diff options
Diffstat (limited to 'lib/idr.c')
| -rw-r--r-- | lib/idr.c | 1242 | 
1 files changed, 284 insertions, 958 deletions
| @@ -1,1068 +1,409 @@ | |||
| 1 | /* | 1 | #include <linux/bitmap.h> | 
| 2 | * 2002-10-18 written by Jim Houston jim.houston@ccur.com | ||
| 3 | * Copyright (C) 2002 by Concurrent Computer Corporation | ||
| 4 | * Distributed under the GNU GPL license version 2. | ||
| 5 | * | ||
| 6 | * Modified by George Anzinger to reuse immediately and to use | ||
| 7 | * find bit instructions. Also removed _irq on spinlocks. | ||
| 8 | * | ||
| 9 | * Modified by Nadia Derbey to make it RCU safe. | ||
| 10 | * | ||
| 11 | * Small id to pointer translation service. | ||
| 12 | * | ||
| 13 | * It uses a radix tree like structure as a sparse array indexed | ||
| 14 | * by the id to obtain the pointer. The bitmap makes allocating | ||
| 15 | * a new id quick. | ||
| 16 | * | ||
| 17 | * You call it to allocate an id (an int) an associate with that id a | ||
| 18 | * pointer or what ever, we treat it as a (void *). You can pass this | ||
| 19 | * id to a user for him to pass back at a later time. You then pass | ||
| 20 | * that id to this code and it returns your pointer. | ||
| 21 | */ | ||
| 22 | |||
| 23 | #ifndef TEST // to test in user space... | ||
| 24 | #include <linux/slab.h> | ||
| 25 | #include <linux/init.h> | ||
| 26 | #include <linux/export.h> | 2 | #include <linux/export.h> | 
| 27 | #endif | ||
| 28 | #include <linux/err.h> | ||
| 29 | #include <linux/string.h> | ||
| 30 | #include <linux/idr.h> | 3 | #include <linux/idr.h> | 
| 4 | #include <linux/slab.h> | ||
| 31 | #include <linux/spinlock.h> | 5 | #include <linux/spinlock.h> | 
| 32 | #include <linux/percpu.h> | ||
| 33 | |||
| 34 | #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1) | ||
| 35 | #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT) | ||
| 36 | |||
| 37 | /* Leave the possibility of an incomplete final layer */ | ||
| 38 | #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS) | ||
| 39 | 6 | ||
| 40 | /* Number of id_layer structs to leave in free list */ | 7 | DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap); | 
| 41 | #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2) | ||
| 42 | |||
| 43 | static struct kmem_cache *idr_layer_cache; | ||
| 44 | static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head); | ||
| 45 | static DEFINE_PER_CPU(int, idr_preload_cnt); | ||
| 46 | static DEFINE_SPINLOCK(simple_ida_lock); | 8 | static DEFINE_SPINLOCK(simple_ida_lock); | 
| 47 | 9 | ||
| 48 | /* the maximum ID which can be allocated given idr->layers */ | ||
| 49 | static int idr_max(int layers) | ||
| 50 | { | ||
| 51 | int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT); | ||
| 52 | |||
| 53 | return (1 << bits) - 1; | ||
| 54 | } | ||
| 55 | |||
| 56 | /* | ||
| 57 | * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is | ||
| 58 | * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and | ||
| 59 | * so on. | ||
| 60 | */ | ||
| 61 | static int idr_layer_prefix_mask(int layer) | ||
| 62 | { | ||
| 63 | return ~idr_max(layer + 1); | ||
| 64 | } | ||
| 65 | |||
| 66 | static struct idr_layer *get_from_free_list(struct idr *idp) | ||
| 67 | { | ||
| 68 | struct idr_layer *p; | ||
| 69 | unsigned long flags; | ||
| 70 | |||
| 71 | spin_lock_irqsave(&idp->lock, flags); | ||
| 72 | if ((p = idp->id_free)) { | ||
| 73 | idp->id_free = p->ary[0]; | ||
| 74 | idp->id_free_cnt--; | ||
| 75 | p->ary[0] = NULL; | ||
| 76 | } | ||
| 77 | spin_unlock_irqrestore(&idp->lock, flags); | ||
| 78 | return(p); | ||
| 79 | } | ||
| 80 | |||
| 81 | /** | 10 | /** | 
| 82 | * idr_layer_alloc - allocate a new idr_layer | 11 | * idr_alloc - allocate an id | 
| 83 | * @gfp_mask: allocation mask | 12 | * @idr: idr handle | 
| 84 | * @layer_idr: optional idr to allocate from | ||
| 85 | * | ||
| 86 | * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch | ||
| 87 | * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch | ||
| 88 | * an idr_layer from @idr->id_free. | ||
| 89 | * | ||
| 90 | * @layer_idr is to maintain backward compatibility with the old alloc | ||
| 91 | * interface - idr_pre_get() and idr_get_new*() - and will be removed | ||
| 92 | * together with per-pool preload buffer. | ||
| 93 | */ | ||
| 94 | static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr) | ||
| 95 | { | ||
| 96 | struct idr_layer *new; | ||
| 97 | |||
| 98 | /* this is the old path, bypass to get_from_free_list() */ | ||
| 99 | if (layer_idr) | ||
| 100 | return get_from_free_list(layer_idr); | ||
| 101 | |||
| 102 | /* | ||
| 103 | * Try to allocate directly from kmem_cache. We want to try this | ||
| 104 | * before preload buffer; otherwise, non-preloading idr_alloc() | ||
| 105 | * users will end up taking advantage of preloading ones. As the | ||
| 106 | * following is allowed to fail for preloaded cases, suppress | ||
| 107 | * warning this time. | ||
| 108 | */ | ||
| 109 | new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN); | ||
| 110 | if (new) | ||
| 111 | return new; | ||
| 112 | |||
| 113 | /* | ||
| 114 | * Try to fetch one from the per-cpu preload buffer if in process | ||
| 115 | * context. See idr_preload() for details. | ||
| 116 | */ | ||
| 117 | if (!in_interrupt()) { | ||
| 118 | preempt_disable(); | ||
| 119 | new = __this_cpu_read(idr_preload_head); | ||
| 120 | if (new) { | ||
| 121 | __this_cpu_write(idr_preload_head, new->ary[0]); | ||
| 122 | __this_cpu_dec(idr_preload_cnt); | ||
| 123 | new->ary[0] = NULL; | ||
| 124 | } | ||
| 125 | preempt_enable(); | ||
| 126 | if (new) | ||
| 127 | return new; | ||
| 128 | } | ||
| 129 | |||
| 130 | /* | ||
| 131 | * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so | ||
| 132 | * that memory allocation failure warning is printed as intended. | ||
| 133 | */ | ||
| 134 | return kmem_cache_zalloc(idr_layer_cache, gfp_mask); | ||
| 135 | } | ||
| 136 | |||
| 137 | static void idr_layer_rcu_free(struct rcu_head *head) | ||
| 138 | { | ||
| 139 | struct idr_layer *layer; | ||
| 140 | |||
| 141 | layer = container_of(head, struct idr_layer, rcu_head); | ||
| 142 | kmem_cache_free(idr_layer_cache, layer); | ||
| 143 | } | ||
| 144 | |||
| 145 | static inline void free_layer(struct idr *idr, struct idr_layer *p) | ||
| 146 | { | ||
| 147 | if (idr->hint == p) | ||
| 148 | RCU_INIT_POINTER(idr->hint, NULL); | ||
| 149 | call_rcu(&p->rcu_head, idr_layer_rcu_free); | ||
| 150 | } | ||
| 151 | |||
| 152 | /* only called when idp->lock is held */ | ||
| 153 | static void __move_to_free_list(struct idr *idp, struct idr_layer *p) | ||
| 154 | { | ||
| 155 | p->ary[0] = idp->id_free; | ||
| 156 | idp->id_free = p; | ||
| 157 | idp->id_free_cnt++; | ||
| 158 | } | ||
| 159 | |||
| 160 | static void move_to_free_list(struct idr *idp, struct idr_layer *p) | ||
| 161 | { | ||
| 162 | unsigned long flags; | ||
| 163 | |||
| 164 | /* | ||
| 165 | * Depends on the return element being zeroed. | ||
| 166 | */ | ||
| 167 | spin_lock_irqsave(&idp->lock, flags); | ||
| 168 | __move_to_free_list(idp, p); | ||
| 169 | spin_unlock_irqrestore(&idp->lock, flags); | ||
| 170 | } | ||
| 171 | |||
| 172 | static void idr_mark_full(struct idr_layer **pa, int id) | ||
| 173 | { | ||
| 174 | struct idr_layer *p = pa[0]; | ||
| 175 | int l = 0; | ||
| 176 | |||
| 177 | __set_bit(id & IDR_MASK, p->bitmap); | ||
| 178 | /* | ||
| 179 | * If this layer is full mark the bit in the layer above to | ||
| 180 | * show that this part of the radix tree is full. This may | ||
| 181 | * complete the layer above and require walking up the radix | ||
| 182 | * tree. | ||
| 183 | */ | ||
| 184 | while (bitmap_full(p->bitmap, IDR_SIZE)) { | ||
| 185 | if (!(p = pa[++l])) | ||
| 186 | break; | ||
| 187 | id = id >> IDR_BITS; | ||
| 188 | __set_bit((id & IDR_MASK), p->bitmap); | ||
| 189 | } | ||
| 190 | } | ||
| 191 | |||
| 192 | static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask) | ||
| 193 | { | ||
| 194 | while (idp->id_free_cnt < MAX_IDR_FREE) { | ||
| 195 | struct idr_layer *new; | ||
| 196 | new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); | ||
| 197 | if (new == NULL) | ||
| 198 | return (0); | ||
| 199 | move_to_free_list(idp, new); | ||
| 200 | } | ||
| 201 | return 1; | ||
| 202 | } | ||
| 203 | |||
| 204 | /** | ||
| 205 | * sub_alloc - try to allocate an id without growing the tree depth | ||
| 206 | * @idp: idr handle | ||
| 207 | * @starting_id: id to start search at | ||
| 208 | * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer | ||
| 209 | * @gfp_mask: allocation mask for idr_layer_alloc() | ||
| 210 | * @layer_idr: optional idr passed to idr_layer_alloc() | ||
| 211 | * | ||
| 212 | * Allocate an id in range [@starting_id, INT_MAX] from @idp without | ||
| 213 | * growing its depth. Returns | ||
| 214 | * | ||
| 215 | * the allocated id >= 0 if successful, | ||
| 216 | * -EAGAIN if the tree needs to grow for allocation to succeed, | ||
| 217 | * -ENOSPC if the id space is exhausted, | ||
| 218 | * -ENOMEM if more idr_layers need to be allocated. | ||
| 219 | */ | ||
| 220 | static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa, | ||
| 221 | gfp_t gfp_mask, struct idr *layer_idr) | ||
| 222 | { | ||
| 223 | int n, m, sh; | ||
| 224 | struct idr_layer *p, *new; | ||
| 225 | int l, id, oid; | ||
| 226 | |||
| 227 | id = *starting_id; | ||
| 228 | restart: | ||
| 229 | p = idp->top; | ||
| 230 | l = idp->layers; | ||
| 231 | pa[l--] = NULL; | ||
| 232 | while (1) { | ||
| 233 | /* | ||
| 234 | * We run around this while until we reach the leaf node... | ||
| 235 | */ | ||
| 236 | n = (id >> (IDR_BITS*l)) & IDR_MASK; | ||
| 237 | m = find_next_zero_bit(p->bitmap, IDR_SIZE, n); | ||
| 238 | if (m == IDR_SIZE) { | ||
| 239 | /* no space available go back to previous layer. */ | ||
| 240 | l++; | ||
| 241 | oid = id; | ||
| 242 | id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; | ||
| 243 | |||
| 244 | /* if already at the top layer, we need to grow */ | ||
| 245 | if (id > idr_max(idp->layers)) { | ||
| 246 | *starting_id = id; | ||
| 247 | return -EAGAIN; | ||
| 248 | } | ||
| 249 | p = pa[l]; | ||
| 250 | BUG_ON(!p); | ||
| 251 | |||
| 252 | /* If we need to go up one layer, continue the | ||
| 253 | * loop; otherwise, restart from the top. | ||
| 254 | */ | ||
| 255 | sh = IDR_BITS * (l + 1); | ||
| 256 | if (oid >> sh == id >> sh) | ||
| 257 | continue; | ||
| 258 | else | ||
| 259 | goto restart; | ||
| 260 | } | ||
| 261 | if (m != n) { | ||
| 262 | sh = IDR_BITS*l; | ||
| 263 | id = ((id >> sh) ^ n ^ m) << sh; | ||
| 264 | } | ||
| 265 | if ((id >= MAX_IDR_BIT) || (id < 0)) | ||
| 266 | return -ENOSPC; | ||
| 267 | if (l == 0) | ||
| 268 | break; | ||
| 269 | /* | ||
| 270 | * Create the layer below if it is missing. | ||
| 271 | */ | ||
| 272 | if (!p->ary[m]) { | ||
| 273 | new = idr_layer_alloc(gfp_mask, layer_idr); | ||
| 274 | if (!new) | ||
| 275 | return -ENOMEM; | ||
| 276 | new->layer = l-1; | ||
| 277 | new->prefix = id & idr_layer_prefix_mask(new->layer); | ||
| 278 | rcu_assign_pointer(p->ary[m], new); | ||
| 279 | p->count++; | ||
| 280 | } | ||
| 281 | pa[l--] = p; | ||
| 282 | p = p->ary[m]; | ||
| 283 | } | ||
| 284 | |||
| 285 | pa[l] = p; | ||
| 286 | return id; | ||
| 287 | } | ||
| 288 | |||
| 289 | static int idr_get_empty_slot(struct idr *idp, int starting_id, | ||
| 290 | struct idr_layer **pa, gfp_t gfp_mask, | ||
| 291 | struct idr *layer_idr) | ||
| 292 | { | ||
| 293 | struct idr_layer *p, *new; | ||
| 294 | int layers, v, id; | ||
| 295 | unsigned long flags; | ||
| 296 | |||
| 297 | id = starting_id; | ||
| 298 | build_up: | ||
| 299 | p = idp->top; | ||
| 300 | layers = idp->layers; | ||
| 301 | if (unlikely(!p)) { | ||
| 302 | if (!(p = idr_layer_alloc(gfp_mask, layer_idr))) | ||
| 303 | return -ENOMEM; | ||
| 304 | p->layer = 0; | ||
| 305 | layers = 1; | ||
| 306 | } | ||
| 307 | /* | ||
| 308 | * Add a new layer to the top of the tree if the requested | ||
| 309 | * id is larger than the currently allocated space. | ||
| 310 | */ | ||
| 311 | while (id > idr_max(layers)) { | ||
| 312 | layers++; | ||
| 313 | if (!p->count) { | ||
| 314 | /* special case: if the tree is currently empty, | ||
| 315 | * then we grow the tree by moving the top node | ||
| 316 | * upwards. | ||
| 317 | */ | ||
| 318 | p->layer++; | ||
| 319 | WARN_ON_ONCE(p->prefix); | ||
| 320 | continue; | ||
| 321 | } | ||
| 322 | if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) { | ||
| 323 | /* | ||
| 324 | * The allocation failed. If we built part of | ||
| 325 | * the structure tear it down. | ||
| 326 | */ | ||
| 327 | spin_lock_irqsave(&idp->lock, flags); | ||
| 328 | for (new = p; p && p != idp->top; new = p) { | ||
| 329 | p = p->ary[0]; | ||
| 330 | new->ary[0] = NULL; | ||
| 331 | new->count = 0; | ||
| 332 | bitmap_clear(new->bitmap, 0, IDR_SIZE); | ||
| 333 | __move_to_free_list(idp, new); | ||
| 334 | } | ||
| 335 | spin_unlock_irqrestore(&idp->lock, flags); | ||
| 336 | return -ENOMEM; | ||
| 337 | } | ||
| 338 | new->ary[0] = p; | ||
| 339 | new->count = 1; | ||
| 340 | new->layer = layers-1; | ||
| 341 | new->prefix = id & idr_layer_prefix_mask(new->layer); | ||
| 342 | if (bitmap_full(p->bitmap, IDR_SIZE)) | ||
| 343 | __set_bit(0, new->bitmap); | ||
| 344 | p = new; | ||
| 345 | } | ||
| 346 | rcu_assign_pointer(idp->top, p); | ||
| 347 | idp->layers = layers; | ||
| 348 | v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr); | ||
| 349 | if (v == -EAGAIN) | ||
| 350 | goto build_up; | ||
| 351 | return(v); | ||
| 352 | } | ||
| 353 | |||
| 354 | /* | ||
| 355 | * @id and @pa are from a successful allocation from idr_get_empty_slot(). | ||
| 356 | * Install the user pointer @ptr and mark the slot full. | ||
| 357 | */ | ||
| 358 | static void idr_fill_slot(struct idr *idr, void *ptr, int id, | ||
| 359 | struct idr_layer **pa) | ||
| 360 | { | ||
| 361 | /* update hint used for lookup, cleared from free_layer() */ | ||
| 362 | rcu_assign_pointer(idr->hint, pa[0]); | ||
| 363 | |||
| 364 | rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr); | ||
| 365 | pa[0]->count++; | ||
| 366 | idr_mark_full(pa, id); | ||
| 367 | } | ||
| 368 | |||
| 369 | |||
| 370 | /** | ||
| 371 | * idr_preload - preload for idr_alloc() | ||
| 372 | * @gfp_mask: allocation mask to use for preloading | ||
| 373 | * | ||
| 374 | * Preload per-cpu layer buffer for idr_alloc(). Can only be used from | ||
| 375 | * process context and each idr_preload() invocation should be matched with | ||
| 376 | * idr_preload_end(). Note that preemption is disabled while preloaded. | ||
| 377 | * | ||
| 378 | * The first idr_alloc() in the preloaded section can be treated as if it | ||
| 379 | * were invoked with @gfp_mask used for preloading. This allows using more | ||
| 380 | * permissive allocation masks for idrs protected by spinlocks. | ||
| 381 | * | ||
| 382 | * For example, if idr_alloc() below fails, the failure can be treated as | ||
| 383 | * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT. | ||
| 384 | * | ||
| 385 | * idr_preload(GFP_KERNEL); | ||
| 386 | * spin_lock(lock); | ||
| 387 | * | ||
| 388 | * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT); | ||
| 389 | * | ||
| 390 | * spin_unlock(lock); | ||
| 391 | * idr_preload_end(); | ||
| 392 | * if (id < 0) | ||
| 393 | * error; | ||
| 394 | */ | ||
| 395 | void idr_preload(gfp_t gfp_mask) | ||
| 396 | { | ||
| 397 | /* | ||
| 398 | * Consuming preload buffer from non-process context breaks preload | ||
| 399 | * allocation guarantee. Disallow usage from those contexts. | ||
| 400 | */ | ||
| 401 | WARN_ON_ONCE(in_interrupt()); | ||
| 402 | might_sleep_if(gfpflags_allow_blocking(gfp_mask)); | ||
| 403 | |||
| 404 | preempt_disable(); | ||
| 405 | |||
| 406 | /* | ||
| 407 | * idr_alloc() is likely to succeed w/o full idr_layer buffer and | ||
| 408 | * return value from idr_alloc() needs to be checked for failure | ||
| 409 | * anyway. Silently give up if allocation fails. The caller can | ||
| 410 | * treat failures from idr_alloc() as if idr_alloc() were called | ||
| 411 | * with @gfp_mask which should be enough. | ||
| 412 | */ | ||
| 413 | while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) { | ||
| 414 | struct idr_layer *new; | ||
| 415 | |||
| 416 | preempt_enable(); | ||
| 417 | new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); | ||
| 418 | preempt_disable(); | ||
| 419 | if (!new) | ||
| 420 | break; | ||
| 421 | |||
| 422 | /* link the new one to per-cpu preload list */ | ||
| 423 | new->ary[0] = __this_cpu_read(idr_preload_head); | ||
| 424 | __this_cpu_write(idr_preload_head, new); | ||
| 425 | __this_cpu_inc(idr_preload_cnt); | ||
| 426 | } | ||
| 427 | } | ||
| 428 | EXPORT_SYMBOL(idr_preload); | ||
| 429 | |||
| 430 | /** | ||
| 431 | * idr_alloc - allocate new idr entry | ||
| 432 | * @idr: the (initialized) idr | ||
| 433 | * @ptr: pointer to be associated with the new id | 13 | * @ptr: pointer to be associated with the new id | 
| 434 | * @start: the minimum id (inclusive) | 14 | * @start: the minimum id (inclusive) | 
| 435 | * @end: the maximum id (exclusive, <= 0 for max) | 15 | * @end: the maximum id (exclusive) | 
| 436 | * @gfp_mask: memory allocation flags | 16 | * @gfp: memory allocation flags | 
| 437 | * | 17 | * | 
| 438 | * Allocate an id in [start, end) and associate it with @ptr. If no ID is | 18 | * Allocates an unused ID in the range [start, end). Returns -ENOSPC | 
| 439 | * available in the specified range, returns -ENOSPC. On memory allocation | 19 | * if there are no unused IDs in that range. | 
| 440 | * failure, returns -ENOMEM. | ||
| 441 | * | 20 | * | 
| 442 | * Note that @end is treated as max when <= 0. This is to always allow | 21 | * Note that @end is treated as max when <= 0. This is to always allow | 
| 443 | * using @start + N as @end as long as N is inside integer range. | 22 | * using @start + N as @end as long as N is inside integer range. | 
| 444 | * | 23 | * | 
| 445 | * The user is responsible for exclusively synchronizing all operations | 24 | * Simultaneous modifications to the @idr are not allowed and should be | 
| 446 | * which may modify @idr. However, read-only accesses such as idr_find() | 25 | * prevented by the user, usually with a lock. idr_alloc() may be called | 
| 447 | * or iteration can be performed under RCU read lock provided the user | 26 | * concurrently with read-only accesses to the @idr, such as idr_find() and | 
| 448 | * destroys @ptr in RCU-safe way after removal from idr. | 27 | * idr_for_each_entry(). | 
| 449 | */ | 28 | */ | 
| 450 | int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) | 29 | int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) | 
| 451 | { | 30 | { | 
| 452 | int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */ | 31 | void __rcu **slot; | 
| 453 | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; | 32 | struct radix_tree_iter iter; | 
| 454 | int id; | ||
| 455 | 33 | ||
| 456 | might_sleep_if(gfpflags_allow_blocking(gfp_mask)); | ||
| 457 | |||
| 458 | /* sanity checks */ | ||
| 459 | if (WARN_ON_ONCE(start < 0)) | 34 | if (WARN_ON_ONCE(start < 0)) | 
| 460 | return -EINVAL; | 35 | return -EINVAL; | 
| 461 | if (unlikely(max < start)) | 36 | if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr))) | 
| 462 | return -ENOSPC; | 37 | return -EINVAL; | 
| 463 | 38 | ||
| 464 | /* allocate id */ | 39 | radix_tree_iter_init(&iter, start); | 
| 465 | id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL); | 40 | slot = idr_get_free(&idr->idr_rt, &iter, gfp, end); | 
| 466 | if (unlikely(id < 0)) | 41 | if (IS_ERR(slot)) | 
| 467 | return id; | 42 | return PTR_ERR(slot); | 
| 468 | if (unlikely(id > max)) | ||
| 469 | return -ENOSPC; | ||
| 470 | 43 | ||
| 471 | idr_fill_slot(idr, ptr, id, pa); | 44 | radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr); | 
| 472 | return id; | 45 | radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE); | 
| 46 | return iter.index; | ||
| 473 | } | 47 | } | 
| 474 | EXPORT_SYMBOL_GPL(idr_alloc); | 48 | EXPORT_SYMBOL_GPL(idr_alloc); | 
| 475 | 49 | ||
| 476 | /** | 50 | /** | 
| 477 | * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion | 51 | * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion | 
| 478 | * @idr: the (initialized) idr | 52 | * @idr: idr handle | 
| 479 | * @ptr: pointer to be associated with the new id | 53 | * @ptr: pointer to be associated with the new id | 
| 480 | * @start: the minimum id (inclusive) | 54 | * @start: the minimum id (inclusive) | 
| 481 | * @end: the maximum id (exclusive, <= 0 for max) | 55 | * @end: the maximum id (exclusive) | 
| 482 | * @gfp_mask: memory allocation flags | 56 | * @gfp: memory allocation flags | 
| 483 | * | ||
| 484 | * Essentially the same as idr_alloc, but prefers to allocate progressively | ||
| 485 | * higher ids if it can. If the "cur" counter wraps, then it will start again | ||
| 486 | * at the "start" end of the range and allocate one that has already been used. | ||
| 487 | */ | ||
| 488 | int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, | ||
| 489 | gfp_t gfp_mask) | ||
| 490 | { | ||
| 491 | int id; | ||
| 492 | |||
| 493 | id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask); | ||
| 494 | if (id == -ENOSPC) | ||
| 495 | id = idr_alloc(idr, ptr, start, end, gfp_mask); | ||
| 496 | |||
| 497 | if (likely(id >= 0)) | ||
| 498 | idr->cur = id + 1; | ||
| 499 | return id; | ||
| 500 | } | ||
| 501 | EXPORT_SYMBOL(idr_alloc_cyclic); | ||
| 502 | |||
| 503 | static void idr_remove_warning(int id) | ||
| 504 | { | ||
| 505 | WARN(1, "idr_remove called for id=%d which is not allocated.\n", id); | ||
| 506 | } | ||
| 507 | |||
| 508 | static void sub_remove(struct idr *idp, int shift, int id) | ||
| 509 | { | ||
| 510 | struct idr_layer *p = idp->top; | ||
| 511 | struct idr_layer **pa[MAX_IDR_LEVEL + 1]; | ||
| 512 | struct idr_layer ***paa = &pa[0]; | ||
| 513 | struct idr_layer *to_free; | ||
| 514 | int n; | ||
| 515 | |||
| 516 | *paa = NULL; | ||
| 517 | *++paa = &idp->top; | ||
| 518 | |||
| 519 | while ((shift > 0) && p) { | ||
| 520 | n = (id >> shift) & IDR_MASK; | ||
| 521 | __clear_bit(n, p->bitmap); | ||
| 522 | *++paa = &p->ary[n]; | ||
| 523 | p = p->ary[n]; | ||
| 524 | shift -= IDR_BITS; | ||
| 525 | } | ||
| 526 | n = id & IDR_MASK; | ||
| 527 | if (likely(p != NULL && test_bit(n, p->bitmap))) { | ||
| 528 | __clear_bit(n, p->bitmap); | ||
| 529 | RCU_INIT_POINTER(p->ary[n], NULL); | ||
| 530 | to_free = NULL; | ||
| 531 | while(*paa && ! --((**paa)->count)){ | ||
| 532 | if (to_free) | ||
| 533 | free_layer(idp, to_free); | ||
| 534 | to_free = **paa; | ||
| 535 | **paa-- = NULL; | ||
| 536 | } | ||
| 537 | if (!*paa) | ||
| 538 | idp->layers = 0; | ||
| 539 | if (to_free) | ||
| 540 | free_layer(idp, to_free); | ||
| 541 | } else | ||
| 542 | idr_remove_warning(id); | ||
| 543 | } | ||
| 544 | |||
| 545 | /** | ||
| 546 | * idr_remove - remove the given id and free its slot | ||
| 547 | * @idp: idr handle | ||
| 548 | * @id: unique key | ||
| 549 | */ | ||
| 550 | void idr_remove(struct idr *idp, int id) | ||
| 551 | { | ||
| 552 | struct idr_layer *p; | ||
| 553 | struct idr_layer *to_free; | ||
| 554 | |||
| 555 | if (id < 0) | ||
| 556 | return; | ||
| 557 | |||
| 558 | if (id > idr_max(idp->layers)) { | ||
| 559 | idr_remove_warning(id); | ||
| 560 | return; | ||
| 561 | } | ||
| 562 | |||
| 563 | sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); | ||
| 564 | if (idp->top && idp->top->count == 1 && (idp->layers > 1) && | ||
| 565 | idp->top->ary[0]) { | ||
| 566 | /* | ||
| 567 | * Single child at leftmost slot: we can shrink the tree. | ||
| 568 | * This level is not needed anymore since when layers are | ||
| 569 | * inserted, they are inserted at the top of the existing | ||
| 570 | * tree. | ||
| 571 | */ | ||
| 572 | to_free = idp->top; | ||
| 573 | p = idp->top->ary[0]; | ||
| 574 | rcu_assign_pointer(idp->top, p); | ||
| 575 | --idp->layers; | ||
| 576 | to_free->count = 0; | ||
| 577 | bitmap_clear(to_free->bitmap, 0, IDR_SIZE); | ||
| 578 | free_layer(idp, to_free); | ||
| 579 | } | ||
| 580 | } | ||
| 581 | EXPORT_SYMBOL(idr_remove); | ||
| 582 | |||
| 583 | static void __idr_remove_all(struct idr *idp) | ||
| 584 | { | ||
| 585 | int n, id, max; | ||
| 586 | int bt_mask; | ||
| 587 | struct idr_layer *p; | ||
| 588 | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; | ||
| 589 | struct idr_layer **paa = &pa[0]; | ||
| 590 | |||
| 591 | n = idp->layers * IDR_BITS; | ||
| 592 | *paa = idp->top; | ||
| 593 | RCU_INIT_POINTER(idp->top, NULL); | ||
| 594 | max = idr_max(idp->layers); | ||
| 595 | |||
| 596 | id = 0; | ||
| 597 | while (id >= 0 && id <= max) { | ||
| 598 | p = *paa; | ||
| 599 | while (n > IDR_BITS && p) { | ||
| 600 | n -= IDR_BITS; | ||
| 601 | p = p->ary[(id >> n) & IDR_MASK]; | ||
| 602 | *++paa = p; | ||
| 603 | } | ||
| 604 | |||
| 605 | bt_mask = id; | ||
| 606 | id += 1 << n; | ||
| 607 | /* Get the highest bit that the above add changed from 0->1. */ | ||
| 608 | while (n < fls(id ^ bt_mask)) { | ||
| 609 | if (*paa) | ||
| 610 | free_layer(idp, *paa); | ||
| 611 | n += IDR_BITS; | ||
| 612 | --paa; | ||
| 613 | } | ||
| 614 | } | ||
| 615 | idp->layers = 0; | ||
| 616 | } | ||
| 617 | |||
| 618 | /** | ||
| 619 | * idr_destroy - release all cached layers within an idr tree | ||
| 620 | * @idp: idr handle | ||
| 621 | * | ||
| 622 | * Free all id mappings and all idp_layers. After this function, @idp is | ||
| 623 | * completely unused and can be freed / recycled. The caller is | ||
| 624 | * responsible for ensuring that no one else accesses @idp during or after | ||
| 625 | * idr_destroy(). | ||
| 626 | * | 57 | * | 
| 627 | * A typical clean-up sequence for objects stored in an idr tree will use | 58 | * Allocates an ID larger than the last ID allocated if one is available. | 
| 628 | * idr_for_each() to free all objects, if necessary, then idr_destroy() to | 59 | * If not, it will attempt to allocate the smallest ID that is larger or | 
| 629 | * free up the id mappings and cached idr_layers. | 60 | * equal to @start. | 
| 630 | */ | 61 | */ | 
| 631 | void idr_destroy(struct idr *idp) | 62 | int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) | 
| 632 | { | 63 | { | 
| 633 | __idr_remove_all(idp); | 64 | int id, curr = idr->idr_next; | 
| 634 | 65 | ||
| 635 | while (idp->id_free_cnt) { | 66 | if (curr < start) | 
| 636 | struct idr_layer *p = get_from_free_list(idp); | 67 | curr = start; | 
| 637 | kmem_cache_free(idr_layer_cache, p); | ||
| 638 | } | ||
| 639 | } | ||
| 640 | EXPORT_SYMBOL(idr_destroy); | ||
| 641 | 68 | ||
| 642 | void *idr_find_slowpath(struct idr *idp, int id) | 69 | id = idr_alloc(idr, ptr, curr, end, gfp); | 
| 643 | { | 70 | if ((id == -ENOSPC) && (curr > start)) | 
| 644 | int n; | 71 | id = idr_alloc(idr, ptr, start, curr, gfp); | 
| 645 | struct idr_layer *p; | ||
| 646 | |||
| 647 | if (id < 0) | ||
| 648 | return NULL; | ||
| 649 | |||
| 650 | p = rcu_dereference_raw(idp->top); | ||
| 651 | if (!p) | ||
| 652 | return NULL; | ||
| 653 | n = (p->layer+1) * IDR_BITS; | ||
| 654 | 72 | ||
| 655 | if (id > idr_max(p->layer + 1)) | 73 | if (id >= 0) | 
| 656 | return NULL; | 74 | idr->idr_next = id + 1U; | 
| 657 | BUG_ON(n == 0); | ||
| 658 | 75 | ||
| 659 | while (n > 0 && p) { | 76 | return id; | 
| 660 | n -= IDR_BITS; | ||
| 661 | BUG_ON(n != p->layer*IDR_BITS); | ||
| 662 | p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); | ||
| 663 | } | ||
| 664 | return((void *)p); | ||
| 665 | } | 77 | } | 
| 666 | EXPORT_SYMBOL(idr_find_slowpath); | 78 | EXPORT_SYMBOL(idr_alloc_cyclic); | 
| 667 | 79 | ||
| 668 | /** | 80 | /** | 
| 669 | * idr_for_each - iterate through all stored pointers | 81 | * idr_for_each - iterate through all stored pointers | 
| 670 | * @idp: idr handle | 82 | * @idr: idr handle | 
| 671 | * @fn: function to be called for each pointer | 83 | * @fn: function to be called for each pointer | 
| 672 | * @data: data passed back to callback function | 84 | * @data: data passed to callback function | 
| 673 | * | 85 | * | 
| 674 | * Iterate over the pointers registered with the given idr. The | 86 | * The callback function will be called for each entry in @idr, passing | 
| 675 | * callback function will be called for each pointer currently | 87 | * the id, the pointer and the data pointer passed to this function. | 
| 676 | * registered, passing the id, the pointer and the data pointer passed | ||
| 677 | * to this function. It is not safe to modify the idr tree while in | ||
| 678 | * the callback, so functions such as idr_get_new and idr_remove are | ||
| 679 | * not allowed. | ||
| 680 | * | 88 | * | 
| 681 | * We check the return of @fn each time. If it returns anything other | 89 | * If @fn returns anything other than %0, the iteration stops and that | 
| 682 | * than %0, we break out and return that value. | 90 | * value is returned from this function. | 
| 683 | * | 91 | * | 
| 684 | * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). | 92 | * idr_for_each() can be called concurrently with idr_alloc() and | 
| 93 | * idr_remove() if protected by RCU. Newly added entries may not be | ||
| 94 | * seen and deleted entries may be seen, but adding and removing entries | ||
| 95 | * will not cause other entries to be skipped, nor spurious ones to be seen. | ||
| 685 | */ | 96 | */ | 
| 686 | int idr_for_each(struct idr *idp, | 97 | int idr_for_each(const struct idr *idr, | 
| 687 | int (*fn)(int id, void *p, void *data), void *data) | 98 | int (*fn)(int id, void *p, void *data), void *data) | 
| 688 | { | 99 | { | 
| 689 | int n, id, max, error = 0; | 100 | struct radix_tree_iter iter; | 
| 690 | struct idr_layer *p; | 101 | void __rcu **slot; | 
| 691 | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; | ||
| 692 | struct idr_layer **paa = &pa[0]; | ||
| 693 | |||
| 694 | n = idp->layers * IDR_BITS; | ||
| 695 | *paa = rcu_dereference_raw(idp->top); | ||
| 696 | max = idr_max(idp->layers); | ||
| 697 | 102 | ||
| 698 | id = 0; | 103 | radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) { | 
| 699 | while (id >= 0 && id <= max) { | 104 | int ret = fn(iter.index, rcu_dereference_raw(*slot), data); | 
| 700 | p = *paa; | 105 | if (ret) | 
| 701 | while (n > 0 && p) { | 106 | return ret; | 
| 702 | n -= IDR_BITS; | ||
| 703 | p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); | ||
| 704 | *++paa = p; | ||
| 705 | } | ||
| 706 | |||
| 707 | if (p) { | ||
| 708 | error = fn(id, (void *)p, data); | ||
| 709 | if (error) | ||
| 710 | break; | ||
| 711 | } | ||
| 712 | |||
| 713 | id += 1 << n; | ||
| 714 | while (n < fls(id)) { | ||
| 715 | n += IDR_BITS; | ||
| 716 | --paa; | ||
| 717 | } | ||
| 718 | } | 107 | } | 
| 719 | 108 | ||
| 720 | return error; | 109 | return 0; | 
| 721 | } | 110 | } | 
| 722 | EXPORT_SYMBOL(idr_for_each); | 111 | EXPORT_SYMBOL(idr_for_each); | 
| 723 | 112 | ||
| 724 | /** | 113 | /** | 
| 725 | * idr_get_next - lookup next object of id to given id. | 114 | * idr_get_next - Find next populated entry | 
| 726 | * @idp: idr handle | 115 | * @idr: idr handle | 
| 727 | * @nextidp: pointer to lookup key | 116 | * @nextid: Pointer to lowest possible ID to return | 
| 728 | * | 117 | * | 
| 729 | * Returns pointer to registered object with id, which is next number to | 118 | * Returns the next populated entry in the tree with an ID greater than | 
| 730 | * given id. After being looked up, *@nextidp will be updated for the next | 119 | * or equal to the value pointed to by @nextid. On exit, @nextid is updated | 
| 731 | * iteration. | 120 | * to the ID of the found value. To use in a loop, the value pointed to by | 
| 732 | * | 121 | * nextid must be incremented by the user. | 
| 733 | * This function can be called under rcu_read_lock(), given that the leaf | ||
| 734 | * pointers lifetimes are correctly managed. | ||
| 735 | */ | 122 | */ | 
| 736 | void *idr_get_next(struct idr *idp, int *nextidp) | 123 | void *idr_get_next(struct idr *idr, int *nextid) | 
| 737 | { | 124 | { | 
| 738 | struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1]; | 125 | struct radix_tree_iter iter; | 
| 739 | struct idr_layer **paa = &pa[0]; | 126 | void __rcu **slot; | 
| 740 | int id = *nextidp; | ||
| 741 | int n, max; | ||
| 742 | 127 | ||
| 743 | /* find first ent */ | 128 | slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid); | 
| 744 | p = *paa = rcu_dereference_raw(idp->top); | 129 | if (!slot) | 
| 745 | if (!p) | ||
| 746 | return NULL; | 130 | return NULL; | 
| 747 | n = (p->layer + 1) * IDR_BITS; | ||
| 748 | max = idr_max(p->layer + 1); | ||
| 749 | |||
| 750 | while (id >= 0 && id <= max) { | ||
| 751 | p = *paa; | ||
| 752 | while (n > 0 && p) { | ||
| 753 | n -= IDR_BITS; | ||
| 754 | p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); | ||
| 755 | *++paa = p; | ||
| 756 | } | ||
| 757 | |||
| 758 | if (p) { | ||
| 759 | *nextidp = id; | ||
| 760 | return p; | ||
| 761 | } | ||
| 762 | 131 | ||
| 763 | /* | 132 | *nextid = iter.index; | 
| 764 | * Proceed to the next layer at the current level. Unlike | 133 | return rcu_dereference_raw(*slot); | 
| 765 | * idr_for_each(), @id isn't guaranteed to be aligned to | ||
| 766 | * layer boundary at this point and adding 1 << n may | ||
| 767 | * incorrectly skip IDs. Make sure we jump to the | ||
| 768 | * beginning of the next layer using round_up(). | ||
| 769 | */ | ||
| 770 | id = round_up(id + 1, 1 << n); | ||
| 771 | while (n < fls(id)) { | ||
| 772 | n += IDR_BITS; | ||
| 773 | --paa; | ||
| 774 | } | ||
| 775 | } | ||
| 776 | return NULL; | ||
| 777 | } | 134 | } | 
| 778 | EXPORT_SYMBOL(idr_get_next); | 135 | EXPORT_SYMBOL(idr_get_next); | 
| 779 | 136 | ||
| 780 | |||
| 781 | /** | 137 | /** | 
| 782 | * idr_replace - replace pointer for given id | 138 | * idr_replace - replace pointer for given id | 
| 783 | * @idp: idr handle | 139 | * @idr: idr handle | 
| 784 | * @ptr: pointer you want associated with the id | 140 | * @ptr: New pointer to associate with the ID | 
| 785 | * @id: lookup key | 141 | * @id: Lookup key | 
| 786 | * | 142 | * | 
| 787 | * Replace the pointer registered with an id and return the old value. | 143 | * Replace the pointer registered with an ID and return the old value. | 
| 788 | * A %-ENOENT return indicates that @id was not found. | 144 | * This function can be called under the RCU read lock concurrently with | 
| 789 | * A %-EINVAL return indicates that @id was not within valid constraints. | 145 | * idr_alloc() and idr_remove() (as long as the ID being removed is not | 
| 146 | * the one being replaced!). | ||
| 790 | * | 147 | * | 
| 791 | * The caller must serialize with writers. | 148 | * Returns: 0 on success. %-ENOENT indicates that @id was not found. | 
| 149 | * %-EINVAL indicates that @id or @ptr were not valid. | ||
| 792 | */ | 150 | */ | 
| 793 | void *idr_replace(struct idr *idp, void *ptr, int id) | 151 | void *idr_replace(struct idr *idr, void *ptr, int id) | 
| 794 | { | 152 | { | 
| 795 | int n; | 153 | struct radix_tree_node *node; | 
| 796 | struct idr_layer *p, *old_p; | 154 | void __rcu **slot = NULL; | 
| 155 | void *entry; | ||
| 797 | 156 | ||
| 798 | if (id < 0) | 157 | if (WARN_ON_ONCE(id < 0)) | 
| 158 | return ERR_PTR(-EINVAL); | ||
| 159 | if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr))) | ||
| 799 | return ERR_PTR(-EINVAL); | 160 | return ERR_PTR(-EINVAL); | 
| 800 | 161 | ||
| 801 | p = idp->top; | 162 | entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot); | 
| 802 | if (!p) | 163 | if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE)) | 
| 803 | return ERR_PTR(-ENOENT); | ||
| 804 | |||
| 805 | if (id > idr_max(p->layer + 1)) | ||
| 806 | return ERR_PTR(-ENOENT); | ||
| 807 | |||
| 808 | n = p->layer * IDR_BITS; | ||
| 809 | while ((n > 0) && p) { | ||
| 810 | p = p->ary[(id >> n) & IDR_MASK]; | ||
| 811 | n -= IDR_BITS; | ||
| 812 | } | ||
| 813 | |||
| 814 | n = id & IDR_MASK; | ||
| 815 | if (unlikely(p == NULL || !test_bit(n, p->bitmap))) | ||
| 816 | return ERR_PTR(-ENOENT); | 164 | return ERR_PTR(-ENOENT); | 
| 817 | 165 | ||
| 818 | old_p = p->ary[n]; | 166 | __radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL, NULL); | 
| 819 | rcu_assign_pointer(p->ary[n], ptr); | ||
| 820 | 167 | ||
| 821 | return old_p; | 168 | return entry; | 
| 822 | } | 169 | } | 
| 823 | EXPORT_SYMBOL(idr_replace); | 170 | EXPORT_SYMBOL(idr_replace); | 
| 824 | 171 | ||
| 825 | void __init idr_init_cache(void) | ||
| 826 | { | ||
| 827 | idr_layer_cache = kmem_cache_create("idr_layer_cache", | ||
| 828 | sizeof(struct idr_layer), 0, SLAB_PANIC, NULL); | ||
| 829 | } | ||
| 830 | |||
| 831 | /** | ||
| 832 | * idr_init - initialize idr handle | ||
| 833 | * @idp: idr handle | ||
| 834 | * | ||
| 835 | * This function is use to set up the handle (@idp) that you will pass | ||
| 836 | * to the rest of the functions. | ||
| 837 | */ | ||
| 838 | void idr_init(struct idr *idp) | ||
| 839 | { | ||
| 840 | memset(idp, 0, sizeof(struct idr)); | ||
| 841 | spin_lock_init(&idp->lock); | ||
| 842 | } | ||
| 843 | EXPORT_SYMBOL(idr_init); | ||
| 844 | |||
| 845 | static int idr_has_entry(int id, void *p, void *data) | ||
| 846 | { | ||
| 847 | return 1; | ||
| 848 | } | ||
| 849 | |||
| 850 | bool idr_is_empty(struct idr *idp) | ||
| 851 | { | ||
| 852 | return !idr_for_each(idp, idr_has_entry, NULL); | ||
| 853 | } | ||
| 854 | EXPORT_SYMBOL(idr_is_empty); | ||
| 855 | |||
| 856 | /** | 172 | /** | 
| 857 | * DOC: IDA description | 173 | * DOC: IDA description | 
| 858 | * IDA - IDR based ID allocator | ||
| 859 | * | 174 | * | 
| 860 | * This is id allocator without id -> pointer translation. Memory | 175 | * The IDA is an ID allocator which does not provide the ability to | 
| 861 | * usage is much lower than full blown idr because each id only | 176 | * associate an ID with a pointer. As such, it only needs to store one | 
| 862 | * occupies a bit. ida uses a custom leaf node which contains | 177 | * bit per ID, and so is more space efficient than an IDR. To use an IDA, | 
| 863 | * IDA_BITMAP_BITS slots. | 178 | * define it using DEFINE_IDA() (or embed a &struct ida in a data structure, | 
| 864 | * | 179 | * then initialise it using ida_init()). To allocate a new ID, call | 
| 865 | * 2007-04-25 written by Tejun Heo <htejun@gmail.com> | 180 | * ida_simple_get(). To free an ID, call ida_simple_remove(). | 
| 181 | * | ||
| 182 | * If you have more complex locking requirements, use a loop around | ||
| 183 | * ida_pre_get() and ida_get_new() to allocate a new ID. Then use | ||
| 184 | * ida_remove() to free an ID. You must make sure that ida_get_new() and | ||
| 185 | * ida_remove() cannot be called at the same time as each other for the | ||
| 186 | * same IDA. | ||
| 187 | * | ||
| 188 | * You can also use ida_get_new_above() if you need an ID to be allocated | ||
| 189 | * above a particular number. ida_destroy() can be used to dispose of an | ||
| 190 | * IDA without needing to free the individual IDs in it. You can use | ||
| 191 | * ida_is_empty() to find out whether the IDA has any IDs currently allocated. | ||
| 192 | * | ||
| 193 | * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward | ||
| 194 | * limitation, it should be quite straightforward to raise the maximum. | ||
| 866 | */ | 195 | */ | 
| 867 | 196 | ||
| 868 | static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) | 197 | /* | 
| 869 | { | 198 | * Developer's notes: | 
| 870 | unsigned long flags; | 199 | * | 
| 871 | 200 | * The IDA uses the functionality provided by the IDR & radix tree to store | |
| 872 | if (!ida->free_bitmap) { | 201 | * bitmaps in each entry. The IDR_FREE tag means there is at least one bit | 
| 873 | spin_lock_irqsave(&ida->idr.lock, flags); | 202 | * free, unlike the IDR where it means at least one entry is free. | 
| 874 | if (!ida->free_bitmap) { | 203 | * | 
| 875 | ida->free_bitmap = bitmap; | 204 | * I considered telling the radix tree that each slot is an order-10 node | 
| 876 | bitmap = NULL; | 205 | * and storing the bit numbers in the radix tree, but the radix tree can't | 
| 877 | } | 206 | * allow a single multiorder entry at index 0, which would significantly | 
| 878 | spin_unlock_irqrestore(&ida->idr.lock, flags); | 207 | * increase memory consumption for the IDA. So instead we divide the index | 
| 879 | } | 208 | * by the number of bits in the leaf bitmap before doing a radix tree lookup. | 
| 880 | 209 | * | |
| 881 | kfree(bitmap); | 210 | * As an optimisation, if there are only a few low bits set in any given | 
| 882 | } | 211 | * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional | 
| 883 | 212 | * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits | |
| 884 | /** | 213 | * directly in the entry. By being really tricksy, we could store | 
| 885 | * ida_pre_get - reserve resources for ida allocation | 214 | * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising | 
| 886 | * @ida: ida handle | 215 | * for 0-3 allocated IDs. | 
| 887 | * @gfp_mask: memory allocation flag | 216 | * | 
| 888 | * | 217 | * We allow the radix tree 'exceptional' count to get out of date. Nothing | 
| 889 | * This function should be called prior to locking and calling the | 218 | * in the IDA nor the radix tree code checks it. If it becomes important | 
| 890 | * following function. It preallocates enough memory to satisfy the | 219 | * to maintain an accurate exceptional count, switch the rcu_assign_pointer() | 
| 891 | * worst possible allocation. | 220 | * calls to radix_tree_iter_replace() which will correct the exceptional | 
| 892 | * | 221 | * count. | 
| 893 | * If the system is REALLY out of memory this function returns %0, | 222 | * | 
| 894 | * otherwise %1. | 223 | * The IDA always requires a lock to alloc/free. If we add a 'test_bit' | 
| 224 | * equivalent, it will still need locking. Going to RCU lookup would require | ||
| 225 | * using RCU to free bitmaps, and that's not trivial without embedding an | ||
| 226 | * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte | ||
| 227 | * bitmap, which is excessive. | ||
| 895 | */ | 228 | */ | 
| 896 | int ida_pre_get(struct ida *ida, gfp_t gfp_mask) | ||
| 897 | { | ||
| 898 | /* allocate idr_layers */ | ||
| 899 | if (!__idr_pre_get(&ida->idr, gfp_mask)) | ||
| 900 | return 0; | ||
| 901 | 229 | ||
| 902 | /* allocate free_bitmap */ | 230 | #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS) | 
| 903 | if (!ida->free_bitmap) { | ||
| 904 | struct ida_bitmap *bitmap; | ||
| 905 | |||
| 906 | bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); | ||
| 907 | if (!bitmap) | ||
| 908 | return 0; | ||
| 909 | |||
| 910 | free_bitmap(ida, bitmap); | ||
| 911 | } | ||
| 912 | |||
| 913 | return 1; | ||
| 914 | } | ||
| 915 | EXPORT_SYMBOL(ida_pre_get); | ||
| 916 | 231 | ||
| 917 | /** | 232 | /** | 
| 918 | * ida_get_new_above - allocate new ID above or equal to a start id | 233 | * ida_get_new_above - allocate new ID above or equal to a start id | 
| 919 | * @ida: ida handle | 234 | * @ida: ida handle | 
| 920 | * @starting_id: id to start search at | 235 | * @start: id to start search at | 
| 921 | * @p_id: pointer to the allocated handle | 236 | * @id: pointer to the allocated handle | 
| 922 | * | 237 | * | 
| 923 | * Allocate new ID above or equal to @starting_id. It should be called | 238 | * Allocate new ID above or equal to @start. It should be called | 
| 924 | * with any required locks. | 239 | * with any required locks to ensure that concurrent calls to | 
| 240 | * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed. | ||
| 241 | * Consider using ida_simple_get() if you do not have complex locking | ||
| 242 | * requirements. | ||
| 925 | * | 243 | * | 
| 926 | * If memory is required, it will return %-EAGAIN, you should unlock | 244 | * If memory is required, it will return %-EAGAIN, you should unlock | 
| 927 | * and go back to the ida_pre_get() call. If the ida is full, it will | 245 | * and go back to the ida_pre_get() call. If the ida is full, it will | 
| 928 | * return %-ENOSPC. | 246 | * return %-ENOSPC. On success, it will return 0. | 
| 929 | * | ||
| 930 | * Note that callers must ensure that concurrent access to @ida is not possible. | ||
| 931 | * See ida_simple_get() for a varaint which takes care of locking. | ||
| 932 | * | 247 | * | 
| 933 | * @p_id returns a value in the range @starting_id ... %0x7fffffff. | 248 | * @id returns a value in the range @start ... %0x7fffffff. | 
| 934 | */ | 249 | */ | 
| 935 | int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) | 250 | int ida_get_new_above(struct ida *ida, int start, int *id) | 
| 936 | { | 251 | { | 
| 937 | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; | 252 | struct radix_tree_root *root = &ida->ida_rt; | 
| 253 | void __rcu **slot; | ||
| 254 | struct radix_tree_iter iter; | ||
| 938 | struct ida_bitmap *bitmap; | 255 | struct ida_bitmap *bitmap; | 
| 939 | unsigned long flags; | 256 | unsigned long index; | 
| 940 | int idr_id = starting_id / IDA_BITMAP_BITS; | 257 | unsigned bit, ebit; | 
| 941 | int offset = starting_id % IDA_BITMAP_BITS; | 258 | int new; | 
| 942 | int t, id; | 259 | |
| 943 | 260 | index = start / IDA_BITMAP_BITS; | |
| 944 | restart: | 261 | bit = start % IDA_BITMAP_BITS; | 
| 945 | /* get vacant slot */ | 262 | ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT; | 
| 946 | t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr); | 263 | |
| 947 | if (t < 0) | 264 | slot = radix_tree_iter_init(&iter, index); | 
| 948 | return t == -ENOMEM ? -EAGAIN : t; | 265 | for (;;) { | 
| 949 | 266 | if (slot) | |
| 950 | if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT) | 267 | slot = radix_tree_next_slot(slot, &iter, | 
| 951 | return -ENOSPC; | 268 | RADIX_TREE_ITER_TAGGED); | 
| 952 | 269 | if (!slot) { | |
| 953 | if (t != idr_id) | 270 | slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX); | 
| 954 | offset = 0; | 271 | if (IS_ERR(slot)) { | 
| 955 | idr_id = t; | 272 | if (slot == ERR_PTR(-ENOMEM)) | 
| 956 | 273 | return -EAGAIN; | |
| 957 | /* if bitmap isn't there, create a new one */ | 274 | return PTR_ERR(slot); | 
| 958 | bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; | 275 | } | 
| 959 | if (!bitmap) { | 276 | } | 
| 960 | spin_lock_irqsave(&ida->idr.lock, flags); | 277 | if (iter.index > index) { | 
| 961 | bitmap = ida->free_bitmap; | 278 | bit = 0; | 
| 962 | ida->free_bitmap = NULL; | 279 | ebit = RADIX_TREE_EXCEPTIONAL_SHIFT; | 
| 963 | spin_unlock_irqrestore(&ida->idr.lock, flags); | 280 | } | 
| 964 | 281 | new = iter.index * IDA_BITMAP_BITS; | |
| 965 | if (!bitmap) | 282 | bitmap = rcu_dereference_raw(*slot); | 
| 966 | return -EAGAIN; | 283 | if (radix_tree_exception(bitmap)) { | 
| 967 | 284 | unsigned long tmp = (unsigned long)bitmap; | |
| 968 | memset(bitmap, 0, sizeof(struct ida_bitmap)); | 285 | ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit); | 
| 969 | rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], | 286 | if (ebit < BITS_PER_LONG) { | 
| 970 | (void *)bitmap); | 287 | tmp |= 1UL << ebit; | 
| 971 | pa[0]->count++; | 288 | rcu_assign_pointer(*slot, (void *)tmp); | 
| 972 | } | 289 | *id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT; | 
| 973 | 290 | return 0; | |
| 974 | /* lookup for empty slot */ | 291 | } | 
| 975 | t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); | 292 | bitmap = this_cpu_xchg(ida_bitmap, NULL); | 
| 976 | if (t == IDA_BITMAP_BITS) { | 293 | if (!bitmap) | 
| 977 | /* no empty slot after offset, continue to the next chunk */ | 294 | return -EAGAIN; | 
| 978 | idr_id++; | 295 | memset(bitmap, 0, sizeof(*bitmap)); | 
| 979 | offset = 0; | 296 | bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT; | 
| 980 | goto restart; | 297 | rcu_assign_pointer(*slot, bitmap); | 
| 981 | } | 298 | } | 
| 982 | |||
| 983 | id = idr_id * IDA_BITMAP_BITS + t; | ||
| 984 | if (id >= MAX_IDR_BIT) | ||
| 985 | return -ENOSPC; | ||
| 986 | 299 | ||
| 987 | __set_bit(t, bitmap->bitmap); | 300 | if (bitmap) { | 
| 988 | if (++bitmap->nr_busy == IDA_BITMAP_BITS) | 301 | bit = find_next_zero_bit(bitmap->bitmap, | 
| 989 | idr_mark_full(pa, idr_id); | 302 | IDA_BITMAP_BITS, bit); | 
| 303 | new += bit; | ||
| 304 | if (new < 0) | ||
| 305 | return -ENOSPC; | ||
| 306 | if (bit == IDA_BITMAP_BITS) | ||
| 307 | continue; | ||
| 990 | 308 | ||
| 991 | *p_id = id; | 309 | __set_bit(bit, bitmap->bitmap); | 
| 310 | if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS)) | ||
| 311 | radix_tree_iter_tag_clear(root, &iter, | ||
| 312 | IDR_FREE); | ||
| 313 | } else { | ||
| 314 | new += bit; | ||
| 315 | if (new < 0) | ||
| 316 | return -ENOSPC; | ||
| 317 | if (ebit < BITS_PER_LONG) { | ||
| 318 | bitmap = (void *)((1UL << ebit) | | ||
| 319 | RADIX_TREE_EXCEPTIONAL_ENTRY); | ||
| 320 | radix_tree_iter_replace(root, &iter, slot, | ||
| 321 | bitmap); | ||
| 322 | *id = new; | ||
| 323 | return 0; | ||
| 324 | } | ||
| 325 | bitmap = this_cpu_xchg(ida_bitmap, NULL); | ||
| 326 | if (!bitmap) | ||
| 327 | return -EAGAIN; | ||
| 328 | memset(bitmap, 0, sizeof(*bitmap)); | ||
| 329 | __set_bit(bit, bitmap->bitmap); | ||
| 330 | radix_tree_iter_replace(root, &iter, slot, bitmap); | ||
| 331 | } | ||
| 992 | 332 | ||
| 993 | /* Each leaf node can handle nearly a thousand slots and the | 333 | *id = new; | 
| 994 | * whole idea of ida is to have small memory foot print. | 334 | return 0; | 
| 995 | * Throw away extra resources one by one after each successful | ||
| 996 | * allocation. | ||
| 997 | */ | ||
| 998 | if (ida->idr.id_free_cnt || ida->free_bitmap) { | ||
| 999 | struct idr_layer *p = get_from_free_list(&ida->idr); | ||
| 1000 | if (p) | ||
| 1001 | kmem_cache_free(idr_layer_cache, p); | ||
| 1002 | } | 335 | } | 
| 1003 | |||
| 1004 | return 0; | ||
| 1005 | } | 336 | } | 
| 1006 | EXPORT_SYMBOL(ida_get_new_above); | 337 | EXPORT_SYMBOL(ida_get_new_above); | 
| 1007 | 338 | ||
| 1008 | /** | 339 | /** | 
| 1009 | * ida_remove - remove the given ID | 340 | * ida_remove - Free the given ID | 
| 1010 | * @ida: ida handle | 341 | * @ida: ida handle | 
| 1011 | * @id: ID to free | 342 | * @id: ID to free | 
| 343 | * | ||
| 344 | * This function should not be called at the same time as ida_get_new_above(). | ||
| 1012 | */ | 345 | */ | 
| 1013 | void ida_remove(struct ida *ida, int id) | 346 | void ida_remove(struct ida *ida, int id) | 
| 1014 | { | 347 | { | 
| 1015 | struct idr_layer *p = ida->idr.top; | 348 | unsigned long index = id / IDA_BITMAP_BITS; | 
| 1016 | int shift = (ida->idr.layers - 1) * IDR_BITS; | 349 | unsigned offset = id % IDA_BITMAP_BITS; | 
| 1017 | int idr_id = id / IDA_BITMAP_BITS; | ||
| 1018 | int offset = id % IDA_BITMAP_BITS; | ||
| 1019 | int n; | ||
| 1020 | struct ida_bitmap *bitmap; | 350 | struct ida_bitmap *bitmap; | 
| 351 | unsigned long *btmp; | ||
| 352 | struct radix_tree_iter iter; | ||
| 353 | void __rcu **slot; | ||
| 1021 | 354 | ||
| 1022 | if (idr_id > idr_max(ida->idr.layers)) | 355 | slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index); | 
| 356 | if (!slot) | ||
| 1023 | goto err; | 357 | goto err; | 
| 1024 | 358 | ||
| 1025 | /* clear full bits while looking up the leaf idr_layer */ | 359 | bitmap = rcu_dereference_raw(*slot); | 
| 1026 | while ((shift > 0) && p) { | 360 | if (radix_tree_exception(bitmap)) { | 
| 1027 | n = (idr_id >> shift) & IDR_MASK; | 361 | btmp = (unsigned long *)slot; | 
| 1028 | __clear_bit(n, p->bitmap); | 362 | offset += RADIX_TREE_EXCEPTIONAL_SHIFT; | 
| 1029 | p = p->ary[n]; | 363 | if (offset >= BITS_PER_LONG) | 
| 1030 | shift -= IDR_BITS; | 364 | goto err; | 
| 365 | } else { | ||
| 366 | btmp = bitmap->bitmap; | ||
| 1031 | } | 367 | } | 
| 1032 | 368 | if (!test_bit(offset, btmp)) | |
| 1033 | if (p == NULL) | ||
| 1034 | goto err; | ||
| 1035 | |||
| 1036 | n = idr_id & IDR_MASK; | ||
| 1037 | __clear_bit(n, p->bitmap); | ||
| 1038 | |||
| 1039 | bitmap = (void *)p->ary[n]; | ||
| 1040 | if (!bitmap || !test_bit(offset, bitmap->bitmap)) | ||
| 1041 | goto err; | 369 | goto err; | 
| 1042 | 370 | ||
| 1043 | /* update bitmap and remove it if empty */ | 371 | __clear_bit(offset, btmp); | 
| 1044 | __clear_bit(offset, bitmap->bitmap); | 372 | radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE); | 
| 1045 | if (--bitmap->nr_busy == 0) { | 373 | if (radix_tree_exception(bitmap)) { | 
| 1046 | __set_bit(n, p->bitmap); /* to please idr_remove() */ | 374 | if (rcu_dereference_raw(*slot) == | 
| 1047 | idr_remove(&ida->idr, idr_id); | 375 | (void *)RADIX_TREE_EXCEPTIONAL_ENTRY) | 
| 1048 | free_bitmap(ida, bitmap); | 376 | radix_tree_iter_delete(&ida->ida_rt, &iter, slot); | 
| 377 | } else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) { | ||
| 378 | kfree(bitmap); | ||
| 379 | radix_tree_iter_delete(&ida->ida_rt, &iter, slot); | ||
| 1049 | } | 380 | } | 
| 1050 | |||
| 1051 | return; | 381 | return; | 
| 1052 | |||
| 1053 | err: | 382 | err: | 
| 1054 | WARN(1, "ida_remove called for id=%d which is not allocated.\n", id); | 383 | WARN(1, "ida_remove called for id=%d which is not allocated.\n", id); | 
| 1055 | } | 384 | } | 
| 1056 | EXPORT_SYMBOL(ida_remove); | 385 | EXPORT_SYMBOL(ida_remove); | 
| 1057 | 386 | ||
| 1058 | /** | 387 | /** | 
| 1059 | * ida_destroy - release all cached layers within an ida tree | 388 | * ida_destroy - Free the contents of an ida | 
| 1060 | * @ida: ida handle | 389 | * @ida: ida handle | 
| 390 | * | ||
| 391 | * Calling this function releases all resources associated with an IDA. When | ||
| 392 | * this call returns, the IDA is empty and can be reused or freed. The caller | ||
| 393 | * should not allow ida_remove() or ida_get_new_above() to be called at the | ||
| 394 | * same time. | ||
| 1061 | */ | 395 | */ | 
| 1062 | void ida_destroy(struct ida *ida) | 396 | void ida_destroy(struct ida *ida) | 
| 1063 | { | 397 | { | 
| 1064 | idr_destroy(&ida->idr); | 398 | struct radix_tree_iter iter; | 
| 1065 | kfree(ida->free_bitmap); | 399 | void __rcu **slot; | 
| 400 | |||
| 401 | radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) { | ||
| 402 | struct ida_bitmap *bitmap = rcu_dereference_raw(*slot); | ||
| 403 | if (!radix_tree_exception(bitmap)) | ||
| 404 | kfree(bitmap); | ||
| 405 | radix_tree_iter_delete(&ida->ida_rt, &iter, slot); | ||
| 406 | } | ||
| 1066 | } | 407 | } | 
| 1067 | EXPORT_SYMBOL(ida_destroy); | 408 | EXPORT_SYMBOL(ida_destroy); | 
| 1068 | 409 | ||
| @@ -1141,18 +482,3 @@ void ida_simple_remove(struct ida *ida, unsigned int id) | |||
| 1141 | spin_unlock_irqrestore(&simple_ida_lock, flags); | 482 | spin_unlock_irqrestore(&simple_ida_lock, flags); | 
| 1142 | } | 483 | } | 
| 1143 | EXPORT_SYMBOL(ida_simple_remove); | 484 | EXPORT_SYMBOL(ida_simple_remove); | 
| 1144 | |||
| 1145 | /** | ||
| 1146 | * ida_init - initialize ida handle | ||
| 1147 | * @ida: ida handle | ||
| 1148 | * | ||
| 1149 | * This function is use to set up the handle (@ida) that you will pass | ||
| 1150 | * to the rest of the functions. | ||
| 1151 | */ | ||
| 1152 | void ida_init(struct ida *ida) | ||
| 1153 | { | ||
| 1154 | memset(ida, 0, sizeof(struct ida)); | ||
| 1155 | idr_init(&ida->idr); | ||
| 1156 | |||
| 1157 | } | ||
| 1158 | EXPORT_SYMBOL(ida_init); | ||
