diff options
Diffstat (limited to 'drivers/net/sfc/efx.c')
| -rw-r--r-- | drivers/net/sfc/efx.c | 2714 |
1 files changed, 0 insertions, 2714 deletions
diff --git a/drivers/net/sfc/efx.c b/drivers/net/sfc/efx.c deleted file mode 100644 index faca764aa21b..000000000000 --- a/drivers/net/sfc/efx.c +++ /dev/null | |||
| @@ -1,2714 +0,0 @@ | |||
| 1 | /**************************************************************************** | ||
| 2 | * Driver for Solarflare Solarstorm network controllers and boards | ||
| 3 | * Copyright 2005-2006 Fen Systems Ltd. | ||
| 4 | * Copyright 2005-2011 Solarflare Communications Inc. | ||
| 5 | * | ||
| 6 | * This program is free software; you can redistribute it and/or modify it | ||
| 7 | * under the terms of the GNU General Public License version 2 as published | ||
| 8 | * by the Free Software Foundation, incorporated herein by reference. | ||
| 9 | */ | ||
| 10 | |||
| 11 | #include <linux/module.h> | ||
| 12 | #include <linux/pci.h> | ||
| 13 | #include <linux/netdevice.h> | ||
| 14 | #include <linux/etherdevice.h> | ||
| 15 | #include <linux/delay.h> | ||
| 16 | #include <linux/notifier.h> | ||
| 17 | #include <linux/ip.h> | ||
| 18 | #include <linux/tcp.h> | ||
| 19 | #include <linux/in.h> | ||
| 20 | #include <linux/crc32.h> | ||
| 21 | #include <linux/ethtool.h> | ||
| 22 | #include <linux/topology.h> | ||
| 23 | #include <linux/gfp.h> | ||
| 24 | #include <linux/cpu_rmap.h> | ||
| 25 | #include "net_driver.h" | ||
| 26 | #include "efx.h" | ||
| 27 | #include "nic.h" | ||
| 28 | |||
| 29 | #include "mcdi.h" | ||
| 30 | #include "workarounds.h" | ||
| 31 | |||
| 32 | /************************************************************************** | ||
| 33 | * | ||
| 34 | * Type name strings | ||
| 35 | * | ||
| 36 | ************************************************************************** | ||
| 37 | */ | ||
| 38 | |||
| 39 | /* Loopback mode names (see LOOPBACK_MODE()) */ | ||
| 40 | const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; | ||
| 41 | const char *efx_loopback_mode_names[] = { | ||
| 42 | [LOOPBACK_NONE] = "NONE", | ||
| 43 | [LOOPBACK_DATA] = "DATAPATH", | ||
| 44 | [LOOPBACK_GMAC] = "GMAC", | ||
| 45 | [LOOPBACK_XGMII] = "XGMII", | ||
| 46 | [LOOPBACK_XGXS] = "XGXS", | ||
| 47 | [LOOPBACK_XAUI] = "XAUI", | ||
| 48 | [LOOPBACK_GMII] = "GMII", | ||
| 49 | [LOOPBACK_SGMII] = "SGMII", | ||
| 50 | [LOOPBACK_XGBR] = "XGBR", | ||
| 51 | [LOOPBACK_XFI] = "XFI", | ||
| 52 | [LOOPBACK_XAUI_FAR] = "XAUI_FAR", | ||
| 53 | [LOOPBACK_GMII_FAR] = "GMII_FAR", | ||
| 54 | [LOOPBACK_SGMII_FAR] = "SGMII_FAR", | ||
| 55 | [LOOPBACK_XFI_FAR] = "XFI_FAR", | ||
| 56 | [LOOPBACK_GPHY] = "GPHY", | ||
| 57 | [LOOPBACK_PHYXS] = "PHYXS", | ||
| 58 | [LOOPBACK_PCS] = "PCS", | ||
| 59 | [LOOPBACK_PMAPMD] = "PMA/PMD", | ||
| 60 | [LOOPBACK_XPORT] = "XPORT", | ||
| 61 | [LOOPBACK_XGMII_WS] = "XGMII_WS", | ||
| 62 | [LOOPBACK_XAUI_WS] = "XAUI_WS", | ||
| 63 | [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", | ||
| 64 | [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", | ||
| 65 | [LOOPBACK_GMII_WS] = "GMII_WS", | ||
| 66 | [LOOPBACK_XFI_WS] = "XFI_WS", | ||
| 67 | [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", | ||
| 68 | [LOOPBACK_PHYXS_WS] = "PHYXS_WS", | ||
| 69 | }; | ||
| 70 | |||
| 71 | const unsigned int efx_reset_type_max = RESET_TYPE_MAX; | ||
| 72 | const char *efx_reset_type_names[] = { | ||
| 73 | [RESET_TYPE_INVISIBLE] = "INVISIBLE", | ||
| 74 | [RESET_TYPE_ALL] = "ALL", | ||
| 75 | [RESET_TYPE_WORLD] = "WORLD", | ||
| 76 | [RESET_TYPE_DISABLE] = "DISABLE", | ||
| 77 | [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", | ||
| 78 | [RESET_TYPE_INT_ERROR] = "INT_ERROR", | ||
| 79 | [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", | ||
| 80 | [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH", | ||
| 81 | [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH", | ||
| 82 | [RESET_TYPE_TX_SKIP] = "TX_SKIP", | ||
| 83 | [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", | ||
| 84 | }; | ||
| 85 | |||
| 86 | #define EFX_MAX_MTU (9 * 1024) | ||
| 87 | |||
| 88 | /* Reset workqueue. If any NIC has a hardware failure then a reset will be | ||
| 89 | * queued onto this work queue. This is not a per-nic work queue, because | ||
| 90 | * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. | ||
| 91 | */ | ||
| 92 | static struct workqueue_struct *reset_workqueue; | ||
| 93 | |||
| 94 | /************************************************************************** | ||
| 95 | * | ||
| 96 | * Configurable values | ||
| 97 | * | ||
| 98 | *************************************************************************/ | ||
| 99 | |||
| 100 | /* | ||
| 101 | * Use separate channels for TX and RX events | ||
| 102 | * | ||
| 103 | * Set this to 1 to use separate channels for TX and RX. It allows us | ||
| 104 | * to control interrupt affinity separately for TX and RX. | ||
| 105 | * | ||
| 106 | * This is only used in MSI-X interrupt mode | ||
| 107 | */ | ||
| 108 | static unsigned int separate_tx_channels; | ||
| 109 | module_param(separate_tx_channels, uint, 0444); | ||
| 110 | MODULE_PARM_DESC(separate_tx_channels, | ||
| 111 | "Use separate channels for TX and RX"); | ||
| 112 | |||
| 113 | /* This is the weight assigned to each of the (per-channel) virtual | ||
| 114 | * NAPI devices. | ||
| 115 | */ | ||
| 116 | static int napi_weight = 64; | ||
| 117 | |||
| 118 | /* This is the time (in jiffies) between invocations of the hardware | ||
| 119 | * monitor. On Falcon-based NICs, this will: | ||
| 120 | * - Check the on-board hardware monitor; | ||
| 121 | * - Poll the link state and reconfigure the hardware as necessary. | ||
| 122 | */ | ||
| 123 | static unsigned int efx_monitor_interval = 1 * HZ; | ||
| 124 | |||
| 125 | /* This controls whether or not the driver will initialise devices | ||
| 126 | * with invalid MAC addresses stored in the EEPROM or flash. If true, | ||
| 127 | * such devices will be initialised with a random locally-generated | ||
| 128 | * MAC address. This allows for loading the sfc_mtd driver to | ||
| 129 | * reprogram the flash, even if the flash contents (including the MAC | ||
| 130 | * address) have previously been erased. | ||
| 131 | */ | ||
| 132 | static unsigned int allow_bad_hwaddr; | ||
| 133 | |||
| 134 | /* Initial interrupt moderation settings. They can be modified after | ||
| 135 | * module load with ethtool. | ||
| 136 | * | ||
| 137 | * The default for RX should strike a balance between increasing the | ||
| 138 | * round-trip latency and reducing overhead. | ||
| 139 | */ | ||
| 140 | static unsigned int rx_irq_mod_usec = 60; | ||
| 141 | |||
| 142 | /* Initial interrupt moderation settings. They can be modified after | ||
| 143 | * module load with ethtool. | ||
| 144 | * | ||
| 145 | * This default is chosen to ensure that a 10G link does not go idle | ||
| 146 | * while a TX queue is stopped after it has become full. A queue is | ||
| 147 | * restarted when it drops below half full. The time this takes (assuming | ||
| 148 | * worst case 3 descriptors per packet and 1024 descriptors) is | ||
| 149 | * 512 / 3 * 1.2 = 205 usec. | ||
| 150 | */ | ||
| 151 | static unsigned int tx_irq_mod_usec = 150; | ||
| 152 | |||
| 153 | /* This is the first interrupt mode to try out of: | ||
| 154 | * 0 => MSI-X | ||
| 155 | * 1 => MSI | ||
| 156 | * 2 => legacy | ||
| 157 | */ | ||
| 158 | static unsigned int interrupt_mode; | ||
| 159 | |||
| 160 | /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), | ||
| 161 | * i.e. the number of CPUs among which we may distribute simultaneous | ||
| 162 | * interrupt handling. | ||
| 163 | * | ||
| 164 | * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. | ||
| 165 | * The default (0) means to assign an interrupt to each package (level II cache) | ||
| 166 | */ | ||
| 167 | static unsigned int rss_cpus; | ||
| 168 | module_param(rss_cpus, uint, 0444); | ||
| 169 | MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); | ||
| 170 | |||
| 171 | static int phy_flash_cfg; | ||
| 172 | module_param(phy_flash_cfg, int, 0644); | ||
| 173 | MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); | ||
| 174 | |||
| 175 | static unsigned irq_adapt_low_thresh = 10000; | ||
| 176 | module_param(irq_adapt_low_thresh, uint, 0644); | ||
| 177 | MODULE_PARM_DESC(irq_adapt_low_thresh, | ||
| 178 | "Threshold score for reducing IRQ moderation"); | ||
| 179 | |||
| 180 | static unsigned irq_adapt_high_thresh = 20000; | ||
| 181 | module_param(irq_adapt_high_thresh, uint, 0644); | ||
| 182 | MODULE_PARM_DESC(irq_adapt_high_thresh, | ||
| 183 | "Threshold score for increasing IRQ moderation"); | ||
| 184 | |||
| 185 | static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | | ||
| 186 | NETIF_MSG_LINK | NETIF_MSG_IFDOWN | | ||
| 187 | NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | | ||
| 188 | NETIF_MSG_TX_ERR | NETIF_MSG_HW); | ||
| 189 | module_param(debug, uint, 0); | ||
| 190 | MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); | ||
| 191 | |||
| 192 | /************************************************************************** | ||
| 193 | * | ||
| 194 | * Utility functions and prototypes | ||
| 195 | * | ||
| 196 | *************************************************************************/ | ||
| 197 | |||
| 198 | static void efx_remove_channels(struct efx_nic *efx); | ||
| 199 | static void efx_remove_port(struct efx_nic *efx); | ||
| 200 | static void efx_init_napi(struct efx_nic *efx); | ||
| 201 | static void efx_fini_napi(struct efx_nic *efx); | ||
| 202 | static void efx_fini_napi_channel(struct efx_channel *channel); | ||
| 203 | static void efx_fini_struct(struct efx_nic *efx); | ||
| 204 | static void efx_start_all(struct efx_nic *efx); | ||
| 205 | static void efx_stop_all(struct efx_nic *efx); | ||
| 206 | |||
| 207 | #define EFX_ASSERT_RESET_SERIALISED(efx) \ | ||
| 208 | do { \ | ||
| 209 | if ((efx->state == STATE_RUNNING) || \ | ||
| 210 | (efx->state == STATE_DISABLED)) \ | ||
| 211 | ASSERT_RTNL(); \ | ||
| 212 | } while (0) | ||
| 213 | |||
| 214 | /************************************************************************** | ||
| 215 | * | ||
| 216 | * Event queue processing | ||
| 217 | * | ||
| 218 | *************************************************************************/ | ||
| 219 | |||
| 220 | /* Process channel's event queue | ||
| 221 | * | ||
| 222 | * This function is responsible for processing the event queue of a | ||
| 223 | * single channel. The caller must guarantee that this function will | ||
| 224 | * never be concurrently called more than once on the same channel, | ||
| 225 | * though different channels may be being processed concurrently. | ||
| 226 | */ | ||
| 227 | static int efx_process_channel(struct efx_channel *channel, int budget) | ||
| 228 | { | ||
| 229 | struct efx_nic *efx = channel->efx; | ||
| 230 | int spent; | ||
| 231 | |||
| 232 | if (unlikely(efx->reset_pending || !channel->enabled)) | ||
| 233 | return 0; | ||
| 234 | |||
| 235 | spent = efx_nic_process_eventq(channel, budget); | ||
| 236 | if (spent == 0) | ||
| 237 | return 0; | ||
| 238 | |||
| 239 | /* Deliver last RX packet. */ | ||
| 240 | if (channel->rx_pkt) { | ||
| 241 | __efx_rx_packet(channel, channel->rx_pkt, | ||
| 242 | channel->rx_pkt_csummed); | ||
| 243 | channel->rx_pkt = NULL; | ||
| 244 | } | ||
| 245 | |||
| 246 | efx_rx_strategy(channel); | ||
| 247 | |||
| 248 | efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel)); | ||
| 249 | |||
| 250 | return spent; | ||
| 251 | } | ||
| 252 | |||
| 253 | /* Mark channel as finished processing | ||
| 254 | * | ||
| 255 | * Note that since we will not receive further interrupts for this | ||
| 256 | * channel before we finish processing and call the eventq_read_ack() | ||
| 257 | * method, there is no need to use the interrupt hold-off timers. | ||
| 258 | */ | ||
| 259 | static inline void efx_channel_processed(struct efx_channel *channel) | ||
| 260 | { | ||
| 261 | /* The interrupt handler for this channel may set work_pending | ||
| 262 | * as soon as we acknowledge the events we've seen. Make sure | ||
| 263 | * it's cleared before then. */ | ||
| 264 | channel->work_pending = false; | ||
| 265 | smp_wmb(); | ||
| 266 | |||
| 267 | efx_nic_eventq_read_ack(channel); | ||
| 268 | } | ||
| 269 | |||
| 270 | /* NAPI poll handler | ||
| 271 | * | ||
| 272 | * NAPI guarantees serialisation of polls of the same device, which | ||
| 273 | * provides the guarantee required by efx_process_channel(). | ||
| 274 | */ | ||
| 275 | static int efx_poll(struct napi_struct *napi, int budget) | ||
| 276 | { | ||
| 277 | struct efx_channel *channel = | ||
| 278 | container_of(napi, struct efx_channel, napi_str); | ||
| 279 | struct efx_nic *efx = channel->efx; | ||
| 280 | int spent; | ||
| 281 | |||
| 282 | netif_vdbg(efx, intr, efx->net_dev, | ||
| 283 | "channel %d NAPI poll executing on CPU %d\n", | ||
| 284 | channel->channel, raw_smp_processor_id()); | ||
| 285 | |||
| 286 | spent = efx_process_channel(channel, budget); | ||
| 287 | |||
| 288 | if (spent < budget) { | ||
| 289 | if (channel->channel < efx->n_rx_channels && | ||
| 290 | efx->irq_rx_adaptive && | ||
| 291 | unlikely(++channel->irq_count == 1000)) { | ||
| 292 | if (unlikely(channel->irq_mod_score < | ||
| 293 | irq_adapt_low_thresh)) { | ||
| 294 | if (channel->irq_moderation > 1) { | ||
| 295 | channel->irq_moderation -= 1; | ||
| 296 | efx->type->push_irq_moderation(channel); | ||
| 297 | } | ||
| 298 | } else if (unlikely(channel->irq_mod_score > | ||
| 299 | irq_adapt_high_thresh)) { | ||
| 300 | if (channel->irq_moderation < | ||
| 301 | efx->irq_rx_moderation) { | ||
| 302 | channel->irq_moderation += 1; | ||
| 303 | efx->type->push_irq_moderation(channel); | ||
| 304 | } | ||
| 305 | } | ||
| 306 | channel->irq_count = 0; | ||
| 307 | channel->irq_mod_score = 0; | ||
| 308 | } | ||
| 309 | |||
| 310 | efx_filter_rfs_expire(channel); | ||
| 311 | |||
| 312 | /* There is no race here; although napi_disable() will | ||
| 313 | * only wait for napi_complete(), this isn't a problem | ||
| 314 | * since efx_channel_processed() will have no effect if | ||
| 315 | * interrupts have already been disabled. | ||
| 316 | */ | ||
| 317 | napi_complete(napi); | ||
| 318 | efx_channel_processed(channel); | ||
| 319 | } | ||
| 320 | |||
| 321 | return spent; | ||
| 322 | } | ||
| 323 | |||
| 324 | /* Process the eventq of the specified channel immediately on this CPU | ||
| 325 | * | ||
| 326 | * Disable hardware generated interrupts, wait for any existing | ||
| 327 | * processing to finish, then directly poll (and ack ) the eventq. | ||
| 328 | * Finally reenable NAPI and interrupts. | ||
| 329 | * | ||
| 330 | * This is for use only during a loopback self-test. It must not | ||
| 331 | * deliver any packets up the stack as this can result in deadlock. | ||
| 332 | */ | ||
| 333 | void efx_process_channel_now(struct efx_channel *channel) | ||
| 334 | { | ||
| 335 | struct efx_nic *efx = channel->efx; | ||
| 336 | |||
| 337 | BUG_ON(channel->channel >= efx->n_channels); | ||
| 338 | BUG_ON(!channel->enabled); | ||
| 339 | BUG_ON(!efx->loopback_selftest); | ||
| 340 | |||
| 341 | /* Disable interrupts and wait for ISRs to complete */ | ||
| 342 | efx_nic_disable_interrupts(efx); | ||
| 343 | if (efx->legacy_irq) { | ||
| 344 | synchronize_irq(efx->legacy_irq); | ||
| 345 | efx->legacy_irq_enabled = false; | ||
| 346 | } | ||
| 347 | if (channel->irq) | ||
| 348 | synchronize_irq(channel->irq); | ||
| 349 | |||
| 350 | /* Wait for any NAPI processing to complete */ | ||
| 351 | napi_disable(&channel->napi_str); | ||
| 352 | |||
| 353 | /* Poll the channel */ | ||
| 354 | efx_process_channel(channel, channel->eventq_mask + 1); | ||
| 355 | |||
| 356 | /* Ack the eventq. This may cause an interrupt to be generated | ||
| 357 | * when they are reenabled */ | ||
| 358 | efx_channel_processed(channel); | ||
| 359 | |||
| 360 | napi_enable(&channel->napi_str); | ||
| 361 | if (efx->legacy_irq) | ||
| 362 | efx->legacy_irq_enabled = true; | ||
| 363 | efx_nic_enable_interrupts(efx); | ||
| 364 | } | ||
| 365 | |||
| 366 | /* Create event queue | ||
| 367 | * Event queue memory allocations are done only once. If the channel | ||
| 368 | * is reset, the memory buffer will be reused; this guards against | ||
| 369 | * errors during channel reset and also simplifies interrupt handling. | ||
| 370 | */ | ||
| 371 | static int efx_probe_eventq(struct efx_channel *channel) | ||
| 372 | { | ||
| 373 | struct efx_nic *efx = channel->efx; | ||
| 374 | unsigned long entries; | ||
| 375 | |||
| 376 | netif_dbg(channel->efx, probe, channel->efx->net_dev, | ||
| 377 | "chan %d create event queue\n", channel->channel); | ||
| 378 | |||
| 379 | /* Build an event queue with room for one event per tx and rx buffer, | ||
| 380 | * plus some extra for link state events and MCDI completions. */ | ||
| 381 | entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); | ||
| 382 | EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); | ||
| 383 | channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; | ||
| 384 | |||
| 385 | return efx_nic_probe_eventq(channel); | ||
| 386 | } | ||
| 387 | |||
| 388 | /* Prepare channel's event queue */ | ||
| 389 | static void efx_init_eventq(struct efx_channel *channel) | ||
| 390 | { | ||
| 391 | netif_dbg(channel->efx, drv, channel->efx->net_dev, | ||
| 392 | "chan %d init event queue\n", channel->channel); | ||
| 393 | |||
| 394 | channel->eventq_read_ptr = 0; | ||
| 395 | |||
| 396 | efx_nic_init_eventq(channel); | ||
| 397 | } | ||
| 398 | |||
| 399 | static void efx_fini_eventq(struct efx_channel *channel) | ||
| 400 | { | ||
| 401 | netif_dbg(channel->efx, drv, channel->efx->net_dev, | ||
| 402 | "chan %d fini event queue\n", channel->channel); | ||
| 403 | |||
| 404 | efx_nic_fini_eventq(channel); | ||
| 405 | } | ||
| 406 | |||
| 407 | static void efx_remove_eventq(struct efx_channel *channel) | ||
| 408 | { | ||
| 409 | netif_dbg(channel->efx, drv, channel->efx->net_dev, | ||
| 410 | "chan %d remove event queue\n", channel->channel); | ||
| 411 | |||
| 412 | efx_nic_remove_eventq(channel); | ||
| 413 | } | ||
| 414 | |||
| 415 | /************************************************************************** | ||
| 416 | * | ||
| 417 | * Channel handling | ||
| 418 | * | ||
| 419 | *************************************************************************/ | ||
| 420 | |||
| 421 | /* Allocate and initialise a channel structure, optionally copying | ||
| 422 | * parameters (but not resources) from an old channel structure. */ | ||
| 423 | static struct efx_channel * | ||
| 424 | efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) | ||
| 425 | { | ||
| 426 | struct efx_channel *channel; | ||
| 427 | struct efx_rx_queue *rx_queue; | ||
| 428 | struct efx_tx_queue *tx_queue; | ||
| 429 | int j; | ||
| 430 | |||
| 431 | if (old_channel) { | ||
| 432 | channel = kmalloc(sizeof(*channel), GFP_KERNEL); | ||
| 433 | if (!channel) | ||
| 434 | return NULL; | ||
| 435 | |||
| 436 | *channel = *old_channel; | ||
| 437 | |||
| 438 | channel->napi_dev = NULL; | ||
| 439 | memset(&channel->eventq, 0, sizeof(channel->eventq)); | ||
| 440 | |||
| 441 | rx_queue = &channel->rx_queue; | ||
| 442 | rx_queue->buffer = NULL; | ||
| 443 | memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); | ||
| 444 | |||
| 445 | for (j = 0; j < EFX_TXQ_TYPES; j++) { | ||
| 446 | tx_queue = &channel->tx_queue[j]; | ||
| 447 | if (tx_queue->channel) | ||
| 448 | tx_queue->channel = channel; | ||
| 449 | tx_queue->buffer = NULL; | ||
| 450 | memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); | ||
| 451 | } | ||
| 452 | } else { | ||
| 453 | channel = kzalloc(sizeof(*channel), GFP_KERNEL); | ||
| 454 | if (!channel) | ||
| 455 | return NULL; | ||
| 456 | |||
| 457 | channel->efx = efx; | ||
| 458 | channel->channel = i; | ||
| 459 | |||
| 460 | for (j = 0; j < EFX_TXQ_TYPES; j++) { | ||
| 461 | tx_queue = &channel->tx_queue[j]; | ||
| 462 | tx_queue->efx = efx; | ||
| 463 | tx_queue->queue = i * EFX_TXQ_TYPES + j; | ||
| 464 | tx_queue->channel = channel; | ||
| 465 | } | ||
| 466 | } | ||
| 467 | |||
| 468 | rx_queue = &channel->rx_queue; | ||
| 469 | rx_queue->efx = efx; | ||
| 470 | setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, | ||
| 471 | (unsigned long)rx_queue); | ||
| 472 | |||
| 473 | return channel; | ||
| 474 | } | ||
| 475 | |||
| 476 | static int efx_probe_channel(struct efx_channel *channel) | ||
| 477 | { | ||
| 478 | struct efx_tx_queue *tx_queue; | ||
| 479 | struct efx_rx_queue *rx_queue; | ||
| 480 | int rc; | ||
| 481 | |||
| 482 | netif_dbg(channel->efx, probe, channel->efx->net_dev, | ||
| 483 | "creating channel %d\n", channel->channel); | ||
| 484 | |||
| 485 | rc = efx_probe_eventq(channel); | ||
| 486 | if (rc) | ||
| 487 | goto fail1; | ||
| 488 | |||
| 489 | efx_for_each_channel_tx_queue(tx_queue, channel) { | ||
| 490 | rc = efx_probe_tx_queue(tx_queue); | ||
| 491 | if (rc) | ||
| 492 | goto fail2; | ||
| 493 | } | ||
| 494 | |||
| 495 | efx_for_each_channel_rx_queue(rx_queue, channel) { | ||
| 496 | rc = efx_probe_rx_queue(rx_queue); | ||
| 497 | if (rc) | ||
| 498 | goto fail3; | ||
| 499 | } | ||
| 500 | |||
| 501 | channel->n_rx_frm_trunc = 0; | ||
| 502 | |||
| 503 | return 0; | ||
| 504 | |||
| 505 | fail3: | ||
| 506 | efx_for_each_channel_rx_queue(rx_queue, channel) | ||
| 507 | efx_remove_rx_queue(rx_queue); | ||
| 508 | fail2: | ||
| 509 | efx_for_each_channel_tx_queue(tx_queue, channel) | ||
| 510 | efx_remove_tx_queue(tx_queue); | ||
| 511 | fail1: | ||
| 512 | return rc; | ||
| 513 | } | ||
| 514 | |||
| 515 | |||
| 516 | static void efx_set_channel_names(struct efx_nic *efx) | ||
| 517 | { | ||
| 518 | struct efx_channel *channel; | ||
| 519 | const char *type = ""; | ||
| 520 | int number; | ||
| 521 | |||
| 522 | efx_for_each_channel(channel, efx) { | ||
| 523 | number = channel->channel; | ||
| 524 | if (efx->n_channels > efx->n_rx_channels) { | ||
| 525 | if (channel->channel < efx->n_rx_channels) { | ||
| 526 | type = "-rx"; | ||
| 527 | } else { | ||
| 528 | type = "-tx"; | ||
| 529 | number -= efx->n_rx_channels; | ||
| 530 | } | ||
| 531 | } | ||
| 532 | snprintf(efx->channel_name[channel->channel], | ||
| 533 | sizeof(efx->channel_name[0]), | ||
| 534 | "%s%s-%d", efx->name, type, number); | ||
| 535 | } | ||
| 536 | } | ||
| 537 | |||
| 538 | static int efx_probe_channels(struct efx_nic *efx) | ||
| 539 | { | ||
| 540 | struct efx_channel *channel; | ||
| 541 | int rc; | ||
| 542 | |||
| 543 | /* Restart special buffer allocation */ | ||
| 544 | efx->next_buffer_table = 0; | ||
| 545 | |||
| 546 | efx_for_each_channel(channel, efx) { | ||
| 547 | rc = efx_probe_channel(channel); | ||
| 548 | if (rc) { | ||
| 549 | netif_err(efx, probe, efx->net_dev, | ||
| 550 | "failed to create channel %d\n", | ||
| 551 | channel->channel); | ||
| 552 | goto fail; | ||
| 553 | } | ||
| 554 | } | ||
| 555 | efx_set_channel_names(efx); | ||
| 556 | |||
| 557 | return 0; | ||
| 558 | |||
| 559 | fail: | ||
| 560 | efx_remove_channels(efx); | ||
| 561 | return rc; | ||
| 562 | } | ||
| 563 | |||
| 564 | /* Channels are shutdown and reinitialised whilst the NIC is running | ||
| 565 | * to propagate configuration changes (mtu, checksum offload), or | ||
| 566 | * to clear hardware error conditions | ||
| 567 | */ | ||
| 568 | static void efx_init_channels(struct efx_nic *efx) | ||
| 569 | { | ||
| 570 | struct efx_tx_queue *tx_queue; | ||
| 571 | struct efx_rx_queue *rx_queue; | ||
| 572 | struct efx_channel *channel; | ||
| 573 | |||
| 574 | /* Calculate the rx buffer allocation parameters required to | ||
| 575 | * support the current MTU, including padding for header | ||
| 576 | * alignment and overruns. | ||
| 577 | */ | ||
| 578 | efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) + | ||
| 579 | EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + | ||
| 580 | efx->type->rx_buffer_hash_size + | ||
| 581 | efx->type->rx_buffer_padding); | ||
| 582 | efx->rx_buffer_order = get_order(efx->rx_buffer_len + | ||
| 583 | sizeof(struct efx_rx_page_state)); | ||
| 584 | |||
| 585 | /* Initialise the channels */ | ||
| 586 | efx_for_each_channel(channel, efx) { | ||
| 587 | netif_dbg(channel->efx, drv, channel->efx->net_dev, | ||
| 588 | "init chan %d\n", channel->channel); | ||
| 589 | |||
| 590 | efx_init_eventq(channel); | ||
| 591 | |||
| 592 | efx_for_each_channel_tx_queue(tx_queue, channel) | ||
| 593 | efx_init_tx_queue(tx_queue); | ||
| 594 | |||
| 595 | /* The rx buffer allocation strategy is MTU dependent */ | ||
| 596 | efx_rx_strategy(channel); | ||
| 597 | |||
| 598 | efx_for_each_channel_rx_queue(rx_queue, channel) | ||
| 599 | efx_init_rx_queue(rx_queue); | ||
| 600 | |||
| 601 | WARN_ON(channel->rx_pkt != NULL); | ||
| 602 | efx_rx_strategy(channel); | ||
| 603 | } | ||
| 604 | } | ||
| 605 | |||
| 606 | /* This enables event queue processing and packet transmission. | ||
| 607 | * | ||
| 608 | * Note that this function is not allowed to fail, since that would | ||
| 609 | * introduce too much complexity into the suspend/resume path. | ||
| 610 | */ | ||
| 611 | static void efx_start_channel(struct efx_channel *channel) | ||
| 612 | { | ||
| 613 | struct efx_rx_queue *rx_queue; | ||
| 614 | |||
| 615 | netif_dbg(channel->efx, ifup, channel->efx->net_dev, | ||
| 616 | "starting chan %d\n", channel->channel); | ||
| 617 | |||
| 618 | /* The interrupt handler for this channel may set work_pending | ||
| 619 | * as soon as we enable it. Make sure it's cleared before | ||
| 620 | * then. Similarly, make sure it sees the enabled flag set. */ | ||
| 621 | channel->work_pending = false; | ||
| 622 | channel->enabled = true; | ||
| 623 | smp_wmb(); | ||
| 624 | |||
| 625 | /* Fill the queues before enabling NAPI */ | ||
| 626 | efx_for_each_channel_rx_queue(rx_queue, channel) | ||
| 627 | efx_fast_push_rx_descriptors(rx_queue); | ||
| 628 | |||
| 629 | napi_enable(&channel->napi_str); | ||
| 630 | } | ||
| 631 | |||
| 632 | /* This disables event queue processing and packet transmission. | ||
| 633 | * This function does not guarantee that all queue processing | ||
| 634 | * (e.g. RX refill) is complete. | ||
| 635 | */ | ||
| 636 | static void efx_stop_channel(struct efx_channel *channel) | ||
| 637 | { | ||
| 638 | if (!channel->enabled) | ||
| 639 | return; | ||
| 640 | |||
| 641 | netif_dbg(channel->efx, ifdown, channel->efx->net_dev, | ||
| 642 | "stop chan %d\n", channel->channel); | ||
| 643 | |||
| 644 | channel->enabled = false; | ||
| 645 | napi_disable(&channel->napi_str); | ||
| 646 | } | ||
| 647 | |||
| 648 | static void efx_fini_channels(struct efx_nic *efx) | ||
| 649 | { | ||
| 650 | struct efx_channel *channel; | ||
| 651 | struct efx_tx_queue *tx_queue; | ||
| 652 | struct efx_rx_queue *rx_queue; | ||
| 653 | int rc; | ||
| 654 | |||
| 655 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
| 656 | BUG_ON(efx->port_enabled); | ||
| 657 | |||
| 658 | rc = efx_nic_flush_queues(efx); | ||
| 659 | if (rc && EFX_WORKAROUND_7803(efx)) { | ||
| 660 | /* Schedule a reset to recover from the flush failure. The | ||
| 661 | * descriptor caches reference memory we're about to free, | ||
| 662 | * but falcon_reconfigure_mac_wrapper() won't reconnect | ||
| 663 | * the MACs because of the pending reset. */ | ||
| 664 | netif_err(efx, drv, efx->net_dev, | ||
| 665 | "Resetting to recover from flush failure\n"); | ||
| 666 | efx_schedule_reset(efx, RESET_TYPE_ALL); | ||
| 667 | } else if (rc) { | ||
| 668 | netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); | ||
| 669 | } else { | ||
| 670 | netif_dbg(efx, drv, efx->net_dev, | ||
| 671 | "successfully flushed all queues\n"); | ||
| 672 | } | ||
| 673 | |||
| 674 | efx_for_each_channel(channel, efx) { | ||
| 675 | netif_dbg(channel->efx, drv, channel->efx->net_dev, | ||
| 676 | "shut down chan %d\n", channel->channel); | ||
| 677 | |||
| 678 | efx_for_each_channel_rx_queue(rx_queue, channel) | ||
| 679 | efx_fini_rx_queue(rx_queue); | ||
| 680 | efx_for_each_possible_channel_tx_queue(tx_queue, channel) | ||
| 681 | efx_fini_tx_queue(tx_queue); | ||
| 682 | efx_fini_eventq(channel); | ||
| 683 | } | ||
| 684 | } | ||
| 685 | |||
| 686 | static void efx_remove_channel(struct efx_channel *channel) | ||
| 687 | { | ||
| 688 | struct efx_tx_queue *tx_queue; | ||
| 689 | struct efx_rx_queue *rx_queue; | ||
| 690 | |||
| 691 | netif_dbg(channel->efx, drv, channel->efx->net_dev, | ||
| 692 | "destroy chan %d\n", channel->channel); | ||
| 693 | |||
| 694 | efx_for_each_channel_rx_queue(rx_queue, channel) | ||
| 695 | efx_remove_rx_queue(rx_queue); | ||
| 696 | efx_for_each_possible_channel_tx_queue(tx_queue, channel) | ||
| 697 | efx_remove_tx_queue(tx_queue); | ||
| 698 | efx_remove_eventq(channel); | ||
| 699 | } | ||
| 700 | |||
| 701 | static void efx_remove_channels(struct efx_nic *efx) | ||
| 702 | { | ||
| 703 | struct efx_channel *channel; | ||
| 704 | |||
| 705 | efx_for_each_channel(channel, efx) | ||
| 706 | efx_remove_channel(channel); | ||
| 707 | } | ||
| 708 | |||
| 709 | int | ||
| 710 | efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) | ||
| 711 | { | ||
| 712 | struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; | ||
| 713 | u32 old_rxq_entries, old_txq_entries; | ||
| 714 | unsigned i; | ||
| 715 | int rc; | ||
| 716 | |||
| 717 | efx_stop_all(efx); | ||
| 718 | efx_fini_channels(efx); | ||
| 719 | |||
| 720 | /* Clone channels */ | ||
| 721 | memset(other_channel, 0, sizeof(other_channel)); | ||
| 722 | for (i = 0; i < efx->n_channels; i++) { | ||
| 723 | channel = efx_alloc_channel(efx, i, efx->channel[i]); | ||
| 724 | if (!channel) { | ||
| 725 | rc = -ENOMEM; | ||
| 726 | goto out; | ||
| 727 | } | ||
| 728 | other_channel[i] = channel; | ||
| 729 | } | ||
| 730 | |||
| 731 | /* Swap entry counts and channel pointers */ | ||
| 732 | old_rxq_entries = efx->rxq_entries; | ||
| 733 | old_txq_entries = efx->txq_entries; | ||
| 734 | efx->rxq_entries = rxq_entries; | ||
| 735 | efx->txq_entries = txq_entries; | ||
| 736 | for (i = 0; i < efx->n_channels; i++) { | ||
| 737 | channel = efx->channel[i]; | ||
| 738 | efx->channel[i] = other_channel[i]; | ||
| 739 | other_channel[i] = channel; | ||
| 740 | } | ||
| 741 | |||
| 742 | rc = efx_probe_channels(efx); | ||
| 743 | if (rc) | ||
| 744 | goto rollback; | ||
| 745 | |||
| 746 | efx_init_napi(efx); | ||
| 747 | |||
| 748 | /* Destroy old channels */ | ||
| 749 | for (i = 0; i < efx->n_channels; i++) { | ||
| 750 | efx_fini_napi_channel(other_channel[i]); | ||
| 751 | efx_remove_channel(other_channel[i]); | ||
| 752 | } | ||
| 753 | out: | ||
| 754 | /* Free unused channel structures */ | ||
| 755 | for (i = 0; i < efx->n_channels; i++) | ||
| 756 | kfree(other_channel[i]); | ||
| 757 | |||
| 758 | efx_init_channels(efx); | ||
| 759 | efx_start_all(efx); | ||
| 760 | return rc; | ||
| 761 | |||
| 762 | rollback: | ||
| 763 | /* Swap back */ | ||
| 764 | efx->rxq_entries = old_rxq_entries; | ||
| 765 | efx->txq_entries = old_txq_entries; | ||
| 766 | for (i = 0; i < efx->n_channels; i++) { | ||
| 767 | channel = efx->channel[i]; | ||
| 768 | efx->channel[i] = other_channel[i]; | ||
| 769 | other_channel[i] = channel; | ||
| 770 | } | ||
| 771 | goto out; | ||
| 772 | } | ||
| 773 | |||
| 774 | void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) | ||
| 775 | { | ||
| 776 | mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); | ||
| 777 | } | ||
| 778 | |||
| 779 | /************************************************************************** | ||
| 780 | * | ||
| 781 | * Port handling | ||
| 782 | * | ||
| 783 | **************************************************************************/ | ||
| 784 | |||
| 785 | /* This ensures that the kernel is kept informed (via | ||
| 786 | * netif_carrier_on/off) of the link status, and also maintains the | ||
| 787 | * link status's stop on the port's TX queue. | ||
| 788 | */ | ||
| 789 | void efx_link_status_changed(struct efx_nic *efx) | ||
| 790 | { | ||
| 791 | struct efx_link_state *link_state = &efx->link_state; | ||
| 792 | |||
| 793 | /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure | ||
| 794 | * that no events are triggered between unregister_netdev() and the | ||
| 795 | * driver unloading. A more general condition is that NETDEV_CHANGE | ||
| 796 | * can only be generated between NETDEV_UP and NETDEV_DOWN */ | ||
| 797 | if (!netif_running(efx->net_dev)) | ||
| 798 | return; | ||
| 799 | |||
| 800 | if (link_state->up != netif_carrier_ok(efx->net_dev)) { | ||
| 801 | efx->n_link_state_changes++; | ||
| 802 | |||
| 803 | if (link_state->up) | ||
| 804 | netif_carrier_on(efx->net_dev); | ||
| 805 | else | ||
| 806 | netif_carrier_off(efx->net_dev); | ||
| 807 | } | ||
| 808 | |||
| 809 | /* Status message for kernel log */ | ||
| 810 | if (link_state->up) { | ||
| 811 | netif_info(efx, link, efx->net_dev, | ||
| 812 | "link up at %uMbps %s-duplex (MTU %d)%s\n", | ||
| 813 | link_state->speed, link_state->fd ? "full" : "half", | ||
| 814 | efx->net_dev->mtu, | ||
| 815 | (efx->promiscuous ? " [PROMISC]" : "")); | ||
| 816 | } else { | ||
| 817 | netif_info(efx, link, efx->net_dev, "link down\n"); | ||
| 818 | } | ||
| 819 | |||
| 820 | } | ||
| 821 | |||
| 822 | void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) | ||
| 823 | { | ||
| 824 | efx->link_advertising = advertising; | ||
| 825 | if (advertising) { | ||
| 826 | if (advertising & ADVERTISED_Pause) | ||
| 827 | efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); | ||
| 828 | else | ||
| 829 | efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); | ||
| 830 | if (advertising & ADVERTISED_Asym_Pause) | ||
| 831 | efx->wanted_fc ^= EFX_FC_TX; | ||
| 832 | } | ||
| 833 | } | ||
| 834 | |||
| 835 | void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) | ||
| 836 | { | ||
| 837 | efx->wanted_fc = wanted_fc; | ||
| 838 | if (efx->link_advertising) { | ||
| 839 | if (wanted_fc & EFX_FC_RX) | ||
| 840 | efx->link_advertising |= (ADVERTISED_Pause | | ||
| 841 | ADVERTISED_Asym_Pause); | ||
| 842 | else | ||
| 843 | efx->link_advertising &= ~(ADVERTISED_Pause | | ||
| 844 | ADVERTISED_Asym_Pause); | ||
| 845 | if (wanted_fc & EFX_FC_TX) | ||
| 846 | efx->link_advertising ^= ADVERTISED_Asym_Pause; | ||
| 847 | } | ||
| 848 | } | ||
| 849 | |||
| 850 | static void efx_fini_port(struct efx_nic *efx); | ||
| 851 | |||
| 852 | /* Push loopback/power/transmit disable settings to the PHY, and reconfigure | ||
| 853 | * the MAC appropriately. All other PHY configuration changes are pushed | ||
| 854 | * through phy_op->set_settings(), and pushed asynchronously to the MAC | ||
| 855 | * through efx_monitor(). | ||
| 856 | * | ||
| 857 | * Callers must hold the mac_lock | ||
| 858 | */ | ||
| 859 | int __efx_reconfigure_port(struct efx_nic *efx) | ||
| 860 | { | ||
| 861 | enum efx_phy_mode phy_mode; | ||
| 862 | int rc; | ||
| 863 | |||
| 864 | WARN_ON(!mutex_is_locked(&efx->mac_lock)); | ||
| 865 | |||
| 866 | /* Serialise the promiscuous flag with efx_set_multicast_list. */ | ||
| 867 | if (efx_dev_registered(efx)) { | ||
| 868 | netif_addr_lock_bh(efx->net_dev); | ||
| 869 | netif_addr_unlock_bh(efx->net_dev); | ||
| 870 | } | ||
| 871 | |||
| 872 | /* Disable PHY transmit in mac level loopbacks */ | ||
| 873 | phy_mode = efx->phy_mode; | ||
| 874 | if (LOOPBACK_INTERNAL(efx)) | ||
| 875 | efx->phy_mode |= PHY_MODE_TX_DISABLED; | ||
| 876 | else | ||
| 877 | efx->phy_mode &= ~PHY_MODE_TX_DISABLED; | ||
| 878 | |||
| 879 | rc = efx->type->reconfigure_port(efx); | ||
| 880 | |||
| 881 | if (rc) | ||
| 882 | efx->phy_mode = phy_mode; | ||
| 883 | |||
| 884 | return rc; | ||
| 885 | } | ||
| 886 | |||
| 887 | /* Reinitialise the MAC to pick up new PHY settings, even if the port is | ||
| 888 | * disabled. */ | ||
| 889 | int efx_reconfigure_port(struct efx_nic *efx) | ||
| 890 | { | ||
| 891 | int rc; | ||
| 892 | |||
| 893 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
| 894 | |||
| 895 | mutex_lock(&efx->mac_lock); | ||
| 896 | rc = __efx_reconfigure_port(efx); | ||
| 897 | mutex_unlock(&efx->mac_lock); | ||
| 898 | |||
| 899 | return rc; | ||
| 900 | } | ||
| 901 | |||
| 902 | /* Asynchronous work item for changing MAC promiscuity and multicast | ||
| 903 | * hash. Avoid a drain/rx_ingress enable by reconfiguring the current | ||
| 904 | * MAC directly. */ | ||
| 905 | static void efx_mac_work(struct work_struct *data) | ||
| 906 | { | ||
| 907 | struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); | ||
| 908 | |||
| 909 | mutex_lock(&efx->mac_lock); | ||
| 910 | if (efx->port_enabled) { | ||
| 911 | efx->type->push_multicast_hash(efx); | ||
| 912 | efx->mac_op->reconfigure(efx); | ||
| 913 | } | ||
| 914 | mutex_unlock(&efx->mac_lock); | ||
| 915 | } | ||
| 916 | |||
| 917 | static int efx_probe_port(struct efx_nic *efx) | ||
| 918 | { | ||
| 919 | unsigned char *perm_addr; | ||
| 920 | int rc; | ||
| 921 | |||
| 922 | netif_dbg(efx, probe, efx->net_dev, "create port\n"); | ||
| 923 | |||
| 924 | if (phy_flash_cfg) | ||
| 925 | efx->phy_mode = PHY_MODE_SPECIAL; | ||
| 926 | |||
| 927 | /* Connect up MAC/PHY operations table */ | ||
| 928 | rc = efx->type->probe_port(efx); | ||
| 929 | if (rc) | ||
| 930 | return rc; | ||
| 931 | |||
| 932 | /* Sanity check MAC address */ | ||
| 933 | perm_addr = efx->net_dev->perm_addr; | ||
| 934 | if (is_valid_ether_addr(perm_addr)) { | ||
| 935 | memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN); | ||
| 936 | } else { | ||
| 937 | netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n", | ||
| 938 | perm_addr); | ||
| 939 | if (!allow_bad_hwaddr) { | ||
| 940 | rc = -EINVAL; | ||
| 941 | goto err; | ||
| 942 | } | ||
| 943 | random_ether_addr(efx->net_dev->dev_addr); | ||
| 944 | netif_info(efx, probe, efx->net_dev, | ||
| 945 | "using locally-generated MAC %pM\n", | ||
| 946 | efx->net_dev->dev_addr); | ||
| 947 | } | ||
| 948 | |||
| 949 | return 0; | ||
| 950 | |||
| 951 | err: | ||
| 952 | efx->type->remove_port(efx); | ||
| 953 | return rc; | ||
| 954 | } | ||
| 955 | |||
| 956 | static int efx_init_port(struct efx_nic *efx) | ||
| 957 | { | ||
| 958 | int rc; | ||
| 959 | |||
| 960 | netif_dbg(efx, drv, efx->net_dev, "init port\n"); | ||
| 961 | |||
| 962 | mutex_lock(&efx->mac_lock); | ||
| 963 | |||
| 964 | rc = efx->phy_op->init(efx); | ||
| 965 | if (rc) | ||
| 966 | goto fail1; | ||
| 967 | |||
| 968 | efx->port_initialized = true; | ||
| 969 | |||
| 970 | /* Reconfigure the MAC before creating dma queues (required for | ||
| 971 | * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ | ||
| 972 | efx->mac_op->reconfigure(efx); | ||
| 973 | |||
| 974 | /* Ensure the PHY advertises the correct flow control settings */ | ||
| 975 | rc = efx->phy_op->reconfigure(efx); | ||
| 976 | if (rc) | ||
| 977 | goto fail2; | ||
| 978 | |||
| 979 | mutex_unlock(&efx->mac_lock); | ||
| 980 | return 0; | ||
| 981 | |||
| 982 | fail2: | ||
| 983 | efx->phy_op->fini(efx); | ||
| 984 | fail1: | ||
| 985 | mutex_unlock(&efx->mac_lock); | ||
| 986 | return rc; | ||
| 987 | } | ||
| 988 | |||
| 989 | static void efx_start_port(struct efx_nic *efx) | ||
| 990 | { | ||
| 991 | netif_dbg(efx, ifup, efx->net_dev, "start port\n"); | ||
| 992 | BUG_ON(efx->port_enabled); | ||
| 993 | |||
| 994 | mutex_lock(&efx->mac_lock); | ||
| 995 | efx->port_enabled = true; | ||
| 996 | |||
| 997 | /* efx_mac_work() might have been scheduled after efx_stop_port(), | ||
| 998 | * and then cancelled by efx_flush_all() */ | ||
| 999 | efx->type->push_multicast_hash(efx); | ||
| 1000 | efx->mac_op->reconfigure(efx); | ||
| 1001 | |||
| 1002 | mutex_unlock(&efx->mac_lock); | ||
| 1003 | } | ||
| 1004 | |||
| 1005 | /* Prevent efx_mac_work() and efx_monitor() from working */ | ||
| 1006 | static void efx_stop_port(struct efx_nic *efx) | ||
| 1007 | { | ||
| 1008 | netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); | ||
| 1009 | |||
| 1010 | mutex_lock(&efx->mac_lock); | ||
| 1011 | efx->port_enabled = false; | ||
| 1012 | mutex_unlock(&efx->mac_lock); | ||
| 1013 | |||
| 1014 | /* Serialise against efx_set_multicast_list() */ | ||
| 1015 | if (efx_dev_registered(efx)) { | ||
| 1016 | netif_addr_lock_bh(efx->net_dev); | ||
| 1017 | netif_addr_unlock_bh(efx->net_dev); | ||
| 1018 | } | ||
| 1019 | } | ||
| 1020 | |||
| 1021 | static void efx_fini_port(struct efx_nic *efx) | ||
| 1022 | { | ||
| 1023 | netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); | ||
| 1024 | |||
| 1025 | if (!efx->port_initialized) | ||
| 1026 | return; | ||
| 1027 | |||
| 1028 | efx->phy_op->fini(efx); | ||
| 1029 | efx->port_initialized = false; | ||
| 1030 | |||
| 1031 | efx->link_state.up = false; | ||
| 1032 | efx_link_status_changed(efx); | ||
| 1033 | } | ||
| 1034 | |||
| 1035 | static void efx_remove_port(struct efx_nic *efx) | ||
| 1036 | { | ||
| 1037 | netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); | ||
| 1038 | |||
| 1039 | efx->type->remove_port(efx); | ||
| 1040 | } | ||
| 1041 | |||
| 1042 | /************************************************************************** | ||
| 1043 | * | ||
| 1044 | * NIC handling | ||
| 1045 | * | ||
| 1046 | **************************************************************************/ | ||
| 1047 | |||
| 1048 | /* This configures the PCI device to enable I/O and DMA. */ | ||
| 1049 | static int efx_init_io(struct efx_nic *efx) | ||
| 1050 | { | ||
| 1051 | struct pci_dev *pci_dev = efx->pci_dev; | ||
| 1052 | dma_addr_t dma_mask = efx->type->max_dma_mask; | ||
| 1053 | bool use_wc; | ||
| 1054 | int rc; | ||
| 1055 | |||
| 1056 | netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); | ||
| 1057 | |||
| 1058 | rc = pci_enable_device(pci_dev); | ||
| 1059 | if (rc) { | ||
| 1060 | netif_err(efx, probe, efx->net_dev, | ||
| 1061 | "failed to enable PCI device\n"); | ||
| 1062 | goto fail1; | ||
| 1063 | } | ||
| 1064 | |||
| 1065 | pci_set_master(pci_dev); | ||
| 1066 | |||
| 1067 | /* Set the PCI DMA mask. Try all possibilities from our | ||
| 1068 | * genuine mask down to 32 bits, because some architectures | ||
| 1069 | * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit | ||
| 1070 | * masks event though they reject 46 bit masks. | ||
| 1071 | */ | ||
| 1072 | while (dma_mask > 0x7fffffffUL) { | ||
| 1073 | if (pci_dma_supported(pci_dev, dma_mask) && | ||
| 1074 | ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0)) | ||
| 1075 | break; | ||
| 1076 | dma_mask >>= 1; | ||
| 1077 | } | ||
| 1078 | if (rc) { | ||
| 1079 | netif_err(efx, probe, efx->net_dev, | ||
| 1080 | "could not find a suitable DMA mask\n"); | ||
| 1081 | goto fail2; | ||
| 1082 | } | ||
| 1083 | netif_dbg(efx, probe, efx->net_dev, | ||
| 1084 | "using DMA mask %llx\n", (unsigned long long) dma_mask); | ||
| 1085 | rc = pci_set_consistent_dma_mask(pci_dev, dma_mask); | ||
| 1086 | if (rc) { | ||
| 1087 | /* pci_set_consistent_dma_mask() is not *allowed* to | ||
| 1088 | * fail with a mask that pci_set_dma_mask() accepted, | ||
| 1089 | * but just in case... | ||
| 1090 | */ | ||
| 1091 | netif_err(efx, probe, efx->net_dev, | ||
| 1092 | "failed to set consistent DMA mask\n"); | ||
| 1093 | goto fail2; | ||
| 1094 | } | ||
| 1095 | |||
| 1096 | efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR); | ||
| 1097 | rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc"); | ||
| 1098 | if (rc) { | ||
| 1099 | netif_err(efx, probe, efx->net_dev, | ||
| 1100 | "request for memory BAR failed\n"); | ||
| 1101 | rc = -EIO; | ||
| 1102 | goto fail3; | ||
| 1103 | } | ||
| 1104 | |||
| 1105 | /* bug22643: If SR-IOV is enabled then tx push over a write combined | ||
| 1106 | * mapping is unsafe. We need to disable write combining in this case. | ||
| 1107 | * MSI is unsupported when SR-IOV is enabled, and the firmware will | ||
| 1108 | * have removed the MSI capability. So write combining is safe if | ||
| 1109 | * there is an MSI capability. | ||
| 1110 | */ | ||
| 1111 | use_wc = (!EFX_WORKAROUND_22643(efx) || | ||
| 1112 | pci_find_capability(pci_dev, PCI_CAP_ID_MSI)); | ||
| 1113 | if (use_wc) | ||
| 1114 | efx->membase = ioremap_wc(efx->membase_phys, | ||
| 1115 | efx->type->mem_map_size); | ||
| 1116 | else | ||
| 1117 | efx->membase = ioremap_nocache(efx->membase_phys, | ||
| 1118 | efx->type->mem_map_size); | ||
| 1119 | if (!efx->membase) { | ||
| 1120 | netif_err(efx, probe, efx->net_dev, | ||
| 1121 | "could not map memory BAR at %llx+%x\n", | ||
| 1122 | (unsigned long long)efx->membase_phys, | ||
| 1123 | efx->type->mem_map_size); | ||
| 1124 | rc = -ENOMEM; | ||
| 1125 | goto fail4; | ||
| 1126 | } | ||
| 1127 | netif_dbg(efx, probe, efx->net_dev, | ||
| 1128 | "memory BAR at %llx+%x (virtual %p)\n", | ||
| 1129 | (unsigned long long)efx->membase_phys, | ||
| 1130 | efx->type->mem_map_size, efx->membase); | ||
| 1131 | |||
| 1132 | return 0; | ||
| 1133 | |||
| 1134 | fail4: | ||
| 1135 | pci_release_region(efx->pci_dev, EFX_MEM_BAR); | ||
| 1136 | fail3: | ||
| 1137 | efx->membase_phys = 0; | ||
| 1138 | fail2: | ||
| 1139 | pci_disable_device(efx->pci_dev); | ||
| 1140 | fail1: | ||
| 1141 | return rc; | ||
| 1142 | } | ||
| 1143 | |||
| 1144 | static void efx_fini_io(struct efx_nic *efx) | ||
| 1145 | { | ||
| 1146 | netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); | ||
| 1147 | |||
| 1148 | if (efx->membase) { | ||
| 1149 | iounmap(efx->membase); | ||
| 1150 | efx->membase = NULL; | ||
| 1151 | } | ||
| 1152 | |||
| 1153 | if (efx->membase_phys) { | ||
| 1154 | pci_release_region(efx->pci_dev, EFX_MEM_BAR); | ||
| 1155 | efx->membase_phys = 0; | ||
| 1156 | } | ||
| 1157 | |||
| 1158 | pci_disable_device(efx->pci_dev); | ||
| 1159 | } | ||
| 1160 | |||
| 1161 | /* Get number of channels wanted. Each channel will have its own IRQ, | ||
| 1162 | * 1 RX queue and/or 2 TX queues. */ | ||
| 1163 | static int efx_wanted_channels(void) | ||
| 1164 | { | ||
| 1165 | cpumask_var_t core_mask; | ||
| 1166 | int count; | ||
| 1167 | int cpu; | ||
| 1168 | |||
| 1169 | if (rss_cpus) | ||
| 1170 | return rss_cpus; | ||
| 1171 | |||
| 1172 | if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) { | ||
| 1173 | printk(KERN_WARNING | ||
| 1174 | "sfc: RSS disabled due to allocation failure\n"); | ||
| 1175 | return 1; | ||
| 1176 | } | ||
| 1177 | |||
| 1178 | count = 0; | ||
| 1179 | for_each_online_cpu(cpu) { | ||
| 1180 | if (!cpumask_test_cpu(cpu, core_mask)) { | ||
| 1181 | ++count; | ||
| 1182 | cpumask_or(core_mask, core_mask, | ||
| 1183 | topology_core_cpumask(cpu)); | ||
| 1184 | } | ||
| 1185 | } | ||
| 1186 | |||
| 1187 | free_cpumask_var(core_mask); | ||
| 1188 | return count; | ||
| 1189 | } | ||
| 1190 | |||
| 1191 | static int | ||
| 1192 | efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries) | ||
| 1193 | { | ||
| 1194 | #ifdef CONFIG_RFS_ACCEL | ||
| 1195 | int i, rc; | ||
| 1196 | |||
| 1197 | efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels); | ||
| 1198 | if (!efx->net_dev->rx_cpu_rmap) | ||
| 1199 | return -ENOMEM; | ||
| 1200 | for (i = 0; i < efx->n_rx_channels; i++) { | ||
| 1201 | rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap, | ||
| 1202 | xentries[i].vector); | ||
| 1203 | if (rc) { | ||
| 1204 | free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); | ||
| 1205 | efx->net_dev->rx_cpu_rmap = NULL; | ||
| 1206 | return rc; | ||
| 1207 | } | ||
| 1208 | } | ||
| 1209 | #endif | ||
| 1210 | return 0; | ||
| 1211 | } | ||
| 1212 | |||
| 1213 | /* Probe the number and type of interrupts we are able to obtain, and | ||
| 1214 | * the resulting numbers of channels and RX queues. | ||
| 1215 | */ | ||
| 1216 | static int efx_probe_interrupts(struct efx_nic *efx) | ||
| 1217 | { | ||
| 1218 | int max_channels = | ||
| 1219 | min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS); | ||
| 1220 | int rc, i; | ||
| 1221 | |||
| 1222 | if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { | ||
| 1223 | struct msix_entry xentries[EFX_MAX_CHANNELS]; | ||
| 1224 | int n_channels; | ||
| 1225 | |||
| 1226 | n_channels = efx_wanted_channels(); | ||
| 1227 | if (separate_tx_channels) | ||
| 1228 | n_channels *= 2; | ||
| 1229 | n_channels = min(n_channels, max_channels); | ||
| 1230 | |||
| 1231 | for (i = 0; i < n_channels; i++) | ||
| 1232 | xentries[i].entry = i; | ||
| 1233 | rc = pci_enable_msix(efx->pci_dev, xentries, n_channels); | ||
| 1234 | if (rc > 0) { | ||
| 1235 | netif_err(efx, drv, efx->net_dev, | ||
| 1236 | "WARNING: Insufficient MSI-X vectors" | ||
| 1237 | " available (%d < %d).\n", rc, n_channels); | ||
| 1238 | netif_err(efx, drv, efx->net_dev, | ||
| 1239 | "WARNING: Performance may be reduced.\n"); | ||
| 1240 | EFX_BUG_ON_PARANOID(rc >= n_channels); | ||
| 1241 | n_channels = rc; | ||
| 1242 | rc = pci_enable_msix(efx->pci_dev, xentries, | ||
| 1243 | n_channels); | ||
| 1244 | } | ||
| 1245 | |||
| 1246 | if (rc == 0) { | ||
| 1247 | efx->n_channels = n_channels; | ||
| 1248 | if (separate_tx_channels) { | ||
| 1249 | efx->n_tx_channels = | ||
| 1250 | max(efx->n_channels / 2, 1U); | ||
| 1251 | efx->n_rx_channels = | ||
| 1252 | max(efx->n_channels - | ||
| 1253 | efx->n_tx_channels, 1U); | ||
| 1254 | } else { | ||
| 1255 | efx->n_tx_channels = efx->n_channels; | ||
| 1256 | efx->n_rx_channels = efx->n_channels; | ||
| 1257 | } | ||
| 1258 | rc = efx_init_rx_cpu_rmap(efx, xentries); | ||
| 1259 | if (rc) { | ||
| 1260 | pci_disable_msix(efx->pci_dev); | ||
| 1261 | return rc; | ||
| 1262 | } | ||
| 1263 | for (i = 0; i < n_channels; i++) | ||
| 1264 | efx_get_channel(efx, i)->irq = | ||
| 1265 | xentries[i].vector; | ||
| 1266 | } else { | ||
| 1267 | /* Fall back to single channel MSI */ | ||
| 1268 | efx->interrupt_mode = EFX_INT_MODE_MSI; | ||
| 1269 | netif_err(efx, drv, efx->net_dev, | ||
| 1270 | "could not enable MSI-X\n"); | ||
| 1271 | } | ||
| 1272 | } | ||
| 1273 | |||
| 1274 | /* Try single interrupt MSI */ | ||
| 1275 | if (efx->interrupt_mode == EFX_INT_MODE_MSI) { | ||
| 1276 | efx->n_channels = 1; | ||
| 1277 | efx->n_rx_channels = 1; | ||
| 1278 | efx->n_tx_channels = 1; | ||
| 1279 | rc = pci_enable_msi(efx->pci_dev); | ||
| 1280 | if (rc == 0) { | ||
| 1281 | efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; | ||
| 1282 | } else { | ||
| 1283 | netif_err(efx, drv, efx->net_dev, | ||
| 1284 | "could not enable MSI\n"); | ||
| 1285 | efx->interrupt_mode = EFX_INT_MODE_LEGACY; | ||
| 1286 | } | ||
| 1287 | } | ||
| 1288 | |||
| 1289 | /* Assume legacy interrupts */ | ||
| 1290 | if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { | ||
| 1291 | efx->n_channels = 1 + (separate_tx_channels ? 1 : 0); | ||
| 1292 | efx->n_rx_channels = 1; | ||
| 1293 | efx->n_tx_channels = 1; | ||
| 1294 | efx->legacy_irq = efx->pci_dev->irq; | ||
| 1295 | } | ||
| 1296 | |||
| 1297 | return 0; | ||
| 1298 | } | ||
| 1299 | |||
| 1300 | static void efx_remove_interrupts(struct efx_nic *efx) | ||
| 1301 | { | ||
| 1302 | struct efx_channel *channel; | ||
| 1303 | |||
| 1304 | /* Remove MSI/MSI-X interrupts */ | ||
| 1305 | efx_for_each_channel(channel, efx) | ||
| 1306 | channel->irq = 0; | ||
| 1307 | pci_disable_msi(efx->pci_dev); | ||
| 1308 | pci_disable_msix(efx->pci_dev); | ||
| 1309 | |||
| 1310 | /* Remove legacy interrupt */ | ||
| 1311 | efx->legacy_irq = 0; | ||
| 1312 | } | ||
| 1313 | |||
| 1314 | static void efx_set_channels(struct efx_nic *efx) | ||
| 1315 | { | ||
| 1316 | struct efx_channel *channel; | ||
| 1317 | struct efx_tx_queue *tx_queue; | ||
| 1318 | |||
| 1319 | efx->tx_channel_offset = | ||
| 1320 | separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; | ||
| 1321 | |||
| 1322 | /* We need to adjust the TX queue numbers if we have separate | ||
| 1323 | * RX-only and TX-only channels. | ||
| 1324 | */ | ||
| 1325 | efx_for_each_channel(channel, efx) { | ||
| 1326 | efx_for_each_channel_tx_queue(tx_queue, channel) | ||
| 1327 | tx_queue->queue -= (efx->tx_channel_offset * | ||
| 1328 | EFX_TXQ_TYPES); | ||
| 1329 | } | ||
| 1330 | } | ||
| 1331 | |||
| 1332 | static int efx_probe_nic(struct efx_nic *efx) | ||
| 1333 | { | ||
| 1334 | size_t i; | ||
| 1335 | int rc; | ||
| 1336 | |||
| 1337 | netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); | ||
| 1338 | |||
| 1339 | /* Carry out hardware-type specific initialisation */ | ||
| 1340 | rc = efx->type->probe(efx); | ||
| 1341 | if (rc) | ||
| 1342 | return rc; | ||
| 1343 | |||
| 1344 | /* Determine the number of channels and queues by trying to hook | ||
| 1345 | * in MSI-X interrupts. */ | ||
| 1346 | rc = efx_probe_interrupts(efx); | ||
| 1347 | if (rc) | ||
| 1348 | goto fail; | ||
| 1349 | |||
| 1350 | if (efx->n_channels > 1) | ||
| 1351 | get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); | ||
| 1352 | for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) | ||
| 1353 | efx->rx_indir_table[i] = i % efx->n_rx_channels; | ||
| 1354 | |||
| 1355 | efx_set_channels(efx); | ||
| 1356 | netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); | ||
| 1357 | netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); | ||
| 1358 | |||
| 1359 | /* Initialise the interrupt moderation settings */ | ||
| 1360 | efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true); | ||
| 1361 | |||
| 1362 | return 0; | ||
| 1363 | |||
| 1364 | fail: | ||
| 1365 | efx->type->remove(efx); | ||
| 1366 | return rc; | ||
| 1367 | } | ||
| 1368 | |||
| 1369 | static void efx_remove_nic(struct efx_nic *efx) | ||
| 1370 | { | ||
| 1371 | netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); | ||
| 1372 | |||
| 1373 | efx_remove_interrupts(efx); | ||
| 1374 | efx->type->remove(efx); | ||
| 1375 | } | ||
| 1376 | |||
| 1377 | /************************************************************************** | ||
| 1378 | * | ||
| 1379 | * NIC startup/shutdown | ||
| 1380 | * | ||
| 1381 | *************************************************************************/ | ||
| 1382 | |||
| 1383 | static int efx_probe_all(struct efx_nic *efx) | ||
| 1384 | { | ||
| 1385 | int rc; | ||
| 1386 | |||
| 1387 | rc = efx_probe_nic(efx); | ||
| 1388 | if (rc) { | ||
| 1389 | netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); | ||
| 1390 | goto fail1; | ||
| 1391 | } | ||
| 1392 | |||
| 1393 | rc = efx_probe_port(efx); | ||
| 1394 | if (rc) { | ||
| 1395 | netif_err(efx, probe, efx->net_dev, "failed to create port\n"); | ||
| 1396 | goto fail2; | ||
| 1397 | } | ||
| 1398 | |||
| 1399 | efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; | ||
| 1400 | rc = efx_probe_channels(efx); | ||
| 1401 | if (rc) | ||
| 1402 | goto fail3; | ||
| 1403 | |||
| 1404 | rc = efx_probe_filters(efx); | ||
| 1405 | if (rc) { | ||
| 1406 | netif_err(efx, probe, efx->net_dev, | ||
| 1407 | "failed to create filter tables\n"); | ||
| 1408 | goto fail4; | ||
| 1409 | } | ||
| 1410 | |||
| 1411 | return 0; | ||
| 1412 | |||
| 1413 | fail4: | ||
| 1414 | efx_remove_channels(efx); | ||
| 1415 | fail3: | ||
| 1416 | efx_remove_port(efx); | ||
| 1417 | fail2: | ||
| 1418 | efx_remove_nic(efx); | ||
| 1419 | fail1: | ||
| 1420 | return rc; | ||
| 1421 | } | ||
| 1422 | |||
| 1423 | /* Called after previous invocation(s) of efx_stop_all, restarts the | ||
| 1424 | * port, kernel transmit queue, NAPI processing and hardware interrupts, | ||
| 1425 | * and ensures that the port is scheduled to be reconfigured. | ||
| 1426 | * This function is safe to call multiple times when the NIC is in any | ||
| 1427 | * state. */ | ||
| 1428 | static void efx_start_all(struct efx_nic *efx) | ||
| 1429 | { | ||
| 1430 | struct efx_channel *channel; | ||
| 1431 | |||
| 1432 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
| 1433 | |||
| 1434 | /* Check that it is appropriate to restart the interface. All | ||
| 1435 | * of these flags are safe to read under just the rtnl lock */ | ||
| 1436 | if (efx->port_enabled) | ||
| 1437 | return; | ||
| 1438 | if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT)) | ||
| 1439 | return; | ||
| 1440 | if (efx_dev_registered(efx) && !netif_running(efx->net_dev)) | ||
| 1441 | return; | ||
| 1442 | |||
| 1443 | /* Mark the port as enabled so port reconfigurations can start, then | ||
| 1444 | * restart the transmit interface early so the watchdog timer stops */ | ||
| 1445 | efx_start_port(efx); | ||
| 1446 | |||
| 1447 | if (efx_dev_registered(efx) && netif_device_present(efx->net_dev)) | ||
| 1448 | netif_tx_wake_all_queues(efx->net_dev); | ||
| 1449 | |||
| 1450 | efx_for_each_channel(channel, efx) | ||
| 1451 | efx_start_channel(channel); | ||
| 1452 | |||
| 1453 | if (efx->legacy_irq) | ||
| 1454 | efx->legacy_irq_enabled = true; | ||
| 1455 | efx_nic_enable_interrupts(efx); | ||
| 1456 | |||
| 1457 | /* Switch to event based MCDI completions after enabling interrupts. | ||
| 1458 | * If a reset has been scheduled, then we need to stay in polled mode. | ||
| 1459 | * Rather than serialising efx_mcdi_mode_event() [which sleeps] and | ||
| 1460 | * reset_pending [modified from an atomic context], we instead guarantee | ||
| 1461 | * that efx_mcdi_mode_poll() isn't reverted erroneously */ | ||
| 1462 | efx_mcdi_mode_event(efx); | ||
| 1463 | if (efx->reset_pending) | ||
| 1464 | efx_mcdi_mode_poll(efx); | ||
| 1465 | |||
| 1466 | /* Start the hardware monitor if there is one. Otherwise (we're link | ||
| 1467 | * event driven), we have to poll the PHY because after an event queue | ||
| 1468 | * flush, we could have a missed a link state change */ | ||
| 1469 | if (efx->type->monitor != NULL) { | ||
| 1470 | queue_delayed_work(efx->workqueue, &efx->monitor_work, | ||
| 1471 | efx_monitor_interval); | ||
| 1472 | } else { | ||
| 1473 | mutex_lock(&efx->mac_lock); | ||
| 1474 | if (efx->phy_op->poll(efx)) | ||
| 1475 | efx_link_status_changed(efx); | ||
| 1476 | mutex_unlock(&efx->mac_lock); | ||
| 1477 | } | ||
| 1478 | |||
| 1479 | efx->type->start_stats(efx); | ||
| 1480 | } | ||
| 1481 | |||
| 1482 | /* Flush all delayed work. Should only be called when no more delayed work | ||
| 1483 | * will be scheduled. This doesn't flush pending online resets (efx_reset), | ||
| 1484 | * since we're holding the rtnl_lock at this point. */ | ||
| 1485 | static void efx_flush_all(struct efx_nic *efx) | ||
| 1486 | { | ||
| 1487 | /* Make sure the hardware monitor is stopped */ | ||
| 1488 | cancel_delayed_work_sync(&efx->monitor_work); | ||
| 1489 | /* Stop scheduled port reconfigurations */ | ||
| 1490 | cancel_work_sync(&efx->mac_work); | ||
| 1491 | } | ||
| 1492 | |||
| 1493 | /* Quiesce hardware and software without bringing the link down. | ||
| 1494 | * Safe to call multiple times, when the nic and interface is in any | ||
| 1495 | * state. The caller is guaranteed to subsequently be in a position | ||
| 1496 | * to modify any hardware and software state they see fit without | ||
| 1497 | * taking locks. */ | ||
| 1498 | static void efx_stop_all(struct efx_nic *efx) | ||
| 1499 | { | ||
| 1500 | struct efx_channel *channel; | ||
| 1501 | |||
| 1502 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
| 1503 | |||
| 1504 | /* port_enabled can be read safely under the rtnl lock */ | ||
| 1505 | if (!efx->port_enabled) | ||
| 1506 | return; | ||
| 1507 | |||
| 1508 | efx->type->stop_stats(efx); | ||
| 1509 | |||
| 1510 | /* Switch to MCDI polling on Siena before disabling interrupts */ | ||
| 1511 | efx_mcdi_mode_poll(efx); | ||
| 1512 | |||
| 1513 | /* Disable interrupts and wait for ISR to complete */ | ||
| 1514 | efx_nic_disable_interrupts(efx); | ||
| 1515 | if (efx->legacy_irq) { | ||
| 1516 | synchronize_irq(efx->legacy_irq); | ||
| 1517 | efx->legacy_irq_enabled = false; | ||
| 1518 | } | ||
| 1519 | efx_for_each_channel(channel, efx) { | ||
| 1520 | if (channel->irq) | ||
| 1521 | synchronize_irq(channel->irq); | ||
| 1522 | } | ||
| 1523 | |||
| 1524 | /* Stop all NAPI processing and synchronous rx refills */ | ||
| 1525 | efx_for_each_channel(channel, efx) | ||
| 1526 | efx_stop_channel(channel); | ||
| 1527 | |||
| 1528 | /* Stop all asynchronous port reconfigurations. Since all | ||
| 1529 | * event processing has already been stopped, there is no | ||
| 1530 | * window to loose phy events */ | ||
| 1531 | efx_stop_port(efx); | ||
| 1532 | |||
| 1533 | /* Flush efx_mac_work(), refill_workqueue, monitor_work */ | ||
| 1534 | efx_flush_all(efx); | ||
| 1535 | |||
| 1536 | /* Stop the kernel transmit interface late, so the watchdog | ||
| 1537 | * timer isn't ticking over the flush */ | ||
| 1538 | if (efx_dev_registered(efx)) { | ||
| 1539 | netif_tx_stop_all_queues(efx->net_dev); | ||
| 1540 | netif_tx_lock_bh(efx->net_dev); | ||
| 1541 | netif_tx_unlock_bh(efx->net_dev); | ||
| 1542 | } | ||
| 1543 | } | ||
| 1544 | |||
| 1545 | static void efx_remove_all(struct efx_nic *efx) | ||
| 1546 | { | ||
| 1547 | efx_remove_filters(efx); | ||
| 1548 | efx_remove_channels(efx); | ||
| 1549 | efx_remove_port(efx); | ||
| 1550 | efx_remove_nic(efx); | ||
| 1551 | } | ||
| 1552 | |||
| 1553 | /************************************************************************** | ||
| 1554 | * | ||
| 1555 | * Interrupt moderation | ||
| 1556 | * | ||
| 1557 | **************************************************************************/ | ||
| 1558 | |||
| 1559 | static unsigned irq_mod_ticks(int usecs, int resolution) | ||
| 1560 | { | ||
| 1561 | if (usecs <= 0) | ||
| 1562 | return 0; /* cannot receive interrupts ahead of time :-) */ | ||
| 1563 | if (usecs < resolution) | ||
| 1564 | return 1; /* never round down to 0 */ | ||
| 1565 | return usecs / resolution; | ||
| 1566 | } | ||
| 1567 | |||
| 1568 | /* Set interrupt moderation parameters */ | ||
| 1569 | void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs, | ||
| 1570 | bool rx_adaptive) | ||
| 1571 | { | ||
| 1572 | struct efx_channel *channel; | ||
| 1573 | unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION); | ||
| 1574 | unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION); | ||
| 1575 | |||
| 1576 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
| 1577 | |||
| 1578 | efx->irq_rx_adaptive = rx_adaptive; | ||
| 1579 | efx->irq_rx_moderation = rx_ticks; | ||
| 1580 | efx_for_each_channel(channel, efx) { | ||
| 1581 | if (efx_channel_has_rx_queue(channel)) | ||
| 1582 | channel->irq_moderation = rx_ticks; | ||
| 1583 | else if (efx_channel_has_tx_queues(channel)) | ||
| 1584 | channel->irq_moderation = tx_ticks; | ||
| 1585 | } | ||
| 1586 | } | ||
| 1587 | |||
| 1588 | /************************************************************************** | ||
| 1589 | * | ||
| 1590 | * Hardware monitor | ||
| 1591 | * | ||
| 1592 | **************************************************************************/ | ||
| 1593 | |||
| 1594 | /* Run periodically off the general workqueue */ | ||
| 1595 | static void efx_monitor(struct work_struct *data) | ||
| 1596 | { | ||
| 1597 | struct efx_nic *efx = container_of(data, struct efx_nic, | ||
| 1598 | monitor_work.work); | ||
| 1599 | |||
| 1600 | netif_vdbg(efx, timer, efx->net_dev, | ||
| 1601 | "hardware monitor executing on CPU %d\n", | ||
| 1602 | raw_smp_processor_id()); | ||
| 1603 | BUG_ON(efx->type->monitor == NULL); | ||
| 1604 | |||
| 1605 | /* If the mac_lock is already held then it is likely a port | ||
| 1606 | * reconfiguration is already in place, which will likely do | ||
| 1607 | * most of the work of monitor() anyway. */ | ||
| 1608 | if (mutex_trylock(&efx->mac_lock)) { | ||
| 1609 | if (efx->port_enabled) | ||
| 1610 | efx->type->monitor(efx); | ||
| 1611 | mutex_unlock(&efx->mac_lock); | ||
| 1612 | } | ||
| 1613 | |||
| 1614 | queue_delayed_work(efx->workqueue, &efx->monitor_work, | ||
| 1615 | efx_monitor_interval); | ||
| 1616 | } | ||
| 1617 | |||
| 1618 | /************************************************************************** | ||
| 1619 | * | ||
| 1620 | * ioctls | ||
| 1621 | * | ||
| 1622 | *************************************************************************/ | ||
| 1623 | |||
| 1624 | /* Net device ioctl | ||
| 1625 | * Context: process, rtnl_lock() held. | ||
| 1626 | */ | ||
| 1627 | static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) | ||
| 1628 | { | ||
| 1629 | struct efx_nic *efx = netdev_priv(net_dev); | ||
| 1630 | struct mii_ioctl_data *data = if_mii(ifr); | ||
| 1631 | |||
| 1632 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
| 1633 | |||
| 1634 | /* Convert phy_id from older PRTAD/DEVAD format */ | ||
| 1635 | if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && | ||
| 1636 | (data->phy_id & 0xfc00) == 0x0400) | ||
| 1637 | data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; | ||
| 1638 | |||
| 1639 | return mdio_mii_ioctl(&efx->mdio, data, cmd); | ||
| 1640 | } | ||
| 1641 | |||
| 1642 | /************************************************************************** | ||
| 1643 | * | ||
| 1644 | * NAPI interface | ||
| 1645 | * | ||
| 1646 | **************************************************************************/ | ||
| 1647 | |||
| 1648 | static void efx_init_napi(struct efx_nic *efx) | ||
| 1649 | { | ||
| 1650 | struct efx_channel *channel; | ||
| 1651 | |||
| 1652 | efx_for_each_channel(channel, efx) { | ||
| 1653 | channel->napi_dev = efx->net_dev; | ||
| 1654 | netif_napi_add(channel->napi_dev, &channel->napi_str, | ||
| 1655 | efx_poll, napi_weight); | ||
| 1656 | } | ||
| 1657 | } | ||
| 1658 | |||
| 1659 | static void efx_fini_napi_channel(struct efx_channel *channel) | ||
| 1660 | { | ||
| 1661 | if (channel->napi_dev) | ||
| 1662 | netif_napi_del(&channel->napi_str); | ||
| 1663 | channel->napi_dev = NULL; | ||
| 1664 | } | ||
| 1665 | |||
| 1666 | static void efx_fini_napi(struct efx_nic *efx) | ||
| 1667 | { | ||
| 1668 | struct efx_channel *channel; | ||
| 1669 | |||
| 1670 | efx_for_each_channel(channel, efx) | ||
| 1671 | efx_fini_napi_channel(channel); | ||
| 1672 | } | ||
| 1673 | |||
| 1674 | /************************************************************************** | ||
| 1675 | * | ||
| 1676 | * Kernel netpoll interface | ||
| 1677 | * | ||
| 1678 | *************************************************************************/ | ||
| 1679 | |||
| 1680 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
| 1681 | |||
| 1682 | /* Although in the common case interrupts will be disabled, this is not | ||
| 1683 | * guaranteed. However, all our work happens inside the NAPI callback, | ||
| 1684 | * so no locking is required. | ||
| 1685 | */ | ||
| 1686 | static void efx_netpoll(struct net_device *net_dev) | ||
| 1687 | { | ||
| 1688 | struct efx_nic *efx = netdev_priv(net_dev); | ||
| 1689 | struct efx_channel *channel; | ||
| 1690 | |||
| 1691 | efx_for_each_channel(channel, efx) | ||
| 1692 | efx_schedule_channel(channel); | ||
| 1693 | } | ||
| 1694 | |||
| 1695 | #endif | ||
| 1696 | |||
| 1697 | /************************************************************************** | ||
| 1698 | * | ||
| 1699 | * Kernel net device interface | ||
| 1700 | * | ||
| 1701 | *************************************************************************/ | ||
| 1702 | |||
| 1703 | /* Context: process, rtnl_lock() held. */ | ||
| 1704 | static int efx_net_open(struct net_device *net_dev) | ||
| 1705 | { | ||
| 1706 | struct efx_nic *efx = netdev_priv(net_dev); | ||
| 1707 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
| 1708 | |||
| 1709 | netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", | ||
| 1710 | raw_smp_processor_id()); | ||
| 1711 | |||
| 1712 | if (efx->state == STATE_DISABLED) | ||
| 1713 | return -EIO; | ||
| 1714 | if (efx->phy_mode & PHY_MODE_SPECIAL) | ||
| 1715 | return -EBUSY; | ||
| 1716 | if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) | ||
| 1717 | return -EIO; | ||
| 1718 | |||
| 1719 | /* Notify the kernel of the link state polled during driver load, | ||
| 1720 | * before the monitor starts running */ | ||
| 1721 | efx_link_status_changed(efx); | ||
| 1722 | |||
| 1723 | efx_start_all(efx); | ||
| 1724 | return 0; | ||
| 1725 | } | ||
| 1726 | |||
| 1727 | /* Context: process, rtnl_lock() held. | ||
| 1728 | * Note that the kernel will ignore our return code; this method | ||
| 1729 | * should really be a void. | ||
| 1730 | */ | ||
| 1731 | static int efx_net_stop(struct net_device *net_dev) | ||
| 1732 | { | ||
| 1733 | struct efx_nic *efx = netdev_priv(net_dev); | ||
| 1734 | |||
| 1735 | netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", | ||
| 1736 | raw_smp_processor_id()); | ||
| 1737 | |||
| 1738 | if (efx->state != STATE_DISABLED) { | ||
| 1739 | /* Stop the device and flush all the channels */ | ||
| 1740 | efx_stop_all(efx); | ||
| 1741 | efx_fini_channels(efx); | ||
| 1742 | efx_init_channels(efx); | ||
| 1743 | } | ||
| 1744 | |||
| 1745 | return 0; | ||
| 1746 | } | ||
| 1747 | |||
| 1748 | /* Context: process, dev_base_lock or RTNL held, non-blocking. */ | ||
| 1749 | static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats) | ||
| 1750 | { | ||
| 1751 | struct efx_nic *efx = netdev_priv(net_dev); | ||
| 1752 | struct efx_mac_stats *mac_stats = &efx->mac_stats; | ||
| 1753 | |||
| 1754 | spin_lock_bh(&efx->stats_lock); | ||
| 1755 | efx->type->update_stats(efx); | ||
| 1756 | spin_unlock_bh(&efx->stats_lock); | ||
| 1757 | |||
| 1758 | stats->rx_packets = mac_stats->rx_packets; | ||
| 1759 | stats->tx_packets = mac_stats->tx_packets; | ||
| 1760 | stats->rx_bytes = mac_stats->rx_bytes; | ||
| 1761 | stats->tx_bytes = mac_stats->tx_bytes; | ||
| 1762 | stats->rx_dropped = efx->n_rx_nodesc_drop_cnt; | ||
| 1763 | stats->multicast = mac_stats->rx_multicast; | ||
| 1764 | stats->collisions = mac_stats->tx_collision; | ||
| 1765 | stats->rx_length_errors = (mac_stats->rx_gtjumbo + | ||
| 1766 | mac_stats->rx_length_error); | ||
| 1767 | stats->rx_crc_errors = mac_stats->rx_bad; | ||
| 1768 | stats->rx_frame_errors = mac_stats->rx_align_error; | ||
| 1769 | stats->rx_fifo_errors = mac_stats->rx_overflow; | ||
| 1770 | stats->rx_missed_errors = mac_stats->rx_missed; | ||
| 1771 | stats->tx_window_errors = mac_stats->tx_late_collision; | ||
| 1772 | |||
| 1773 | stats->rx_errors = (stats->rx_length_errors + | ||
| 1774 | stats->rx_crc_errors + | ||
| 1775 | stats->rx_frame_errors + | ||
| 1776 | mac_stats->rx_symbol_error); | ||
| 1777 | stats->tx_errors = (stats->tx_window_errors + | ||
| 1778 | mac_stats->tx_bad); | ||
| 1779 | |||
| 1780 | return stats; | ||
| 1781 | } | ||
| 1782 | |||
| 1783 | /* Context: netif_tx_lock held, BHs disabled. */ | ||
| 1784 | static void efx_watchdog(struct net_device *net_dev) | ||
| 1785 | { | ||
| 1786 | struct efx_nic *efx = netdev_priv(net_dev); | ||
| 1787 | |||
| 1788 | netif_err(efx, tx_err, efx->net_dev, | ||
| 1789 | "TX stuck with port_enabled=%d: resetting channels\n", | ||
| 1790 | efx->port_enabled); | ||
| 1791 | |||
| 1792 | efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); | ||
| 1793 | } | ||
| 1794 | |||
| 1795 | |||
| 1796 | /* Context: process, rtnl_lock() held. */ | ||
| 1797 | static int efx_change_mtu(struct net_device *net_dev, int new_mtu) | ||
| 1798 | { | ||
| 1799 | struct efx_nic *efx = netdev_priv(net_dev); | ||
| 1800 | int rc = 0; | ||
| 1801 | |||
| 1802 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
| 1803 | |||
| 1804 | if (new_mtu > EFX_MAX_MTU) | ||
| 1805 | return -EINVAL; | ||
| 1806 | |||
| 1807 | efx_stop_all(efx); | ||
| 1808 | |||
| 1809 | netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); | ||
| 1810 | |||
| 1811 | efx_fini_channels(efx); | ||
| 1812 | |||
| 1813 | mutex_lock(&efx->mac_lock); | ||
| 1814 | /* Reconfigure the MAC before enabling the dma queues so that | ||
| 1815 | * the RX buffers don't overflow */ | ||
| 1816 | net_dev->mtu = new_mtu; | ||
| 1817 | efx->mac_op->reconfigure(efx); | ||
| 1818 | mutex_unlock(&efx->mac_lock); | ||
| 1819 | |||
| 1820 | efx_init_channels(efx); | ||
| 1821 | |||
| 1822 | efx_start_all(efx); | ||
| 1823 | return rc; | ||
| 1824 | } | ||
| 1825 | |||
| 1826 | static int efx_set_mac_address(struct net_device *net_dev, void *data) | ||
| 1827 | { | ||
| 1828 | struct efx_nic *efx = netdev_priv(net_dev); | ||
| 1829 | struct sockaddr *addr = data; | ||
| 1830 | char *new_addr = addr->sa_data; | ||
| 1831 | |||
| 1832 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
| 1833 | |||
| 1834 | if (!is_valid_ether_addr(new_addr)) { | ||
| 1835 | netif_err(efx, drv, efx->net_dev, | ||
| 1836 | "invalid ethernet MAC address requested: %pM\n", | ||
| 1837 | new_addr); | ||
| 1838 | return -EINVAL; | ||
| 1839 | } | ||
| 1840 | |||
| 1841 | memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len); | ||
| 1842 | |||
| 1843 | /* Reconfigure the MAC */ | ||
| 1844 | mutex_lock(&efx->mac_lock); | ||
| 1845 | efx->mac_op->reconfigure(efx); | ||
| 1846 | mutex_unlock(&efx->mac_lock); | ||
| 1847 | |||
| 1848 | return 0; | ||
| 1849 | } | ||
| 1850 | |||
| 1851 | /* Context: netif_addr_lock held, BHs disabled. */ | ||
| 1852 | static void efx_set_multicast_list(struct net_device *net_dev) | ||
| 1853 | { | ||
| 1854 | struct efx_nic *efx = netdev_priv(net_dev); | ||
| 1855 | struct netdev_hw_addr *ha; | ||
| 1856 | union efx_multicast_hash *mc_hash = &efx->multicast_hash; | ||
| 1857 | u32 crc; | ||
| 1858 | int bit; | ||
| 1859 | |||
| 1860 | efx->promiscuous = !!(net_dev->flags & IFF_PROMISC); | ||
| 1861 | |||
| 1862 | /* Build multicast hash table */ | ||
| 1863 | if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) { | ||
| 1864 | memset(mc_hash, 0xff, sizeof(*mc_hash)); | ||
| 1865 | } else { | ||
| 1866 | memset(mc_hash, 0x00, sizeof(*mc_hash)); | ||
| 1867 | netdev_for_each_mc_addr(ha, net_dev) { | ||
| 1868 | crc = ether_crc_le(ETH_ALEN, ha->addr); | ||
| 1869 | bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); | ||
| 1870 | set_bit_le(bit, mc_hash->byte); | ||
| 1871 | } | ||
| 1872 | |||
| 1873 | /* Broadcast packets go through the multicast hash filter. | ||
| 1874 | * ether_crc_le() of the broadcast address is 0xbe2612ff | ||
| 1875 | * so we always add bit 0xff to the mask. | ||
| 1876 | */ | ||
| 1877 | set_bit_le(0xff, mc_hash->byte); | ||
| 1878 | } | ||
| 1879 | |||
| 1880 | if (efx->port_enabled) | ||
| 1881 | queue_work(efx->workqueue, &efx->mac_work); | ||
| 1882 | /* Otherwise efx_start_port() will do this */ | ||
| 1883 | } | ||
| 1884 | |||
| 1885 | static int efx_set_features(struct net_device *net_dev, u32 data) | ||
| 1886 | { | ||
| 1887 | struct efx_nic *efx = netdev_priv(net_dev); | ||
| 1888 | |||
| 1889 | /* If disabling RX n-tuple filtering, clear existing filters */ | ||
| 1890 | if (net_dev->features & ~data & NETIF_F_NTUPLE) | ||
| 1891 | efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); | ||
| 1892 | |||
| 1893 | return 0; | ||
| 1894 | } | ||
| 1895 | |||
| 1896 | static const struct net_device_ops efx_netdev_ops = { | ||
| 1897 | .ndo_open = efx_net_open, | ||
| 1898 | .ndo_stop = efx_net_stop, | ||
| 1899 | .ndo_get_stats64 = efx_net_stats, | ||
| 1900 | .ndo_tx_timeout = efx_watchdog, | ||
| 1901 | .ndo_start_xmit = efx_hard_start_xmit, | ||
| 1902 | .ndo_validate_addr = eth_validate_addr, | ||
| 1903 | .ndo_do_ioctl = efx_ioctl, | ||
| 1904 | .ndo_change_mtu = efx_change_mtu, | ||
| 1905 | .ndo_set_mac_address = efx_set_mac_address, | ||
| 1906 | .ndo_set_multicast_list = efx_set_multicast_list, | ||
| 1907 | .ndo_set_features = efx_set_features, | ||
| 1908 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
| 1909 | .ndo_poll_controller = efx_netpoll, | ||
| 1910 | #endif | ||
| 1911 | .ndo_setup_tc = efx_setup_tc, | ||
| 1912 | #ifdef CONFIG_RFS_ACCEL | ||
| 1913 | .ndo_rx_flow_steer = efx_filter_rfs, | ||
| 1914 | #endif | ||
| 1915 | }; | ||
| 1916 | |||
| 1917 | static void efx_update_name(struct efx_nic *efx) | ||
| 1918 | { | ||
| 1919 | strcpy(efx->name, efx->net_dev->name); | ||
| 1920 | efx_mtd_rename(efx); | ||
| 1921 | efx_set_channel_names(efx); | ||
| 1922 | } | ||
| 1923 | |||
| 1924 | static int efx_netdev_event(struct notifier_block *this, | ||
| 1925 | unsigned long event, void *ptr) | ||
| 1926 | { | ||
| 1927 | struct net_device *net_dev = ptr; | ||
| 1928 | |||
| 1929 | if (net_dev->netdev_ops == &efx_netdev_ops && | ||
| 1930 | event == NETDEV_CHANGENAME) | ||
| 1931 | efx_update_name(netdev_priv(net_dev)); | ||
| 1932 | |||
| 1933 | return NOTIFY_DONE; | ||
| 1934 | } | ||
| 1935 | |||
| 1936 | static struct notifier_block efx_netdev_notifier = { | ||
| 1937 | .notifier_call = efx_netdev_event, | ||
| 1938 | }; | ||
| 1939 | |||
| 1940 | static ssize_t | ||
| 1941 | show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) | ||
| 1942 | { | ||
| 1943 | struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); | ||
| 1944 | return sprintf(buf, "%d\n", efx->phy_type); | ||
| 1945 | } | ||
| 1946 | static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL); | ||
| 1947 | |||
| 1948 | static int efx_register_netdev(struct efx_nic *efx) | ||
| 1949 | { | ||
| 1950 | struct net_device *net_dev = efx->net_dev; | ||
| 1951 | struct efx_channel *channel; | ||
| 1952 | int rc; | ||
| 1953 | |||
| 1954 | net_dev->watchdog_timeo = 5 * HZ; | ||
| 1955 | net_dev->irq = efx->pci_dev->irq; | ||
| 1956 | net_dev->netdev_ops = &efx_netdev_ops; | ||
| 1957 | SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); | ||
| 1958 | |||
| 1959 | /* Clear MAC statistics */ | ||
| 1960 | efx->mac_op->update_stats(efx); | ||
| 1961 | memset(&efx->mac_stats, 0, sizeof(efx->mac_stats)); | ||
| 1962 | |||
| 1963 | rtnl_lock(); | ||
| 1964 | |||
| 1965 | rc = dev_alloc_name(net_dev, net_dev->name); | ||
| 1966 | if (rc < 0) | ||
| 1967 | goto fail_locked; | ||
| 1968 | efx_update_name(efx); | ||
| 1969 | |||
| 1970 | rc = register_netdevice(net_dev); | ||
| 1971 | if (rc) | ||
| 1972 | goto fail_locked; | ||
| 1973 | |||
| 1974 | efx_for_each_channel(channel, efx) { | ||
| 1975 | struct efx_tx_queue *tx_queue; | ||
| 1976 | efx_for_each_channel_tx_queue(tx_queue, channel) | ||
| 1977 | efx_init_tx_queue_core_txq(tx_queue); | ||
| 1978 | } | ||
| 1979 | |||
| 1980 | /* Always start with carrier off; PHY events will detect the link */ | ||
| 1981 | netif_carrier_off(efx->net_dev); | ||
| 1982 | |||
| 1983 | rtnl_unlock(); | ||
| 1984 | |||
| 1985 | rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); | ||
| 1986 | if (rc) { | ||
| 1987 | netif_err(efx, drv, efx->net_dev, | ||
| 1988 | "failed to init net dev attributes\n"); | ||
| 1989 | goto fail_registered; | ||
| 1990 | } | ||
| 1991 | |||
| 1992 | return 0; | ||
| 1993 | |||
| 1994 | fail_locked: | ||
| 1995 | rtnl_unlock(); | ||
| 1996 | netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); | ||
| 1997 | return rc; | ||
| 1998 | |||
| 1999 | fail_registered: | ||
| 2000 | unregister_netdev(net_dev); | ||
| 2001 | return rc; | ||
| 2002 | } | ||
| 2003 | |||
| 2004 | static void efx_unregister_netdev(struct efx_nic *efx) | ||
| 2005 | { | ||
| 2006 | struct efx_channel *channel; | ||
| 2007 | struct efx_tx_queue *tx_queue; | ||
| 2008 | |||
| 2009 | if (!efx->net_dev) | ||
| 2010 | return; | ||
| 2011 | |||
| 2012 | BUG_ON(netdev_priv(efx->net_dev) != efx); | ||
| 2013 | |||
| 2014 | /* Free up any skbs still remaining. This has to happen before | ||
| 2015 | * we try to unregister the netdev as running their destructors | ||
| 2016 | * may be needed to get the device ref. count to 0. */ | ||
| 2017 | efx_for_each_channel(channel, efx) { | ||
| 2018 | efx_for_each_channel_tx_queue(tx_queue, channel) | ||
| 2019 | efx_release_tx_buffers(tx_queue); | ||
| 2020 | } | ||
| 2021 | |||
| 2022 | if (efx_dev_registered(efx)) { | ||
| 2023 | strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); | ||
| 2024 | device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); | ||
| 2025 | unregister_netdev(efx->net_dev); | ||
| 2026 | } | ||
| 2027 | } | ||
| 2028 | |||
| 2029 | /************************************************************************** | ||
| 2030 | * | ||
| 2031 | * Device reset and suspend | ||
| 2032 | * | ||
| 2033 | **************************************************************************/ | ||
| 2034 | |||
| 2035 | /* Tears down the entire software state and most of the hardware state | ||
| 2036 | * before reset. */ | ||
| 2037 | void efx_reset_down(struct efx_nic *efx, enum reset_type method) | ||
| 2038 | { | ||
| 2039 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
| 2040 | |||
| 2041 | efx_stop_all(efx); | ||
| 2042 | mutex_lock(&efx->mac_lock); | ||
| 2043 | |||
| 2044 | efx_fini_channels(efx); | ||
| 2045 | if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) | ||
| 2046 | efx->phy_op->fini(efx); | ||
| 2047 | efx->type->fini(efx); | ||
| 2048 | } | ||
| 2049 | |||
| 2050 | /* This function will always ensure that the locks acquired in | ||
| 2051 | * efx_reset_down() are released. A failure return code indicates | ||
| 2052 | * that we were unable to reinitialise the hardware, and the | ||
| 2053 | * driver should be disabled. If ok is false, then the rx and tx | ||
| 2054 | * engines are not restarted, pending a RESET_DISABLE. */ | ||
| 2055 | int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) | ||
| 2056 | { | ||
| 2057 | int rc; | ||
| 2058 | |||
| 2059 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
| 2060 | |||
| 2061 | rc = efx->type->init(efx); | ||
| 2062 | if (rc) { | ||
| 2063 | netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); | ||
| 2064 | goto fail; | ||
| 2065 | } | ||
| 2066 | |||
| 2067 | if (!ok) | ||
| 2068 | goto fail; | ||
| 2069 | |||
| 2070 | if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) { | ||
| 2071 | rc = efx->phy_op->init(efx); | ||
| 2072 | if (rc) | ||
| 2073 | goto fail; | ||
| 2074 | if (efx->phy_op->reconfigure(efx)) | ||
| 2075 | netif_err(efx, drv, efx->net_dev, | ||
| 2076 | "could not restore PHY settings\n"); | ||
| 2077 | } | ||
| 2078 | |||
| 2079 | efx->mac_op->reconfigure(efx); | ||
| 2080 | |||
| 2081 | efx_init_channels(efx); | ||
| 2082 | efx_restore_filters(efx); | ||
| 2083 | |||
| 2084 | mutex_unlock(&efx->mac_lock); | ||
| 2085 | |||
| 2086 | efx_start_all(efx); | ||
| 2087 | |||
| 2088 | return 0; | ||
| 2089 | |||
| 2090 | fail: | ||
| 2091 | efx->port_initialized = false; | ||
| 2092 | |||
| 2093 | mutex_unlock(&efx->mac_lock); | ||
| 2094 | |||
| 2095 | return rc; | ||
| 2096 | } | ||
| 2097 | |||
| 2098 | /* Reset the NIC using the specified method. Note that the reset may | ||
| 2099 | * fail, in which case the card will be left in an unusable state. | ||
| 2100 | * | ||
| 2101 | * Caller must hold the rtnl_lock. | ||
| 2102 | */ | ||
| 2103 | int efx_reset(struct efx_nic *efx, enum reset_type method) | ||
| 2104 | { | ||
| 2105 | int rc, rc2; | ||
| 2106 | bool disabled; | ||
| 2107 | |||
| 2108 | netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", | ||
| 2109 | RESET_TYPE(method)); | ||
| 2110 | |||
| 2111 | netif_device_detach(efx->net_dev); | ||
| 2112 | efx_reset_down(efx, method); | ||
| 2113 | |||
| 2114 | rc = efx->type->reset(efx, method); | ||
| 2115 | if (rc) { | ||
| 2116 | netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); | ||
| 2117 | goto out; | ||
| 2118 | } | ||
| 2119 | |||
| 2120 | /* Clear flags for the scopes we covered. We assume the NIC and | ||
| 2121 | * driver are now quiescent so that there is no race here. | ||
| 2122 | */ | ||
| 2123 | efx->reset_pending &= -(1 << (method + 1)); | ||
| 2124 | |||
| 2125 | /* Reinitialise bus-mastering, which may have been turned off before | ||
| 2126 | * the reset was scheduled. This is still appropriate, even in the | ||
| 2127 | * RESET_TYPE_DISABLE since this driver generally assumes the hardware | ||
| 2128 | * can respond to requests. */ | ||
| 2129 | pci_set_master(efx->pci_dev); | ||
| 2130 | |||
| 2131 | out: | ||
| 2132 | /* Leave device stopped if necessary */ | ||
| 2133 | disabled = rc || method == RESET_TYPE_DISABLE; | ||
| 2134 | rc2 = efx_reset_up(efx, method, !disabled); | ||
| 2135 | if (rc2) { | ||
| 2136 | disabled = true; | ||
| 2137 | if (!rc) | ||
| 2138 | rc = rc2; | ||
| 2139 | } | ||
| 2140 | |||
| 2141 | if (disabled) { | ||
| 2142 | dev_close(efx->net_dev); | ||
| 2143 | netif_err(efx, drv, efx->net_dev, "has been disabled\n"); | ||
| 2144 | efx->state = STATE_DISABLED; | ||
| 2145 | } else { | ||
| 2146 | netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); | ||
| 2147 | netif_device_attach(efx->net_dev); | ||
| 2148 | } | ||
| 2149 | return rc; | ||
| 2150 | } | ||
| 2151 | |||
| 2152 | /* The worker thread exists so that code that cannot sleep can | ||
| 2153 | * schedule a reset for later. | ||
| 2154 | */ | ||
| 2155 | static void efx_reset_work(struct work_struct *data) | ||
| 2156 | { | ||
| 2157 | struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); | ||
| 2158 | unsigned long pending = ACCESS_ONCE(efx->reset_pending); | ||
| 2159 | |||
| 2160 | if (!pending) | ||
| 2161 | return; | ||
| 2162 | |||
| 2163 | /* If we're not RUNNING then don't reset. Leave the reset_pending | ||
| 2164 | * flags set so that efx_pci_probe_main will be retried */ | ||
| 2165 | if (efx->state != STATE_RUNNING) { | ||
| 2166 | netif_info(efx, drv, efx->net_dev, | ||
| 2167 | "scheduled reset quenched. NIC not RUNNING\n"); | ||
| 2168 | return; | ||
| 2169 | } | ||
| 2170 | |||
| 2171 | rtnl_lock(); | ||
| 2172 | (void)efx_reset(efx, fls(pending) - 1); | ||
| 2173 | rtnl_unlock(); | ||
| 2174 | } | ||
| 2175 | |||
| 2176 | void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) | ||
| 2177 | { | ||
| 2178 | enum reset_type method; | ||
| 2179 | |||
| 2180 | switch (type) { | ||
| 2181 | case RESET_TYPE_INVISIBLE: | ||
| 2182 | case RESET_TYPE_ALL: | ||
| 2183 | case RESET_TYPE_WORLD: | ||
| 2184 | case RESET_TYPE_DISABLE: | ||
| 2185 | method = type; | ||
| 2186 | netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", | ||
| 2187 | RESET_TYPE(method)); | ||
| 2188 | break; | ||
| 2189 | default: | ||
| 2190 | method = efx->type->map_reset_reason(type); | ||
| 2191 | netif_dbg(efx, drv, efx->net_dev, | ||
| 2192 | "scheduling %s reset for %s\n", | ||
| 2193 | RESET_TYPE(method), RESET_TYPE(type)); | ||
| 2194 | break; | ||
| 2195 | } | ||
| 2196 | |||
| 2197 | set_bit(method, &efx->reset_pending); | ||
| 2198 | |||
| 2199 | /* efx_process_channel() will no longer read events once a | ||
| 2200 | * reset is scheduled. So switch back to poll'd MCDI completions. */ | ||
| 2201 | efx_mcdi_mode_poll(efx); | ||
| 2202 | |||
| 2203 | queue_work(reset_workqueue, &efx->reset_work); | ||
| 2204 | } | ||
| 2205 | |||
| 2206 | /************************************************************************** | ||
| 2207 | * | ||
| 2208 | * List of NICs we support | ||
| 2209 | * | ||
| 2210 | **************************************************************************/ | ||
| 2211 | |||
| 2212 | /* PCI device ID table */ | ||
| 2213 | static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = { | ||
| 2214 | {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID), | ||
| 2215 | .driver_data = (unsigned long) &falcon_a1_nic_type}, | ||
| 2216 | {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID), | ||
| 2217 | .driver_data = (unsigned long) &falcon_b0_nic_type}, | ||
| 2218 | {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID), | ||
| 2219 | .driver_data = (unsigned long) &siena_a0_nic_type}, | ||
| 2220 | {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID), | ||
| 2221 | .driver_data = (unsigned long) &siena_a0_nic_type}, | ||
| 2222 | {0} /* end of list */ | ||
| 2223 | }; | ||
| 2224 | |||
| 2225 | /************************************************************************** | ||
| 2226 | * | ||
| 2227 | * Dummy PHY/MAC operations | ||
| 2228 | * | ||
| 2229 | * Can be used for some unimplemented operations | ||
| 2230 | * Needed so all function pointers are valid and do not have to be tested | ||
| 2231 | * before use | ||
| 2232 | * | ||
| 2233 | **************************************************************************/ | ||
| 2234 | int efx_port_dummy_op_int(struct efx_nic *efx) | ||
| 2235 | { | ||
| 2236 | return 0; | ||
| 2237 | } | ||
| 2238 | void efx_port_dummy_op_void(struct efx_nic *efx) {} | ||
| 2239 | |||
| 2240 | static bool efx_port_dummy_op_poll(struct efx_nic *efx) | ||
| 2241 | { | ||
| 2242 | return false; | ||
| 2243 | } | ||
| 2244 | |||
| 2245 | static const struct efx_phy_operations efx_dummy_phy_operations = { | ||
| 2246 | .init = efx_port_dummy_op_int, | ||
| 2247 | .reconfigure = efx_port_dummy_op_int, | ||
| 2248 | .poll = efx_port_dummy_op_poll, | ||
| 2249 | .fini = efx_port_dummy_op_void, | ||
| 2250 | }; | ||
| 2251 | |||
| 2252 | /************************************************************************** | ||
| 2253 | * | ||
| 2254 | * Data housekeeping | ||
| 2255 | * | ||
| 2256 | **************************************************************************/ | ||
| 2257 | |||
| 2258 | /* This zeroes out and then fills in the invariants in a struct | ||
| 2259 | * efx_nic (including all sub-structures). | ||
| 2260 | */ | ||
| 2261 | static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type, | ||
| 2262 | struct pci_dev *pci_dev, struct net_device *net_dev) | ||
| 2263 | { | ||
| 2264 | int i; | ||
| 2265 | |||
| 2266 | /* Initialise common structures */ | ||
| 2267 | memset(efx, 0, sizeof(*efx)); | ||
| 2268 | spin_lock_init(&efx->biu_lock); | ||
| 2269 | #ifdef CONFIG_SFC_MTD | ||
| 2270 | INIT_LIST_HEAD(&efx->mtd_list); | ||
| 2271 | #endif | ||
| 2272 | INIT_WORK(&efx->reset_work, efx_reset_work); | ||
| 2273 | INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); | ||
| 2274 | efx->pci_dev = pci_dev; | ||
| 2275 | efx->msg_enable = debug; | ||
| 2276 | efx->state = STATE_INIT; | ||
| 2277 | strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); | ||
| 2278 | |||
| 2279 | efx->net_dev = net_dev; | ||
| 2280 | spin_lock_init(&efx->stats_lock); | ||
| 2281 | mutex_init(&efx->mac_lock); | ||
| 2282 | efx->mac_op = type->default_mac_ops; | ||
| 2283 | efx->phy_op = &efx_dummy_phy_operations; | ||
| 2284 | efx->mdio.dev = net_dev; | ||
| 2285 | INIT_WORK(&efx->mac_work, efx_mac_work); | ||
| 2286 | |||
| 2287 | for (i = 0; i < EFX_MAX_CHANNELS; i++) { | ||
| 2288 | efx->channel[i] = efx_alloc_channel(efx, i, NULL); | ||
| 2289 | if (!efx->channel[i]) | ||
| 2290 | goto fail; | ||
| 2291 | } | ||
| 2292 | |||
| 2293 | efx->type = type; | ||
| 2294 | |||
| 2295 | EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS); | ||
| 2296 | |||
| 2297 | /* Higher numbered interrupt modes are less capable! */ | ||
| 2298 | efx->interrupt_mode = max(efx->type->max_interrupt_mode, | ||
| 2299 | interrupt_mode); | ||
| 2300 | |||
| 2301 | /* Would be good to use the net_dev name, but we're too early */ | ||
| 2302 | snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", | ||
| 2303 | pci_name(pci_dev)); | ||
| 2304 | efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); | ||
| 2305 | if (!efx->workqueue) | ||
| 2306 | goto fail; | ||
| 2307 | |||
| 2308 | return 0; | ||
| 2309 | |||
| 2310 | fail: | ||
| 2311 | efx_fini_struct(efx); | ||
| 2312 | return -ENOMEM; | ||
| 2313 | } | ||
| 2314 | |||
| 2315 | static void efx_fini_struct(struct efx_nic *efx) | ||
| 2316 | { | ||
| 2317 | int i; | ||
| 2318 | |||
| 2319 | for (i = 0; i < EFX_MAX_CHANNELS; i++) | ||
| 2320 | kfree(efx->channel[i]); | ||
| 2321 | |||
| 2322 | if (efx->workqueue) { | ||
| 2323 | destroy_workqueue(efx->workqueue); | ||
| 2324 | efx->workqueue = NULL; | ||
| 2325 | } | ||
| 2326 | } | ||
| 2327 | |||
| 2328 | /************************************************************************** | ||
| 2329 | * | ||
| 2330 | * PCI interface | ||
| 2331 | * | ||
| 2332 | **************************************************************************/ | ||
| 2333 | |||
| 2334 | /* Main body of final NIC shutdown code | ||
| 2335 | * This is called only at module unload (or hotplug removal). | ||
| 2336 | */ | ||
| 2337 | static void efx_pci_remove_main(struct efx_nic *efx) | ||
| 2338 | { | ||
| 2339 | #ifdef CONFIG_RFS_ACCEL | ||
| 2340 | free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); | ||
| 2341 | efx->net_dev->rx_cpu_rmap = NULL; | ||
| 2342 | #endif | ||
| 2343 | efx_nic_fini_interrupt(efx); | ||
| 2344 | efx_fini_channels(efx); | ||
| 2345 | efx_fini_port(efx); | ||
| 2346 | efx->type->fini(efx); | ||
| 2347 | efx_fini_napi(efx); | ||
| 2348 | efx_remove_all(efx); | ||
| 2349 | } | ||
| 2350 | |||
| 2351 | /* Final NIC shutdown | ||
| 2352 | * This is called only at module unload (or hotplug removal). | ||
| 2353 | */ | ||
| 2354 | static void efx_pci_remove(struct pci_dev *pci_dev) | ||
| 2355 | { | ||
| 2356 | struct efx_nic *efx; | ||
| 2357 | |||
| 2358 | efx = pci_get_drvdata(pci_dev); | ||
| 2359 | if (!efx) | ||
| 2360 | return; | ||
| 2361 | |||
| 2362 | /* Mark the NIC as fini, then stop the interface */ | ||
| 2363 | rtnl_lock(); | ||
| 2364 | efx->state = STATE_FINI; | ||
| 2365 | dev_close(efx->net_dev); | ||
| 2366 | |||
| 2367 | /* Allow any queued efx_resets() to complete */ | ||
| 2368 | rtnl_unlock(); | ||
| 2369 | |||
| 2370 | efx_unregister_netdev(efx); | ||
| 2371 | |||
| 2372 | efx_mtd_remove(efx); | ||
| 2373 | |||
| 2374 | /* Wait for any scheduled resets to complete. No more will be | ||
| 2375 | * scheduled from this point because efx_stop_all() has been | ||
| 2376 | * called, we are no longer registered with driverlink, and | ||
| 2377 | * the net_device's have been removed. */ | ||
| 2378 | cancel_work_sync(&efx->reset_work); | ||
| 2379 | |||
| 2380 | efx_pci_remove_main(efx); | ||
| 2381 | |||
| 2382 | efx_fini_io(efx); | ||
| 2383 | netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); | ||
| 2384 | |||
| 2385 | pci_set_drvdata(pci_dev, NULL); | ||
| 2386 | efx_fini_struct(efx); | ||
| 2387 | free_netdev(efx->net_dev); | ||
| 2388 | }; | ||
| 2389 | |||
| 2390 | /* Main body of NIC initialisation | ||
| 2391 | * This is called at module load (or hotplug insertion, theoretically). | ||
| 2392 | */ | ||
| 2393 | static int efx_pci_probe_main(struct efx_nic *efx) | ||
| 2394 | { | ||
| 2395 | int rc; | ||
| 2396 | |||
| 2397 | /* Do start-of-day initialisation */ | ||
| 2398 | rc = efx_probe_all(efx); | ||
| 2399 | if (rc) | ||
| 2400 | goto fail1; | ||
| 2401 | |||
| 2402 | efx_init_napi(efx); | ||
| 2403 | |||
| 2404 | rc = efx->type->init(efx); | ||
| 2405 | if (rc) { | ||
| 2406 | netif_err(efx, probe, efx->net_dev, | ||
| 2407 | "failed to initialise NIC\n"); | ||
| 2408 | goto fail3; | ||
| 2409 | } | ||
| 2410 | |||
| 2411 | rc = efx_init_port(efx); | ||
| 2412 | if (rc) { | ||
| 2413 | netif_err(efx, probe, efx->net_dev, | ||
| 2414 | "failed to initialise port\n"); | ||
| 2415 | goto fail4; | ||
| 2416 | } | ||
| 2417 | |||
| 2418 | efx_init_channels(efx); | ||
| 2419 | |||
| 2420 | rc = efx_nic_init_interrupt(efx); | ||
| 2421 | if (rc) | ||
| 2422 | goto fail5; | ||
| 2423 | |||
| 2424 | return 0; | ||
| 2425 | |||
| 2426 | fail5: | ||
| 2427 | efx_fini_channels(efx); | ||
| 2428 | efx_fini_port(efx); | ||
| 2429 | fail4: | ||
| 2430 | efx->type->fini(efx); | ||
| 2431 | fail3: | ||
| 2432 | efx_fini_napi(efx); | ||
| 2433 | efx_remove_all(efx); | ||
| 2434 | fail1: | ||
| 2435 | return rc; | ||
| 2436 | } | ||
| 2437 | |||
| 2438 | /* NIC initialisation | ||
| 2439 | * | ||
| 2440 | * This is called at module load (or hotplug insertion, | ||
| 2441 | * theoretically). It sets up PCI mappings, tests and resets the NIC, | ||
| 2442 | * sets up and registers the network devices with the kernel and hooks | ||
| 2443 | * the interrupt service routine. It does not prepare the device for | ||
| 2444 | * transmission; this is left to the first time one of the network | ||
| 2445 | * interfaces is brought up (i.e. efx_net_open). | ||
| 2446 | */ | ||
| 2447 | static int __devinit efx_pci_probe(struct pci_dev *pci_dev, | ||
| 2448 | const struct pci_device_id *entry) | ||
| 2449 | { | ||
| 2450 | const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data; | ||
| 2451 | struct net_device *net_dev; | ||
| 2452 | struct efx_nic *efx; | ||
| 2453 | int i, rc; | ||
| 2454 | |||
| 2455 | /* Allocate and initialise a struct net_device and struct efx_nic */ | ||
| 2456 | net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, | ||
| 2457 | EFX_MAX_RX_QUEUES); | ||
| 2458 | if (!net_dev) | ||
| 2459 | return -ENOMEM; | ||
| 2460 | net_dev->features |= (type->offload_features | NETIF_F_SG | | ||
| 2461 | NETIF_F_HIGHDMA | NETIF_F_TSO | | ||
| 2462 | NETIF_F_RXCSUM); | ||
| 2463 | if (type->offload_features & NETIF_F_V6_CSUM) | ||
| 2464 | net_dev->features |= NETIF_F_TSO6; | ||
| 2465 | /* Mask for features that also apply to VLAN devices */ | ||
| 2466 | net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | | ||
| 2467 | NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | | ||
| 2468 | NETIF_F_RXCSUM); | ||
| 2469 | /* All offloads can be toggled */ | ||
| 2470 | net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; | ||
| 2471 | efx = netdev_priv(net_dev); | ||
| 2472 | pci_set_drvdata(pci_dev, efx); | ||
| 2473 | SET_NETDEV_DEV(net_dev, &pci_dev->dev); | ||
| 2474 | rc = efx_init_struct(efx, type, pci_dev, net_dev); | ||
| 2475 | if (rc) | ||
| 2476 | goto fail1; | ||
| 2477 | |||
| 2478 | netif_info(efx, probe, efx->net_dev, | ||
| 2479 | "Solarflare NIC detected\n"); | ||
| 2480 | |||
| 2481 | /* Set up basic I/O (BAR mappings etc) */ | ||
| 2482 | rc = efx_init_io(efx); | ||
| 2483 | if (rc) | ||
| 2484 | goto fail2; | ||
| 2485 | |||
| 2486 | /* No serialisation is required with the reset path because | ||
| 2487 | * we're in STATE_INIT. */ | ||
| 2488 | for (i = 0; i < 5; i++) { | ||
| 2489 | rc = efx_pci_probe_main(efx); | ||
| 2490 | |||
| 2491 | /* Serialise against efx_reset(). No more resets will be | ||
| 2492 | * scheduled since efx_stop_all() has been called, and we | ||
| 2493 | * have not and never have been registered with either | ||
| 2494 | * the rtnetlink or driverlink layers. */ | ||
| 2495 | cancel_work_sync(&efx->reset_work); | ||
| 2496 | |||
| 2497 | if (rc == 0) { | ||
| 2498 | if (efx->reset_pending) { | ||
| 2499 | /* If there was a scheduled reset during | ||
| 2500 | * probe, the NIC is probably hosed anyway */ | ||
| 2501 | efx_pci_remove_main(efx); | ||
| 2502 | rc = -EIO; | ||
| 2503 | } else { | ||
| 2504 | break; | ||
| 2505 | } | ||
| 2506 | } | ||
| 2507 | |||
| 2508 | /* Retry if a recoverably reset event has been scheduled */ | ||
| 2509 | if (efx->reset_pending & | ||
| 2510 | ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) || | ||
| 2511 | !efx->reset_pending) | ||
| 2512 | goto fail3; | ||
| 2513 | |||
| 2514 | efx->reset_pending = 0; | ||
| 2515 | } | ||
| 2516 | |||
| 2517 | if (rc) { | ||
| 2518 | netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n"); | ||
| 2519 | goto fail4; | ||
| 2520 | } | ||
| 2521 | |||
| 2522 | /* Switch to the running state before we expose the device to the OS, | ||
| 2523 | * so that dev_open()|efx_start_all() will actually start the device */ | ||
| 2524 | efx->state = STATE_RUNNING; | ||
| 2525 | |||
| 2526 | rc = efx_register_netdev(efx); | ||
| 2527 | if (rc) | ||
| 2528 | goto fail5; | ||
| 2529 | |||
| 2530 | netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); | ||
| 2531 | |||
| 2532 | rtnl_lock(); | ||
| 2533 | efx_mtd_probe(efx); /* allowed to fail */ | ||
| 2534 | rtnl_unlock(); | ||
| 2535 | return 0; | ||
| 2536 | |||
| 2537 | fail5: | ||
| 2538 | efx_pci_remove_main(efx); | ||
| 2539 | fail4: | ||
| 2540 | fail3: | ||
| 2541 | efx_fini_io(efx); | ||
| 2542 | fail2: | ||
| 2543 | efx_fini_struct(efx); | ||
| 2544 | fail1: | ||
| 2545 | WARN_ON(rc > 0); | ||
| 2546 | netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); | ||
| 2547 | free_netdev(net_dev); | ||
| 2548 | return rc; | ||
| 2549 | } | ||
| 2550 | |||
| 2551 | static int efx_pm_freeze(struct device *dev) | ||
| 2552 | { | ||
| 2553 | struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); | ||
| 2554 | |||
| 2555 | efx->state = STATE_FINI; | ||
| 2556 | |||
| 2557 | netif_device_detach(efx->net_dev); | ||
| 2558 | |||
| 2559 | efx_stop_all(efx); | ||
| 2560 | efx_fini_channels(efx); | ||
| 2561 | |||
| 2562 | return 0; | ||
| 2563 | } | ||
| 2564 | |||
| 2565 | static int efx_pm_thaw(struct device *dev) | ||
| 2566 | { | ||
| 2567 | struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); | ||
| 2568 | |||
| 2569 | efx->state = STATE_INIT; | ||
| 2570 | |||
| 2571 | efx_init_channels(efx); | ||
| 2572 | |||
| 2573 | mutex_lock(&efx->mac_lock); | ||
| 2574 | efx->phy_op->reconfigure(efx); | ||
| 2575 | mutex_unlock(&efx->mac_lock); | ||
| 2576 | |||
| 2577 | efx_start_all(efx); | ||
| 2578 | |||
| 2579 | netif_device_attach(efx->net_dev); | ||
| 2580 | |||
| 2581 | efx->state = STATE_RUNNING; | ||
| 2582 | |||
| 2583 | efx->type->resume_wol(efx); | ||
| 2584 | |||
| 2585 | /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ | ||
| 2586 | queue_work(reset_workqueue, &efx->reset_work); | ||
| 2587 | |||
| 2588 | return 0; | ||
| 2589 | } | ||
| 2590 | |||
| 2591 | static int efx_pm_poweroff(struct device *dev) | ||
| 2592 | { | ||
| 2593 | struct pci_dev *pci_dev = to_pci_dev(dev); | ||
| 2594 | struct efx_nic *efx = pci_get_drvdata(pci_dev); | ||
| 2595 | |||
| 2596 | efx->type->fini(efx); | ||
| 2597 | |||
| 2598 | efx->reset_pending = 0; | ||
| 2599 | |||
| 2600 | pci_save_state(pci_dev); | ||
| 2601 | return pci_set_power_state(pci_dev, PCI_D3hot); | ||
| 2602 | } | ||
| 2603 | |||
| 2604 | /* Used for both resume and restore */ | ||
| 2605 | static int efx_pm_resume(struct device *dev) | ||
| 2606 | { | ||
| 2607 | struct pci_dev *pci_dev = to_pci_dev(dev); | ||
| 2608 | struct efx_nic *efx = pci_get_drvdata(pci_dev); | ||
| 2609 | int rc; | ||
| 2610 | |||
| 2611 | rc = pci_set_power_state(pci_dev, PCI_D0); | ||
| 2612 | if (rc) | ||
| 2613 | return rc; | ||
| 2614 | pci_restore_state(pci_dev); | ||
| 2615 | rc = pci_enable_device(pci_dev); | ||
| 2616 | if (rc) | ||
| 2617 | return rc; | ||
| 2618 | pci_set_master(efx->pci_dev); | ||
| 2619 | rc = efx->type->reset(efx, RESET_TYPE_ALL); | ||
| 2620 | if (rc) | ||
| 2621 | return rc; | ||
| 2622 | rc = efx->type->init(efx); | ||
| 2623 | if (rc) | ||
| 2624 | return rc; | ||
| 2625 | efx_pm_thaw(dev); | ||
| 2626 | return 0; | ||
| 2627 | } | ||
| 2628 | |||
| 2629 | static int efx_pm_suspend(struct device *dev) | ||
| 2630 | { | ||
| 2631 | int rc; | ||
| 2632 | |||
| 2633 | efx_pm_freeze(dev); | ||
| 2634 | rc = efx_pm_poweroff(dev); | ||
| 2635 | if (rc) | ||
| 2636 | efx_pm_resume(dev); | ||
| 2637 | return rc; | ||
| 2638 | } | ||
| 2639 | |||
| 2640 | static struct dev_pm_ops efx_pm_ops = { | ||
| 2641 | .suspend = efx_pm_suspend, | ||
| 2642 | .resume = efx_pm_resume, | ||
| 2643 | .freeze = efx_pm_freeze, | ||
| 2644 | .thaw = efx_pm_thaw, | ||
| 2645 | .poweroff = efx_pm_poweroff, | ||
| 2646 | .restore = efx_pm_resume, | ||
| 2647 | }; | ||
| 2648 | |||
| 2649 | static struct pci_driver efx_pci_driver = { | ||
| 2650 | .name = KBUILD_MODNAME, | ||
| 2651 | .id_table = efx_pci_table, | ||
| 2652 | .probe = efx_pci_probe, | ||
| 2653 | .remove = efx_pci_remove, | ||
| 2654 | .driver.pm = &efx_pm_ops, | ||
| 2655 | }; | ||
| 2656 | |||
| 2657 | /************************************************************************** | ||
| 2658 | * | ||
| 2659 | * Kernel module interface | ||
| 2660 | * | ||
| 2661 | *************************************************************************/ | ||
| 2662 | |||
| 2663 | module_param(interrupt_mode, uint, 0444); | ||
| 2664 | MODULE_PARM_DESC(interrupt_mode, | ||
| 2665 | "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); | ||
| 2666 | |||
| 2667 | static int __init efx_init_module(void) | ||
| 2668 | { | ||
| 2669 | int rc; | ||
| 2670 | |||
| 2671 | printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); | ||
| 2672 | |||
| 2673 | rc = register_netdevice_notifier(&efx_netdev_notifier); | ||
| 2674 | if (rc) | ||
| 2675 | goto err_notifier; | ||
| 2676 | |||
| 2677 | reset_workqueue = create_singlethread_workqueue("sfc_reset"); | ||
| 2678 | if (!reset_workqueue) { | ||
| 2679 | rc = -ENOMEM; | ||
| 2680 | goto err_reset; | ||
| 2681 | } | ||
| 2682 | |||
| 2683 | rc = pci_register_driver(&efx_pci_driver); | ||
| 2684 | if (rc < 0) | ||
| 2685 | goto err_pci; | ||
| 2686 | |||
| 2687 | return 0; | ||
| 2688 | |||
| 2689 | err_pci: | ||
| 2690 | destroy_workqueue(reset_workqueue); | ||
| 2691 | err_reset: | ||
| 2692 | unregister_netdevice_notifier(&efx_netdev_notifier); | ||
| 2693 | err_notifier: | ||
| 2694 | return rc; | ||
| 2695 | } | ||
| 2696 | |||
| 2697 | static void __exit efx_exit_module(void) | ||
| 2698 | { | ||
| 2699 | printk(KERN_INFO "Solarflare NET driver unloading\n"); | ||
| 2700 | |||
| 2701 | pci_unregister_driver(&efx_pci_driver); | ||
| 2702 | destroy_workqueue(reset_workqueue); | ||
| 2703 | unregister_netdevice_notifier(&efx_netdev_notifier); | ||
| 2704 | |||
| 2705 | } | ||
| 2706 | |||
| 2707 | module_init(efx_init_module); | ||
| 2708 | module_exit(efx_exit_module); | ||
| 2709 | |||
| 2710 | MODULE_AUTHOR("Solarflare Communications and " | ||
| 2711 | "Michael Brown <mbrown@fensystems.co.uk>"); | ||
| 2712 | MODULE_DESCRIPTION("Solarflare Communications network driver"); | ||
| 2713 | MODULE_LICENSE("GPL"); | ||
| 2714 | MODULE_DEVICE_TABLE(pci, efx_pci_table); | ||
