aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/intel/igc/igc_i225.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/ethernet/intel/igc/igc_i225.c')
-rw-r--r--drivers/net/ethernet/intel/igc/igc_i225.c349
1 files changed, 349 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/igc/igc_i225.c b/drivers/net/ethernet/intel/igc/igc_i225.c
index fb1487727d79..c25f555aaf82 100644
--- a/drivers/net/ethernet/intel/igc/igc_i225.c
+++ b/drivers/net/ethernet/intel/igc/igc_i225.c
@@ -9,6 +9,32 @@
9 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore 9 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
10 * @hw: pointer to the HW structure 10 * @hw: pointer to the HW structure
11 * 11 *
12 * Acquire the necessary semaphores for exclusive access to the EEPROM.
13 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
14 * Return successful if access grant bit set, else clear the request for
15 * EEPROM access and return -IGC_ERR_NVM (-1).
16 */
17static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
18{
19 return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
20}
21
22/**
23 * igc_release_nvm_i225 - Release exclusive access to EEPROM
24 * @hw: pointer to the HW structure
25 *
26 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
27 * then release the semaphores acquired.
28 */
29static void igc_release_nvm_i225(struct igc_hw *hw)
30{
31 igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
32}
33
34/**
35 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
36 * @hw: pointer to the HW structure
37 *
12 * Acquire the HW semaphore to access the PHY or NVM 38 * Acquire the HW semaphore to access the PHY or NVM
13 */ 39 */
14static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw) 40static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
@@ -139,3 +165,326 @@ void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
139 165
140 igc_put_hw_semaphore(hw); 166 igc_put_hw_semaphore(hw);
141} 167}
168
169/**
170 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
171 * @hw: pointer to the HW structure
172 * @offset: offset of word in the Shadow Ram to read
173 * @words: number of words to read
174 * @data: word read from the Shadow Ram
175 *
176 * Reads a 16 bit word from the Shadow Ram using the EERD register.
177 * Uses necessary synchronization semaphores.
178 */
179static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
180 u16 *data)
181{
182 s32 status = 0;
183 u16 i, count;
184
185 /* We cannot hold synchronization semaphores for too long,
186 * because of forceful takeover procedure. However it is more efficient
187 * to read in bursts than synchronizing access for each word.
188 */
189 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
190 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
191 IGC_EERD_EEWR_MAX_COUNT : (words - i);
192
193 status = hw->nvm.ops.acquire(hw);
194 if (status)
195 break;
196
197 status = igc_read_nvm_eerd(hw, offset, count, data + i);
198 hw->nvm.ops.release(hw);
199 if (status)
200 break;
201 }
202
203 return status;
204}
205
206/**
207 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
208 * @hw: pointer to the HW structure
209 * @offset: offset within the Shadow Ram to be written to
210 * @words: number of words to write
211 * @data: 16 bit word(s) to be written to the Shadow Ram
212 *
213 * Writes data to Shadow Ram at offset using EEWR register.
214 *
215 * If igc_update_nvm_checksum is not called after this function , the
216 * Shadow Ram will most likely contain an invalid checksum.
217 */
218static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
219 u16 *data)
220{
221 struct igc_nvm_info *nvm = &hw->nvm;
222 u32 attempts = 100000;
223 u32 i, k, eewr = 0;
224 s32 ret_val = 0;
225
226 /* A check for invalid values: offset too large, too many words,
227 * too many words for the offset, and not enough words.
228 */
229 if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
230 words == 0) {
231 hw_dbg("nvm parameter(s) out of bounds\n");
232 ret_val = -IGC_ERR_NVM;
233 goto out;
234 }
235
236 for (i = 0; i < words; i++) {
237 eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
238 (data[i] << IGC_NVM_RW_REG_DATA) |
239 IGC_NVM_RW_REG_START;
240
241 wr32(IGC_SRWR, eewr);
242
243 for (k = 0; k < attempts; k++) {
244 if (IGC_NVM_RW_REG_DONE &
245 rd32(IGC_SRWR)) {
246 ret_val = 0;
247 break;
248 }
249 udelay(5);
250 }
251
252 if (ret_val) {
253 hw_dbg("Shadow RAM write EEWR timed out\n");
254 break;
255 }
256 }
257
258out:
259 return ret_val;
260}
261
262/**
263 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
264 * @hw: pointer to the HW structure
265 * @offset: offset within the Shadow RAM to be written to
266 * @words: number of words to write
267 * @data: 16 bit word(s) to be written to the Shadow RAM
268 *
269 * Writes data to Shadow RAM at offset using EEWR register.
270 *
271 * If igc_update_nvm_checksum is not called after this function , the
272 * data will not be committed to FLASH and also Shadow RAM will most likely
273 * contain an invalid checksum.
274 *
275 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
276 * partially written.
277 */
278static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
279 u16 *data)
280{
281 s32 status = 0;
282 u16 i, count;
283
284 /* We cannot hold synchronization semaphores for too long,
285 * because of forceful takeover procedure. However it is more efficient
286 * to write in bursts than synchronizing access for each word.
287 */
288 for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
289 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
290 IGC_EERD_EEWR_MAX_COUNT : (words - i);
291
292 status = hw->nvm.ops.acquire(hw);
293 if (status)
294 break;
295
296 status = igc_write_nvm_srwr(hw, offset, count, data + i);
297 hw->nvm.ops.release(hw);
298 if (status)
299 break;
300 }
301
302 return status;
303}
304
305/**
306 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
307 * @hw: pointer to the HW structure
308 *
309 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
310 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
311 */
312static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
313{
314 s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
315 u16 *data);
316 s32 status = 0;
317
318 status = hw->nvm.ops.acquire(hw);
319 if (status)
320 goto out;
321
322 /* Replace the read function with semaphore grabbing with
323 * the one that skips this for a while.
324 * We have semaphore taken already here.
325 */
326 read_op_ptr = hw->nvm.ops.read;
327 hw->nvm.ops.read = igc_read_nvm_eerd;
328
329 status = igc_validate_nvm_checksum(hw);
330
331 /* Revert original read operation. */
332 hw->nvm.ops.read = read_op_ptr;
333
334 hw->nvm.ops.release(hw);
335
336out:
337 return status;
338}
339
340/**
341 * igc_pool_flash_update_done_i225 - Pool FLUDONE status
342 * @hw: pointer to the HW structure
343 */
344static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
345{
346 s32 ret_val = -IGC_ERR_NVM;
347 u32 i, reg;
348
349 for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
350 reg = rd32(IGC_EECD);
351 if (reg & IGC_EECD_FLUDONE_I225) {
352 ret_val = 0;
353 break;
354 }
355 udelay(5);
356 }
357
358 return ret_val;
359}
360
361/**
362 * igc_update_flash_i225 - Commit EEPROM to the flash
363 * @hw: pointer to the HW structure
364 */
365static s32 igc_update_flash_i225(struct igc_hw *hw)
366{
367 s32 ret_val = 0;
368 u32 flup;
369
370 ret_val = igc_pool_flash_update_done_i225(hw);
371 if (ret_val == -IGC_ERR_NVM) {
372 hw_dbg("Flash update time out\n");
373 goto out;
374 }
375
376 flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
377 wr32(IGC_EECD, flup);
378
379 ret_val = igc_pool_flash_update_done_i225(hw);
380 if (ret_val)
381 hw_dbg("Flash update time out\n");
382 else
383 hw_dbg("Flash update complete\n");
384
385out:
386 return ret_val;
387}
388
389/**
390 * igc_update_nvm_checksum_i225 - Update EEPROM checksum
391 * @hw: pointer to the HW structure
392 *
393 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
394 * up to the checksum. Then calculates the EEPROM checksum and writes the
395 * value to the EEPROM. Next commit EEPROM data onto the Flash.
396 */
397static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
398{
399 u16 checksum = 0;
400 s32 ret_val = 0;
401 u16 i, nvm_data;
402
403 /* Read the first word from the EEPROM. If this times out or fails, do
404 * not continue or we could be in for a very long wait while every
405 * EEPROM read fails
406 */
407 ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
408 if (ret_val) {
409 hw_dbg("EEPROM read failed\n");
410 goto out;
411 }
412
413 ret_val = hw->nvm.ops.acquire(hw);
414 if (ret_val)
415 goto out;
416
417 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
418 * because we do not want to take the synchronization
419 * semaphores twice here.
420 */
421
422 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
423 ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
424 if (ret_val) {
425 hw->nvm.ops.release(hw);
426 hw_dbg("NVM Read Error while updating checksum.\n");
427 goto out;
428 }
429 checksum += nvm_data;
430 }
431 checksum = (u16)NVM_SUM - checksum;
432 ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
433 &checksum);
434 if (ret_val) {
435 hw->nvm.ops.release(hw);
436 hw_dbg("NVM Write Error while updating checksum.\n");
437 goto out;
438 }
439
440 hw->nvm.ops.release(hw);
441
442 ret_val = igc_update_flash_i225(hw);
443
444out:
445 return ret_val;
446}
447
448/**
449 * igc_get_flash_presence_i225 - Check if flash device is detected
450 * @hw: pointer to the HW structure
451 */
452bool igc_get_flash_presence_i225(struct igc_hw *hw)
453{
454 bool ret_val = false;
455 u32 eec = 0;
456
457 eec = rd32(IGC_EECD);
458 if (eec & IGC_EECD_FLASH_DETECTED_I225)
459 ret_val = true;
460
461 return ret_val;
462}
463
464/**
465 * igc_init_nvm_params_i225 - Init NVM func ptrs.
466 * @hw: pointer to the HW structure
467 */
468s32 igc_init_nvm_params_i225(struct igc_hw *hw)
469{
470 struct igc_nvm_info *nvm = &hw->nvm;
471
472 nvm->ops.acquire = igc_acquire_nvm_i225;
473 nvm->ops.release = igc_release_nvm_i225;
474
475 /* NVM Function Pointers */
476 if (igc_get_flash_presence_i225(hw)) {
477 hw->nvm.type = igc_nvm_flash_hw;
478 nvm->ops.read = igc_read_nvm_srrd_i225;
479 nvm->ops.write = igc_write_nvm_srwr_i225;
480 nvm->ops.validate = igc_validate_nvm_checksum_i225;
481 nvm->ops.update = igc_update_nvm_checksum_i225;
482 } else {
483 hw->nvm.type = igc_nvm_invm;
484 nvm->ops.read = igc_read_nvm_eerd;
485 nvm->ops.write = NULL;
486 nvm->ops.validate = NULL;
487 nvm->ops.update = NULL;
488 }
489 return 0;
490}