diff options
Diffstat (limited to 'mm/page-writeback.c')
-rw-r--r-- | mm/page-writeback.c | 731 |
1 files changed, 562 insertions, 169 deletions
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 0e309cd1b5b9..71252486bc6f 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
@@ -12,7 +12,7 @@ | |||
12 | */ | 12 | */ |
13 | 13 | ||
14 | #include <linux/kernel.h> | 14 | #include <linux/kernel.h> |
15 | #include <linux/module.h> | 15 | #include <linux/export.h> |
16 | #include <linux/spinlock.h> | 16 | #include <linux/spinlock.h> |
17 | #include <linux/fs.h> | 17 | #include <linux/fs.h> |
18 | #include <linux/mm.h> | 18 | #include <linux/mm.h> |
@@ -46,26 +46,14 @@ | |||
46 | */ | 46 | */ |
47 | #define BANDWIDTH_INTERVAL max(HZ/5, 1) | 47 | #define BANDWIDTH_INTERVAL max(HZ/5, 1) |
48 | 48 | ||
49 | #define RATELIMIT_CALC_SHIFT 10 | ||
50 | |||
49 | /* | 51 | /* |
50 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited | 52 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited |
51 | * will look to see if it needs to force writeback or throttling. | 53 | * will look to see if it needs to force writeback or throttling. |
52 | */ | 54 | */ |
53 | static long ratelimit_pages = 32; | 55 | static long ratelimit_pages = 32; |
54 | 56 | ||
55 | /* | ||
56 | * When balance_dirty_pages decides that the caller needs to perform some | ||
57 | * non-background writeback, this is how many pages it will attempt to write. | ||
58 | * It should be somewhat larger than dirtied pages to ensure that reasonably | ||
59 | * large amounts of I/O are submitted. | ||
60 | */ | ||
61 | static inline long sync_writeback_pages(unsigned long dirtied) | ||
62 | { | ||
63 | if (dirtied < ratelimit_pages) | ||
64 | dirtied = ratelimit_pages; | ||
65 | |||
66 | return dirtied + dirtied / 2; | ||
67 | } | ||
68 | |||
69 | /* The following parameters are exported via /proc/sys/vm */ | 57 | /* The following parameters are exported via /proc/sys/vm */ |
70 | 58 | ||
71 | /* | 59 | /* |
@@ -140,7 +128,6 @@ unsigned long global_dirty_limit; | |||
140 | * | 128 | * |
141 | */ | 129 | */ |
142 | static struct prop_descriptor vm_completions; | 130 | static struct prop_descriptor vm_completions; |
143 | static struct prop_descriptor vm_dirties; | ||
144 | 131 | ||
145 | /* | 132 | /* |
146 | * couple the period to the dirty_ratio: | 133 | * couple the period to the dirty_ratio: |
@@ -166,7 +153,8 @@ static void update_completion_period(void) | |||
166 | { | 153 | { |
167 | int shift = calc_period_shift(); | 154 | int shift = calc_period_shift(); |
168 | prop_change_shift(&vm_completions, shift); | 155 | prop_change_shift(&vm_completions, shift); |
169 | prop_change_shift(&vm_dirties, shift); | 156 | |
157 | writeback_set_ratelimit(); | ||
170 | } | 158 | } |
171 | 159 | ||
172 | int dirty_background_ratio_handler(struct ctl_table *table, int write, | 160 | int dirty_background_ratio_handler(struct ctl_table *table, int write, |
@@ -245,11 +233,6 @@ void bdi_writeout_inc(struct backing_dev_info *bdi) | |||
245 | } | 233 | } |
246 | EXPORT_SYMBOL_GPL(bdi_writeout_inc); | 234 | EXPORT_SYMBOL_GPL(bdi_writeout_inc); |
247 | 235 | ||
248 | void task_dirty_inc(struct task_struct *tsk) | ||
249 | { | ||
250 | prop_inc_single(&vm_dirties, &tsk->dirties); | ||
251 | } | ||
252 | |||
253 | /* | 236 | /* |
254 | * Obtain an accurate fraction of the BDI's portion. | 237 | * Obtain an accurate fraction of the BDI's portion. |
255 | */ | 238 | */ |
@@ -260,52 +243,10 @@ static void bdi_writeout_fraction(struct backing_dev_info *bdi, | |||
260 | numerator, denominator); | 243 | numerator, denominator); |
261 | } | 244 | } |
262 | 245 | ||
263 | static inline void task_dirties_fraction(struct task_struct *tsk, | ||
264 | long *numerator, long *denominator) | ||
265 | { | ||
266 | prop_fraction_single(&vm_dirties, &tsk->dirties, | ||
267 | numerator, denominator); | ||
268 | } | ||
269 | |||
270 | /* | 246 | /* |
271 | * task_dirty_limit - scale down dirty throttling threshold for one task | 247 | * bdi_min_ratio keeps the sum of the minimum dirty shares of all |
272 | * | 248 | * registered backing devices, which, for obvious reasons, can not |
273 | * task specific dirty limit: | 249 | * exceed 100%. |
274 | * | ||
275 | * dirty -= (dirty/8) * p_{t} | ||
276 | * | ||
277 | * To protect light/slow dirtying tasks from heavier/fast ones, we start | ||
278 | * throttling individual tasks before reaching the bdi dirty limit. | ||
279 | * Relatively low thresholds will be allocated to heavy dirtiers. So when | ||
280 | * dirty pages grow large, heavy dirtiers will be throttled first, which will | ||
281 | * effectively curb the growth of dirty pages. Light dirtiers with high enough | ||
282 | * dirty threshold may never get throttled. | ||
283 | */ | ||
284 | #define TASK_LIMIT_FRACTION 8 | ||
285 | static unsigned long task_dirty_limit(struct task_struct *tsk, | ||
286 | unsigned long bdi_dirty) | ||
287 | { | ||
288 | long numerator, denominator; | ||
289 | unsigned long dirty = bdi_dirty; | ||
290 | u64 inv = dirty / TASK_LIMIT_FRACTION; | ||
291 | |||
292 | task_dirties_fraction(tsk, &numerator, &denominator); | ||
293 | inv *= numerator; | ||
294 | do_div(inv, denominator); | ||
295 | |||
296 | dirty -= inv; | ||
297 | |||
298 | return max(dirty, bdi_dirty/2); | ||
299 | } | ||
300 | |||
301 | /* Minimum limit for any task */ | ||
302 | static unsigned long task_min_dirty_limit(unsigned long bdi_dirty) | ||
303 | { | ||
304 | return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION; | ||
305 | } | ||
306 | |||
307 | /* | ||
308 | * | ||
309 | */ | 250 | */ |
310 | static unsigned int bdi_min_ratio; | 251 | static unsigned int bdi_min_ratio; |
311 | 252 | ||
@@ -411,6 +352,12 @@ unsigned long determine_dirtyable_memory(void) | |||
411 | return x + 1; /* Ensure that we never return 0 */ | 352 | return x + 1; /* Ensure that we never return 0 */ |
412 | } | 353 | } |
413 | 354 | ||
355 | static unsigned long dirty_freerun_ceiling(unsigned long thresh, | ||
356 | unsigned long bg_thresh) | ||
357 | { | ||
358 | return (thresh + bg_thresh) / 2; | ||
359 | } | ||
360 | |||
414 | static unsigned long hard_dirty_limit(unsigned long thresh) | 361 | static unsigned long hard_dirty_limit(unsigned long thresh) |
415 | { | 362 | { |
416 | return max(thresh, global_dirty_limit); | 363 | return max(thresh, global_dirty_limit); |
@@ -495,6 +442,198 @@ unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) | |||
495 | return bdi_dirty; | 442 | return bdi_dirty; |
496 | } | 443 | } |
497 | 444 | ||
445 | /* | ||
446 | * Dirty position control. | ||
447 | * | ||
448 | * (o) global/bdi setpoints | ||
449 | * | ||
450 | * We want the dirty pages be balanced around the global/bdi setpoints. | ||
451 | * When the number of dirty pages is higher/lower than the setpoint, the | ||
452 | * dirty position control ratio (and hence task dirty ratelimit) will be | ||
453 | * decreased/increased to bring the dirty pages back to the setpoint. | ||
454 | * | ||
455 | * pos_ratio = 1 << RATELIMIT_CALC_SHIFT | ||
456 | * | ||
457 | * if (dirty < setpoint) scale up pos_ratio | ||
458 | * if (dirty > setpoint) scale down pos_ratio | ||
459 | * | ||
460 | * if (bdi_dirty < bdi_setpoint) scale up pos_ratio | ||
461 | * if (bdi_dirty > bdi_setpoint) scale down pos_ratio | ||
462 | * | ||
463 | * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT | ||
464 | * | ||
465 | * (o) global control line | ||
466 | * | ||
467 | * ^ pos_ratio | ||
468 | * | | ||
469 | * | |<===== global dirty control scope ======>| | ||
470 | * 2.0 .............* | ||
471 | * | .* | ||
472 | * | . * | ||
473 | * | . * | ||
474 | * | . * | ||
475 | * | . * | ||
476 | * | . * | ||
477 | * 1.0 ................................* | ||
478 | * | . . * | ||
479 | * | . . * | ||
480 | * | . . * | ||
481 | * | . . * | ||
482 | * | . . * | ||
483 | * 0 +------------.------------------.----------------------*-------------> | ||
484 | * freerun^ setpoint^ limit^ dirty pages | ||
485 | * | ||
486 | * (o) bdi control line | ||
487 | * | ||
488 | * ^ pos_ratio | ||
489 | * | | ||
490 | * | * | ||
491 | * | * | ||
492 | * | * | ||
493 | * | * | ||
494 | * | * |<=========== span ============>| | ||
495 | * 1.0 .......................* | ||
496 | * | . * | ||
497 | * | . * | ||
498 | * | . * | ||
499 | * | . * | ||
500 | * | . * | ||
501 | * | . * | ||
502 | * | . * | ||
503 | * | . * | ||
504 | * | . * | ||
505 | * | . * | ||
506 | * | . * | ||
507 | * 1/4 ...............................................* * * * * * * * * * * * | ||
508 | * | . . | ||
509 | * | . . | ||
510 | * | . . | ||
511 | * 0 +----------------------.-------------------------------.-------------> | ||
512 | * bdi_setpoint^ x_intercept^ | ||
513 | * | ||
514 | * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can | ||
515 | * be smoothly throttled down to normal if it starts high in situations like | ||
516 | * - start writing to a slow SD card and a fast disk at the same time. The SD | ||
517 | * card's bdi_dirty may rush to many times higher than bdi_setpoint. | ||
518 | * - the bdi dirty thresh drops quickly due to change of JBOD workload | ||
519 | */ | ||
520 | static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, | ||
521 | unsigned long thresh, | ||
522 | unsigned long bg_thresh, | ||
523 | unsigned long dirty, | ||
524 | unsigned long bdi_thresh, | ||
525 | unsigned long bdi_dirty) | ||
526 | { | ||
527 | unsigned long write_bw = bdi->avg_write_bandwidth; | ||
528 | unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); | ||
529 | unsigned long limit = hard_dirty_limit(thresh); | ||
530 | unsigned long x_intercept; | ||
531 | unsigned long setpoint; /* dirty pages' target balance point */ | ||
532 | unsigned long bdi_setpoint; | ||
533 | unsigned long span; | ||
534 | long long pos_ratio; /* for scaling up/down the rate limit */ | ||
535 | long x; | ||
536 | |||
537 | if (unlikely(dirty >= limit)) | ||
538 | return 0; | ||
539 | |||
540 | /* | ||
541 | * global setpoint | ||
542 | * | ||
543 | * setpoint - dirty 3 | ||
544 | * f(dirty) := 1.0 + (----------------) | ||
545 | * limit - setpoint | ||
546 | * | ||
547 | * it's a 3rd order polynomial that subjects to | ||
548 | * | ||
549 | * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast | ||
550 | * (2) f(setpoint) = 1.0 => the balance point | ||
551 | * (3) f(limit) = 0 => the hard limit | ||
552 | * (4) df/dx <= 0 => negative feedback control | ||
553 | * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) | ||
554 | * => fast response on large errors; small oscillation near setpoint | ||
555 | */ | ||
556 | setpoint = (freerun + limit) / 2; | ||
557 | x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT, | ||
558 | limit - setpoint + 1); | ||
559 | pos_ratio = x; | ||
560 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; | ||
561 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; | ||
562 | pos_ratio += 1 << RATELIMIT_CALC_SHIFT; | ||
563 | |||
564 | /* | ||
565 | * We have computed basic pos_ratio above based on global situation. If | ||
566 | * the bdi is over/under its share of dirty pages, we want to scale | ||
567 | * pos_ratio further down/up. That is done by the following mechanism. | ||
568 | */ | ||
569 | |||
570 | /* | ||
571 | * bdi setpoint | ||
572 | * | ||
573 | * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint) | ||
574 | * | ||
575 | * x_intercept - bdi_dirty | ||
576 | * := -------------------------- | ||
577 | * x_intercept - bdi_setpoint | ||
578 | * | ||
579 | * The main bdi control line is a linear function that subjects to | ||
580 | * | ||
581 | * (1) f(bdi_setpoint) = 1.0 | ||
582 | * (2) k = - 1 / (8 * write_bw) (in single bdi case) | ||
583 | * or equally: x_intercept = bdi_setpoint + 8 * write_bw | ||
584 | * | ||
585 | * For single bdi case, the dirty pages are observed to fluctuate | ||
586 | * regularly within range | ||
587 | * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2] | ||
588 | * for various filesystems, where (2) can yield in a reasonable 12.5% | ||
589 | * fluctuation range for pos_ratio. | ||
590 | * | ||
591 | * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its | ||
592 | * own size, so move the slope over accordingly and choose a slope that | ||
593 | * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh. | ||
594 | */ | ||
595 | if (unlikely(bdi_thresh > thresh)) | ||
596 | bdi_thresh = thresh; | ||
597 | bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); | ||
598 | /* | ||
599 | * scale global setpoint to bdi's: | ||
600 | * bdi_setpoint = setpoint * bdi_thresh / thresh | ||
601 | */ | ||
602 | x = div_u64((u64)bdi_thresh << 16, thresh + 1); | ||
603 | bdi_setpoint = setpoint * (u64)x >> 16; | ||
604 | /* | ||
605 | * Use span=(8*write_bw) in single bdi case as indicated by | ||
606 | * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case. | ||
607 | * | ||
608 | * bdi_thresh thresh - bdi_thresh | ||
609 | * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh | ||
610 | * thresh thresh | ||
611 | */ | ||
612 | span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16; | ||
613 | x_intercept = bdi_setpoint + span; | ||
614 | |||
615 | if (bdi_dirty < x_intercept - span / 4) { | ||
616 | pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty), | ||
617 | x_intercept - bdi_setpoint + 1); | ||
618 | } else | ||
619 | pos_ratio /= 4; | ||
620 | |||
621 | /* | ||
622 | * bdi reserve area, safeguard against dirty pool underrun and disk idle | ||
623 | * It may push the desired control point of global dirty pages higher | ||
624 | * than setpoint. | ||
625 | */ | ||
626 | x_intercept = bdi_thresh / 2; | ||
627 | if (bdi_dirty < x_intercept) { | ||
628 | if (bdi_dirty > x_intercept / 8) | ||
629 | pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty); | ||
630 | else | ||
631 | pos_ratio *= 8; | ||
632 | } | ||
633 | |||
634 | return pos_ratio; | ||
635 | } | ||
636 | |||
498 | static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, | 637 | static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, |
499 | unsigned long elapsed, | 638 | unsigned long elapsed, |
500 | unsigned long written) | 639 | unsigned long written) |
@@ -591,8 +730,153 @@ static void global_update_bandwidth(unsigned long thresh, | |||
591 | spin_unlock(&dirty_lock); | 730 | spin_unlock(&dirty_lock); |
592 | } | 731 | } |
593 | 732 | ||
733 | /* | ||
734 | * Maintain bdi->dirty_ratelimit, the base dirty throttle rate. | ||
735 | * | ||
736 | * Normal bdi tasks will be curbed at or below it in long term. | ||
737 | * Obviously it should be around (write_bw / N) when there are N dd tasks. | ||
738 | */ | ||
739 | static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi, | ||
740 | unsigned long thresh, | ||
741 | unsigned long bg_thresh, | ||
742 | unsigned long dirty, | ||
743 | unsigned long bdi_thresh, | ||
744 | unsigned long bdi_dirty, | ||
745 | unsigned long dirtied, | ||
746 | unsigned long elapsed) | ||
747 | { | ||
748 | unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); | ||
749 | unsigned long limit = hard_dirty_limit(thresh); | ||
750 | unsigned long setpoint = (freerun + limit) / 2; | ||
751 | unsigned long write_bw = bdi->avg_write_bandwidth; | ||
752 | unsigned long dirty_ratelimit = bdi->dirty_ratelimit; | ||
753 | unsigned long dirty_rate; | ||
754 | unsigned long task_ratelimit; | ||
755 | unsigned long balanced_dirty_ratelimit; | ||
756 | unsigned long pos_ratio; | ||
757 | unsigned long step; | ||
758 | unsigned long x; | ||
759 | |||
760 | /* | ||
761 | * The dirty rate will match the writeout rate in long term, except | ||
762 | * when dirty pages are truncated by userspace or re-dirtied by FS. | ||
763 | */ | ||
764 | dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed; | ||
765 | |||
766 | pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty, | ||
767 | bdi_thresh, bdi_dirty); | ||
768 | /* | ||
769 | * task_ratelimit reflects each dd's dirty rate for the past 200ms. | ||
770 | */ | ||
771 | task_ratelimit = (u64)dirty_ratelimit * | ||
772 | pos_ratio >> RATELIMIT_CALC_SHIFT; | ||
773 | task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ | ||
774 | |||
775 | /* | ||
776 | * A linear estimation of the "balanced" throttle rate. The theory is, | ||
777 | * if there are N dd tasks, each throttled at task_ratelimit, the bdi's | ||
778 | * dirty_rate will be measured to be (N * task_ratelimit). So the below | ||
779 | * formula will yield the balanced rate limit (write_bw / N). | ||
780 | * | ||
781 | * Note that the expanded form is not a pure rate feedback: | ||
782 | * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) | ||
783 | * but also takes pos_ratio into account: | ||
784 | * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) | ||
785 | * | ||
786 | * (1) is not realistic because pos_ratio also takes part in balancing | ||
787 | * the dirty rate. Consider the state | ||
788 | * pos_ratio = 0.5 (3) | ||
789 | * rate = 2 * (write_bw / N) (4) | ||
790 | * If (1) is used, it will stuck in that state! Because each dd will | ||
791 | * be throttled at | ||
792 | * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) | ||
793 | * yielding | ||
794 | * dirty_rate = N * task_ratelimit = write_bw (6) | ||
795 | * put (6) into (1) we get | ||
796 | * rate_(i+1) = rate_(i) (7) | ||
797 | * | ||
798 | * So we end up using (2) to always keep | ||
799 | * rate_(i+1) ~= (write_bw / N) (8) | ||
800 | * regardless of the value of pos_ratio. As long as (8) is satisfied, | ||
801 | * pos_ratio is able to drive itself to 1.0, which is not only where | ||
802 | * the dirty count meet the setpoint, but also where the slope of | ||
803 | * pos_ratio is most flat and hence task_ratelimit is least fluctuated. | ||
804 | */ | ||
805 | balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, | ||
806 | dirty_rate | 1); | ||
807 | |||
808 | /* | ||
809 | * We could safely do this and return immediately: | ||
810 | * | ||
811 | * bdi->dirty_ratelimit = balanced_dirty_ratelimit; | ||
812 | * | ||
813 | * However to get a more stable dirty_ratelimit, the below elaborated | ||
814 | * code makes use of task_ratelimit to filter out sigular points and | ||
815 | * limit the step size. | ||
816 | * | ||
817 | * The below code essentially only uses the relative value of | ||
818 | * | ||
819 | * task_ratelimit - dirty_ratelimit | ||
820 | * = (pos_ratio - 1) * dirty_ratelimit | ||
821 | * | ||
822 | * which reflects the direction and size of dirty position error. | ||
823 | */ | ||
824 | |||
825 | /* | ||
826 | * dirty_ratelimit will follow balanced_dirty_ratelimit iff | ||
827 | * task_ratelimit is on the same side of dirty_ratelimit, too. | ||
828 | * For example, when | ||
829 | * - dirty_ratelimit > balanced_dirty_ratelimit | ||
830 | * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) | ||
831 | * lowering dirty_ratelimit will help meet both the position and rate | ||
832 | * control targets. Otherwise, don't update dirty_ratelimit if it will | ||
833 | * only help meet the rate target. After all, what the users ultimately | ||
834 | * feel and care are stable dirty rate and small position error. | ||
835 | * | ||
836 | * |task_ratelimit - dirty_ratelimit| is used to limit the step size | ||
837 | * and filter out the sigular points of balanced_dirty_ratelimit. Which | ||
838 | * keeps jumping around randomly and can even leap far away at times | ||
839 | * due to the small 200ms estimation period of dirty_rate (we want to | ||
840 | * keep that period small to reduce time lags). | ||
841 | */ | ||
842 | step = 0; | ||
843 | if (dirty < setpoint) { | ||
844 | x = min(bdi->balanced_dirty_ratelimit, | ||
845 | min(balanced_dirty_ratelimit, task_ratelimit)); | ||
846 | if (dirty_ratelimit < x) | ||
847 | step = x - dirty_ratelimit; | ||
848 | } else { | ||
849 | x = max(bdi->balanced_dirty_ratelimit, | ||
850 | max(balanced_dirty_ratelimit, task_ratelimit)); | ||
851 | if (dirty_ratelimit > x) | ||
852 | step = dirty_ratelimit - x; | ||
853 | } | ||
854 | |||
855 | /* | ||
856 | * Don't pursue 100% rate matching. It's impossible since the balanced | ||
857 | * rate itself is constantly fluctuating. So decrease the track speed | ||
858 | * when it gets close to the target. Helps eliminate pointless tremors. | ||
859 | */ | ||
860 | step >>= dirty_ratelimit / (2 * step + 1); | ||
861 | /* | ||
862 | * Limit the tracking speed to avoid overshooting. | ||
863 | */ | ||
864 | step = (step + 7) / 8; | ||
865 | |||
866 | if (dirty_ratelimit < balanced_dirty_ratelimit) | ||
867 | dirty_ratelimit += step; | ||
868 | else | ||
869 | dirty_ratelimit -= step; | ||
870 | |||
871 | bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL); | ||
872 | bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit; | ||
873 | |||
874 | trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit); | ||
875 | } | ||
876 | |||
594 | void __bdi_update_bandwidth(struct backing_dev_info *bdi, | 877 | void __bdi_update_bandwidth(struct backing_dev_info *bdi, |
595 | unsigned long thresh, | 878 | unsigned long thresh, |
879 | unsigned long bg_thresh, | ||
596 | unsigned long dirty, | 880 | unsigned long dirty, |
597 | unsigned long bdi_thresh, | 881 | unsigned long bdi_thresh, |
598 | unsigned long bdi_dirty, | 882 | unsigned long bdi_dirty, |
@@ -600,6 +884,7 @@ void __bdi_update_bandwidth(struct backing_dev_info *bdi, | |||
600 | { | 884 | { |
601 | unsigned long now = jiffies; | 885 | unsigned long now = jiffies; |
602 | unsigned long elapsed = now - bdi->bw_time_stamp; | 886 | unsigned long elapsed = now - bdi->bw_time_stamp; |
887 | unsigned long dirtied; | ||
603 | unsigned long written; | 888 | unsigned long written; |
604 | 889 | ||
605 | /* | 890 | /* |
@@ -608,6 +893,7 @@ void __bdi_update_bandwidth(struct backing_dev_info *bdi, | |||
608 | if (elapsed < BANDWIDTH_INTERVAL) | 893 | if (elapsed < BANDWIDTH_INTERVAL) |
609 | return; | 894 | return; |
610 | 895 | ||
896 | dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]); | ||
611 | written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); | 897 | written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); |
612 | 898 | ||
613 | /* | 899 | /* |
@@ -617,18 +903,23 @@ void __bdi_update_bandwidth(struct backing_dev_info *bdi, | |||
617 | if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) | 903 | if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) |
618 | goto snapshot; | 904 | goto snapshot; |
619 | 905 | ||
620 | if (thresh) | 906 | if (thresh) { |
621 | global_update_bandwidth(thresh, dirty, now); | 907 | global_update_bandwidth(thresh, dirty, now); |
622 | 908 | bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty, | |
909 | bdi_thresh, bdi_dirty, | ||
910 | dirtied, elapsed); | ||
911 | } | ||
623 | bdi_update_write_bandwidth(bdi, elapsed, written); | 912 | bdi_update_write_bandwidth(bdi, elapsed, written); |
624 | 913 | ||
625 | snapshot: | 914 | snapshot: |
915 | bdi->dirtied_stamp = dirtied; | ||
626 | bdi->written_stamp = written; | 916 | bdi->written_stamp = written; |
627 | bdi->bw_time_stamp = now; | 917 | bdi->bw_time_stamp = now; |
628 | } | 918 | } |
629 | 919 | ||
630 | static void bdi_update_bandwidth(struct backing_dev_info *bdi, | 920 | static void bdi_update_bandwidth(struct backing_dev_info *bdi, |
631 | unsigned long thresh, | 921 | unsigned long thresh, |
922 | unsigned long bg_thresh, | ||
632 | unsigned long dirty, | 923 | unsigned long dirty, |
633 | unsigned long bdi_thresh, | 924 | unsigned long bdi_thresh, |
634 | unsigned long bdi_dirty, | 925 | unsigned long bdi_dirty, |
@@ -637,37 +928,99 @@ static void bdi_update_bandwidth(struct backing_dev_info *bdi, | |||
637 | if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) | 928 | if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) |
638 | return; | 929 | return; |
639 | spin_lock(&bdi->wb.list_lock); | 930 | spin_lock(&bdi->wb.list_lock); |
640 | __bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty, | 931 | __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty, |
641 | start_time); | 932 | bdi_thresh, bdi_dirty, start_time); |
642 | spin_unlock(&bdi->wb.list_lock); | 933 | spin_unlock(&bdi->wb.list_lock); |
643 | } | 934 | } |
644 | 935 | ||
645 | /* | 936 | /* |
937 | * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr() | ||
938 | * will look to see if it needs to start dirty throttling. | ||
939 | * | ||
940 | * If dirty_poll_interval is too low, big NUMA machines will call the expensive | ||
941 | * global_page_state() too often. So scale it near-sqrt to the safety margin | ||
942 | * (the number of pages we may dirty without exceeding the dirty limits). | ||
943 | */ | ||
944 | static unsigned long dirty_poll_interval(unsigned long dirty, | ||
945 | unsigned long thresh) | ||
946 | { | ||
947 | if (thresh > dirty) | ||
948 | return 1UL << (ilog2(thresh - dirty) >> 1); | ||
949 | |||
950 | return 1; | ||
951 | } | ||
952 | |||
953 | static unsigned long bdi_max_pause(struct backing_dev_info *bdi, | ||
954 | unsigned long bdi_dirty) | ||
955 | { | ||
956 | unsigned long bw = bdi->avg_write_bandwidth; | ||
957 | unsigned long hi = ilog2(bw); | ||
958 | unsigned long lo = ilog2(bdi->dirty_ratelimit); | ||
959 | unsigned long t; | ||
960 | |||
961 | /* target for 20ms max pause on 1-dd case */ | ||
962 | t = HZ / 50; | ||
963 | |||
964 | /* | ||
965 | * Scale up pause time for concurrent dirtiers in order to reduce CPU | ||
966 | * overheads. | ||
967 | * | ||
968 | * (N * 20ms) on 2^N concurrent tasks. | ||
969 | */ | ||
970 | if (hi > lo) | ||
971 | t += (hi - lo) * (20 * HZ) / 1024; | ||
972 | |||
973 | /* | ||
974 | * Limit pause time for small memory systems. If sleeping for too long | ||
975 | * time, a small pool of dirty/writeback pages may go empty and disk go | ||
976 | * idle. | ||
977 | * | ||
978 | * 8 serves as the safety ratio. | ||
979 | */ | ||
980 | if (bdi_dirty) | ||
981 | t = min(t, bdi_dirty * HZ / (8 * bw + 1)); | ||
982 | |||
983 | /* | ||
984 | * The pause time will be settled within range (max_pause/4, max_pause). | ||
985 | * Apply a minimal value of 4 to get a non-zero max_pause/4. | ||
986 | */ | ||
987 | return clamp_val(t, 4, MAX_PAUSE); | ||
988 | } | ||
989 | |||
990 | /* | ||
646 | * balance_dirty_pages() must be called by processes which are generating dirty | 991 | * balance_dirty_pages() must be called by processes which are generating dirty |
647 | * data. It looks at the number of dirty pages in the machine and will force | 992 | * data. It looks at the number of dirty pages in the machine and will force |
648 | * the caller to perform writeback if the system is over `vm_dirty_ratio'. | 993 | * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. |
649 | * If we're over `background_thresh' then the writeback threads are woken to | 994 | * If we're over `background_thresh' then the writeback threads are woken to |
650 | * perform some writeout. | 995 | * perform some writeout. |
651 | */ | 996 | */ |
652 | static void balance_dirty_pages(struct address_space *mapping, | 997 | static void balance_dirty_pages(struct address_space *mapping, |
653 | unsigned long write_chunk) | 998 | unsigned long pages_dirtied) |
654 | { | 999 | { |
655 | unsigned long nr_reclaimable, bdi_nr_reclaimable; | 1000 | unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ |
1001 | unsigned long bdi_reclaimable; | ||
656 | unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ | 1002 | unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ |
657 | unsigned long bdi_dirty; | 1003 | unsigned long bdi_dirty; |
1004 | unsigned long freerun; | ||
658 | unsigned long background_thresh; | 1005 | unsigned long background_thresh; |
659 | unsigned long dirty_thresh; | 1006 | unsigned long dirty_thresh; |
660 | unsigned long bdi_thresh; | 1007 | unsigned long bdi_thresh; |
661 | unsigned long task_bdi_thresh; | 1008 | long pause = 0; |
662 | unsigned long min_task_bdi_thresh; | 1009 | long uninitialized_var(max_pause); |
663 | unsigned long pages_written = 0; | ||
664 | unsigned long pause = 1; | ||
665 | bool dirty_exceeded = false; | 1010 | bool dirty_exceeded = false; |
666 | bool clear_dirty_exceeded = true; | 1011 | unsigned long task_ratelimit; |
1012 | unsigned long uninitialized_var(dirty_ratelimit); | ||
1013 | unsigned long pos_ratio; | ||
667 | struct backing_dev_info *bdi = mapping->backing_dev_info; | 1014 | struct backing_dev_info *bdi = mapping->backing_dev_info; |
668 | unsigned long start_time = jiffies; | 1015 | unsigned long start_time = jiffies; |
669 | 1016 | ||
670 | for (;;) { | 1017 | for (;;) { |
1018 | /* | ||
1019 | * Unstable writes are a feature of certain networked | ||
1020 | * filesystems (i.e. NFS) in which data may have been | ||
1021 | * written to the server's write cache, but has not yet | ||
1022 | * been flushed to permanent storage. | ||
1023 | */ | ||
671 | nr_reclaimable = global_page_state(NR_FILE_DIRTY) + | 1024 | nr_reclaimable = global_page_state(NR_FILE_DIRTY) + |
672 | global_page_state(NR_UNSTABLE_NFS); | 1025 | global_page_state(NR_UNSTABLE_NFS); |
673 | nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); | 1026 | nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); |
@@ -679,12 +1032,28 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
679 | * catch-up. This avoids (excessively) small writeouts | 1032 | * catch-up. This avoids (excessively) small writeouts |
680 | * when the bdi limits are ramping up. | 1033 | * when the bdi limits are ramping up. |
681 | */ | 1034 | */ |
682 | if (nr_dirty <= (background_thresh + dirty_thresh) / 2) | 1035 | freerun = dirty_freerun_ceiling(dirty_thresh, |
1036 | background_thresh); | ||
1037 | if (nr_dirty <= freerun) | ||
683 | break; | 1038 | break; |
684 | 1039 | ||
1040 | if (unlikely(!writeback_in_progress(bdi))) | ||
1041 | bdi_start_background_writeback(bdi); | ||
1042 | |||
1043 | /* | ||
1044 | * bdi_thresh is not treated as some limiting factor as | ||
1045 | * dirty_thresh, due to reasons | ||
1046 | * - in JBOD setup, bdi_thresh can fluctuate a lot | ||
1047 | * - in a system with HDD and USB key, the USB key may somehow | ||
1048 | * go into state (bdi_dirty >> bdi_thresh) either because | ||
1049 | * bdi_dirty starts high, or because bdi_thresh drops low. | ||
1050 | * In this case we don't want to hard throttle the USB key | ||
1051 | * dirtiers for 100 seconds until bdi_dirty drops under | ||
1052 | * bdi_thresh. Instead the auxiliary bdi control line in | ||
1053 | * bdi_position_ratio() will let the dirtier task progress | ||
1054 | * at some rate <= (write_bw / 2) for bringing down bdi_dirty. | ||
1055 | */ | ||
685 | bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); | 1056 | bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); |
686 | min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh); | ||
687 | task_bdi_thresh = task_dirty_limit(current, bdi_thresh); | ||
688 | 1057 | ||
689 | /* | 1058 | /* |
690 | * In order to avoid the stacked BDI deadlock we need | 1059 | * In order to avoid the stacked BDI deadlock we need |
@@ -696,82 +1065,101 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
696 | * actually dirty; with m+n sitting in the percpu | 1065 | * actually dirty; with m+n sitting in the percpu |
697 | * deltas. | 1066 | * deltas. |
698 | */ | 1067 | */ |
699 | if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) { | 1068 | if (bdi_thresh < 2 * bdi_stat_error(bdi)) { |
700 | bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); | 1069 | bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); |
701 | bdi_dirty = bdi_nr_reclaimable + | 1070 | bdi_dirty = bdi_reclaimable + |
702 | bdi_stat_sum(bdi, BDI_WRITEBACK); | 1071 | bdi_stat_sum(bdi, BDI_WRITEBACK); |
703 | } else { | 1072 | } else { |
704 | bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); | 1073 | bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); |
705 | bdi_dirty = bdi_nr_reclaimable + | 1074 | bdi_dirty = bdi_reclaimable + |
706 | bdi_stat(bdi, BDI_WRITEBACK); | 1075 | bdi_stat(bdi, BDI_WRITEBACK); |
707 | } | 1076 | } |
708 | 1077 | ||
709 | /* | 1078 | dirty_exceeded = (bdi_dirty > bdi_thresh) || |
710 | * The bdi thresh is somehow "soft" limit derived from the | ||
711 | * global "hard" limit. The former helps to prevent heavy IO | ||
712 | * bdi or process from holding back light ones; The latter is | ||
713 | * the last resort safeguard. | ||
714 | */ | ||
715 | dirty_exceeded = (bdi_dirty > task_bdi_thresh) || | ||
716 | (nr_dirty > dirty_thresh); | 1079 | (nr_dirty > dirty_thresh); |
717 | clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) && | 1080 | if (dirty_exceeded && !bdi->dirty_exceeded) |
718 | (nr_dirty <= dirty_thresh); | ||
719 | |||
720 | if (!dirty_exceeded) | ||
721 | break; | ||
722 | |||
723 | if (!bdi->dirty_exceeded) | ||
724 | bdi->dirty_exceeded = 1; | 1081 | bdi->dirty_exceeded = 1; |
725 | 1082 | ||
726 | bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty, | 1083 | bdi_update_bandwidth(bdi, dirty_thresh, background_thresh, |
727 | bdi_thresh, bdi_dirty, start_time); | 1084 | nr_dirty, bdi_thresh, bdi_dirty, |
728 | 1085 | start_time); | |
729 | /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. | 1086 | |
730 | * Unstable writes are a feature of certain networked | 1087 | max_pause = bdi_max_pause(bdi, bdi_dirty); |
731 | * filesystems (i.e. NFS) in which data may have been | 1088 | |
732 | * written to the server's write cache, but has not yet | 1089 | dirty_ratelimit = bdi->dirty_ratelimit; |
733 | * been flushed to permanent storage. | 1090 | pos_ratio = bdi_position_ratio(bdi, dirty_thresh, |
734 | * Only move pages to writeback if this bdi is over its | 1091 | background_thresh, nr_dirty, |
735 | * threshold otherwise wait until the disk writes catch | 1092 | bdi_thresh, bdi_dirty); |
736 | * up. | 1093 | task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >> |
737 | */ | 1094 | RATELIMIT_CALC_SHIFT; |
738 | trace_balance_dirty_start(bdi); | 1095 | if (unlikely(task_ratelimit == 0)) { |
739 | if (bdi_nr_reclaimable > task_bdi_thresh) { | 1096 | pause = max_pause; |
740 | pages_written += writeback_inodes_wb(&bdi->wb, | 1097 | goto pause; |
741 | write_chunk); | 1098 | } |
742 | trace_balance_dirty_written(bdi, pages_written); | 1099 | pause = HZ * pages_dirtied / task_ratelimit; |
743 | if (pages_written >= write_chunk) | 1100 | if (unlikely(pause <= 0)) { |
744 | break; /* We've done our duty */ | 1101 | trace_balance_dirty_pages(bdi, |
1102 | dirty_thresh, | ||
1103 | background_thresh, | ||
1104 | nr_dirty, | ||
1105 | bdi_thresh, | ||
1106 | bdi_dirty, | ||
1107 | dirty_ratelimit, | ||
1108 | task_ratelimit, | ||
1109 | pages_dirtied, | ||
1110 | pause, | ||
1111 | start_time); | ||
1112 | pause = 1; /* avoid resetting nr_dirtied_pause below */ | ||
1113 | break; | ||
745 | } | 1114 | } |
746 | __set_current_state(TASK_UNINTERRUPTIBLE); | 1115 | pause = min(pause, max_pause); |
1116 | |||
1117 | pause: | ||
1118 | trace_balance_dirty_pages(bdi, | ||
1119 | dirty_thresh, | ||
1120 | background_thresh, | ||
1121 | nr_dirty, | ||
1122 | bdi_thresh, | ||
1123 | bdi_dirty, | ||
1124 | dirty_ratelimit, | ||
1125 | task_ratelimit, | ||
1126 | pages_dirtied, | ||
1127 | pause, | ||
1128 | start_time); | ||
1129 | __set_current_state(TASK_KILLABLE); | ||
747 | io_schedule_timeout(pause); | 1130 | io_schedule_timeout(pause); |
748 | trace_balance_dirty_wait(bdi); | ||
749 | 1131 | ||
750 | dirty_thresh = hard_dirty_limit(dirty_thresh); | ||
751 | /* | 1132 | /* |
752 | * max-pause area. If dirty exceeded but still within this | 1133 | * This is typically equal to (nr_dirty < dirty_thresh) and can |
753 | * area, no need to sleep for more than 200ms: (a) 8 pages per | 1134 | * also keep "1000+ dd on a slow USB stick" under control. |
754 | * 200ms is typically more than enough to curb heavy dirtiers; | ||
755 | * (b) the pause time limit makes the dirtiers more responsive. | ||
756 | */ | 1135 | */ |
757 | if (nr_dirty < dirty_thresh && | 1136 | if (task_ratelimit) |
758 | bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 && | ||
759 | time_after(jiffies, start_time + MAX_PAUSE)) | ||
760 | break; | 1137 | break; |
761 | 1138 | ||
762 | /* | 1139 | if (fatal_signal_pending(current)) |
763 | * Increase the delay for each loop, up to our previous | 1140 | break; |
764 | * default of taking a 100ms nap. | ||
765 | */ | ||
766 | pause <<= 1; | ||
767 | if (pause > HZ / 10) | ||
768 | pause = HZ / 10; | ||
769 | } | 1141 | } |
770 | 1142 | ||
771 | /* Clear dirty_exceeded flag only when no task can exceed the limit */ | 1143 | if (!dirty_exceeded && bdi->dirty_exceeded) |
772 | if (clear_dirty_exceeded && bdi->dirty_exceeded) | ||
773 | bdi->dirty_exceeded = 0; | 1144 | bdi->dirty_exceeded = 0; |
774 | 1145 | ||
1146 | current->nr_dirtied = 0; | ||
1147 | if (pause == 0) { /* in freerun area */ | ||
1148 | current->nr_dirtied_pause = | ||
1149 | dirty_poll_interval(nr_dirty, dirty_thresh); | ||
1150 | } else if (pause <= max_pause / 4 && | ||
1151 | pages_dirtied >= current->nr_dirtied_pause) { | ||
1152 | current->nr_dirtied_pause = clamp_val( | ||
1153 | dirty_ratelimit * (max_pause / 2) / HZ, | ||
1154 | pages_dirtied + pages_dirtied / 8, | ||
1155 | pages_dirtied * 4); | ||
1156 | } else if (pause >= max_pause) { | ||
1157 | current->nr_dirtied_pause = 1 | clamp_val( | ||
1158 | dirty_ratelimit * (max_pause / 2) / HZ, | ||
1159 | pages_dirtied / 4, | ||
1160 | pages_dirtied - pages_dirtied / 8); | ||
1161 | } | ||
1162 | |||
775 | if (writeback_in_progress(bdi)) | 1163 | if (writeback_in_progress(bdi)) |
776 | return; | 1164 | return; |
777 | 1165 | ||
@@ -783,8 +1171,10 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
783 | * In normal mode, we start background writeout at the lower | 1171 | * In normal mode, we start background writeout at the lower |
784 | * background_thresh, to keep the amount of dirty memory low. | 1172 | * background_thresh, to keep the amount of dirty memory low. |
785 | */ | 1173 | */ |
786 | if ((laptop_mode && pages_written) || | 1174 | if (laptop_mode) |
787 | (!laptop_mode && (nr_reclaimable > background_thresh))) | 1175 | return; |
1176 | |||
1177 | if (nr_reclaimable > background_thresh) | ||
788 | bdi_start_background_writeback(bdi); | 1178 | bdi_start_background_writeback(bdi); |
789 | } | 1179 | } |
790 | 1180 | ||
@@ -798,7 +1188,7 @@ void set_page_dirty_balance(struct page *page, int page_mkwrite) | |||
798 | } | 1188 | } |
799 | } | 1189 | } |
800 | 1190 | ||
801 | static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; | 1191 | static DEFINE_PER_CPU(int, bdp_ratelimits); |
802 | 1192 | ||
803 | /** | 1193 | /** |
804 | * balance_dirty_pages_ratelimited_nr - balance dirty memory state | 1194 | * balance_dirty_pages_ratelimited_nr - balance dirty memory state |
@@ -818,31 +1208,39 @@ void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, | |||
818 | unsigned long nr_pages_dirtied) | 1208 | unsigned long nr_pages_dirtied) |
819 | { | 1209 | { |
820 | struct backing_dev_info *bdi = mapping->backing_dev_info; | 1210 | struct backing_dev_info *bdi = mapping->backing_dev_info; |
821 | unsigned long ratelimit; | 1211 | int ratelimit; |
822 | unsigned long *p; | 1212 | int *p; |
823 | 1213 | ||
824 | if (!bdi_cap_account_dirty(bdi)) | 1214 | if (!bdi_cap_account_dirty(bdi)) |
825 | return; | 1215 | return; |
826 | 1216 | ||
827 | ratelimit = ratelimit_pages; | 1217 | ratelimit = current->nr_dirtied_pause; |
828 | if (mapping->backing_dev_info->dirty_exceeded) | 1218 | if (bdi->dirty_exceeded) |
829 | ratelimit = 8; | 1219 | ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); |
1220 | |||
1221 | current->nr_dirtied += nr_pages_dirtied; | ||
830 | 1222 | ||
1223 | preempt_disable(); | ||
831 | /* | 1224 | /* |
832 | * Check the rate limiting. Also, we do not want to throttle real-time | 1225 | * This prevents one CPU to accumulate too many dirtied pages without |
833 | * tasks in balance_dirty_pages(). Period. | 1226 | * calling into balance_dirty_pages(), which can happen when there are |
1227 | * 1000+ tasks, all of them start dirtying pages at exactly the same | ||
1228 | * time, hence all honoured too large initial task->nr_dirtied_pause. | ||
834 | */ | 1229 | */ |
835 | preempt_disable(); | ||
836 | p = &__get_cpu_var(bdp_ratelimits); | 1230 | p = &__get_cpu_var(bdp_ratelimits); |
837 | *p += nr_pages_dirtied; | 1231 | if (unlikely(current->nr_dirtied >= ratelimit)) |
838 | if (unlikely(*p >= ratelimit)) { | ||
839 | ratelimit = sync_writeback_pages(*p); | ||
840 | *p = 0; | 1232 | *p = 0; |
841 | preempt_enable(); | 1233 | else { |
842 | balance_dirty_pages(mapping, ratelimit); | 1234 | *p += nr_pages_dirtied; |
843 | return; | 1235 | if (unlikely(*p >= ratelimit_pages)) { |
1236 | *p = 0; | ||
1237 | ratelimit = 0; | ||
1238 | } | ||
844 | } | 1239 | } |
845 | preempt_enable(); | 1240 | preempt_enable(); |
1241 | |||
1242 | if (unlikely(current->nr_dirtied >= ratelimit)) | ||
1243 | balance_dirty_pages(mapping, current->nr_dirtied); | ||
846 | } | 1244 | } |
847 | EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); | 1245 | EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); |
848 | 1246 | ||
@@ -898,7 +1296,8 @@ void laptop_mode_timer_fn(unsigned long data) | |||
898 | * threshold | 1296 | * threshold |
899 | */ | 1297 | */ |
900 | if (bdi_has_dirty_io(&q->backing_dev_info)) | 1298 | if (bdi_has_dirty_io(&q->backing_dev_info)) |
901 | bdi_start_writeback(&q->backing_dev_info, nr_pages); | 1299 | bdi_start_writeback(&q->backing_dev_info, nr_pages, |
1300 | WB_REASON_LAPTOP_TIMER); | ||
902 | } | 1301 | } |
903 | 1302 | ||
904 | /* | 1303 | /* |
@@ -937,22 +1336,17 @@ void laptop_sync_completion(void) | |||
937 | * | 1336 | * |
938 | * Here we set ratelimit_pages to a level which ensures that when all CPUs are | 1337 | * Here we set ratelimit_pages to a level which ensures that when all CPUs are |
939 | * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory | 1338 | * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory |
940 | * thresholds before writeback cuts in. | 1339 | * thresholds. |
941 | * | ||
942 | * But the limit should not be set too high. Because it also controls the | ||
943 | * amount of memory which the balance_dirty_pages() caller has to write back. | ||
944 | * If this is too large then the caller will block on the IO queue all the | ||
945 | * time. So limit it to four megabytes - the balance_dirty_pages() caller | ||
946 | * will write six megabyte chunks, max. | ||
947 | */ | 1340 | */ |
948 | 1341 | ||
949 | void writeback_set_ratelimit(void) | 1342 | void writeback_set_ratelimit(void) |
950 | { | 1343 | { |
951 | ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); | 1344 | unsigned long background_thresh; |
1345 | unsigned long dirty_thresh; | ||
1346 | global_dirty_limits(&background_thresh, &dirty_thresh); | ||
1347 | ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); | ||
952 | if (ratelimit_pages < 16) | 1348 | if (ratelimit_pages < 16) |
953 | ratelimit_pages = 16; | 1349 | ratelimit_pages = 16; |
954 | if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) | ||
955 | ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; | ||
956 | } | 1350 | } |
957 | 1351 | ||
958 | static int __cpuinit | 1352 | static int __cpuinit |
@@ -994,7 +1388,6 @@ void __init page_writeback_init(void) | |||
994 | 1388 | ||
995 | shift = calc_period_shift(); | 1389 | shift = calc_period_shift(); |
996 | prop_descriptor_init(&vm_completions, shift); | 1390 | prop_descriptor_init(&vm_completions, shift); |
997 | prop_descriptor_init(&vm_dirties, shift); | ||
998 | } | 1391 | } |
999 | 1392 | ||
1000 | /** | 1393 | /** |
@@ -1322,7 +1715,7 @@ void account_page_dirtied(struct page *page, struct address_space *mapping) | |||
1322 | __inc_zone_page_state(page, NR_FILE_DIRTY); | 1715 | __inc_zone_page_state(page, NR_FILE_DIRTY); |
1323 | __inc_zone_page_state(page, NR_DIRTIED); | 1716 | __inc_zone_page_state(page, NR_DIRTIED); |
1324 | __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); | 1717 | __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); |
1325 | task_dirty_inc(current); | 1718 | __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); |
1326 | task_io_account_write(PAGE_CACHE_SIZE); | 1719 | task_io_account_write(PAGE_CACHE_SIZE); |
1327 | } | 1720 | } |
1328 | } | 1721 | } |