aboutsummaryrefslogtreecommitdiffstats
path: root/lib/rhashtable.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/rhashtable.c')
-rw-r--r--lib/rhashtable.c1025
1 files changed, 364 insertions, 661 deletions
diff --git a/lib/rhashtable.c b/lib/rhashtable.c
index b5344ef4c684..b28df4019ade 100644
--- a/lib/rhashtable.c
+++ b/lib/rhashtable.c
@@ -1,13 +1,13 @@
1/* 1/*
2 * Resizable, Scalable, Concurrent Hash Table 2 * Resizable, Scalable, Concurrent Hash Table
3 * 3 *
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
4 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> 5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> 6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
6 * 7 *
7 * Based on the following paper:
8 * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
9 *
10 * Code partially derived from nft_hash 8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
11 * 11 *
12 * This program is free software; you can redistribute it and/or modify 12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as 13 * it under the terms of the GNU General Public License version 2 as
@@ -27,121 +27,18 @@
27#include <linux/err.h> 27#include <linux/err.h>
28 28
29#define HASH_DEFAULT_SIZE 64UL 29#define HASH_DEFAULT_SIZE 64UL
30#define HASH_MIN_SIZE 4UL 30#define HASH_MIN_SIZE 4U
31#define BUCKET_LOCKS_PER_CPU 128UL 31#define BUCKET_LOCKS_PER_CPU 128UL
32 32
33/* Base bits plus 1 bit for nulls marker */ 33static u32 head_hashfn(struct rhashtable *ht,
34#define HASH_RESERVED_SPACE (RHT_BASE_BITS + 1)
35
36enum {
37 RHT_LOCK_NORMAL,
38 RHT_LOCK_NESTED,
39};
40
41/* The bucket lock is selected based on the hash and protects mutations
42 * on a group of hash buckets.
43 *
44 * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
45 * a single lock always covers both buckets which may both contains
46 * entries which link to the same bucket of the old table during resizing.
47 * This allows to simplify the locking as locking the bucket in both
48 * tables during resize always guarantee protection.
49 *
50 * IMPORTANT: When holding the bucket lock of both the old and new table
51 * during expansions and shrinking, the old bucket lock must always be
52 * acquired first.
53 */
54static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
55{
56 return &tbl->locks[hash & tbl->locks_mask];
57}
58
59static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
60{
61 return (void *) he - ht->p.head_offset;
62}
63
64static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
65{
66 return hash & (tbl->size - 1);
67}
68
69static u32 obj_raw_hashfn(const struct rhashtable *ht, const void *ptr)
70{
71 u32 hash;
72
73 if (unlikely(!ht->p.key_len))
74 hash = ht->p.obj_hashfn(ptr, ht->p.hash_rnd);
75 else
76 hash = ht->p.hashfn(ptr + ht->p.key_offset, ht->p.key_len,
77 ht->p.hash_rnd);
78
79 return hash >> HASH_RESERVED_SPACE;
80}
81
82static u32 key_hashfn(struct rhashtable *ht, const void *key, u32 len)
83{
84 return ht->p.hashfn(key, len, ht->p.hash_rnd) >> HASH_RESERVED_SPACE;
85}
86
87static u32 head_hashfn(const struct rhashtable *ht,
88 const struct bucket_table *tbl, 34 const struct bucket_table *tbl,
89 const struct rhash_head *he) 35 const struct rhash_head *he)
90{ 36{
91 return rht_bucket_index(tbl, obj_raw_hashfn(ht, rht_obj(ht, he))); 37 return rht_head_hashfn(ht, tbl, he, ht->p);
92} 38}
93 39
94#ifdef CONFIG_PROVE_LOCKING 40#ifdef CONFIG_PROVE_LOCKING
95static void debug_dump_buckets(const struct rhashtable *ht,
96 const struct bucket_table *tbl)
97{
98 struct rhash_head *he;
99 unsigned int i, hash;
100
101 for (i = 0; i < tbl->size; i++) {
102 pr_warn(" [Bucket %d] ", i);
103 rht_for_each_rcu(he, tbl, i) {
104 hash = head_hashfn(ht, tbl, he);
105 pr_cont("[hash = %#x, lock = %p] ",
106 hash, bucket_lock(tbl, hash));
107 }
108 pr_cont("\n");
109 }
110
111}
112
113static void debug_dump_table(struct rhashtable *ht,
114 const struct bucket_table *tbl,
115 unsigned int hash)
116{
117 struct bucket_table *old_tbl, *future_tbl;
118
119 pr_emerg("BUG: lock for hash %#x in table %p not held\n",
120 hash, tbl);
121
122 rcu_read_lock();
123 future_tbl = rht_dereference_rcu(ht->future_tbl, ht);
124 old_tbl = rht_dereference_rcu(ht->tbl, ht);
125 if (future_tbl != old_tbl) {
126 pr_warn("Future table %p (size: %zd)\n",
127 future_tbl, future_tbl->size);
128 debug_dump_buckets(ht, future_tbl);
129 }
130
131 pr_warn("Table %p (size: %zd)\n", old_tbl, old_tbl->size);
132 debug_dump_buckets(ht, old_tbl);
133
134 rcu_read_unlock();
135}
136
137#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) 41#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
138#define ASSERT_BUCKET_LOCK(HT, TBL, HASH) \
139 do { \
140 if (unlikely(!lockdep_rht_bucket_is_held(TBL, HASH))) { \
141 debug_dump_table(HT, TBL, HASH); \
142 BUG(); \
143 } \
144 } while (0)
145 42
146int lockdep_rht_mutex_is_held(struct rhashtable *ht) 43int lockdep_rht_mutex_is_held(struct rhashtable *ht)
147{ 44{
@@ -151,30 +48,18 @@ EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
151 48
152int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) 49int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
153{ 50{
154 spinlock_t *lock = bucket_lock(tbl, hash); 51 spinlock_t *lock = rht_bucket_lock(tbl, hash);
155 52
156 return (debug_locks) ? lockdep_is_held(lock) : 1; 53 return (debug_locks) ? lockdep_is_held(lock) : 1;
157} 54}
158EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); 55EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
159#else 56#else
160#define ASSERT_RHT_MUTEX(HT) 57#define ASSERT_RHT_MUTEX(HT)
161#define ASSERT_BUCKET_LOCK(HT, TBL, HASH)
162#endif 58#endif
163 59
164 60
165static struct rhash_head __rcu **bucket_tail(struct bucket_table *tbl, u32 n) 61static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
166{ 62 gfp_t gfp)
167 struct rhash_head __rcu **pprev;
168
169 for (pprev = &tbl->buckets[n];
170 !rht_is_a_nulls(rht_dereference_bucket(*pprev, tbl, n));
171 pprev = &rht_dereference_bucket(*pprev, tbl, n)->next)
172 ;
173
174 return pprev;
175}
176
177static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
178{ 63{
179 unsigned int i, size; 64 unsigned int i, size;
180#if defined(CONFIG_PROVE_LOCKING) 65#if defined(CONFIG_PROVE_LOCKING)
@@ -191,12 +76,13 @@ static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
191 76
192 if (sizeof(spinlock_t) != 0) { 77 if (sizeof(spinlock_t) != 0) {
193#ifdef CONFIG_NUMA 78#ifdef CONFIG_NUMA
194 if (size * sizeof(spinlock_t) > PAGE_SIZE) 79 if (size * sizeof(spinlock_t) > PAGE_SIZE &&
80 gfp == GFP_KERNEL)
195 tbl->locks = vmalloc(size * sizeof(spinlock_t)); 81 tbl->locks = vmalloc(size * sizeof(spinlock_t));
196 else 82 else
197#endif 83#endif
198 tbl->locks = kmalloc_array(size, sizeof(spinlock_t), 84 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
199 GFP_KERNEL); 85 gfp);
200 if (!tbl->locks) 86 if (!tbl->locks)
201 return -ENOMEM; 87 return -ENOMEM;
202 for (i = 0; i < size; i++) 88 for (i = 0; i < size; i++)
@@ -215,153 +101,181 @@ static void bucket_table_free(const struct bucket_table *tbl)
215 kvfree(tbl); 101 kvfree(tbl);
216} 102}
217 103
104static void bucket_table_free_rcu(struct rcu_head *head)
105{
106 bucket_table_free(container_of(head, struct bucket_table, rcu));
107}
108
218static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, 109static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
219 size_t nbuckets) 110 size_t nbuckets,
111 gfp_t gfp)
220{ 112{
221 struct bucket_table *tbl = NULL; 113 struct bucket_table *tbl = NULL;
222 size_t size; 114 size_t size;
223 int i; 115 int i;
224 116
225 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]); 117 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
226 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) 118 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
227 tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY); 119 gfp != GFP_KERNEL)
228 if (tbl == NULL) 120 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
121 if (tbl == NULL && gfp == GFP_KERNEL)
229 tbl = vzalloc(size); 122 tbl = vzalloc(size);
230 if (tbl == NULL) 123 if (tbl == NULL)
231 return NULL; 124 return NULL;
232 125
233 tbl->size = nbuckets; 126 tbl->size = nbuckets;
234 127
235 if (alloc_bucket_locks(ht, tbl) < 0) { 128 if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
236 bucket_table_free(tbl); 129 bucket_table_free(tbl);
237 return NULL; 130 return NULL;
238 } 131 }
239 132
133 INIT_LIST_HEAD(&tbl->walkers);
134
135 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
136
240 for (i = 0; i < nbuckets; i++) 137 for (i = 0; i < nbuckets; i++)
241 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i); 138 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
242 139
243 return tbl; 140 return tbl;
244} 141}
245 142
246/** 143static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
247 * rht_grow_above_75 - returns true if nelems > 0.75 * table-size 144 struct bucket_table *tbl)
248 * @ht: hash table
249 * @new_size: new table size
250 */
251static bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size)
252{ 145{
253 /* Expand table when exceeding 75% load */ 146 struct bucket_table *new_tbl;
254 return atomic_read(&ht->nelems) > (new_size / 4 * 3) &&
255 (!ht->p.max_shift || atomic_read(&ht->shift) < ht->p.max_shift);
256}
257 147
258/** 148 do {
259 * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size 149 new_tbl = tbl;
260 * @ht: hash table 150 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
261 * @new_size: new table size 151 } while (tbl);
262 */
263static bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size)
264{
265 /* Shrink table beneath 30% load */
266 return atomic_read(&ht->nelems) < (new_size * 3 / 10) &&
267 (atomic_read(&ht->shift) > ht->p.min_shift);
268}
269 152
270static void lock_buckets(struct bucket_table *new_tbl, 153 return new_tbl;
271 struct bucket_table *old_tbl, unsigned int hash)
272 __acquires(old_bucket_lock)
273{
274 spin_lock_bh(bucket_lock(old_tbl, hash));
275 if (new_tbl != old_tbl)
276 spin_lock_bh_nested(bucket_lock(new_tbl, hash),
277 RHT_LOCK_NESTED);
278} 154}
279 155
280static void unlock_buckets(struct bucket_table *new_tbl, 156static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
281 struct bucket_table *old_tbl, unsigned int hash)
282 __releases(old_bucket_lock)
283{ 157{
284 if (new_tbl != old_tbl) 158 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
285 spin_unlock_bh(bucket_lock(new_tbl, hash)); 159 struct bucket_table *new_tbl = rhashtable_last_table(ht,
286 spin_unlock_bh(bucket_lock(old_tbl, hash)); 160 rht_dereference_rcu(old_tbl->future_tbl, ht));
161 struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
162 int err = -ENOENT;
163 struct rhash_head *head, *next, *entry;
164 spinlock_t *new_bucket_lock;
165 unsigned int new_hash;
166
167 rht_for_each(entry, old_tbl, old_hash) {
168 err = 0;
169 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
170
171 if (rht_is_a_nulls(next))
172 break;
173
174 pprev = &entry->next;
175 }
176
177 if (err)
178 goto out;
179
180 new_hash = head_hashfn(ht, new_tbl, entry);
181
182 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
183
184 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
185 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
186 new_tbl, new_hash);
187
188 if (rht_is_a_nulls(head))
189 INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
190 else
191 RCU_INIT_POINTER(entry->next, head);
192
193 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
194 spin_unlock(new_bucket_lock);
195
196 rcu_assign_pointer(*pprev, next);
197
198out:
199 return err;
287} 200}
288 201
289/** 202static void rhashtable_rehash_chain(struct rhashtable *ht,
290 * Unlink entries on bucket which hash to different bucket. 203 unsigned int old_hash)
291 *
292 * Returns true if no more work needs to be performed on the bucket.
293 */
294static bool hashtable_chain_unzip(struct rhashtable *ht,
295 const struct bucket_table *new_tbl,
296 struct bucket_table *old_tbl,
297 size_t old_hash)
298{ 204{
299 struct rhash_head *he, *p, *next; 205 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
300 unsigned int new_hash, new_hash2; 206 spinlock_t *old_bucket_lock;
301
302 ASSERT_BUCKET_LOCK(ht, old_tbl, old_hash);
303 207
304 /* Old bucket empty, no work needed. */ 208 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
305 p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
306 old_hash);
307 if (rht_is_a_nulls(p))
308 return false;
309 209
310 new_hash = head_hashfn(ht, new_tbl, p); 210 spin_lock_bh(old_bucket_lock);
311 ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash); 211 while (!rhashtable_rehash_one(ht, old_hash))
212 ;
213 old_tbl->rehash++;
214 spin_unlock_bh(old_bucket_lock);
215}
312 216
313 /* Advance the old bucket pointer one or more times until it 217static int rhashtable_rehash_attach(struct rhashtable *ht,
314 * reaches a node that doesn't hash to the same bucket as the 218 struct bucket_table *old_tbl,
315 * previous node p. Call the previous node p; 219 struct bucket_table *new_tbl)
316 */ 220{
317 rht_for_each_continue(he, p->next, old_tbl, old_hash) { 221 /* Protect future_tbl using the first bucket lock. */
318 new_hash2 = head_hashfn(ht, new_tbl, he); 222 spin_lock_bh(old_tbl->locks);
319 ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash2);
320 223
321 if (new_hash != new_hash2) 224 /* Did somebody beat us to it? */
322 break; 225 if (rcu_access_pointer(old_tbl->future_tbl)) {
323 p = he; 226 spin_unlock_bh(old_tbl->locks);
227 return -EEXIST;
324 } 228 }
325 rcu_assign_pointer(old_tbl->buckets[old_hash], p->next);
326 229
327 /* Find the subsequent node which does hash to the same 230 /* Make insertions go into the new, empty table right away. Deletions
328 * bucket as node P, or NULL if no such node exists. 231 * and lookups will be attempted in both tables until we synchronize.
329 */ 232 */
330 INIT_RHT_NULLS_HEAD(next, ht, old_hash); 233 rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
331 if (!rht_is_a_nulls(he)) {
332 rht_for_each_continue(he, he->next, old_tbl, old_hash) {
333 if (head_hashfn(ht, new_tbl, he) == new_hash) {
334 next = he;
335 break;
336 }
337 }
338 }
339 234
340 /* Set p's next pointer to that subsequent node pointer, 235 /* Ensure the new table is visible to readers. */
341 * bypassing the nodes which do not hash to p's bucket 236 smp_wmb();
342 */
343 rcu_assign_pointer(p->next, next);
344 237
345 p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl, 238 spin_unlock_bh(old_tbl->locks);
346 old_hash);
347 239
348 return !rht_is_a_nulls(p); 240 return 0;
349} 241}
350 242
351static void link_old_to_new(struct rhashtable *ht, struct bucket_table *new_tbl, 243static int rhashtable_rehash_table(struct rhashtable *ht)
352 unsigned int new_hash, struct rhash_head *entry)
353{ 244{
354 ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash); 245 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
246 struct bucket_table *new_tbl;
247 struct rhashtable_walker *walker;
248 unsigned int old_hash;
249
250 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
251 if (!new_tbl)
252 return 0;
253
254 for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
255 rhashtable_rehash_chain(ht, old_hash);
256
257 /* Publish the new table pointer. */
258 rcu_assign_pointer(ht->tbl, new_tbl);
259
260 spin_lock(&ht->lock);
261 list_for_each_entry(walker, &old_tbl->walkers, list)
262 walker->tbl = NULL;
263 spin_unlock(&ht->lock);
264
265 /* Wait for readers. All new readers will see the new
266 * table, and thus no references to the old table will
267 * remain.
268 */
269 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
355 270
356 rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), entry); 271 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
357} 272}
358 273
359/** 274/**
360 * rhashtable_expand - Expand hash table while allowing concurrent lookups 275 * rhashtable_expand - Expand hash table while allowing concurrent lookups
361 * @ht: the hash table to expand 276 * @ht: the hash table to expand
362 * 277 *
363 * A secondary bucket array is allocated and the hash entries are migrated 278 * A secondary bucket array is allocated and the hash entries are migrated.
364 * while keeping them on both lists until the end of the RCU grace period.
365 * 279 *
366 * This function may only be called in a context where it is safe to call 280 * This function may only be called in a context where it is safe to call
367 * synchronize_rcu(), e.g. not within a rcu_read_lock() section. 281 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
@@ -372,89 +286,32 @@ static void link_old_to_new(struct rhashtable *ht, struct bucket_table *new_tbl,
372 * It is valid to have concurrent insertions and deletions protected by per 286 * It is valid to have concurrent insertions and deletions protected by per
373 * bucket locks or concurrent RCU protected lookups and traversals. 287 * bucket locks or concurrent RCU protected lookups and traversals.
374 */ 288 */
375int rhashtable_expand(struct rhashtable *ht) 289static int rhashtable_expand(struct rhashtable *ht)
376{ 290{
377 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); 291 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
378 struct rhash_head *he; 292 int err;
379 unsigned int new_hash, old_hash;
380 bool complete = false;
381 293
382 ASSERT_RHT_MUTEX(ht); 294 ASSERT_RHT_MUTEX(ht);
383 295
384 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2); 296 old_tbl = rhashtable_last_table(ht, old_tbl);
297
298 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
385 if (new_tbl == NULL) 299 if (new_tbl == NULL)
386 return -ENOMEM; 300 return -ENOMEM;
387 301
388 atomic_inc(&ht->shift); 302 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
389 303 if (err)
390 /* Make insertions go into the new, empty table right away. Deletions 304 bucket_table_free(new_tbl);
391 * and lookups will be attempted in both tables until we synchronize.
392 * The synchronize_rcu() guarantees for the new table to be picked up
393 * so no new additions go into the old table while we relink.
394 */
395 rcu_assign_pointer(ht->future_tbl, new_tbl);
396 synchronize_rcu();
397
398 /* For each new bucket, search the corresponding old bucket for the
399 * first entry that hashes to the new bucket, and link the end of
400 * newly formed bucket chain (containing entries added to future
401 * table) to that entry. Since all the entries which will end up in
402 * the new bucket appear in the same old bucket, this constructs an
403 * entirely valid new hash table, but with multiple buckets
404 * "zipped" together into a single imprecise chain.
405 */
406 for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
407 old_hash = rht_bucket_index(old_tbl, new_hash);
408 lock_buckets(new_tbl, old_tbl, new_hash);
409 rht_for_each(he, old_tbl, old_hash) {
410 if (head_hashfn(ht, new_tbl, he) == new_hash) {
411 link_old_to_new(ht, new_tbl, new_hash, he);
412 break;
413 }
414 }
415 unlock_buckets(new_tbl, old_tbl, new_hash);
416 cond_resched();
417 }
418 305
419 /* Unzip interleaved hash chains */ 306 return err;
420 while (!complete && !ht->being_destroyed) {
421 /* Wait for readers. All new readers will see the new
422 * table, and thus no references to the old table will
423 * remain.
424 */
425 synchronize_rcu();
426
427 /* For each bucket in the old table (each of which
428 * contains items from multiple buckets of the new
429 * table): ...
430 */
431 complete = true;
432 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
433 lock_buckets(new_tbl, old_tbl, old_hash);
434
435 if (hashtable_chain_unzip(ht, new_tbl, old_tbl,
436 old_hash))
437 complete = false;
438
439 unlock_buckets(new_tbl, old_tbl, old_hash);
440 cond_resched();
441 }
442 }
443
444 rcu_assign_pointer(ht->tbl, new_tbl);
445 synchronize_rcu();
446
447 bucket_table_free(old_tbl);
448 return 0;
449} 307}
450EXPORT_SYMBOL_GPL(rhashtable_expand);
451 308
452/** 309/**
453 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups 310 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
454 * @ht: the hash table to shrink 311 * @ht: the hash table to shrink
455 * 312 *
456 * This function may only be called in a context where it is safe to call 313 * This function shrinks the hash table to fit, i.e., the smallest
457 * synchronize_rcu(), e.g. not within a rcu_read_lock() section. 314 * size would not cause it to expand right away automatically.
458 * 315 *
459 * The caller must ensure that no concurrent resizing occurs by holding 316 * The caller must ensure that no concurrent resizing occurs by holding
460 * ht->mutex. 317 * ht->mutex.
@@ -465,395 +322,151 @@ EXPORT_SYMBOL_GPL(rhashtable_expand);
465 * It is valid to have concurrent insertions and deletions protected by per 322 * It is valid to have concurrent insertions and deletions protected by per
466 * bucket locks or concurrent RCU protected lookups and traversals. 323 * bucket locks or concurrent RCU protected lookups and traversals.
467 */ 324 */
468int rhashtable_shrink(struct rhashtable *ht) 325static int rhashtable_shrink(struct rhashtable *ht)
469{ 326{
470 struct bucket_table *new_tbl, *tbl = rht_dereference(ht->tbl, ht); 327 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
471 unsigned int new_hash; 328 unsigned int size;
329 int err;
472 330
473 ASSERT_RHT_MUTEX(ht); 331 ASSERT_RHT_MUTEX(ht);
474 332
475 new_tbl = bucket_table_alloc(ht, tbl->size / 2); 333 size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
476 if (new_tbl == NULL) 334 if (size < ht->p.min_size)
477 return -ENOMEM; 335 size = ht->p.min_size;
478
479 rcu_assign_pointer(ht->future_tbl, new_tbl);
480 synchronize_rcu();
481 336
482 /* Link the first entry in the old bucket to the end of the 337 if (old_tbl->size <= size)
483 * bucket in the new table. As entries are concurrently being 338 return 0;
484 * added to the new table, lock down the new bucket. As we
485 * always divide the size in half when shrinking, each bucket
486 * in the new table maps to exactly two buckets in the old
487 * table.
488 */
489 for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
490 lock_buckets(new_tbl, tbl, new_hash);
491
492 rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
493 tbl->buckets[new_hash]);
494 ASSERT_BUCKET_LOCK(ht, tbl, new_hash + new_tbl->size);
495 rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
496 tbl->buckets[new_hash + new_tbl->size]);
497 339
498 unlock_buckets(new_tbl, tbl, new_hash); 340 if (rht_dereference(old_tbl->future_tbl, ht))
499 cond_resched(); 341 return -EEXIST;
500 }
501
502 /* Publish the new, valid hash table */
503 rcu_assign_pointer(ht->tbl, new_tbl);
504 atomic_dec(&ht->shift);
505 342
506 /* Wait for readers. No new readers will have references to the 343 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
507 * old hash table. 344 if (new_tbl == NULL)
508 */ 345 return -ENOMEM;
509 synchronize_rcu();
510 346
511 bucket_table_free(tbl); 347 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
348 if (err)
349 bucket_table_free(new_tbl);
512 350
513 return 0; 351 return err;
514} 352}
515EXPORT_SYMBOL_GPL(rhashtable_shrink);
516 353
517static void rht_deferred_worker(struct work_struct *work) 354static void rht_deferred_worker(struct work_struct *work)
518{ 355{
519 struct rhashtable *ht; 356 struct rhashtable *ht;
520 struct bucket_table *tbl; 357 struct bucket_table *tbl;
521 struct rhashtable_walker *walker; 358 int err = 0;
522 359
523 ht = container_of(work, struct rhashtable, run_work); 360 ht = container_of(work, struct rhashtable, run_work);
524 mutex_lock(&ht->mutex); 361 mutex_lock(&ht->mutex);
525 if (ht->being_destroyed)
526 goto unlock;
527 362
528 tbl = rht_dereference(ht->tbl, ht); 363 tbl = rht_dereference(ht->tbl, ht);
364 tbl = rhashtable_last_table(ht, tbl);
529 365
530 list_for_each_entry(walker, &ht->walkers, list) 366 if (rht_grow_above_75(ht, tbl))
531 walker->resize = true;
532
533 if (rht_grow_above_75(ht, tbl->size))
534 rhashtable_expand(ht); 367 rhashtable_expand(ht);
535 else if (rht_shrink_below_30(ht, tbl->size)) 368 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
536 rhashtable_shrink(ht); 369 rhashtable_shrink(ht);
537unlock:
538 mutex_unlock(&ht->mutex);
539}
540
541static void __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
542 struct bucket_table *tbl,
543 const struct bucket_table *old_tbl, u32 hash)
544{
545 bool no_resize_running = tbl == old_tbl;
546 struct rhash_head *head;
547
548 hash = rht_bucket_index(tbl, hash);
549 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
550 370
551 ASSERT_BUCKET_LOCK(ht, tbl, hash); 371 err = rhashtable_rehash_table(ht);
552 372
553 if (rht_is_a_nulls(head)) 373 mutex_unlock(&ht->mutex);
554 INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
555 else
556 RCU_INIT_POINTER(obj->next, head);
557
558 rcu_assign_pointer(tbl->buckets[hash], obj);
559 374
560 atomic_inc(&ht->nelems); 375 if (err)
561 if (no_resize_running && rht_grow_above_75(ht, tbl->size))
562 schedule_work(&ht->run_work); 376 schedule_work(&ht->run_work);
563} 377}
564 378
565/** 379static bool rhashtable_check_elasticity(struct rhashtable *ht,
566 * rhashtable_insert - insert object into hash table 380 struct bucket_table *tbl,
567 * @ht: hash table 381 unsigned int hash)
568 * @obj: pointer to hash head inside object
569 *
570 * Will take a per bucket spinlock to protect against mutual mutations
571 * on the same bucket. Multiple insertions may occur in parallel unless
572 * they map to the same bucket lock.
573 *
574 * It is safe to call this function from atomic context.
575 *
576 * Will trigger an automatic deferred table resizing if the size grows
577 * beyond the watermark indicated by grow_decision() which can be passed
578 * to rhashtable_init().
579 */
580void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
581{ 382{
582 struct bucket_table *tbl, *old_tbl; 383 unsigned int elasticity = ht->elasticity;
583 unsigned hash; 384 struct rhash_head *head;
584
585 rcu_read_lock();
586
587 tbl = rht_dereference_rcu(ht->future_tbl, ht);
588 old_tbl = rht_dereference_rcu(ht->tbl, ht);
589 hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
590 385
591 lock_buckets(tbl, old_tbl, hash); 386 rht_for_each(head, tbl, hash)
592 __rhashtable_insert(ht, obj, tbl, old_tbl, hash); 387 if (!--elasticity)
593 unlock_buckets(tbl, old_tbl, hash); 388 return true;
594 389
595 rcu_read_unlock(); 390 return false;
596} 391}
597EXPORT_SYMBOL_GPL(rhashtable_insert);
598 392
599/** 393int rhashtable_insert_rehash(struct rhashtable *ht)
600 * rhashtable_remove - remove object from hash table
601 * @ht: hash table
602 * @obj: pointer to hash head inside object
603 *
604 * Since the hash chain is single linked, the removal operation needs to
605 * walk the bucket chain upon removal. The removal operation is thus
606 * considerable slow if the hash table is not correctly sized.
607 *
608 * Will automatically shrink the table via rhashtable_expand() if the
609 * shrink_decision function specified at rhashtable_init() returns true.
610 *
611 * The caller must ensure that no concurrent table mutations occur. It is
612 * however valid to have concurrent lookups if they are RCU protected.
613 */
614bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
615{ 394{
616 struct bucket_table *tbl, *new_tbl, *old_tbl; 395 struct bucket_table *old_tbl;
617 struct rhash_head __rcu **pprev; 396 struct bucket_table *new_tbl;
618 struct rhash_head *he, *he2; 397 struct bucket_table *tbl;
619 unsigned int hash, new_hash; 398 unsigned int size;
620 bool ret = false; 399 int err;
621 400
622 rcu_read_lock();
623 old_tbl = rht_dereference_rcu(ht->tbl, ht); 401 old_tbl = rht_dereference_rcu(ht->tbl, ht);
624 tbl = new_tbl = rht_dereference_rcu(ht->future_tbl, ht); 402 tbl = rhashtable_last_table(ht, old_tbl);
625 new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
626
627 lock_buckets(new_tbl, old_tbl, new_hash);
628restart:
629 hash = rht_bucket_index(tbl, new_hash);
630 pprev = &tbl->buckets[hash];
631 rht_for_each(he, tbl, hash) {
632 if (he != obj) {
633 pprev = &he->next;
634 continue;
635 }
636
637 ASSERT_BUCKET_LOCK(ht, tbl, hash);
638
639 if (old_tbl->size > new_tbl->size && tbl == old_tbl &&
640 !rht_is_a_nulls(obj->next) &&
641 head_hashfn(ht, tbl, obj->next) != hash) {
642 rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
643 } else if (unlikely(old_tbl->size < new_tbl->size && tbl == new_tbl)) {
644 rht_for_each_continue(he2, obj->next, tbl, hash) {
645 if (head_hashfn(ht, tbl, he2) == hash) {
646 rcu_assign_pointer(*pprev, he2);
647 goto found;
648 }
649 }
650
651 rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
652 } else {
653 rcu_assign_pointer(*pprev, obj->next);
654 }
655 403
656found: 404 size = tbl->size;
657 ret = true;
658 break;
659 }
660
661 /* The entry may be linked in either 'tbl', 'future_tbl', or both.
662 * 'future_tbl' only exists for a short period of time during
663 * resizing. Thus traversing both is fine and the added cost is
664 * very rare.
665 */
666 if (tbl != old_tbl) {
667 tbl = old_tbl;
668 goto restart;
669 }
670
671 unlock_buckets(new_tbl, old_tbl, new_hash);
672 405
673 if (ret) { 406 if (rht_grow_above_75(ht, tbl))
674 bool no_resize_running = new_tbl == old_tbl; 407 size *= 2;
408 /* Do not schedule more than one rehash */
409 else if (old_tbl != tbl)
410 return -EBUSY;
675 411
676 atomic_dec(&ht->nelems); 412 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
677 if (no_resize_running && rht_shrink_below_30(ht, new_tbl->size)) 413 if (new_tbl == NULL) {
678 schedule_work(&ht->run_work); 414 /* Schedule async resize/rehash to try allocation
415 * non-atomic context.
416 */
417 schedule_work(&ht->run_work);
418 return -ENOMEM;
679 } 419 }
680 420
681 rcu_read_unlock(); 421 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
682 422 if (err) {
683 return ret; 423 bucket_table_free(new_tbl);
684} 424 if (err == -EEXIST)
685EXPORT_SYMBOL_GPL(rhashtable_remove); 425 err = 0;
686 426 } else
687struct rhashtable_compare_arg { 427 schedule_work(&ht->run_work);
688 struct rhashtable *ht;
689 const void *key;
690};
691
692static bool rhashtable_compare(void *ptr, void *arg)
693{
694 struct rhashtable_compare_arg *x = arg;
695 struct rhashtable *ht = x->ht;
696 428
697 return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len); 429 return err;
698} 430}
431EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
699 432
700/** 433int rhashtable_insert_slow(struct rhashtable *ht, const void *key,
701 * rhashtable_lookup - lookup key in hash table 434 struct rhash_head *obj,
702 * @ht: hash table 435 struct bucket_table *tbl)
703 * @key: pointer to key
704 *
705 * Computes the hash value for the key and traverses the bucket chain looking
706 * for a entry with an identical key. The first matching entry is returned.
707 *
708 * This lookup function may only be used for fixed key hash table (key_len
709 * parameter set). It will BUG() if used inappropriately.
710 *
711 * Lookups may occur in parallel with hashtable mutations and resizing.
712 */
713void *rhashtable_lookup(struct rhashtable *ht, const void *key)
714{ 436{
715 struct rhashtable_compare_arg arg = { 437 struct rhash_head *head;
716 .ht = ht, 438 unsigned int hash;
717 .key = key, 439 int err;
718 };
719
720 BUG_ON(!ht->p.key_len);
721
722 return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
723}
724EXPORT_SYMBOL_GPL(rhashtable_lookup);
725
726/**
727 * rhashtable_lookup_compare - search hash table with compare function
728 * @ht: hash table
729 * @key: the pointer to the key
730 * @compare: compare function, must return true on match
731 * @arg: argument passed on to compare function
732 *
733 * Traverses the bucket chain behind the provided hash value and calls the
734 * specified compare function for each entry.
735 *
736 * Lookups may occur in parallel with hashtable mutations and resizing.
737 *
738 * Returns the first entry on which the compare function returned true.
739 */
740void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
741 bool (*compare)(void *, void *), void *arg)
742{
743 const struct bucket_table *tbl, *old_tbl;
744 struct rhash_head *he;
745 u32 hash;
746
747 rcu_read_lock();
748
749 old_tbl = rht_dereference_rcu(ht->tbl, ht);
750 tbl = rht_dereference_rcu(ht->future_tbl, ht);
751 hash = key_hashfn(ht, key, ht->p.key_len);
752restart:
753 rht_for_each_rcu(he, tbl, rht_bucket_index(tbl, hash)) {
754 if (!compare(rht_obj(ht, he), arg))
755 continue;
756 rcu_read_unlock();
757 return rht_obj(ht, he);
758 }
759
760 if (unlikely(tbl != old_tbl)) {
761 tbl = old_tbl;
762 goto restart;
763 }
764 rcu_read_unlock();
765
766 return NULL;
767}
768EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);
769
770/**
771 * rhashtable_lookup_insert - lookup and insert object into hash table
772 * @ht: hash table
773 * @obj: pointer to hash head inside object
774 *
775 * Locks down the bucket chain in both the old and new table if a resize
776 * is in progress to ensure that writers can't remove from the old table
777 * and can't insert to the new table during the atomic operation of search
778 * and insertion. Searches for duplicates in both the old and new table if
779 * a resize is in progress.
780 *
781 * This lookup function may only be used for fixed key hash table (key_len
782 * parameter set). It will BUG() if used inappropriately.
783 *
784 * It is safe to call this function from atomic context.
785 *
786 * Will trigger an automatic deferred table resizing if the size grows
787 * beyond the watermark indicated by grow_decision() which can be passed
788 * to rhashtable_init().
789 */
790bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
791{
792 struct rhashtable_compare_arg arg = {
793 .ht = ht,
794 .key = rht_obj(ht, obj) + ht->p.key_offset,
795 };
796 440
797 BUG_ON(!ht->p.key_len); 441 tbl = rhashtable_last_table(ht, tbl);
442 hash = head_hashfn(ht, tbl, obj);
443 spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
798 444
799 return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare, 445 err = -EEXIST;
800 &arg); 446 if (key && rhashtable_lookup_fast(ht, key, ht->p))
801} 447 goto exit;
802EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);
803 448
804/** 449 err = -EAGAIN;
805 * rhashtable_lookup_compare_insert - search and insert object to hash table 450 if (rhashtable_check_elasticity(ht, tbl, hash) ||
806 * with compare function 451 rht_grow_above_100(ht, tbl))
807 * @ht: hash table 452 goto exit;
808 * @obj: pointer to hash head inside object
809 * @compare: compare function, must return true on match
810 * @arg: argument passed on to compare function
811 *
812 * Locks down the bucket chain in both the old and new table if a resize
813 * is in progress to ensure that writers can't remove from the old table
814 * and can't insert to the new table during the atomic operation of search
815 * and insertion. Searches for duplicates in both the old and new table if
816 * a resize is in progress.
817 *
818 * Lookups may occur in parallel with hashtable mutations and resizing.
819 *
820 * Will trigger an automatic deferred table resizing if the size grows
821 * beyond the watermark indicated by grow_decision() which can be passed
822 * to rhashtable_init().
823 */
824bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
825 struct rhash_head *obj,
826 bool (*compare)(void *, void *),
827 void *arg)
828{
829 struct bucket_table *new_tbl, *old_tbl;
830 u32 new_hash;
831 bool success = true;
832 453
833 BUG_ON(!ht->p.key_len); 454 err = 0;
834 455
835 rcu_read_lock(); 456 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
836 old_tbl = rht_dereference_rcu(ht->tbl, ht);
837 new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
838 new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
839 457
840 lock_buckets(new_tbl, old_tbl, new_hash); 458 RCU_INIT_POINTER(obj->next, head);
841 459
842 if (rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset, 460 rcu_assign_pointer(tbl->buckets[hash], obj);
843 compare, arg)) {
844 success = false;
845 goto exit;
846 }
847 461
848 __rhashtable_insert(ht, obj, new_tbl, old_tbl, new_hash); 462 atomic_inc(&ht->nelems);
849 463
850exit: 464exit:
851 unlock_buckets(new_tbl, old_tbl, new_hash); 465 spin_unlock(rht_bucket_lock(tbl, hash));
852 rcu_read_unlock();
853 466
854 return success; 467 return err;
855} 468}
856EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert); 469EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
857 470
858/** 471/**
859 * rhashtable_walk_init - Initialise an iterator 472 * rhashtable_walk_init - Initialise an iterator
@@ -887,11 +500,9 @@ int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
887 if (!iter->walker) 500 if (!iter->walker)
888 return -ENOMEM; 501 return -ENOMEM;
889 502
890 INIT_LIST_HEAD(&iter->walker->list);
891 iter->walker->resize = false;
892
893 mutex_lock(&ht->mutex); 503 mutex_lock(&ht->mutex);
894 list_add(&iter->walker->list, &ht->walkers); 504 iter->walker->tbl = rht_dereference(ht->tbl, ht);
505 list_add(&iter->walker->list, &iter->walker->tbl->walkers);
895 mutex_unlock(&ht->mutex); 506 mutex_unlock(&ht->mutex);
896 507
897 return 0; 508 return 0;
@@ -907,7 +518,8 @@ EXPORT_SYMBOL_GPL(rhashtable_walk_init);
907void rhashtable_walk_exit(struct rhashtable_iter *iter) 518void rhashtable_walk_exit(struct rhashtable_iter *iter)
908{ 519{
909 mutex_lock(&iter->ht->mutex); 520 mutex_lock(&iter->ht->mutex);
910 list_del(&iter->walker->list); 521 if (iter->walker->tbl)
522 list_del(&iter->walker->list);
911 mutex_unlock(&iter->ht->mutex); 523 mutex_unlock(&iter->ht->mutex);
912 kfree(iter->walker); 524 kfree(iter->walker);
913} 525}
@@ -928,13 +540,21 @@ EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
928 * by calling rhashtable_walk_next. 540 * by calling rhashtable_walk_next.
929 */ 541 */
930int rhashtable_walk_start(struct rhashtable_iter *iter) 542int rhashtable_walk_start(struct rhashtable_iter *iter)
543 __acquires(RCU)
931{ 544{
545 struct rhashtable *ht = iter->ht;
546
547 mutex_lock(&ht->mutex);
548
549 if (iter->walker->tbl)
550 list_del(&iter->walker->list);
551
932 rcu_read_lock(); 552 rcu_read_lock();
933 553
934 if (iter->walker->resize) { 554 mutex_unlock(&ht->mutex);
935 iter->slot = 0; 555
936 iter->skip = 0; 556 if (!iter->walker->tbl) {
937 iter->walker->resize = false; 557 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
938 return -EAGAIN; 558 return -EAGAIN;
939 } 559 }
940 560
@@ -956,13 +576,11 @@ EXPORT_SYMBOL_GPL(rhashtable_walk_start);
956 */ 576 */
957void *rhashtable_walk_next(struct rhashtable_iter *iter) 577void *rhashtable_walk_next(struct rhashtable_iter *iter)
958{ 578{
959 const struct bucket_table *tbl; 579 struct bucket_table *tbl = iter->walker->tbl;
960 struct rhashtable *ht = iter->ht; 580 struct rhashtable *ht = iter->ht;
961 struct rhash_head *p = iter->p; 581 struct rhash_head *p = iter->p;
962 void *obj = NULL; 582 void *obj = NULL;
963 583
964 tbl = rht_dereference_rcu(ht->tbl, ht);
965
966 if (p) { 584 if (p) {
967 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot); 585 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
968 goto next; 586 goto next;
@@ -988,17 +606,20 @@ next:
988 iter->skip = 0; 606 iter->skip = 0;
989 } 607 }
990 608
991 iter->p = NULL; 609 /* Ensure we see any new tables. */
610 smp_rmb();
992 611
993out: 612 iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
994 if (iter->walker->resize) { 613 if (iter->walker->tbl) {
995 iter->p = NULL;
996 iter->slot = 0; 614 iter->slot = 0;
997 iter->skip = 0; 615 iter->skip = 0;
998 iter->walker->resize = false;
999 return ERR_PTR(-EAGAIN); 616 return ERR_PTR(-EAGAIN);
1000 } 617 }
1001 618
619 iter->p = NULL;
620
621out:
622
1002 return obj; 623 return obj;
1003} 624}
1004EXPORT_SYMBOL_GPL(rhashtable_walk_next); 625EXPORT_SYMBOL_GPL(rhashtable_walk_next);
@@ -1010,16 +631,39 @@ EXPORT_SYMBOL_GPL(rhashtable_walk_next);
1010 * Finish a hash table walk. 631 * Finish a hash table walk.
1011 */ 632 */
1012void rhashtable_walk_stop(struct rhashtable_iter *iter) 633void rhashtable_walk_stop(struct rhashtable_iter *iter)
634 __releases(RCU)
1013{ 635{
1014 rcu_read_unlock(); 636 struct rhashtable *ht;
637 struct bucket_table *tbl = iter->walker->tbl;
638
639 if (!tbl)
640 goto out;
641
642 ht = iter->ht;
643
644 spin_lock(&ht->lock);
645 if (tbl->rehash < tbl->size)
646 list_add(&iter->walker->list, &tbl->walkers);
647 else
648 iter->walker->tbl = NULL;
649 spin_unlock(&ht->lock);
650
1015 iter->p = NULL; 651 iter->p = NULL;
652
653out:
654 rcu_read_unlock();
1016} 655}
1017EXPORT_SYMBOL_GPL(rhashtable_walk_stop); 656EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
1018 657
1019static size_t rounded_hashtable_size(struct rhashtable_params *params) 658static size_t rounded_hashtable_size(const struct rhashtable_params *params)
1020{ 659{
1021 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 660 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
1022 1UL << params->min_shift); 661 (unsigned long)params->min_size);
662}
663
664static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
665{
666 return jhash2(key, length, seed);
1023} 667}
1024 668
1025/** 669/**
@@ -1052,7 +696,7 @@ static size_t rounded_hashtable_size(struct rhashtable_params *params)
1052 * struct rhash_head node; 696 * struct rhash_head node;
1053 * }; 697 * };
1054 * 698 *
1055 * u32 my_hash_fn(const void *data, u32 seed) 699 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1056 * { 700 * {
1057 * struct test_obj *obj = data; 701 * struct test_obj *obj = data;
1058 * 702 *
@@ -1065,47 +709,74 @@ static size_t rounded_hashtable_size(struct rhashtable_params *params)
1065 * .obj_hashfn = my_hash_fn, 709 * .obj_hashfn = my_hash_fn,
1066 * }; 710 * };
1067 */ 711 */
1068int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params) 712int rhashtable_init(struct rhashtable *ht,
713 const struct rhashtable_params *params)
1069{ 714{
1070 struct bucket_table *tbl; 715 struct bucket_table *tbl;
1071 size_t size; 716 size_t size;
1072 717
1073 size = HASH_DEFAULT_SIZE; 718 size = HASH_DEFAULT_SIZE;
1074 719
1075 if ((params->key_len && !params->hashfn) || 720 if ((!params->key_len && !params->obj_hashfn) ||
1076 (!params->key_len && !params->obj_hashfn)) 721 (params->obj_hashfn && !params->obj_cmpfn))
1077 return -EINVAL; 722 return -EINVAL;
1078 723
1079 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT)) 724 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
1080 return -EINVAL; 725 return -EINVAL;
1081 726
1082 params->min_shift = max_t(size_t, params->min_shift,
1083 ilog2(HASH_MIN_SIZE));
1084
1085 if (params->nelem_hint) 727 if (params->nelem_hint)
1086 size = rounded_hashtable_size(params); 728 size = rounded_hashtable_size(params);
1087 729
1088 memset(ht, 0, sizeof(*ht)); 730 memset(ht, 0, sizeof(*ht));
1089 mutex_init(&ht->mutex); 731 mutex_init(&ht->mutex);
732 spin_lock_init(&ht->lock);
1090 memcpy(&ht->p, params, sizeof(*params)); 733 memcpy(&ht->p, params, sizeof(*params));
1091 INIT_LIST_HEAD(&ht->walkers); 734
735 if (params->min_size)
736 ht->p.min_size = roundup_pow_of_two(params->min_size);
737
738 if (params->max_size)
739 ht->p.max_size = rounddown_pow_of_two(params->max_size);
740
741 ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
742
743 /* The maximum (not average) chain length grows with the
744 * size of the hash table, at a rate of (log N)/(log log N).
745 * The value of 16 is selected so that even if the hash
746 * table grew to 2^32 you would not expect the maximum
747 * chain length to exceed it unless we are under attack
748 * (or extremely unlucky).
749 *
750 * As this limit is only to detect attacks, we don't need
751 * to set it to a lower value as you'd need the chain
752 * length to vastly exceed 16 to have any real effect
753 * on the system.
754 */
755 if (!params->insecure_elasticity)
756 ht->elasticity = 16;
1092 757
1093 if (params->locks_mul) 758 if (params->locks_mul)
1094 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul); 759 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1095 else 760 else
1096 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU; 761 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1097 762
1098 tbl = bucket_table_alloc(ht, size); 763 ht->key_len = ht->p.key_len;
764 if (!params->hashfn) {
765 ht->p.hashfn = jhash;
766
767 if (!(ht->key_len & (sizeof(u32) - 1))) {
768 ht->key_len /= sizeof(u32);
769 ht->p.hashfn = rhashtable_jhash2;
770 }
771 }
772
773 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1099 if (tbl == NULL) 774 if (tbl == NULL)
1100 return -ENOMEM; 775 return -ENOMEM;
1101 776
1102 atomic_set(&ht->nelems, 0); 777 atomic_set(&ht->nelems, 0);
1103 atomic_set(&ht->shift, ilog2(tbl->size));
1104 RCU_INIT_POINTER(ht->tbl, tbl);
1105 RCU_INIT_POINTER(ht->future_tbl, tbl);
1106 778
1107 if (!ht->p.hash_rnd) 779 RCU_INIT_POINTER(ht->tbl, tbl);
1108 get_random_bytes(&ht->p.hash_rnd, sizeof(ht->p.hash_rnd));
1109 780
1110 INIT_WORK(&ht->run_work, rht_deferred_worker); 781 INIT_WORK(&ht->run_work, rht_deferred_worker);
1111 782
@@ -1114,21 +785,53 @@ int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
1114EXPORT_SYMBOL_GPL(rhashtable_init); 785EXPORT_SYMBOL_GPL(rhashtable_init);
1115 786
1116/** 787/**
1117 * rhashtable_destroy - destroy hash table 788 * rhashtable_free_and_destroy - free elements and destroy hash table
1118 * @ht: the hash table to destroy 789 * @ht: the hash table to destroy
790 * @free_fn: callback to release resources of element
791 * @arg: pointer passed to free_fn
792 *
793 * Stops an eventual async resize. If defined, invokes free_fn for each
794 * element to releasal resources. Please note that RCU protected
795 * readers may still be accessing the elements. Releasing of resources
796 * must occur in a compatible manner. Then frees the bucket array.
1119 * 797 *
1120 * Frees the bucket array. This function is not rcu safe, therefore the caller 798 * This function will eventually sleep to wait for an async resize
1121 * has to make sure that no resizing may happen by unpublishing the hashtable 799 * to complete. The caller is responsible that no further write operations
1122 * and waiting for the quiescent cycle before releasing the bucket array. 800 * occurs in parallel.
1123 */ 801 */
1124void rhashtable_destroy(struct rhashtable *ht) 802void rhashtable_free_and_destroy(struct rhashtable *ht,
803 void (*free_fn)(void *ptr, void *arg),
804 void *arg)
1125{ 805{
1126 ht->being_destroyed = true; 806 const struct bucket_table *tbl;
807 unsigned int i;
1127 808
1128 cancel_work_sync(&ht->run_work); 809 cancel_work_sync(&ht->run_work);
1129 810
1130 mutex_lock(&ht->mutex); 811 mutex_lock(&ht->mutex);
1131 bucket_table_free(rht_dereference(ht->tbl, ht)); 812 tbl = rht_dereference(ht->tbl, ht);
813 if (free_fn) {
814 for (i = 0; i < tbl->size; i++) {
815 struct rhash_head *pos, *next;
816
817 for (pos = rht_dereference(tbl->buckets[i], ht),
818 next = !rht_is_a_nulls(pos) ?
819 rht_dereference(pos->next, ht) : NULL;
820 !rht_is_a_nulls(pos);
821 pos = next,
822 next = !rht_is_a_nulls(pos) ?
823 rht_dereference(pos->next, ht) : NULL)
824 free_fn(rht_obj(ht, pos), arg);
825 }
826 }
827
828 bucket_table_free(tbl);
1132 mutex_unlock(&ht->mutex); 829 mutex_unlock(&ht->mutex);
1133} 830}
831EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
832
833void rhashtable_destroy(struct rhashtable *ht)
834{
835 return rhashtable_free_and_destroy(ht, NULL, NULL);
836}
1134EXPORT_SYMBOL_GPL(rhashtable_destroy); 837EXPORT_SYMBOL_GPL(rhashtable_destroy);