aboutsummaryrefslogtreecommitdiffstats
path: root/litmus/sched_cedf.c
diff options
context:
space:
mode:
Diffstat (limited to 'litmus/sched_cedf.c')
-rw-r--r--litmus/sched_cedf.c889
1 files changed, 889 insertions, 0 deletions
diff --git a/litmus/sched_cedf.c b/litmus/sched_cedf.c
new file mode 100644
index 000000000000..cf41d5ec2e28
--- /dev/null
+++ b/litmus/sched_cedf.c
@@ -0,0 +1,889 @@
1/*
2 * litmus/sched_cedf.c
3 *
4 * Implementation of the C-EDF scheduling algorithm.
5 *
6 * This implementation is based on G-EDF:
7 * - CPUs are clustered around L2 or L3 caches.
8 * - Clusters topology is automatically detected (this is arch dependent
9 * and is working only on x86 at the moment --- and only with modern
10 * cpus that exports cpuid4 information)
11 * - The plugins _does not_ attempt to put tasks in the right cluster i.e.
12 * the programmer needs to be aware of the topology to place tasks
13 * in the desired cluster
14 * - default clustering is around L2 cache (cache index = 2)
15 * supported clusters are: L1 (private cache: pedf), L2, L3, ALL (all
16 * online_cpus are placed in a single cluster).
17 *
18 * For details on functions, take a look at sched_gsn_edf.c
19 *
20 * Currently, we do not support changes in the number of online cpus.
21 * If the num_online_cpus() dynamically changes, the plugin is broken.
22 *
23 * This version uses the simple approach and serializes all scheduling
24 * decisions by the use of a queue lock. This is probably not the
25 * best way to do it, but it should suffice for now.
26 */
27
28#include <linux/spinlock.h>
29#include <linux/percpu.h>
30#include <linux/sched.h>
31#include <linux/slab.h>
32
33#include <linux/module.h>
34
35#include <litmus/litmus.h>
36#include <litmus/jobs.h>
37#include <litmus/preempt.h>
38#include <litmus/budget.h>
39#include <litmus/np.h>
40#include <litmus/sched_plugin.h>
41#include <litmus/edf_common.h>
42#include <litmus/sched_trace.h>
43
44#include <litmus/clustered.h>
45
46#include <litmus/bheap.h>
47
48#ifdef CONFIG_SCHED_CPU_AFFINITY
49#include <litmus/affinity.h>
50#endif
51
52/* to configure the cluster size */
53#include <litmus/litmus_proc.h>
54#include <linux/uaccess.h>
55
56/* Reference configuration variable. Determines which cache level is used to
57 * group CPUs into clusters. GLOBAL_CLUSTER, which is the default, means that
58 * all CPUs form a single cluster (just like GSN-EDF).
59 */
60static enum cache_level cluster_config = GLOBAL_CLUSTER;
61
62struct clusterdomain;
63
64/* cpu_entry_t - maintain the linked and scheduled state
65 *
66 * A cpu also contains a pointer to the cedf_domain_t cluster
67 * that owns it (struct clusterdomain*)
68 */
69typedef struct {
70 int cpu;
71 struct clusterdomain* cluster; /* owning cluster */
72 struct task_struct* linked; /* only RT tasks */
73 struct task_struct* scheduled; /* only RT tasks */
74 atomic_t will_schedule; /* prevent unneeded IPIs */
75 struct bheap_node* hn;
76} cpu_entry_t;
77
78/* one cpu_entry_t per CPU */
79DEFINE_PER_CPU(cpu_entry_t, cedf_cpu_entries);
80
81/*
82 * In C-EDF there is a cedf domain _per_ cluster
83 * The number of clusters is dynamically determined accordingly to the
84 * total cpu number and the cluster size
85 */
86typedef struct clusterdomain {
87 /* rt_domain for this cluster */
88 rt_domain_t domain;
89 /* cpus in this cluster */
90 cpu_entry_t* *cpus;
91 /* map of this cluster cpus */
92 cpumask_var_t cpu_map;
93 /* the cpus queue themselves according to priority in here */
94 struct bheap_node *heap_node;
95 struct bheap cpu_heap;
96 /* lock for this cluster */
97#define cluster_lock domain.ready_lock
98} cedf_domain_t;
99
100/* a cedf_domain per cluster; allocation is done at init/activation time */
101cedf_domain_t *cedf;
102
103#define remote_cluster(cpu) ((cedf_domain_t *) per_cpu(cedf_cpu_entries, cpu).cluster)
104#define task_cpu_cluster(task) remote_cluster(get_partition(task))
105
106/* Uncomment WANT_ALL_SCHED_EVENTS if you want to see all scheduling
107 * decisions in the TRACE() log; uncomment VERBOSE_INIT for verbose
108 * information during the initialization of the plugin (e.g., topology)
109#define WANT_ALL_SCHED_EVENTS
110 */
111#define VERBOSE_INIT
112
113static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b)
114{
115 cpu_entry_t *a, *b;
116 a = _a->value;
117 b = _b->value;
118 /* Note that a and b are inverted: we want the lowest-priority CPU at
119 * the top of the heap.
120 */
121 return edf_higher_prio(b->linked, a->linked);
122}
123
124/* update_cpu_position - Move the cpu entry to the correct place to maintain
125 * order in the cpu queue. Caller must hold cedf lock.
126 */
127static void update_cpu_position(cpu_entry_t *entry)
128{
129 cedf_domain_t *cluster = entry->cluster;
130
131 if (likely(bheap_node_in_heap(entry->hn)))
132 bheap_delete(cpu_lower_prio,
133 &cluster->cpu_heap,
134 entry->hn);
135
136 bheap_insert(cpu_lower_prio, &cluster->cpu_heap, entry->hn);
137}
138
139/* caller must hold cedf lock */
140static cpu_entry_t* lowest_prio_cpu(cedf_domain_t *cluster)
141{
142 struct bheap_node* hn;
143 hn = bheap_peek(cpu_lower_prio, &cluster->cpu_heap);
144 return hn->value;
145}
146
147
148/* link_task_to_cpu - Update the link of a CPU.
149 * Handles the case where the to-be-linked task is already
150 * scheduled on a different CPU.
151 */
152static noinline void link_task_to_cpu(struct task_struct* linked,
153 cpu_entry_t *entry)
154{
155 cpu_entry_t *sched;
156 struct task_struct* tmp;
157 int on_cpu;
158
159 BUG_ON(linked && !is_realtime(linked));
160
161 /* Currently linked task is set to be unlinked. */
162 if (entry->linked) {
163 entry->linked->rt_param.linked_on = NO_CPU;
164 }
165
166 /* Link new task to CPU. */
167 if (linked) {
168 /* handle task is already scheduled somewhere! */
169 on_cpu = linked->rt_param.scheduled_on;
170 if (on_cpu != NO_CPU) {
171 sched = &per_cpu(cedf_cpu_entries, on_cpu);
172 /* this should only happen if not linked already */
173 BUG_ON(sched->linked == linked);
174
175 /* If we are already scheduled on the CPU to which we
176 * wanted to link, we don't need to do the swap --
177 * we just link ourselves to the CPU and depend on
178 * the caller to get things right.
179 */
180 if (entry != sched) {
181 TRACE_TASK(linked,
182 "already scheduled on %d, updating link.\n",
183 sched->cpu);
184 tmp = sched->linked;
185 linked->rt_param.linked_on = sched->cpu;
186 sched->linked = linked;
187 update_cpu_position(sched);
188 linked = tmp;
189 }
190 }
191 if (linked) /* might be NULL due to swap */
192 linked->rt_param.linked_on = entry->cpu;
193 }
194 entry->linked = linked;
195#ifdef WANT_ALL_SCHED_EVENTS
196 if (linked)
197 TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
198 else
199 TRACE("NULL linked to %d.\n", entry->cpu);
200#endif
201 update_cpu_position(entry);
202}
203
204/* unlink - Make sure a task is not linked any longer to an entry
205 * where it was linked before. Must hold cedf_lock.
206 */
207static noinline void unlink(struct task_struct* t)
208{
209 cpu_entry_t *entry;
210
211 if (t->rt_param.linked_on != NO_CPU) {
212 /* unlink */
213 entry = &per_cpu(cedf_cpu_entries, t->rt_param.linked_on);
214 t->rt_param.linked_on = NO_CPU;
215 link_task_to_cpu(NULL, entry);
216 } else if (is_queued(t)) {
217 /* This is an interesting situation: t is scheduled,
218 * but was just recently unlinked. It cannot be
219 * linked anywhere else (because then it would have
220 * been relinked to this CPU), thus it must be in some
221 * queue. We must remove it from the list in this
222 * case.
223 *
224 * in C-EDF case is should be somewhere in the queue for
225 * its domain, therefore and we can get the domain using
226 * task_cpu_cluster
227 */
228 remove(&(task_cpu_cluster(t))->domain, t);
229 }
230}
231
232
233/* preempt - force a CPU to reschedule
234 */
235static void preempt(cpu_entry_t *entry)
236{
237 preempt_if_preemptable(entry->scheduled, entry->cpu);
238}
239
240/* requeue - Put an unlinked task into gsn-edf domain.
241 * Caller must hold cedf_lock.
242 */
243static noinline void requeue(struct task_struct* task)
244{
245 cedf_domain_t *cluster = task_cpu_cluster(task);
246 BUG_ON(!task);
247 /* sanity check before insertion */
248 BUG_ON(is_queued(task));
249
250 if (is_early_releasing(task) || is_released(task, litmus_clock()))
251 __add_ready(&cluster->domain, task);
252 else {
253 /* it has got to wait */
254 add_release(&cluster->domain, task);
255 }
256}
257
258#ifdef CONFIG_SCHED_CPU_AFFINITY
259static cpu_entry_t* cedf_get_nearest_available_cpu(
260 cedf_domain_t *cluster, cpu_entry_t *start)
261{
262 cpu_entry_t *affinity;
263
264 get_nearest_available_cpu(affinity, start, cedf_cpu_entries,
265#ifdef CONFIG_RELEASE_MASTER
266 cluster->domain.release_master,
267#else
268 NO_CPU,
269#endif
270 cluster->cpu_map);
271
272 /* make sure CPU is in our cluster */
273 if (affinity && cpumask_test_cpu(affinity->cpu, cluster->cpu_map))
274 return(affinity);
275 else
276 return(NULL);
277}
278#endif
279
280
281/* check for any necessary preemptions */
282static void check_for_preemptions(cedf_domain_t *cluster)
283{
284 struct task_struct *task;
285 cpu_entry_t *last;
286
287#ifdef CONFIG_PREFER_LOCAL_LINKING
288 cpu_entry_t *local;
289
290 /* Before linking to other CPUs, check first whether the local CPU is
291 * idle. */
292 local = this_cpu_ptr(&cedf_cpu_entries);
293 task = __peek_ready(&cluster->domain);
294
295 if (task && !local->linked
296#ifdef CONFIG_RELEASE_MASTER
297 && likely(local->cpu != cluster->domain.release_master)
298#endif
299 ) {
300 task = __take_ready(&cluster->domain);
301 TRACE_TASK(task, "linking to local CPU %d to avoid IPI\n", local->cpu);
302 link_task_to_cpu(task, local);
303 preempt(local);
304 }
305#endif
306
307
308 for(last = lowest_prio_cpu(cluster);
309 edf_preemption_needed(&cluster->domain, last->linked);
310 last = lowest_prio_cpu(cluster)) {
311 /* preemption necessary */
312 task = __take_ready(&cluster->domain);
313 TRACE("check_for_preemptions: attempting to link task %d to %d\n",
314 task->pid, last->cpu);
315#ifdef CONFIG_SCHED_CPU_AFFINITY
316 {
317 cpu_entry_t *affinity =
318 cedf_get_nearest_available_cpu(cluster,
319 &per_cpu(cedf_cpu_entries, task_cpu(task)));
320 if(affinity)
321 last = affinity;
322 else if(requeue_preempted_job(last->linked))
323 requeue(last->linked);
324 }
325#else
326 if (requeue_preempted_job(last->linked))
327 requeue(last->linked);
328#endif
329 link_task_to_cpu(task, last);
330 preempt(last);
331 }
332}
333
334/* cedf_job_arrival: task is either resumed or released */
335static noinline void cedf_job_arrival(struct task_struct* task)
336{
337 cedf_domain_t *cluster = task_cpu_cluster(task);
338 BUG_ON(!task);
339
340 requeue(task);
341 check_for_preemptions(cluster);
342}
343
344static void cedf_release_jobs(rt_domain_t* rt, struct bheap* tasks)
345{
346 cedf_domain_t* cluster = container_of(rt, cedf_domain_t, domain);
347 unsigned long flags;
348
349 raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
350
351 __merge_ready(&cluster->domain, tasks);
352 check_for_preemptions(cluster);
353
354 raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
355}
356
357/* caller holds cedf_lock */
358static noinline void current_job_completion(int forced)
359{
360 struct task_struct *t = current;
361
362 sched_trace_task_completion(t, forced);
363
364 TRACE_TASK(t, "job_completion(forced=%d).\n", forced);
365
366 /* set flags */
367 tsk_rt(t)->completed = 0;
368 /* prepare for next period */
369 prepare_for_next_period(t);
370 if (is_early_releasing(t) || is_released(t, litmus_clock()))
371 sched_trace_task_release(t);
372 /* unlink */
373 unlink(t);
374 /* requeue
375 * But don't requeue a blocking task. */
376 if (is_current_running())
377 cedf_job_arrival(t);
378}
379
380/* Getting schedule() right is a bit tricky. schedule() may not make any
381 * assumptions on the state of the current task since it may be called for a
382 * number of reasons. The reasons include a scheduler_tick() determined that it
383 * was necessary, because sys_exit_np() was called, because some Linux
384 * subsystem determined so, or even (in the worst case) because there is a bug
385 * hidden somewhere. Thus, we must take extreme care to determine what the
386 * current state is.
387 *
388 * The CPU could currently be scheduling a task (or not), be linked (or not).
389 *
390 * The following assertions for the scheduled task could hold:
391 *
392 * - !is_running(scheduled) // the job blocks
393 * - scheduled->timeslice == 0 // the job completed (forcefully)
394 * - is_completed() // the job completed (by syscall)
395 * - linked != scheduled // we need to reschedule (for any reason)
396 * - is_np(scheduled) // rescheduling must be delayed,
397 * sys_exit_np must be requested
398 *
399 * Any of these can occur together.
400 */
401static struct task_struct* cedf_schedule(struct task_struct * prev)
402{
403 cpu_entry_t* entry = this_cpu_ptr(&cedf_cpu_entries);
404 cedf_domain_t *cluster = entry->cluster;
405 int out_of_time, sleep, preempt, np, exists, blocks;
406 struct task_struct* next = NULL;
407
408#ifdef CONFIG_RELEASE_MASTER
409 /* Bail out early if we are the release master.
410 * The release master never schedules any real-time tasks.
411 */
412 if (unlikely(cluster->domain.release_master == entry->cpu)) {
413 sched_state_task_picked();
414 return NULL;
415 }
416#endif
417
418 raw_spin_lock(&cluster->cluster_lock);
419
420 /* sanity checking */
421 BUG_ON(entry->scheduled && entry->scheduled != prev);
422 BUG_ON(entry->scheduled && !is_realtime(prev));
423 BUG_ON(is_realtime(prev) && !entry->scheduled);
424
425 /* (0) Determine state */
426 exists = entry->scheduled != NULL;
427 blocks = exists && !is_current_running();
428 out_of_time = exists && budget_enforced(entry->scheduled)
429 && budget_exhausted(entry->scheduled);
430 np = exists && is_np(entry->scheduled);
431 sleep = exists && is_completed(entry->scheduled);
432 preempt = entry->scheduled != entry->linked;
433
434#ifdef WANT_ALL_SCHED_EVENTS
435 TRACE_TASK(prev, "invoked cedf_schedule.\n");
436#endif
437
438 if (exists)
439 TRACE_TASK(prev,
440 "blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
441 "state:%d sig:%d\n",
442 blocks, out_of_time, np, sleep, preempt,
443 prev->state, signal_pending(prev));
444 if (entry->linked && preempt)
445 TRACE_TASK(prev, "will be preempted by %s/%d\n",
446 entry->linked->comm, entry->linked->pid);
447
448
449 /* If a task blocks we have no choice but to reschedule.
450 */
451 if (blocks)
452 unlink(entry->scheduled);
453
454 /* Request a sys_exit_np() call if we would like to preempt but cannot.
455 * We need to make sure to update the link structure anyway in case
456 * that we are still linked. Multiple calls to request_exit_np() don't
457 * hurt.
458 */
459 if (np && (out_of_time || preempt || sleep)) {
460 unlink(entry->scheduled);
461 request_exit_np(entry->scheduled);
462 }
463
464 /* Any task that is preemptable and either exhausts its execution
465 * budget or wants to sleep completes. We may have to reschedule after
466 * this. Don't do a job completion if we block (can't have timers running
467 * for blocked jobs).
468 */
469 if (!np && (out_of_time || sleep))
470 current_job_completion(!sleep);
471
472 /* Link pending task if we became unlinked.
473 */
474 if (!entry->linked)
475 link_task_to_cpu(__take_ready(&cluster->domain), entry);
476
477 /* The final scheduling decision. Do we need to switch for some reason?
478 * If linked is different from scheduled, then select linked as next.
479 */
480 if ((!np || blocks) &&
481 entry->linked != entry->scheduled) {
482 /* Schedule a linked job? */
483 if (entry->linked) {
484 entry->linked->rt_param.scheduled_on = entry->cpu;
485 next = entry->linked;
486 }
487 if (entry->scheduled) {
488 /* not gonna be scheduled soon */
489 entry->scheduled->rt_param.scheduled_on = NO_CPU;
490 TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
491 }
492 } else
493 /* Only override Linux scheduler if we have a real-time task
494 * scheduled that needs to continue.
495 */
496 if (exists)
497 next = prev;
498
499 sched_state_task_picked();
500 raw_spin_unlock(&cluster->cluster_lock);
501
502#ifdef WANT_ALL_SCHED_EVENTS
503 TRACE("cedf_lock released, next=0x%p\n", next);
504
505 if (next)
506 TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
507 else if (exists && !next)
508 TRACE("becomes idle at %llu.\n", litmus_clock());
509#endif
510
511
512 return next;
513}
514
515
516/* _finish_switch - we just finished the switch away from prev
517 */
518static void cedf_finish_switch(struct task_struct *prev)
519{
520 cpu_entry_t* entry = this_cpu_ptr(&cedf_cpu_entries);
521
522 entry->scheduled = is_realtime(current) ? current : NULL;
523#ifdef WANT_ALL_SCHED_EVENTS
524 TRACE_TASK(prev, "switched away from\n");
525#endif
526}
527
528
529/* Prepare a task for running in RT mode
530 */
531static void cedf_task_new(struct task_struct * t, int on_rq, int is_scheduled)
532{
533 unsigned long flags;
534 cpu_entry_t* entry;
535 cedf_domain_t* cluster;
536
537 TRACE("gsn edf: task new %d\n", t->pid);
538
539 /* the cluster doesn't change even if t is scheduled */
540 cluster = task_cpu_cluster(t);
541
542 raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
543
544 /* setup job params */
545 release_at(t, litmus_clock());
546
547 if (is_scheduled) {
548 entry = &per_cpu(cedf_cpu_entries, task_cpu(t));
549 BUG_ON(entry->scheduled);
550
551#ifdef CONFIG_RELEASE_MASTER
552 if (entry->cpu != cluster->domain.release_master) {
553#endif
554 entry->scheduled = t;
555 tsk_rt(t)->scheduled_on = task_cpu(t);
556#ifdef CONFIG_RELEASE_MASTER
557 } else {
558 /* do not schedule on release master */
559 preempt(entry); /* force resched */
560 tsk_rt(t)->scheduled_on = NO_CPU;
561 }
562#endif
563 } else {
564 t->rt_param.scheduled_on = NO_CPU;
565 }
566 t->rt_param.linked_on = NO_CPU;
567
568 if (on_rq || is_scheduled)
569 cedf_job_arrival(t);
570 raw_spin_unlock_irqrestore(&(cluster->cluster_lock), flags);
571}
572
573static void cedf_task_wake_up(struct task_struct *task)
574{
575 unsigned long flags;
576 lt_t now;
577 cedf_domain_t *cluster;
578
579 TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
580
581 cluster = task_cpu_cluster(task);
582
583 raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
584 now = litmus_clock();
585 if (is_sporadic(task) && is_tardy(task, now)) {
586 inferred_sporadic_job_release_at(task, now);
587 }
588 cedf_job_arrival(task);
589 raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
590}
591
592static void cedf_task_block(struct task_struct *t)
593{
594 unsigned long flags;
595 cedf_domain_t *cluster;
596
597 TRACE_TASK(t, "block at %llu\n", litmus_clock());
598
599 cluster = task_cpu_cluster(t);
600
601 /* unlink if necessary */
602 raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
603 unlink(t);
604 raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
605
606 BUG_ON(!is_realtime(t));
607}
608
609
610static void cedf_task_exit(struct task_struct * t)
611{
612 unsigned long flags;
613 cedf_domain_t *cluster = task_cpu_cluster(t);
614
615 /* unlink if necessary */
616 raw_spin_lock_irqsave(&cluster->cluster_lock, flags);
617 unlink(t);
618 if (tsk_rt(t)->scheduled_on != NO_CPU) {
619 cpu_entry_t *cpu;
620 cpu = &per_cpu(cedf_cpu_entries, tsk_rt(t)->scheduled_on);
621 cpu->scheduled = NULL;
622 tsk_rt(t)->scheduled_on = NO_CPU;
623 }
624 raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags);
625
626 BUG_ON(!is_realtime(t));
627 TRACE_TASK(t, "RIP\n");
628}
629
630static long cedf_admit_task(struct task_struct* tsk)
631{
632 return (remote_cluster(task_cpu(tsk)) == task_cpu_cluster(tsk)) ?
633 0 : -EINVAL;
634}
635
636/* total number of cluster */
637static int num_clusters;
638/* we do not support cluster of different sizes */
639static unsigned int cluster_size;
640
641#ifdef VERBOSE_INIT
642static void print_cluster_topology(cpumask_var_t mask, int cpu)
643{
644 printk(KERN_INFO "CPU = %d, shared cpu(s) = %*pbl\n", cpu,
645 cpumask_pr_args(mask));
646
647}
648#endif
649
650static int clusters_allocated = 0;
651
652static void cleanup_cedf(void)
653{
654 int i;
655
656 if (clusters_allocated) {
657 for (i = 0; i < num_clusters; i++) {
658 kfree(cedf[i].cpus);
659 kfree(cedf[i].heap_node);
660 free_cpumask_var(cedf[i].cpu_map);
661 }
662
663 kfree(cedf);
664 }
665}
666
667static struct domain_proc_info cedf_domain_proc_info;
668static long cedf_get_domain_proc_info(struct domain_proc_info **ret)
669{
670 *ret = &cedf_domain_proc_info;
671 return 0;
672}
673
674static void cedf_setup_domain_proc(void)
675{
676 int i, cpu, domain;
677#ifdef CONFIG_RELEASE_MASTER
678 int release_master = atomic_read(&release_master_cpu);
679 /* skip over the domain with the release master if cluster size is 1 */
680 int skip_domain = (1 == cluster_size && release_master != NO_CPU) ?
681 release_master : NO_CPU;
682#else
683 int release_master = NO_CPU;
684 int skip_domain = NO_CPU;
685#endif
686 int num_rt_cpus = num_online_cpus() - (release_master != NO_CPU);
687 int num_rt_domains = num_clusters - (skip_domain != NO_CPU);
688 struct cd_mapping *map;
689
690 memset(&cedf_domain_proc_info, 0, sizeof(cedf_domain_proc_info));
691 init_domain_proc_info(&cedf_domain_proc_info, num_rt_cpus, num_rt_domains);
692 cedf_domain_proc_info.num_cpus = num_rt_cpus;
693 cedf_domain_proc_info.num_domains = num_rt_domains;
694
695 for (cpu = 0, i = 0; cpu < num_online_cpus(); ++cpu) {
696 if (cpu == release_master)
697 continue;
698 map = &cedf_domain_proc_info.cpu_to_domains[i];
699 /* pointer math to figure out the domain index */
700 domain = remote_cluster(cpu) - cedf;
701 map->id = cpu;
702 cpumask_set_cpu(domain, map->mask);
703 ++i;
704 }
705
706 for (domain = 0, i = 0; domain < num_clusters; ++domain) {
707 if (domain == skip_domain)
708 continue;
709 map = &cedf_domain_proc_info.domain_to_cpus[i];
710 map->id = i;
711 cpumask_copy(map->mask, cedf[domain].cpu_map);
712 ++i;
713 }
714}
715
716static long cedf_activate_plugin(void)
717{
718 int i, j, cpu, ccpu, cpu_count;
719 cpu_entry_t *entry;
720
721 cpumask_var_t mask;
722 int chk = 0;
723
724 /* de-allocate old clusters, if any */
725 cleanup_cedf();
726
727 printk(KERN_INFO "C-EDF: Activate Plugin, cluster configuration = %d\n",
728 cluster_config);
729
730 /* need to get cluster_size first */
731 if(!zalloc_cpumask_var(&mask, GFP_ATOMIC))
732 return -ENOMEM;
733
734 if (cluster_config == GLOBAL_CLUSTER) {
735 cluster_size = num_online_cpus();
736 } else {
737 chk = get_shared_cpu_map(mask, 0, cluster_config);
738 if (chk) {
739 /* if chk != 0 then it is the max allowed index */
740 printk(KERN_INFO "C-EDF: Cluster configuration = %d "
741 "is not supported on this hardware.\n",
742 cluster_config);
743 /* User should notice that the configuration failed, so
744 * let's bail out. */
745 return -EINVAL;
746 }
747
748 cluster_size = cpumask_weight(mask);
749 }
750
751 if ((num_online_cpus() % cluster_size) != 0) {
752 /* this can't be right, some cpus are left out */
753 printk(KERN_ERR "C-EDF: Trying to group %d cpus in %d!\n",
754 num_online_cpus(), cluster_size);
755 return -1;
756 }
757
758 num_clusters = num_online_cpus() / cluster_size;
759 printk(KERN_INFO "C-EDF: %d cluster(s) of size = %d\n",
760 num_clusters, cluster_size);
761
762 /* initialize clusters */
763 cedf = kmalloc(num_clusters * sizeof(cedf_domain_t), GFP_ATOMIC);
764 for (i = 0; i < num_clusters; i++) {
765
766 cedf[i].cpus = kmalloc(cluster_size * sizeof(cpu_entry_t),
767 GFP_ATOMIC);
768 cedf[i].heap_node = kmalloc(
769 cluster_size * sizeof(struct bheap_node),
770 GFP_ATOMIC);
771 bheap_init(&(cedf[i].cpu_heap));
772 edf_domain_init(&(cedf[i].domain), NULL, cedf_release_jobs);
773
774 if(!zalloc_cpumask_var(&cedf[i].cpu_map, GFP_ATOMIC))
775 return -ENOMEM;
776#ifdef CONFIG_RELEASE_MASTER
777 cedf[i].domain.release_master = atomic_read(&release_master_cpu);
778#endif
779 }
780
781 /* cycle through cluster and add cpus to them */
782 for (i = 0; i < num_clusters; i++) {
783
784 for_each_online_cpu(cpu) {
785 /* check if the cpu is already in a cluster */
786 for (j = 0; j < num_clusters; j++)
787 if (cpumask_test_cpu(cpu, cedf[j].cpu_map))
788 break;
789 /* if it is in a cluster go to next cpu */
790 if (j < num_clusters &&
791 cpumask_test_cpu(cpu, cedf[j].cpu_map))
792 continue;
793
794 /* this cpu isn't in any cluster */
795 /* get the shared cpus */
796 if (unlikely(cluster_config == GLOBAL_CLUSTER))
797 cpumask_copy(mask, cpu_online_mask);
798 else
799 get_shared_cpu_map(mask, cpu, cluster_config);
800
801 cpumask_copy(cedf[i].cpu_map, mask);
802#ifdef VERBOSE_INIT
803 print_cluster_topology(mask, cpu);
804#endif
805 /* add cpus to current cluster and init cpu_entry_t */
806 cpu_count = 0;
807 for_each_cpu(ccpu, cedf[i].cpu_map) {
808
809 entry = &per_cpu(cedf_cpu_entries, ccpu);
810 cedf[i].cpus[cpu_count] = entry;
811 atomic_set(&entry->will_schedule, 0);
812 entry->cpu = ccpu;
813 entry->cluster = &cedf[i];
814 entry->hn = &(cedf[i].heap_node[cpu_count]);
815 bheap_node_init(&entry->hn, entry);
816
817 cpu_count++;
818
819 entry->linked = NULL;
820 entry->scheduled = NULL;
821#ifdef CONFIG_RELEASE_MASTER
822 /* only add CPUs that should schedule jobs */
823 if (entry->cpu != entry->cluster->domain.release_master)
824#endif
825 update_cpu_position(entry);
826 }
827 /* done with this cluster */
828 break;
829 }
830 }
831
832 clusters_allocated = 1;
833 free_cpumask_var(mask);
834
835 cedf_setup_domain_proc();
836
837 return 0;
838}
839
840static long cedf_deactivate_plugin(void)
841{
842 destroy_domain_proc_info(&cedf_domain_proc_info);
843 return 0;
844}
845
846/* Plugin object */
847static struct sched_plugin cedf_plugin __cacheline_aligned_in_smp = {
848 .plugin_name = "C-EDF",
849 .finish_switch = cedf_finish_switch,
850 .task_new = cedf_task_new,
851 .complete_job = complete_job,
852 .task_exit = cedf_task_exit,
853 .schedule = cedf_schedule,
854 .task_wake_up = cedf_task_wake_up,
855 .task_block = cedf_task_block,
856 .admit_task = cedf_admit_task,
857 .activate_plugin = cedf_activate_plugin,
858 .deactivate_plugin = cedf_deactivate_plugin,
859 .get_domain_proc_info = cedf_get_domain_proc_info,
860};
861
862static struct proc_dir_entry *cluster_file = NULL, *cedf_dir = NULL;
863
864static int __init init_cedf(void)
865{
866 int err, fs;
867
868 err = register_sched_plugin(&cedf_plugin);
869 if (!err) {
870 fs = make_plugin_proc_dir(&cedf_plugin, &cedf_dir);
871 if (!fs)
872 cluster_file = create_cluster_file(cedf_dir, &cluster_config);
873 else
874 printk(KERN_ERR "Could not allocate C-EDF procfs dir.\n");
875 }
876 return err;
877}
878
879static void clean_cedf(void)
880{
881 cleanup_cedf();
882 if (cluster_file)
883 remove_proc_entry("cluster", cedf_dir);
884 if (cedf_dir)
885 remove_plugin_proc_dir(&cedf_plugin);
886}
887
888module_init(init_cedf);
889module_exit(clean_cedf);