alloc_sdesc(hmacalg); | ||
345 | if (IS_ERR(sdesc)) { | ||
346 | pr_info("encrypted_key: can't alloc %s\n", hmac_alg); | ||
347 | return PTR_ERR(sdesc); | ||
348 | } | ||
349 | |||
350 | ret = crypto_shash_setkey(hmacalg, key, keylen); | ||
351 | if (!ret) | ||
352 | ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); | ||
353 | kfree(sdesc); | ||
354 | return ret; | ||
355 | } | ||
356 | |||
357 | static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen) | ||
358 | { | ||
359 | struct sdesc *sdesc; | ||
360 | int ret; | ||
361 | |||
362 | sdesc = alloc_sdesc(hashalg); | ||
363 | if (IS_ERR(sdesc)) { | ||
364 | pr_info("encrypted_key: can't alloc %s\n", hash_alg); | ||
365 | return PTR_ERR(sdesc); | ||
366 | } | ||
367 | |||
368 | ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); | ||
369 | kfree(sdesc); | ||
370 | return ret; | ||
371 | } | ||
372 | |||
373 | enum derived_key_type { ENC_KEY, AUTH_KEY }; | ||
374 | |||
375 | /* Derive authentication/encryption key from trusted key */ | ||
376 | static int get_derived_key(u8 *derived_key, enum derived_key_type key_type, | ||
377 | const u8 *master_key, size_t master_keylen) | ||
378 | { | ||
379 | u8 *derived_buf; | ||
380 | unsigned int derived_buf_len; | ||
381 | int ret; | ||
382 | |||
383 | derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen; | ||
384 | if (derived_buf_len < HASH_SIZE) | ||
385 | derived_buf_len = HASH_SIZE; | ||
386 | |||
387 | derived_buf = kzalloc(derived_buf_len, GFP_KERNEL); | ||
388 | if (!derived_buf) { | ||
389 | pr_err("encrypted_key: out of memory\n"); | ||
390 | return -ENOMEM; | ||
391 | } | ||
392 | if (key_type) | ||
393 | strcpy(derived_buf, "AUTH_KEY"); | ||
394 | else | ||
395 | strcpy(derived_buf, "ENC_KEY"); | ||
396 | |||
397 | memcpy(derived_buf + strlen(derived_buf) + 1, master_key, | ||
398 | master_keylen); | ||
399 | ret = calc_hash(derived_key, derived_buf, derived_buf_len); | ||
400 | kfree(derived_buf); | ||
401 | return ret; | ||
402 | } | ||
403 | |||
404 | static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key, | ||
405 | unsigned int key_len, const u8 *iv, | ||
406 | unsigned int ivsize) | ||
407 | { | ||
408 | int ret; | ||
409 | |||
410 | desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); | ||
411 | if (IS_ERR(desc->tfm)) { | ||
412 | pr_err("encrypted_key: failed to load %s transform (%ld)\n", | ||
413 | blkcipher_alg, PTR_ERR(desc->tfm)); | ||
414 | return PTR_ERR(desc->tfm); | ||
415 | } | ||
416 | desc->flags = 0; | ||
417 | |||
418 | ret = crypto_blkcipher_setkey(desc->tfm, key, key_len); | ||
419 | if (ret < 0) { | ||
420 | pr_err("encrypted_key: failed to setkey (%d)\n", ret); | ||
421 | crypto_free_blkcipher(desc->tfm); | ||
422 | return ret; | ||
423 | } | ||
424 | crypto_blkcipher_set_iv(desc->tfm, iv, ivsize); | ||
425 | return 0; | ||
426 | } | ||
427 | |||
428 | static struct key *request_master_key(struct encrypted_key_payload *epayload, | ||
429 | u8 **master_key, size_t *master_keylen) | ||
430 | { | ||
431 | struct key *mkey = NULL; | ||
432 | |||
433 | if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX, | ||
434 | KEY_TRUSTED_PREFIX_LEN)) { | ||
435 | mkey = request_trusted_key(epayload->master_desc + | ||
436 | KEY_TRUSTED_PREFIX_LEN, | ||
437 | master_key, master_keylen); | ||
438 | } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX, | ||
439 | KEY_USER_PREFIX_LEN)) { | ||
440 | mkey = request_user_key(epayload->master_desc + | ||
441 | KEY_USER_PREFIX_LEN, | ||
442 | master_key, master_keylen); | ||
443 | } else | ||
444 | goto out; | ||
445 | |||
446 | if (IS_ERR(mkey)) { | ||
447 | int ret = PTR_ERR(mkey); | ||
448 | |||
449 | if (ret == -ENOTSUPP) | ||
450 | pr_info("encrypted_key: key %s not supported", | ||
451 | epayload->master_desc); | ||
452 | else | ||
453 | pr_info("encrypted_key: key %s not found", | ||
454 | epayload->master_desc); | ||
455 | goto out; | ||
456 | } | ||
457 | |||
458 | dump_master_key(*master_key, *master_keylen); | ||
459 | out: | ||
460 | return mkey; | ||
461 | } | ||
462 | |||
463 | /* Before returning data to userspace, encrypt decrypted data. */ | ||
464 | static int derived_key_encrypt(struct encrypted_key_payload *epayload, | ||
465 | const u8 *derived_key, | ||
466 | unsigned int derived_keylen) | ||
467 | { | ||
468 | struct scatterlist sg_in[2]; | ||
469 | struct scatterlist sg_out[1]; | ||
470 | struct blkcipher_desc desc; | ||
471 | unsigned int encrypted_datalen; | ||
472 | unsigned int padlen; | ||
473 | char pad[16]; | ||
474 | int ret; | ||
475 | |||
476 | encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); | ||
477 | padlen = encrypted_datalen - epayload->decrypted_datalen; | ||
478 | |||
479 | ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, | ||
480 | epayload->iv, ivsize); | ||
481 | if (ret < 0) | ||
482 | goto out; | ||
483 | dump_decrypted_data(epayload); | ||
484 | |||
485 | memset(pad, 0, sizeof pad); | ||
486 | sg_init_table(sg_in, 2); | ||
487 | sg_set_buf(&sg_in[0], epayload->decrypted_data, | ||
488 | epayload->decrypted_datalen); | ||
489 | sg_set_buf(&sg_in[1], pad, padlen); | ||
490 | |||
491 | sg_init_table(sg_out, 1); | ||
492 | sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen); | ||
493 | |||
494 | ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen); | ||
495 | crypto_free_blkcipher(desc.tfm); | ||
496 | if (ret < 0) | ||
497 | pr_err("encrypted_key: failed to encrypt (%d)\n", ret); | ||
498 | else | ||
499 | dump_encrypted_data(epayload, encrypted_datalen); | ||
500 | out: | ||
501 | return ret; | ||
502 | } | ||
503 | |||
504 | static int datablob_hmac_append(struct encrypted_key_payload *epayload, | ||
505 | const u8 *master_key, size_t master_keylen) | ||
506 | { | ||
507 | u8 derived_key[HASH_SIZE]; | ||
508 | u8 *digest; | ||
509 | int ret; | ||
510 | |||
511 | ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); | ||
512 | if (ret < 0) | ||
513 | goto out; | ||
514 | |||
515 | digest = epayload->format + epayload->datablob_len; | ||
516 | ret = calc_hmac(digest, derived_key, sizeof derived_key, | ||
517 | epayload->format, epayload->datablob_len); | ||
518 | if (!ret) | ||
519 | dump_hmac(NULL, digest, HASH_SIZE); | ||
520 | out: | ||
521 | return ret; | ||
522 | } | ||
523 | |||
524 | /* verify HMAC before decrypting encrypted key */ | ||
525 | static int datablob_hmac_verify(struct encrypted_key_payload *epayload, | ||
526 | const u8 *format, const u8 *master_key, | ||
527 | size_t master_keylen) | ||
528 | { | ||
529 | u8 derived_key[HASH_SIZE]; | ||
530 | u8 digest[HASH_SIZE]; | ||
531 | int ret; | ||
532 | char *p; | ||
533 | unsigned short len; | ||
534 | |||
535 | ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); | ||
536 | if (ret < 0) | ||
537 | goto out; | ||
538 | |||
539 | len = epayload->datablob_len; | ||
540 | if (!format) { | ||
541 | p = epayload->master_desc; | ||
542 | len -= strlen(epayload->format) + 1; | ||
543 | } else | ||
544 | p = epayload->format; | ||
545 | |||
546 | ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len); | ||
547 | if (ret < 0) | ||
548 | goto out; | ||
549 | ret = memcmp(digest, epayload->format + epayload->datablob_len, | ||
550 | sizeof digest); | ||
551 | if (ret) { | ||
552 | ret = -EINVAL; | ||
553 | dump_hmac("datablob", | ||
554 | epayload->format + epayload->datablob_len, | ||
555 | HASH_SIZE); | ||
556 | dump_hmac("calc", digest, HASH_SIZE); | ||
557 | } | ||
558 | out: | ||
559 | return ret; | ||
560 | } | ||
561 | |||
562 | static int derived_key_decrypt(struct encrypted_key_payload *epayload, | ||
563 | const u8 *derived_key, | ||
564 | unsigned int derived_keylen) | ||
565 | { | ||
566 | struct scatterlist sg_in[1]; | ||
567 | struct scatterlist sg_out[2]; | ||
568 | struct blkcipher_desc desc; | ||
569 | unsigned int encrypted_datalen; | ||
570 | char pad[16]; | ||
571 | int ret; | ||
572 | |||
573 | encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); | ||
574 | ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, | ||
575 | epayload->iv, ivsize); | ||
576 | if (ret < 0) | ||
577 | goto out; | ||
578 | dump_encrypted_data(epayload, encrypted_datalen); | ||
579 | |||
580 | memset(pad, 0, sizeof pad); | ||
581 | sg_init_table(sg_in, 1); | ||
582 | sg_init_table(sg_out, 2); | ||
583 | sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen); | ||
584 | sg_set_buf(&sg_out[0], epayload->decrypted_data, | ||
585 | epayload->decrypted_datalen); | ||
586 | sg_set_buf(&sg_out[1], pad, sizeof pad); | ||
587 | |||
588 | ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen); | ||
589 | crypto_free_blkcipher(desc.tfm); | ||
590 | if (ret < 0) | ||
591 | goto out; | ||
592 | dump_decrypted_data(epayload); | ||
593 | out: | ||
594 | return ret; | ||
595 | } | ||
596 | |||
597 | /* Allocate memory for decrypted key and datablob. */ | ||
598 | static struct encrypted_key_payload *encrypted_key_alloc(struct key *key, | ||
599 | const char *format, | ||
600 | const char *master_desc, | ||
601 | const char *datalen) | ||
602 | { | ||
603 | struct encrypted_key_payload *epayload = NULL; | ||
604 | unsigned short datablob_len; | ||
605 | unsigned short decrypted_datalen; | ||
606 | unsigned short payload_datalen; | ||
607 | unsigned int encrypted_datalen; | ||
608 | unsigned int format_len; | ||
609 | long dlen; | ||
610 | int ret; | ||
611 | |||
612 | ret = strict_strtol(datalen, 10, &dlen); | ||
613 | if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE) | ||
614 | return ERR_PTR(-EINVAL); | ||
615 | |||
616 | format_len = (!format) ? strlen(key_format_default) : strlen(format); | ||
617 | decrypted_datalen = dlen; | ||
618 | payload_datalen = decrypted_datalen; | ||
619 | if (format && !strcmp(format, key_format_ecryptfs)) { | ||
620 | if (dlen != ECRYPTFS_MAX_KEY_BYTES) { | ||
621 | pr_err("encrypted_key: keylen for the ecryptfs format " | ||
622 | "must be equal to %d bytes\n", | ||
623 | ECRYPTFS_MAX_KEY_BYTES); | ||
624 | return ERR_PTR(-EINVAL); | ||
625 | } | ||
626 | decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES; | ||
627 | payload_datalen = sizeof(struct ecryptfs_auth_tok); | ||
628 | } | ||
629 | |||
630 | encrypted_datalen = roundup(decrypted_datalen, blksize); | ||
631 | |||
632 | datablob_len = format_len + 1 + strlen(master_desc) + 1 | ||
633 | + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen; | ||
634 | |||
635 | ret = key_payload_reserve(key, payload_datalen + datablob_len | ||
636 | + HASH_SIZE + 1); | ||
637 | if (ret < 0) | ||
638 | return ERR_PTR(ret); | ||
639 | |||
640 | epayload = kzalloc(sizeof(*epayload) + payload_datalen + | ||
641 | datablob_len + HASH_SIZE + 1, GFP_KERNEL); | ||
642 | if (!epayload) | ||
643 | return ERR_PTR(-ENOMEM); | ||
644 | |||
645 | epayload->payload_datalen = payload_datalen; | ||
646 | epayload->decrypted_datalen = decrypted_datalen; | ||
647 | epayload->datablob_len = datablob_len; | ||
648 | return epayload; | ||
649 | } | ||
650 | |||
651 | static int encrypted_key_decrypt(struct encrypted_key_payload *epayload, | ||
652 | const char *format, const char *hex_encoded_iv) | ||
653 | { | ||
654 | struct key *mkey; | ||
655 | u8 derived_key[HASH_SIZE]; | ||
656 | u8 *master_key; | ||
657 | u8 *hmac; | ||
658 | const char *hex_encoded_data; | ||
659 | unsigned int encrypted_datalen; | ||
660 | size_t master_keylen; | ||
661 | size_t asciilen; | ||
662 | int ret; | ||
663 | |||
664 | encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); | ||
665 | asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2; | ||
666 | if (strlen(hex_encoded_iv) != asciilen) | ||
667 | return -EINVAL; | ||
668 | |||
669 | hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2; | ||
670 | ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize); | ||
671 | if (ret < 0) | ||
672 | return -EINVAL; | ||
673 | ret = hex2bin(epayload->encrypted_data, hex_encoded_data, | ||
674 | encrypted_datalen); | ||
675 | if (ret < 0) | ||
676 | return -EINVAL; | ||
677 | |||
678 | hmac = epayload->format + epayload->datablob_len; | ||
679 | ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), | ||
680 | HASH_SIZE); | ||
681 | if (ret < 0) | ||
682 | return -EINVAL; | ||
683 | |||
684 | mkey = request_master_key(epayload, &master_key, &master_keylen); | ||
685 | if (IS_ERR(mkey)) | ||
686 | return PTR_ERR(mkey); | ||
687 | |||
688 | ret = datablob_hmac_verify(epayload, format, master_key, master_keylen); | ||
689 | if (ret < 0) { | ||
690 | pr_err("encrypted_key: bad hmac (%d)\n", ret); | ||
691 | goto out; | ||
692 | } | ||
693 | |||
694 | ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); | ||
695 | if (ret < 0) | ||
696 | goto out; | ||
697 | |||
698 | ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key); | ||
699 | if (ret < 0) | ||
700 | pr_err("encrypted_key: failed to decrypt key (%d)\n", ret); | ||
701 | out: | ||
702 | up_read(&mkey->sem); | ||
703 | key_put(mkey); | ||
704 | return ret; | ||
705 | } | ||
706 | |||
707 | static void __ekey_init(struct encrypted_key_payload *epayload, | ||
708 | const char *format, const char *master_desc, | ||
709 | const char *datalen) | ||
710 | { | ||
711 | unsigned int format_len; | ||
712 | |||
713 | format_len = (!format) ? strlen(key_format_default) : strlen(format); | ||
714 | epayload->format = epayload->payload_data + epayload->payload_datalen; | ||
715 | epayload->master_desc = epayload->format + format_len + 1; | ||
716 | epayload->datalen = epayload->master_desc + strlen(master_desc) + 1; | ||
717 | epayload->iv = epayload->datalen + strlen(datalen) + 1; | ||
718 | epayload->encrypted_data = epayload->iv + ivsize + 1; | ||
719 | epayload->decrypted_data = epayload->payload_data; | ||
720 | |||
721 | if (!format) | ||
722 | memcpy(epayload->format, key_format_default, format_len); | ||
723 | else { | ||
724 | if (!strcmp(format, key_format_ecryptfs)) | ||
725 | epayload->decrypted_data = | ||
726 | ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data); | ||
727 | |||
728 | memcpy(epayload->format, format, format_len); | ||
729 | } | ||
730 | |||
731 | memcpy(epayload->master_desc, master_desc, strlen(master_desc)); | ||
732 | memcpy(epayload->datalen, datalen, strlen(datalen)); | ||
733 | } | ||
734 | |||
735 | /* | ||
736 | * encrypted_init - initialize an encrypted key | ||
737 | * | ||
738 | * For a new key, use a random number for both the iv and data | ||
739 | * itself. For an old key, decrypt the hex encoded data. | ||
740 | */ | ||
741 | static int encrypted_init(struct encrypted_key_payload *epayload, | ||
742 | const char *key_desc, const char *format, | ||
743 | const char *master_desc, const char *datalen, | ||
744 | const char *hex_encoded_iv) | ||
745 | { | ||
746 | int ret = 0; | ||
747 | |||
748 | if (format && !strcmp(format, key_format_ecryptfs)) { | ||
749 | ret = valid_ecryptfs_desc(key_desc); | ||
750 | if (ret < 0) | ||
751 | return ret; | ||
752 | |||
753 | ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data, | ||
754 | key_desc); | ||
755 | } | ||
756 | |||
757 | __ekey_init(epayload, format, master_desc, datalen); | ||
758 | if (!hex_encoded_iv) { | ||
759 | get_random_bytes(epayload->iv, ivsize); | ||
760 | |||
761 | get_random_bytes(epayload->decrypted_data, | ||
762 | epayload->decrypted_datalen); | ||
763 | } else | ||
764 | ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv); | ||
765 | return ret; | ||
766 | } | ||
767 | |||
768 | /* | ||
769 | * encrypted_instantiate - instantiate an encrypted key | ||
770 | * | ||
771 | * Decrypt an existing encrypted datablob or create a new encrypted key | ||
772 | * based on a kernel random number. | ||
773 | * | ||
774 | * On success, return 0. Otherwise return errno. | ||
775 | */ | ||
776 | static int encrypted_instantiate(struct key *key, const void *data, | ||
777 | size_t datalen) | ||
778 | { | ||
779 | struct encrypted_key_payload *epayload = NULL; | ||
780 | char *datablob = NULL; | ||
781 | const char *format = NULL; | ||
782 | char *master_desc = NULL; | ||
783 | char *decrypted_datalen = NULL; | ||
784 | char *hex_encoded_iv = NULL; | ||
785 | int ret; | ||
786 | |||
787 | if (datalen <= 0 || datalen > 32767 || !data) | ||
788 | return -EINVAL; | ||
789 | |||
790 | datablob = kmalloc(datalen + 1, GFP_KERNEL); | ||
791 | if (!datablob) | ||
792 | return -ENOMEM; | ||
793 | datablob[datalen] = 0; | ||
794 | memcpy(datablob, data, datalen); | ||
795 | ret = datablob_parse(datablob, &format, &master_desc, | ||
796 | &decrypted_datalen, &hex_encoded_iv); | ||
797 | if (ret < 0) | ||
798 | goto out; | ||
799 | |||
800 | epayload = encrypted_key_alloc(key, format, master_desc, | ||
801 | decrypted_datalen); | ||
802 | if (IS_ERR(epayload)) { | ||
803 | ret = PTR_ERR(epayload); | ||
804 | goto out; | ||
805 | } | ||
806 | ret = encrypted_init(epayload, key->description, format, master_desc, | ||
807 | decrypted_datalen, hex_encoded_iv); | ||
808 | if (ret < 0) { | ||
809 | kfree(epayload); | ||
810 | goto out; | ||
811 | } | ||
812 | |||
813 | rcu_assign_pointer(key->payload.data, epayload); | ||
814 | out: | ||
815 | kfree(datablob); | ||
816 | return ret; | ||
817 | } | ||
818 | |||
819 | static void encrypted_rcu_free(struct rcu_head *rcu) | ||
820 | { | ||
821 | struct encrypted_key_payload *epayload; | ||
822 | |||
823 | epayload = container_of(rcu, struct encrypted_key_payload, rcu); | ||
824 | memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); | ||
825 | kfree(epayload); | ||
826 | } | ||
827 | |||
828 | /* | ||
829 | * encrypted_update - update the master key description | ||
830 | * | ||
831 | * Change the master key description for an existing encrypted key. | ||
832 | * The next read will return an encrypted datablob using the new | ||
833 | * master key description. | ||
834 | * | ||
835 | * On success, return 0. Otherwise return errno. | ||
836 | */ | ||
837 | static int encrypted_update(struct key *key, const void *data, size_t datalen) | ||
838 | { | ||
839 | struct encrypted_key_payload *epayload = key->payload.data; | ||
840 | struct encrypted_key_payload *new_epayload; | ||
841 | char *buf; | ||
842 | char *new_master_desc = NULL; | ||
843 | const char *format = NULL; | ||
844 | int ret = 0; | ||
845 | |||
846 | if (datalen <= 0 || datalen > 32767 || !data) | ||
847 | return -EINVAL; | ||
848 | |||
849 | buf = kmalloc(datalen + 1, GFP_KERNEL); | ||
850 | if (!buf) | ||
851 | return -ENOMEM; | ||
852 | |||
853 | buf[datalen] = 0; | ||
854 | memcpy(buf, data, datalen); | ||
855 | ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL); | ||
856 | if (ret < 0) | ||
857 | goto out; | ||
858 | |||
859 | ret = valid_master_desc(new_master_desc, epayload->master_desc); | ||
860 | if (ret < 0) | ||
861 | goto out; | ||
862 | |||
863 | new_epayload = encrypted_key_alloc(key, epayload->format, | ||
864 | new_master_desc, epayload->datalen); | ||
865 | if (IS_ERR(new_epayload)) { | ||
866 | ret = PTR_ERR(new_epayload); | ||
867 | goto out; | ||
868 | } | ||
869 | |||
870 | __ekey_init(new_epayload, epayload->format, new_master_desc, | ||
871 | epayload->datalen); | ||
872 | |||
873 | memcpy(new_epayload->iv, epayload->iv, ivsize); | ||
874 | memcpy(new_epayload->payload_data, epayload->payload_data, | ||
875 | epayload->payload_datalen); | ||
876 | |||
877 | rcu_assign_pointer(key->payload.data, new_epayload); | ||
878 | call_rcu(&epayload->rcu, encrypted_rcu_free); | ||
879 | out: | ||
880 | kfree(buf); | ||
881 | return ret; | ||
882 | } | ||
883 | |||
884 | /* | ||
885 | * encrypted_read - format and copy the encrypted data to userspace | ||
886 | * | ||
887 | * The resulting datablob format is: | ||
888 | * <master-key name> <decrypted data length> <encrypted iv> <encrypted data> | ||
889 | * | ||
890 | * On success, return to userspace the encrypted key datablob size. | ||
891 | */ | ||
892 | static long encrypted_read(const struct key *key, char __user *buffer, | ||
893 | size_t buflen) | ||
894 | { | ||
895 | struct encrypted_key_payload *epayload; | ||
896 | struct key *mkey; | ||
897 | u8 *master_key; | ||
898 | size_t master_keylen; | ||
899 | char derived_key[HASH_SIZE]; | ||
900 | char *ascii_buf; | ||
901 | size_t asciiblob_len; | ||
902 | int ret; | ||
903 | |||
904 | epayload = rcu_dereference_key(key); | ||
905 | |||
906 | /* returns the hex encoded iv, encrypted-data, and hmac as ascii */ | ||
907 | asciiblob_len = epayload->datablob_len + ivsize + 1 | ||
908 | + roundup(epayload->decrypted_datalen, blksize) | ||
909 | + (HASH_SIZE * 2); | ||
910 | |||
911 | if (!buffer || buflen < asciiblob_len) | ||
912 | return asciiblob_len; | ||
913 | |||
914 | mkey = request_master_key(epayload, &master_key, &master_keylen); | ||
915 | if (IS_ERR(mkey)) | ||
916 | return PTR_ERR(mkey); | ||
917 | |||
918 | ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); | ||
919 | if (ret < 0) | ||
920 | goto out; | ||
921 | |||
922 | ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key); | ||
923 | if (ret < 0) | ||
924 | goto out; | ||
925 | |||
926 | ret = datablob_hmac_append(epayload, master_key, master_keylen); | ||
927 | if (ret < 0) | ||
928 | goto out; | ||
929 | |||
930 | ascii_buf = datablob_format(epayload, asciiblob_len); | ||
931 | if (!ascii_buf) { | ||
932 | ret = -ENOMEM; | ||
933 | goto out; | ||
934 | } | ||
935 | |||
936 | up_read(&mkey->sem); | ||
937 | key_put(mkey); | ||
938 | |||
939 | if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0) | ||
940 | ret = -EFAULT; | ||
941 | kfree(ascii_buf); | ||
942 | |||
943 | return asciiblob_len; | ||
944 | out: | ||
945 | up_read(&mkey->sem); | ||
946 | key_put(mkey); | ||
947 | return ret; | ||
948 | } | ||
949 | |||
950 | /* | ||
951 | * encrypted_destroy - before freeing the key, clear the decrypted data | ||
952 | * | ||
953 | * Before freeing the key, clear the memory containing the decrypted | ||
954 | * key data. | ||
955 | */ | ||
956 | static void encrypted_destroy(struct key *key) | ||
957 | { | ||
958 | struct encrypted_key_payload *epayload = key->payload.data; | ||
959 | |||
960 | if (!epayload) | ||
961 | return; | ||
962 | |||
963 | memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); | ||
964 | kfree(key->payload.data); | ||
965 | } | ||
966 | |||
967 | struct key_type key_type_encrypted = { | ||
968 | .name = "encrypted", | ||
969 | .instantiate = encrypted_instantiate, | ||
970 | .update = encrypted_update, | ||
971 | .match = user_match, | ||
972 | .destroy = encrypted_destroy, | ||
973 | .describe = user_describe, | ||
974 | .read = encrypted_read, | ||
975 | }; | ||
976 | EXPORT_SYMBOL_GPL(key_type_encrypted); | ||
977 | |||
978 | static void encrypted_shash_release(void) | ||
979 | { | ||
980 | if (hashalg) | ||
981 | crypto_free_shash(hashalg); | ||
982 | if (hmacalg) | ||
983 | crypto_free_shash(hmacalg); | ||
984 | } | ||
985 | |||
986 | static int __init encrypted_shash_alloc(void) | ||
987 | { | ||
988 | int ret; | ||
989 | |||
990 | hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC); | ||
991 | if (IS_ERR(hmacalg)) { | ||
992 | pr_info("encrypted_key: could not allocate crypto %s\n", | ||
993 | hmac_alg); | ||
994 | return PTR_ERR(hmacalg); | ||
995 | } | ||
996 | |||
997 | hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC); | ||
998 | if (IS_ERR(hashalg)) { | ||
999 | pr_info("encrypted_key: could not allocate crypto %s\n", | ||
1000 | hash_alg); | ||
1001 | ret = PTR_ERR(hashalg); | ||
1002 | goto hashalg_fail; | ||
1003 | } | ||
1004 | |||
1005 | return 0; | ||
1006 | |||
1007 | hashalg_fail: | ||
1008 | crypto_free_shash(hmacalg); | ||
1009 | return ret; | ||
1010 | } | ||
1011 | |||
1012 | static int __init init_encrypted(void) | ||
1013 | { | ||
1014 | int ret; | ||
1015 | |||
1016 | ret = encrypted_shash_alloc(); | ||
1017 | if (ret < 0) | ||
1018 | return ret; | ||
1019 | ret = register_key_type(&key_type_encrypted); | ||
1020 | if (ret < 0) | ||
1021 | goto out; | ||
1022 | return aes_get_sizes(); | ||
1023 | out: | ||
1024 | encrypted_shash_release(); | ||
1025 | return ret; | ||
1026 | |||
1027 | } | ||
1028 | |||
1029 | static void __exit cleanup_encrypted(void) | ||
1030 | { | ||
1031 | encrypted_shash_release(); | ||
1032 | unregister_key_type(&key_type_encrypted); | ||
1033 | } | ||
1034 | |||
1035 | late_initcall(init_encrypted); | ||
1036 | module_exit(cleanup_encrypted); | ||
1037 | |||
1038 | MODULE_LICENSE("GPL"); | ||