diff options
Diffstat (limited to 'drivers/net/ethernet/intel/e1000/e1000_main.c')
-rw-r--r-- | drivers/net/ethernet/intel/e1000/e1000_main.c | 4971 |
1 files changed, 4971 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/e1000/e1000_main.c b/drivers/net/ethernet/intel/e1000/e1000_main.c new file mode 100644 index 000000000000..cf480b554622 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000/e1000_main.c | |||
@@ -0,0 +1,4971 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2006 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #include "e1000.h" | ||
30 | #include <net/ip6_checksum.h> | ||
31 | #include <linux/io.h> | ||
32 | #include <linux/prefetch.h> | ||
33 | #include <linux/bitops.h> | ||
34 | #include <linux/if_vlan.h> | ||
35 | |||
36 | /* Intel Media SOC GbE MDIO physical base address */ | ||
37 | static unsigned long ce4100_gbe_mdio_base_phy; | ||
38 | /* Intel Media SOC GbE MDIO virtual base address */ | ||
39 | void __iomem *ce4100_gbe_mdio_base_virt; | ||
40 | |||
41 | char e1000_driver_name[] = "e1000"; | ||
42 | static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; | ||
43 | #define DRV_VERSION "7.3.21-k8-NAPI" | ||
44 | const char e1000_driver_version[] = DRV_VERSION; | ||
45 | static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; | ||
46 | |||
47 | /* e1000_pci_tbl - PCI Device ID Table | ||
48 | * | ||
49 | * Last entry must be all 0s | ||
50 | * | ||
51 | * Macro expands to... | ||
52 | * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} | ||
53 | */ | ||
54 | static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { | ||
55 | INTEL_E1000_ETHERNET_DEVICE(0x1000), | ||
56 | INTEL_E1000_ETHERNET_DEVICE(0x1001), | ||
57 | INTEL_E1000_ETHERNET_DEVICE(0x1004), | ||
58 | INTEL_E1000_ETHERNET_DEVICE(0x1008), | ||
59 | INTEL_E1000_ETHERNET_DEVICE(0x1009), | ||
60 | INTEL_E1000_ETHERNET_DEVICE(0x100C), | ||
61 | INTEL_E1000_ETHERNET_DEVICE(0x100D), | ||
62 | INTEL_E1000_ETHERNET_DEVICE(0x100E), | ||
63 | INTEL_E1000_ETHERNET_DEVICE(0x100F), | ||
64 | INTEL_E1000_ETHERNET_DEVICE(0x1010), | ||
65 | INTEL_E1000_ETHERNET_DEVICE(0x1011), | ||
66 | INTEL_E1000_ETHERNET_DEVICE(0x1012), | ||
67 | INTEL_E1000_ETHERNET_DEVICE(0x1013), | ||
68 | INTEL_E1000_ETHERNET_DEVICE(0x1014), | ||
69 | INTEL_E1000_ETHERNET_DEVICE(0x1015), | ||
70 | INTEL_E1000_ETHERNET_DEVICE(0x1016), | ||
71 | INTEL_E1000_ETHERNET_DEVICE(0x1017), | ||
72 | INTEL_E1000_ETHERNET_DEVICE(0x1018), | ||
73 | INTEL_E1000_ETHERNET_DEVICE(0x1019), | ||
74 | INTEL_E1000_ETHERNET_DEVICE(0x101A), | ||
75 | INTEL_E1000_ETHERNET_DEVICE(0x101D), | ||
76 | INTEL_E1000_ETHERNET_DEVICE(0x101E), | ||
77 | INTEL_E1000_ETHERNET_DEVICE(0x1026), | ||
78 | INTEL_E1000_ETHERNET_DEVICE(0x1027), | ||
79 | INTEL_E1000_ETHERNET_DEVICE(0x1028), | ||
80 | INTEL_E1000_ETHERNET_DEVICE(0x1075), | ||
81 | INTEL_E1000_ETHERNET_DEVICE(0x1076), | ||
82 | INTEL_E1000_ETHERNET_DEVICE(0x1077), | ||
83 | INTEL_E1000_ETHERNET_DEVICE(0x1078), | ||
84 | INTEL_E1000_ETHERNET_DEVICE(0x1079), | ||
85 | INTEL_E1000_ETHERNET_DEVICE(0x107A), | ||
86 | INTEL_E1000_ETHERNET_DEVICE(0x107B), | ||
87 | INTEL_E1000_ETHERNET_DEVICE(0x107C), | ||
88 | INTEL_E1000_ETHERNET_DEVICE(0x108A), | ||
89 | INTEL_E1000_ETHERNET_DEVICE(0x1099), | ||
90 | INTEL_E1000_ETHERNET_DEVICE(0x10B5), | ||
91 | INTEL_E1000_ETHERNET_DEVICE(0x2E6E), | ||
92 | /* required last entry */ | ||
93 | {0,} | ||
94 | }; | ||
95 | |||
96 | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | ||
97 | |||
98 | int e1000_up(struct e1000_adapter *adapter); | ||
99 | void e1000_down(struct e1000_adapter *adapter); | ||
100 | void e1000_reinit_locked(struct e1000_adapter *adapter); | ||
101 | void e1000_reset(struct e1000_adapter *adapter); | ||
102 | int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); | ||
103 | int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); | ||
104 | void e1000_free_all_tx_resources(struct e1000_adapter *adapter); | ||
105 | void e1000_free_all_rx_resources(struct e1000_adapter *adapter); | ||
106 | static int e1000_setup_tx_resources(struct e1000_adapter *adapter, | ||
107 | struct e1000_tx_ring *txdr); | ||
108 | static int e1000_setup_rx_resources(struct e1000_adapter *adapter, | ||
109 | struct e1000_rx_ring *rxdr); | ||
110 | static void e1000_free_tx_resources(struct e1000_adapter *adapter, | ||
111 | struct e1000_tx_ring *tx_ring); | ||
112 | static void e1000_free_rx_resources(struct e1000_adapter *adapter, | ||
113 | struct e1000_rx_ring *rx_ring); | ||
114 | void e1000_update_stats(struct e1000_adapter *adapter); | ||
115 | |||
116 | static int e1000_init_module(void); | ||
117 | static void e1000_exit_module(void); | ||
118 | static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); | ||
119 | static void __devexit e1000_remove(struct pci_dev *pdev); | ||
120 | static int e1000_alloc_queues(struct e1000_adapter *adapter); | ||
121 | static int e1000_sw_init(struct e1000_adapter *adapter); | ||
122 | static int e1000_open(struct net_device *netdev); | ||
123 | static int e1000_close(struct net_device *netdev); | ||
124 | static void e1000_configure_tx(struct e1000_adapter *adapter); | ||
125 | static void e1000_configure_rx(struct e1000_adapter *adapter); | ||
126 | static void e1000_setup_rctl(struct e1000_adapter *adapter); | ||
127 | static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); | ||
128 | static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); | ||
129 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter, | ||
130 | struct e1000_tx_ring *tx_ring); | ||
131 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter, | ||
132 | struct e1000_rx_ring *rx_ring); | ||
133 | static void e1000_set_rx_mode(struct net_device *netdev); | ||
134 | static void e1000_update_phy_info_task(struct work_struct *work); | ||
135 | static void e1000_watchdog(struct work_struct *work); | ||
136 | static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); | ||
137 | static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, | ||
138 | struct net_device *netdev); | ||
139 | static struct net_device_stats * e1000_get_stats(struct net_device *netdev); | ||
140 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu); | ||
141 | static int e1000_set_mac(struct net_device *netdev, void *p); | ||
142 | static irqreturn_t e1000_intr(int irq, void *data); | ||
143 | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, | ||
144 | struct e1000_tx_ring *tx_ring); | ||
145 | static int e1000_clean(struct napi_struct *napi, int budget); | ||
146 | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | ||
147 | struct e1000_rx_ring *rx_ring, | ||
148 | int *work_done, int work_to_do); | ||
149 | static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, | ||
150 | struct e1000_rx_ring *rx_ring, | ||
151 | int *work_done, int work_to_do); | ||
152 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | ||
153 | struct e1000_rx_ring *rx_ring, | ||
154 | int cleaned_count); | ||
155 | static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, | ||
156 | struct e1000_rx_ring *rx_ring, | ||
157 | int cleaned_count); | ||
158 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); | ||
159 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | ||
160 | int cmd); | ||
161 | static void e1000_enter_82542_rst(struct e1000_adapter *adapter); | ||
162 | static void e1000_leave_82542_rst(struct e1000_adapter *adapter); | ||
163 | static void e1000_tx_timeout(struct net_device *dev); | ||
164 | static void e1000_reset_task(struct work_struct *work); | ||
165 | static void e1000_smartspeed(struct e1000_adapter *adapter); | ||
166 | static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, | ||
167 | struct sk_buff *skb); | ||
168 | |||
169 | static bool e1000_vlan_used(struct e1000_adapter *adapter); | ||
170 | static void e1000_vlan_mode(struct net_device *netdev, u32 features); | ||
171 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid); | ||
172 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid); | ||
173 | static void e1000_restore_vlan(struct e1000_adapter *adapter); | ||
174 | |||
175 | #ifdef CONFIG_PM | ||
176 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); | ||
177 | static int e1000_resume(struct pci_dev *pdev); | ||
178 | #endif | ||
179 | static void e1000_shutdown(struct pci_dev *pdev); | ||
180 | |||
181 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
182 | /* for netdump / net console */ | ||
183 | static void e1000_netpoll (struct net_device *netdev); | ||
184 | #endif | ||
185 | |||
186 | #define COPYBREAK_DEFAULT 256 | ||
187 | static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; | ||
188 | module_param(copybreak, uint, 0644); | ||
189 | MODULE_PARM_DESC(copybreak, | ||
190 | "Maximum size of packet that is copied to a new buffer on receive"); | ||
191 | |||
192 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | ||
193 | pci_channel_state_t state); | ||
194 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); | ||
195 | static void e1000_io_resume(struct pci_dev *pdev); | ||
196 | |||
197 | static struct pci_error_handlers e1000_err_handler = { | ||
198 | .error_detected = e1000_io_error_detected, | ||
199 | .slot_reset = e1000_io_slot_reset, | ||
200 | .resume = e1000_io_resume, | ||
201 | }; | ||
202 | |||
203 | static struct pci_driver e1000_driver = { | ||
204 | .name = e1000_driver_name, | ||
205 | .id_table = e1000_pci_tbl, | ||
206 | .probe = e1000_probe, | ||
207 | .remove = __devexit_p(e1000_remove), | ||
208 | #ifdef CONFIG_PM | ||
209 | /* Power Management Hooks */ | ||
210 | .suspend = e1000_suspend, | ||
211 | .resume = e1000_resume, | ||
212 | #endif | ||
213 | .shutdown = e1000_shutdown, | ||
214 | .err_handler = &e1000_err_handler | ||
215 | }; | ||
216 | |||
217 | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | ||
218 | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | ||
219 | MODULE_LICENSE("GPL"); | ||
220 | MODULE_VERSION(DRV_VERSION); | ||
221 | |||
222 | static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; | ||
223 | module_param(debug, int, 0); | ||
224 | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | ||
225 | |||
226 | /** | ||
227 | * e1000_get_hw_dev - return device | ||
228 | * used by hardware layer to print debugging information | ||
229 | * | ||
230 | **/ | ||
231 | struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) | ||
232 | { | ||
233 | struct e1000_adapter *adapter = hw->back; | ||
234 | return adapter->netdev; | ||
235 | } | ||
236 | |||
237 | /** | ||
238 | * e1000_init_module - Driver Registration Routine | ||
239 | * | ||
240 | * e1000_init_module is the first routine called when the driver is | ||
241 | * loaded. All it does is register with the PCI subsystem. | ||
242 | **/ | ||
243 | |||
244 | static int __init e1000_init_module(void) | ||
245 | { | ||
246 | int ret; | ||
247 | pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); | ||
248 | |||
249 | pr_info("%s\n", e1000_copyright); | ||
250 | |||
251 | ret = pci_register_driver(&e1000_driver); | ||
252 | if (copybreak != COPYBREAK_DEFAULT) { | ||
253 | if (copybreak == 0) | ||
254 | pr_info("copybreak disabled\n"); | ||
255 | else | ||
256 | pr_info("copybreak enabled for " | ||
257 | "packets <= %u bytes\n", copybreak); | ||
258 | } | ||
259 | return ret; | ||
260 | } | ||
261 | |||
262 | module_init(e1000_init_module); | ||
263 | |||
264 | /** | ||
265 | * e1000_exit_module - Driver Exit Cleanup Routine | ||
266 | * | ||
267 | * e1000_exit_module is called just before the driver is removed | ||
268 | * from memory. | ||
269 | **/ | ||
270 | |||
271 | static void __exit e1000_exit_module(void) | ||
272 | { | ||
273 | pci_unregister_driver(&e1000_driver); | ||
274 | } | ||
275 | |||
276 | module_exit(e1000_exit_module); | ||
277 | |||
278 | static int e1000_request_irq(struct e1000_adapter *adapter) | ||
279 | { | ||
280 | struct net_device *netdev = adapter->netdev; | ||
281 | irq_handler_t handler = e1000_intr; | ||
282 | int irq_flags = IRQF_SHARED; | ||
283 | int err; | ||
284 | |||
285 | err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, | ||
286 | netdev); | ||
287 | if (err) { | ||
288 | e_err(probe, "Unable to allocate interrupt Error: %d\n", err); | ||
289 | } | ||
290 | |||
291 | return err; | ||
292 | } | ||
293 | |||
294 | static void e1000_free_irq(struct e1000_adapter *adapter) | ||
295 | { | ||
296 | struct net_device *netdev = adapter->netdev; | ||
297 | |||
298 | free_irq(adapter->pdev->irq, netdev); | ||
299 | } | ||
300 | |||
301 | /** | ||
302 | * e1000_irq_disable - Mask off interrupt generation on the NIC | ||
303 | * @adapter: board private structure | ||
304 | **/ | ||
305 | |||
306 | static void e1000_irq_disable(struct e1000_adapter *adapter) | ||
307 | { | ||
308 | struct e1000_hw *hw = &adapter->hw; | ||
309 | |||
310 | ew32(IMC, ~0); | ||
311 | E1000_WRITE_FLUSH(); | ||
312 | synchronize_irq(adapter->pdev->irq); | ||
313 | } | ||
314 | |||
315 | /** | ||
316 | * e1000_irq_enable - Enable default interrupt generation settings | ||
317 | * @adapter: board private structure | ||
318 | **/ | ||
319 | |||
320 | static void e1000_irq_enable(struct e1000_adapter *adapter) | ||
321 | { | ||
322 | struct e1000_hw *hw = &adapter->hw; | ||
323 | |||
324 | ew32(IMS, IMS_ENABLE_MASK); | ||
325 | E1000_WRITE_FLUSH(); | ||
326 | } | ||
327 | |||
328 | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) | ||
329 | { | ||
330 | struct e1000_hw *hw = &adapter->hw; | ||
331 | struct net_device *netdev = adapter->netdev; | ||
332 | u16 vid = hw->mng_cookie.vlan_id; | ||
333 | u16 old_vid = adapter->mng_vlan_id; | ||
334 | |||
335 | if (!e1000_vlan_used(adapter)) | ||
336 | return; | ||
337 | |||
338 | if (!test_bit(vid, adapter->active_vlans)) { | ||
339 | if (hw->mng_cookie.status & | ||
340 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { | ||
341 | e1000_vlan_rx_add_vid(netdev, vid); | ||
342 | adapter->mng_vlan_id = vid; | ||
343 | } else { | ||
344 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
345 | } | ||
346 | if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && | ||
347 | (vid != old_vid) && | ||
348 | !test_bit(old_vid, adapter->active_vlans)) | ||
349 | e1000_vlan_rx_kill_vid(netdev, old_vid); | ||
350 | } else { | ||
351 | adapter->mng_vlan_id = vid; | ||
352 | } | ||
353 | } | ||
354 | |||
355 | static void e1000_init_manageability(struct e1000_adapter *adapter) | ||
356 | { | ||
357 | struct e1000_hw *hw = &adapter->hw; | ||
358 | |||
359 | if (adapter->en_mng_pt) { | ||
360 | u32 manc = er32(MANC); | ||
361 | |||
362 | /* disable hardware interception of ARP */ | ||
363 | manc &= ~(E1000_MANC_ARP_EN); | ||
364 | |||
365 | ew32(MANC, manc); | ||
366 | } | ||
367 | } | ||
368 | |||
369 | static void e1000_release_manageability(struct e1000_adapter *adapter) | ||
370 | { | ||
371 | struct e1000_hw *hw = &adapter->hw; | ||
372 | |||
373 | if (adapter->en_mng_pt) { | ||
374 | u32 manc = er32(MANC); | ||
375 | |||
376 | /* re-enable hardware interception of ARP */ | ||
377 | manc |= E1000_MANC_ARP_EN; | ||
378 | |||
379 | ew32(MANC, manc); | ||
380 | } | ||
381 | } | ||
382 | |||
383 | /** | ||
384 | * e1000_configure - configure the hardware for RX and TX | ||
385 | * @adapter = private board structure | ||
386 | **/ | ||
387 | static void e1000_configure(struct e1000_adapter *adapter) | ||
388 | { | ||
389 | struct net_device *netdev = adapter->netdev; | ||
390 | int i; | ||
391 | |||
392 | e1000_set_rx_mode(netdev); | ||
393 | |||
394 | e1000_restore_vlan(adapter); | ||
395 | e1000_init_manageability(adapter); | ||
396 | |||
397 | e1000_configure_tx(adapter); | ||
398 | e1000_setup_rctl(adapter); | ||
399 | e1000_configure_rx(adapter); | ||
400 | /* call E1000_DESC_UNUSED which always leaves | ||
401 | * at least 1 descriptor unused to make sure | ||
402 | * next_to_use != next_to_clean */ | ||
403 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
404 | struct e1000_rx_ring *ring = &adapter->rx_ring[i]; | ||
405 | adapter->alloc_rx_buf(adapter, ring, | ||
406 | E1000_DESC_UNUSED(ring)); | ||
407 | } | ||
408 | } | ||
409 | |||
410 | int e1000_up(struct e1000_adapter *adapter) | ||
411 | { | ||
412 | struct e1000_hw *hw = &adapter->hw; | ||
413 | |||
414 | /* hardware has been reset, we need to reload some things */ | ||
415 | e1000_configure(adapter); | ||
416 | |||
417 | clear_bit(__E1000_DOWN, &adapter->flags); | ||
418 | |||
419 | napi_enable(&adapter->napi); | ||
420 | |||
421 | e1000_irq_enable(adapter); | ||
422 | |||
423 | netif_wake_queue(adapter->netdev); | ||
424 | |||
425 | /* fire a link change interrupt to start the watchdog */ | ||
426 | ew32(ICS, E1000_ICS_LSC); | ||
427 | return 0; | ||
428 | } | ||
429 | |||
430 | /** | ||
431 | * e1000_power_up_phy - restore link in case the phy was powered down | ||
432 | * @adapter: address of board private structure | ||
433 | * | ||
434 | * The phy may be powered down to save power and turn off link when the | ||
435 | * driver is unloaded and wake on lan is not enabled (among others) | ||
436 | * *** this routine MUST be followed by a call to e1000_reset *** | ||
437 | * | ||
438 | **/ | ||
439 | |||
440 | void e1000_power_up_phy(struct e1000_adapter *adapter) | ||
441 | { | ||
442 | struct e1000_hw *hw = &adapter->hw; | ||
443 | u16 mii_reg = 0; | ||
444 | |||
445 | /* Just clear the power down bit to wake the phy back up */ | ||
446 | if (hw->media_type == e1000_media_type_copper) { | ||
447 | /* according to the manual, the phy will retain its | ||
448 | * settings across a power-down/up cycle */ | ||
449 | e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); | ||
450 | mii_reg &= ~MII_CR_POWER_DOWN; | ||
451 | e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); | ||
452 | } | ||
453 | } | ||
454 | |||
455 | static void e1000_power_down_phy(struct e1000_adapter *adapter) | ||
456 | { | ||
457 | struct e1000_hw *hw = &adapter->hw; | ||
458 | |||
459 | /* Power down the PHY so no link is implied when interface is down * | ||
460 | * The PHY cannot be powered down if any of the following is true * | ||
461 | * (a) WoL is enabled | ||
462 | * (b) AMT is active | ||
463 | * (c) SoL/IDER session is active */ | ||
464 | if (!adapter->wol && hw->mac_type >= e1000_82540 && | ||
465 | hw->media_type == e1000_media_type_copper) { | ||
466 | u16 mii_reg = 0; | ||
467 | |||
468 | switch (hw->mac_type) { | ||
469 | case e1000_82540: | ||
470 | case e1000_82545: | ||
471 | case e1000_82545_rev_3: | ||
472 | case e1000_82546: | ||
473 | case e1000_ce4100: | ||
474 | case e1000_82546_rev_3: | ||
475 | case e1000_82541: | ||
476 | case e1000_82541_rev_2: | ||
477 | case e1000_82547: | ||
478 | case e1000_82547_rev_2: | ||
479 | if (er32(MANC) & E1000_MANC_SMBUS_EN) | ||
480 | goto out; | ||
481 | break; | ||
482 | default: | ||
483 | goto out; | ||
484 | } | ||
485 | e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); | ||
486 | mii_reg |= MII_CR_POWER_DOWN; | ||
487 | e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); | ||
488 | msleep(1); | ||
489 | } | ||
490 | out: | ||
491 | return; | ||
492 | } | ||
493 | |||
494 | static void e1000_down_and_stop(struct e1000_adapter *adapter) | ||
495 | { | ||
496 | set_bit(__E1000_DOWN, &adapter->flags); | ||
497 | cancel_work_sync(&adapter->reset_task); | ||
498 | cancel_delayed_work_sync(&adapter->watchdog_task); | ||
499 | cancel_delayed_work_sync(&adapter->phy_info_task); | ||
500 | cancel_delayed_work_sync(&adapter->fifo_stall_task); | ||
501 | } | ||
502 | |||
503 | void e1000_down(struct e1000_adapter *adapter) | ||
504 | { | ||
505 | struct e1000_hw *hw = &adapter->hw; | ||
506 | struct net_device *netdev = adapter->netdev; | ||
507 | u32 rctl, tctl; | ||
508 | |||
509 | |||
510 | /* disable receives in the hardware */ | ||
511 | rctl = er32(RCTL); | ||
512 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
513 | /* flush and sleep below */ | ||
514 | |||
515 | netif_tx_disable(netdev); | ||
516 | |||
517 | /* disable transmits in the hardware */ | ||
518 | tctl = er32(TCTL); | ||
519 | tctl &= ~E1000_TCTL_EN; | ||
520 | ew32(TCTL, tctl); | ||
521 | /* flush both disables and wait for them to finish */ | ||
522 | E1000_WRITE_FLUSH(); | ||
523 | msleep(10); | ||
524 | |||
525 | napi_disable(&adapter->napi); | ||
526 | |||
527 | e1000_irq_disable(adapter); | ||
528 | |||
529 | /* | ||
530 | * Setting DOWN must be after irq_disable to prevent | ||
531 | * a screaming interrupt. Setting DOWN also prevents | ||
532 | * tasks from rescheduling. | ||
533 | */ | ||
534 | e1000_down_and_stop(adapter); | ||
535 | |||
536 | adapter->link_speed = 0; | ||
537 | adapter->link_duplex = 0; | ||
538 | netif_carrier_off(netdev); | ||
539 | |||
540 | e1000_reset(adapter); | ||
541 | e1000_clean_all_tx_rings(adapter); | ||
542 | e1000_clean_all_rx_rings(adapter); | ||
543 | } | ||
544 | |||
545 | static void e1000_reinit_safe(struct e1000_adapter *adapter) | ||
546 | { | ||
547 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
548 | msleep(1); | ||
549 | mutex_lock(&adapter->mutex); | ||
550 | e1000_down(adapter); | ||
551 | e1000_up(adapter); | ||
552 | mutex_unlock(&adapter->mutex); | ||
553 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
554 | } | ||
555 | |||
556 | void e1000_reinit_locked(struct e1000_adapter *adapter) | ||
557 | { | ||
558 | /* if rtnl_lock is not held the call path is bogus */ | ||
559 | ASSERT_RTNL(); | ||
560 | WARN_ON(in_interrupt()); | ||
561 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
562 | msleep(1); | ||
563 | e1000_down(adapter); | ||
564 | e1000_up(adapter); | ||
565 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
566 | } | ||
567 | |||
568 | void e1000_reset(struct e1000_adapter *adapter) | ||
569 | { | ||
570 | struct e1000_hw *hw = &adapter->hw; | ||
571 | u32 pba = 0, tx_space, min_tx_space, min_rx_space; | ||
572 | bool legacy_pba_adjust = false; | ||
573 | u16 hwm; | ||
574 | |||
575 | /* Repartition Pba for greater than 9k mtu | ||
576 | * To take effect CTRL.RST is required. | ||
577 | */ | ||
578 | |||
579 | switch (hw->mac_type) { | ||
580 | case e1000_82542_rev2_0: | ||
581 | case e1000_82542_rev2_1: | ||
582 | case e1000_82543: | ||
583 | case e1000_82544: | ||
584 | case e1000_82540: | ||
585 | case e1000_82541: | ||
586 | case e1000_82541_rev_2: | ||
587 | legacy_pba_adjust = true; | ||
588 | pba = E1000_PBA_48K; | ||
589 | break; | ||
590 | case e1000_82545: | ||
591 | case e1000_82545_rev_3: | ||
592 | case e1000_82546: | ||
593 | case e1000_ce4100: | ||
594 | case e1000_82546_rev_3: | ||
595 | pba = E1000_PBA_48K; | ||
596 | break; | ||
597 | case e1000_82547: | ||
598 | case e1000_82547_rev_2: | ||
599 | legacy_pba_adjust = true; | ||
600 | pba = E1000_PBA_30K; | ||
601 | break; | ||
602 | case e1000_undefined: | ||
603 | case e1000_num_macs: | ||
604 | break; | ||
605 | } | ||
606 | |||
607 | if (legacy_pba_adjust) { | ||
608 | if (hw->max_frame_size > E1000_RXBUFFER_8192) | ||
609 | pba -= 8; /* allocate more FIFO for Tx */ | ||
610 | |||
611 | if (hw->mac_type == e1000_82547) { | ||
612 | adapter->tx_fifo_head = 0; | ||
613 | adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; | ||
614 | adapter->tx_fifo_size = | ||
615 | (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; | ||
616 | atomic_set(&adapter->tx_fifo_stall, 0); | ||
617 | } | ||
618 | } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { | ||
619 | /* adjust PBA for jumbo frames */ | ||
620 | ew32(PBA, pba); | ||
621 | |||
622 | /* To maintain wire speed transmits, the Tx FIFO should be | ||
623 | * large enough to accommodate two full transmit packets, | ||
624 | * rounded up to the next 1KB and expressed in KB. Likewise, | ||
625 | * the Rx FIFO should be large enough to accommodate at least | ||
626 | * one full receive packet and is similarly rounded up and | ||
627 | * expressed in KB. */ | ||
628 | pba = er32(PBA); | ||
629 | /* upper 16 bits has Tx packet buffer allocation size in KB */ | ||
630 | tx_space = pba >> 16; | ||
631 | /* lower 16 bits has Rx packet buffer allocation size in KB */ | ||
632 | pba &= 0xffff; | ||
633 | /* | ||
634 | * the tx fifo also stores 16 bytes of information about the tx | ||
635 | * but don't include ethernet FCS because hardware appends it | ||
636 | */ | ||
637 | min_tx_space = (hw->max_frame_size + | ||
638 | sizeof(struct e1000_tx_desc) - | ||
639 | ETH_FCS_LEN) * 2; | ||
640 | min_tx_space = ALIGN(min_tx_space, 1024); | ||
641 | min_tx_space >>= 10; | ||
642 | /* software strips receive CRC, so leave room for it */ | ||
643 | min_rx_space = hw->max_frame_size; | ||
644 | min_rx_space = ALIGN(min_rx_space, 1024); | ||
645 | min_rx_space >>= 10; | ||
646 | |||
647 | /* If current Tx allocation is less than the min Tx FIFO size, | ||
648 | * and the min Tx FIFO size is less than the current Rx FIFO | ||
649 | * allocation, take space away from current Rx allocation */ | ||
650 | if (tx_space < min_tx_space && | ||
651 | ((min_tx_space - tx_space) < pba)) { | ||
652 | pba = pba - (min_tx_space - tx_space); | ||
653 | |||
654 | /* PCI/PCIx hardware has PBA alignment constraints */ | ||
655 | switch (hw->mac_type) { | ||
656 | case e1000_82545 ... e1000_82546_rev_3: | ||
657 | pba &= ~(E1000_PBA_8K - 1); | ||
658 | break; | ||
659 | default: | ||
660 | break; | ||
661 | } | ||
662 | |||
663 | /* if short on rx space, rx wins and must trump tx | ||
664 | * adjustment or use Early Receive if available */ | ||
665 | if (pba < min_rx_space) | ||
666 | pba = min_rx_space; | ||
667 | } | ||
668 | } | ||
669 | |||
670 | ew32(PBA, pba); | ||
671 | |||
672 | /* | ||
673 | * flow control settings: | ||
674 | * The high water mark must be low enough to fit one full frame | ||
675 | * (or the size used for early receive) above it in the Rx FIFO. | ||
676 | * Set it to the lower of: | ||
677 | * - 90% of the Rx FIFO size, and | ||
678 | * - the full Rx FIFO size minus the early receive size (for parts | ||
679 | * with ERT support assuming ERT set to E1000_ERT_2048), or | ||
680 | * - the full Rx FIFO size minus one full frame | ||
681 | */ | ||
682 | hwm = min(((pba << 10) * 9 / 10), | ||
683 | ((pba << 10) - hw->max_frame_size)); | ||
684 | |||
685 | hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ | ||
686 | hw->fc_low_water = hw->fc_high_water - 8; | ||
687 | hw->fc_pause_time = E1000_FC_PAUSE_TIME; | ||
688 | hw->fc_send_xon = 1; | ||
689 | hw->fc = hw->original_fc; | ||
690 | |||
691 | /* Allow time for pending master requests to run */ | ||
692 | e1000_reset_hw(hw); | ||
693 | if (hw->mac_type >= e1000_82544) | ||
694 | ew32(WUC, 0); | ||
695 | |||
696 | if (e1000_init_hw(hw)) | ||
697 | e_dev_err("Hardware Error\n"); | ||
698 | e1000_update_mng_vlan(adapter); | ||
699 | |||
700 | /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ | ||
701 | if (hw->mac_type >= e1000_82544 && | ||
702 | hw->autoneg == 1 && | ||
703 | hw->autoneg_advertised == ADVERTISE_1000_FULL) { | ||
704 | u32 ctrl = er32(CTRL); | ||
705 | /* clear phy power management bit if we are in gig only mode, | ||
706 | * which if enabled will attempt negotiation to 100Mb, which | ||
707 | * can cause a loss of link at power off or driver unload */ | ||
708 | ctrl &= ~E1000_CTRL_SWDPIN3; | ||
709 | ew32(CTRL, ctrl); | ||
710 | } | ||
711 | |||
712 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | ||
713 | ew32(VET, ETHERNET_IEEE_VLAN_TYPE); | ||
714 | |||
715 | e1000_reset_adaptive(hw); | ||
716 | e1000_phy_get_info(hw, &adapter->phy_info); | ||
717 | |||
718 | e1000_release_manageability(adapter); | ||
719 | } | ||
720 | |||
721 | /** | ||
722 | * Dump the eeprom for users having checksum issues | ||
723 | **/ | ||
724 | static void e1000_dump_eeprom(struct e1000_adapter *adapter) | ||
725 | { | ||
726 | struct net_device *netdev = adapter->netdev; | ||
727 | struct ethtool_eeprom eeprom; | ||
728 | const struct ethtool_ops *ops = netdev->ethtool_ops; | ||
729 | u8 *data; | ||
730 | int i; | ||
731 | u16 csum_old, csum_new = 0; | ||
732 | |||
733 | eeprom.len = ops->get_eeprom_len(netdev); | ||
734 | eeprom.offset = 0; | ||
735 | |||
736 | data = kmalloc(eeprom.len, GFP_KERNEL); | ||
737 | if (!data) { | ||
738 | pr_err("Unable to allocate memory to dump EEPROM data\n"); | ||
739 | return; | ||
740 | } | ||
741 | |||
742 | ops->get_eeprom(netdev, &eeprom, data); | ||
743 | |||
744 | csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + | ||
745 | (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); | ||
746 | for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) | ||
747 | csum_new += data[i] + (data[i + 1] << 8); | ||
748 | csum_new = EEPROM_SUM - csum_new; | ||
749 | |||
750 | pr_err("/*********************/\n"); | ||
751 | pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); | ||
752 | pr_err("Calculated : 0x%04x\n", csum_new); | ||
753 | |||
754 | pr_err("Offset Values\n"); | ||
755 | pr_err("======== ======\n"); | ||
756 | print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); | ||
757 | |||
758 | pr_err("Include this output when contacting your support provider.\n"); | ||
759 | pr_err("This is not a software error! Something bad happened to\n"); | ||
760 | pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); | ||
761 | pr_err("result in further problems, possibly loss of data,\n"); | ||
762 | pr_err("corruption or system hangs!\n"); | ||
763 | pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); | ||
764 | pr_err("which is invalid and requires you to set the proper MAC\n"); | ||
765 | pr_err("address manually before continuing to enable this network\n"); | ||
766 | pr_err("device. Please inspect the EEPROM dump and report the\n"); | ||
767 | pr_err("issue to your hardware vendor or Intel Customer Support.\n"); | ||
768 | pr_err("/*********************/\n"); | ||
769 | |||
770 | kfree(data); | ||
771 | } | ||
772 | |||
773 | /** | ||
774 | * e1000_is_need_ioport - determine if an adapter needs ioport resources or not | ||
775 | * @pdev: PCI device information struct | ||
776 | * | ||
777 | * Return true if an adapter needs ioport resources | ||
778 | **/ | ||
779 | static int e1000_is_need_ioport(struct pci_dev *pdev) | ||
780 | { | ||
781 | switch (pdev->device) { | ||
782 | case E1000_DEV_ID_82540EM: | ||
783 | case E1000_DEV_ID_82540EM_LOM: | ||
784 | case E1000_DEV_ID_82540EP: | ||
785 | case E1000_DEV_ID_82540EP_LOM: | ||
786 | case E1000_DEV_ID_82540EP_LP: | ||
787 | case E1000_DEV_ID_82541EI: | ||
788 | case E1000_DEV_ID_82541EI_MOBILE: | ||
789 | case E1000_DEV_ID_82541ER: | ||
790 | case E1000_DEV_ID_82541ER_LOM: | ||
791 | case E1000_DEV_ID_82541GI: | ||
792 | case E1000_DEV_ID_82541GI_LF: | ||
793 | case E1000_DEV_ID_82541GI_MOBILE: | ||
794 | case E1000_DEV_ID_82544EI_COPPER: | ||
795 | case E1000_DEV_ID_82544EI_FIBER: | ||
796 | case E1000_DEV_ID_82544GC_COPPER: | ||
797 | case E1000_DEV_ID_82544GC_LOM: | ||
798 | case E1000_DEV_ID_82545EM_COPPER: | ||
799 | case E1000_DEV_ID_82545EM_FIBER: | ||
800 | case E1000_DEV_ID_82546EB_COPPER: | ||
801 | case E1000_DEV_ID_82546EB_FIBER: | ||
802 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | ||
803 | return true; | ||
804 | default: | ||
805 | return false; | ||
806 | } | ||
807 | } | ||
808 | |||
809 | static u32 e1000_fix_features(struct net_device *netdev, u32 features) | ||
810 | { | ||
811 | /* | ||
812 | * Since there is no support for separate rx/tx vlan accel | ||
813 | * enable/disable make sure tx flag is always in same state as rx. | ||
814 | */ | ||
815 | if (features & NETIF_F_HW_VLAN_RX) | ||
816 | features |= NETIF_F_HW_VLAN_TX; | ||
817 | else | ||
818 | features &= ~NETIF_F_HW_VLAN_TX; | ||
819 | |||
820 | return features; | ||
821 | } | ||
822 | |||
823 | static int e1000_set_features(struct net_device *netdev, u32 features) | ||
824 | { | ||
825 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
826 | u32 changed = features ^ netdev->features; | ||
827 | |||
828 | if (changed & NETIF_F_HW_VLAN_RX) | ||
829 | e1000_vlan_mode(netdev, features); | ||
830 | |||
831 | if (!(changed & NETIF_F_RXCSUM)) | ||
832 | return 0; | ||
833 | |||
834 | adapter->rx_csum = !!(features & NETIF_F_RXCSUM); | ||
835 | |||
836 | if (netif_running(netdev)) | ||
837 | e1000_reinit_locked(adapter); | ||
838 | else | ||
839 | e1000_reset(adapter); | ||
840 | |||
841 | return 0; | ||
842 | } | ||
843 | |||
844 | static const struct net_device_ops e1000_netdev_ops = { | ||
845 | .ndo_open = e1000_open, | ||
846 | .ndo_stop = e1000_close, | ||
847 | .ndo_start_xmit = e1000_xmit_frame, | ||
848 | .ndo_get_stats = e1000_get_stats, | ||
849 | .ndo_set_rx_mode = e1000_set_rx_mode, | ||
850 | .ndo_set_mac_address = e1000_set_mac, | ||
851 | .ndo_tx_timeout = e1000_tx_timeout, | ||
852 | .ndo_change_mtu = e1000_change_mtu, | ||
853 | .ndo_do_ioctl = e1000_ioctl, | ||
854 | .ndo_validate_addr = eth_validate_addr, | ||
855 | .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, | ||
856 | .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, | ||
857 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
858 | .ndo_poll_controller = e1000_netpoll, | ||
859 | #endif | ||
860 | .ndo_fix_features = e1000_fix_features, | ||
861 | .ndo_set_features = e1000_set_features, | ||
862 | }; | ||
863 | |||
864 | /** | ||
865 | * e1000_init_hw_struct - initialize members of hw struct | ||
866 | * @adapter: board private struct | ||
867 | * @hw: structure used by e1000_hw.c | ||
868 | * | ||
869 | * Factors out initialization of the e1000_hw struct to its own function | ||
870 | * that can be called very early at init (just after struct allocation). | ||
871 | * Fields are initialized based on PCI device information and | ||
872 | * OS network device settings (MTU size). | ||
873 | * Returns negative error codes if MAC type setup fails. | ||
874 | */ | ||
875 | static int e1000_init_hw_struct(struct e1000_adapter *adapter, | ||
876 | struct e1000_hw *hw) | ||
877 | { | ||
878 | struct pci_dev *pdev = adapter->pdev; | ||
879 | |||
880 | /* PCI config space info */ | ||
881 | hw->vendor_id = pdev->vendor; | ||
882 | hw->device_id = pdev->device; | ||
883 | hw->subsystem_vendor_id = pdev->subsystem_vendor; | ||
884 | hw->subsystem_id = pdev->subsystem_device; | ||
885 | hw->revision_id = pdev->revision; | ||
886 | |||
887 | pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); | ||
888 | |||
889 | hw->max_frame_size = adapter->netdev->mtu + | ||
890 | ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | ||
891 | hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; | ||
892 | |||
893 | /* identify the MAC */ | ||
894 | if (e1000_set_mac_type(hw)) { | ||
895 | e_err(probe, "Unknown MAC Type\n"); | ||
896 | return -EIO; | ||
897 | } | ||
898 | |||
899 | switch (hw->mac_type) { | ||
900 | default: | ||
901 | break; | ||
902 | case e1000_82541: | ||
903 | case e1000_82547: | ||
904 | case e1000_82541_rev_2: | ||
905 | case e1000_82547_rev_2: | ||
906 | hw->phy_init_script = 1; | ||
907 | break; | ||
908 | } | ||
909 | |||
910 | e1000_set_media_type(hw); | ||
911 | e1000_get_bus_info(hw); | ||
912 | |||
913 | hw->wait_autoneg_complete = false; | ||
914 | hw->tbi_compatibility_en = true; | ||
915 | hw->adaptive_ifs = true; | ||
916 | |||
917 | /* Copper options */ | ||
918 | |||
919 | if (hw->media_type == e1000_media_type_copper) { | ||
920 | hw->mdix = AUTO_ALL_MODES; | ||
921 | hw->disable_polarity_correction = false; | ||
922 | hw->master_slave = E1000_MASTER_SLAVE; | ||
923 | } | ||
924 | |||
925 | return 0; | ||
926 | } | ||
927 | |||
928 | /** | ||
929 | * e1000_probe - Device Initialization Routine | ||
930 | * @pdev: PCI device information struct | ||
931 | * @ent: entry in e1000_pci_tbl | ||
932 | * | ||
933 | * Returns 0 on success, negative on failure | ||
934 | * | ||
935 | * e1000_probe initializes an adapter identified by a pci_dev structure. | ||
936 | * The OS initialization, configuring of the adapter private structure, | ||
937 | * and a hardware reset occur. | ||
938 | **/ | ||
939 | static int __devinit e1000_probe(struct pci_dev *pdev, | ||
940 | const struct pci_device_id *ent) | ||
941 | { | ||
942 | struct net_device *netdev; | ||
943 | struct e1000_adapter *adapter; | ||
944 | struct e1000_hw *hw; | ||
945 | |||
946 | static int cards_found = 0; | ||
947 | static int global_quad_port_a = 0; /* global ksp3 port a indication */ | ||
948 | int i, err, pci_using_dac; | ||
949 | u16 eeprom_data = 0; | ||
950 | u16 tmp = 0; | ||
951 | u16 eeprom_apme_mask = E1000_EEPROM_APME; | ||
952 | int bars, need_ioport; | ||
953 | |||
954 | /* do not allocate ioport bars when not needed */ | ||
955 | need_ioport = e1000_is_need_ioport(pdev); | ||
956 | if (need_ioport) { | ||
957 | bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); | ||
958 | err = pci_enable_device(pdev); | ||
959 | } else { | ||
960 | bars = pci_select_bars(pdev, IORESOURCE_MEM); | ||
961 | err = pci_enable_device_mem(pdev); | ||
962 | } | ||
963 | if (err) | ||
964 | return err; | ||
965 | |||
966 | err = pci_request_selected_regions(pdev, bars, e1000_driver_name); | ||
967 | if (err) | ||
968 | goto err_pci_reg; | ||
969 | |||
970 | pci_set_master(pdev); | ||
971 | err = pci_save_state(pdev); | ||
972 | if (err) | ||
973 | goto err_alloc_etherdev; | ||
974 | |||
975 | err = -ENOMEM; | ||
976 | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | ||
977 | if (!netdev) | ||
978 | goto err_alloc_etherdev; | ||
979 | |||
980 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
981 | |||
982 | pci_set_drvdata(pdev, netdev); | ||
983 | adapter = netdev_priv(netdev); | ||
984 | adapter->netdev = netdev; | ||
985 | adapter->pdev = pdev; | ||
986 | adapter->msg_enable = (1 << debug) - 1; | ||
987 | adapter->bars = bars; | ||
988 | adapter->need_ioport = need_ioport; | ||
989 | |||
990 | hw = &adapter->hw; | ||
991 | hw->back = adapter; | ||
992 | |||
993 | err = -EIO; | ||
994 | hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); | ||
995 | if (!hw->hw_addr) | ||
996 | goto err_ioremap; | ||
997 | |||
998 | if (adapter->need_ioport) { | ||
999 | for (i = BAR_1; i <= BAR_5; i++) { | ||
1000 | if (pci_resource_len(pdev, i) == 0) | ||
1001 | continue; | ||
1002 | if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { | ||
1003 | hw->io_base = pci_resource_start(pdev, i); | ||
1004 | break; | ||
1005 | } | ||
1006 | } | ||
1007 | } | ||
1008 | |||
1009 | /* make ready for any if (hw->...) below */ | ||
1010 | err = e1000_init_hw_struct(adapter, hw); | ||
1011 | if (err) | ||
1012 | goto err_sw_init; | ||
1013 | |||
1014 | /* | ||
1015 | * there is a workaround being applied below that limits | ||
1016 | * 64-bit DMA addresses to 64-bit hardware. There are some | ||
1017 | * 32-bit adapters that Tx hang when given 64-bit DMA addresses | ||
1018 | */ | ||
1019 | pci_using_dac = 0; | ||
1020 | if ((hw->bus_type == e1000_bus_type_pcix) && | ||
1021 | !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { | ||
1022 | /* | ||
1023 | * according to DMA-API-HOWTO, coherent calls will always | ||
1024 | * succeed if the set call did | ||
1025 | */ | ||
1026 | dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); | ||
1027 | pci_using_dac = 1; | ||
1028 | } else { | ||
1029 | err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); | ||
1030 | if (err) { | ||
1031 | pr_err("No usable DMA config, aborting\n"); | ||
1032 | goto err_dma; | ||
1033 | } | ||
1034 | dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); | ||
1035 | } | ||
1036 | |||
1037 | netdev->netdev_ops = &e1000_netdev_ops; | ||
1038 | e1000_set_ethtool_ops(netdev); | ||
1039 | netdev->watchdog_timeo = 5 * HZ; | ||
1040 | netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); | ||
1041 | |||
1042 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
1043 | |||
1044 | adapter->bd_number = cards_found; | ||
1045 | |||
1046 | /* setup the private structure */ | ||
1047 | |||
1048 | err = e1000_sw_init(adapter); | ||
1049 | if (err) | ||
1050 | goto err_sw_init; | ||
1051 | |||
1052 | err = -EIO; | ||
1053 | if (hw->mac_type == e1000_ce4100) { | ||
1054 | ce4100_gbe_mdio_base_phy = pci_resource_start(pdev, BAR_1); | ||
1055 | ce4100_gbe_mdio_base_virt = ioremap(ce4100_gbe_mdio_base_phy, | ||
1056 | pci_resource_len(pdev, BAR_1)); | ||
1057 | |||
1058 | if (!ce4100_gbe_mdio_base_virt) | ||
1059 | goto err_mdio_ioremap; | ||
1060 | } | ||
1061 | |||
1062 | if (hw->mac_type >= e1000_82543) { | ||
1063 | netdev->hw_features = NETIF_F_SG | | ||
1064 | NETIF_F_HW_CSUM | | ||
1065 | NETIF_F_HW_VLAN_RX; | ||
1066 | netdev->features = NETIF_F_HW_VLAN_TX | | ||
1067 | NETIF_F_HW_VLAN_FILTER; | ||
1068 | } | ||
1069 | |||
1070 | if ((hw->mac_type >= e1000_82544) && | ||
1071 | (hw->mac_type != e1000_82547)) | ||
1072 | netdev->hw_features |= NETIF_F_TSO; | ||
1073 | |||
1074 | netdev->features |= netdev->hw_features; | ||
1075 | netdev->hw_features |= NETIF_F_RXCSUM; | ||
1076 | |||
1077 | if (pci_using_dac) { | ||
1078 | netdev->features |= NETIF_F_HIGHDMA; | ||
1079 | netdev->vlan_features |= NETIF_F_HIGHDMA; | ||
1080 | } | ||
1081 | |||
1082 | netdev->vlan_features |= NETIF_F_TSO; | ||
1083 | netdev->vlan_features |= NETIF_F_HW_CSUM; | ||
1084 | netdev->vlan_features |= NETIF_F_SG; | ||
1085 | |||
1086 | netdev->priv_flags |= IFF_UNICAST_FLT; | ||
1087 | |||
1088 | adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); | ||
1089 | |||
1090 | /* initialize eeprom parameters */ | ||
1091 | if (e1000_init_eeprom_params(hw)) { | ||
1092 | e_err(probe, "EEPROM initialization failed\n"); | ||
1093 | goto err_eeprom; | ||
1094 | } | ||
1095 | |||
1096 | /* before reading the EEPROM, reset the controller to | ||
1097 | * put the device in a known good starting state */ | ||
1098 | |||
1099 | e1000_reset_hw(hw); | ||
1100 | |||
1101 | /* make sure the EEPROM is good */ | ||
1102 | if (e1000_validate_eeprom_checksum(hw) < 0) { | ||
1103 | e_err(probe, "The EEPROM Checksum Is Not Valid\n"); | ||
1104 | e1000_dump_eeprom(adapter); | ||
1105 | /* | ||
1106 | * set MAC address to all zeroes to invalidate and temporary | ||
1107 | * disable this device for the user. This blocks regular | ||
1108 | * traffic while still permitting ethtool ioctls from reaching | ||
1109 | * the hardware as well as allowing the user to run the | ||
1110 | * interface after manually setting a hw addr using | ||
1111 | * `ip set address` | ||
1112 | */ | ||
1113 | memset(hw->mac_addr, 0, netdev->addr_len); | ||
1114 | } else { | ||
1115 | /* copy the MAC address out of the EEPROM */ | ||
1116 | if (e1000_read_mac_addr(hw)) | ||
1117 | e_err(probe, "EEPROM Read Error\n"); | ||
1118 | } | ||
1119 | /* don't block initalization here due to bad MAC address */ | ||
1120 | memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); | ||
1121 | memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len); | ||
1122 | |||
1123 | if (!is_valid_ether_addr(netdev->perm_addr)) | ||
1124 | e_err(probe, "Invalid MAC Address\n"); | ||
1125 | |||
1126 | |||
1127 | INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); | ||
1128 | INIT_DELAYED_WORK(&adapter->fifo_stall_task, | ||
1129 | e1000_82547_tx_fifo_stall_task); | ||
1130 | INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); | ||
1131 | INIT_WORK(&adapter->reset_task, e1000_reset_task); | ||
1132 | |||
1133 | e1000_check_options(adapter); | ||
1134 | |||
1135 | /* Initial Wake on LAN setting | ||
1136 | * If APM wake is enabled in the EEPROM, | ||
1137 | * enable the ACPI Magic Packet filter | ||
1138 | */ | ||
1139 | |||
1140 | switch (hw->mac_type) { | ||
1141 | case e1000_82542_rev2_0: | ||
1142 | case e1000_82542_rev2_1: | ||
1143 | case e1000_82543: | ||
1144 | break; | ||
1145 | case e1000_82544: | ||
1146 | e1000_read_eeprom(hw, | ||
1147 | EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); | ||
1148 | eeprom_apme_mask = E1000_EEPROM_82544_APM; | ||
1149 | break; | ||
1150 | case e1000_82546: | ||
1151 | case e1000_82546_rev_3: | ||
1152 | if (er32(STATUS) & E1000_STATUS_FUNC_1){ | ||
1153 | e1000_read_eeprom(hw, | ||
1154 | EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | ||
1155 | break; | ||
1156 | } | ||
1157 | /* Fall Through */ | ||
1158 | default: | ||
1159 | e1000_read_eeprom(hw, | ||
1160 | EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | ||
1161 | break; | ||
1162 | } | ||
1163 | if (eeprom_data & eeprom_apme_mask) | ||
1164 | adapter->eeprom_wol |= E1000_WUFC_MAG; | ||
1165 | |||
1166 | /* now that we have the eeprom settings, apply the special cases | ||
1167 | * where the eeprom may be wrong or the board simply won't support | ||
1168 | * wake on lan on a particular port */ | ||
1169 | switch (pdev->device) { | ||
1170 | case E1000_DEV_ID_82546GB_PCIE: | ||
1171 | adapter->eeprom_wol = 0; | ||
1172 | break; | ||
1173 | case E1000_DEV_ID_82546EB_FIBER: | ||
1174 | case E1000_DEV_ID_82546GB_FIBER: | ||
1175 | /* Wake events only supported on port A for dual fiber | ||
1176 | * regardless of eeprom setting */ | ||
1177 | if (er32(STATUS) & E1000_STATUS_FUNC_1) | ||
1178 | adapter->eeprom_wol = 0; | ||
1179 | break; | ||
1180 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | ||
1181 | /* if quad port adapter, disable WoL on all but port A */ | ||
1182 | if (global_quad_port_a != 0) | ||
1183 | adapter->eeprom_wol = 0; | ||
1184 | else | ||
1185 | adapter->quad_port_a = 1; | ||
1186 | /* Reset for multiple quad port adapters */ | ||
1187 | if (++global_quad_port_a == 4) | ||
1188 | global_quad_port_a = 0; | ||
1189 | break; | ||
1190 | } | ||
1191 | |||
1192 | /* initialize the wol settings based on the eeprom settings */ | ||
1193 | adapter->wol = adapter->eeprom_wol; | ||
1194 | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | ||
1195 | |||
1196 | /* Auto detect PHY address */ | ||
1197 | if (hw->mac_type == e1000_ce4100) { | ||
1198 | for (i = 0; i < 32; i++) { | ||
1199 | hw->phy_addr = i; | ||
1200 | e1000_read_phy_reg(hw, PHY_ID2, &tmp); | ||
1201 | if (tmp == 0 || tmp == 0xFF) { | ||
1202 | if (i == 31) | ||
1203 | goto err_eeprom; | ||
1204 | continue; | ||
1205 | } else | ||
1206 | break; | ||
1207 | } | ||
1208 | } | ||
1209 | |||
1210 | /* reset the hardware with the new settings */ | ||
1211 | e1000_reset(adapter); | ||
1212 | |||
1213 | strcpy(netdev->name, "eth%d"); | ||
1214 | err = register_netdev(netdev); | ||
1215 | if (err) | ||
1216 | goto err_register; | ||
1217 | |||
1218 | e1000_vlan_mode(netdev, netdev->features); | ||
1219 | |||
1220 | /* print bus type/speed/width info */ | ||
1221 | e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", | ||
1222 | ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), | ||
1223 | ((hw->bus_speed == e1000_bus_speed_133) ? 133 : | ||
1224 | (hw->bus_speed == e1000_bus_speed_120) ? 120 : | ||
1225 | (hw->bus_speed == e1000_bus_speed_100) ? 100 : | ||
1226 | (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), | ||
1227 | ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), | ||
1228 | netdev->dev_addr); | ||
1229 | |||
1230 | /* carrier off reporting is important to ethtool even BEFORE open */ | ||
1231 | netif_carrier_off(netdev); | ||
1232 | |||
1233 | e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); | ||
1234 | |||
1235 | cards_found++; | ||
1236 | return 0; | ||
1237 | |||
1238 | err_register: | ||
1239 | err_eeprom: | ||
1240 | e1000_phy_hw_reset(hw); | ||
1241 | |||
1242 | if (hw->flash_address) | ||
1243 | iounmap(hw->flash_address); | ||
1244 | kfree(adapter->tx_ring); | ||
1245 | kfree(adapter->rx_ring); | ||
1246 | err_dma: | ||
1247 | err_sw_init: | ||
1248 | err_mdio_ioremap: | ||
1249 | iounmap(ce4100_gbe_mdio_base_virt); | ||
1250 | iounmap(hw->hw_addr); | ||
1251 | err_ioremap: | ||
1252 | free_netdev(netdev); | ||
1253 | err_alloc_etherdev: | ||
1254 | pci_release_selected_regions(pdev, bars); | ||
1255 | err_pci_reg: | ||
1256 | pci_disable_device(pdev); | ||
1257 | return err; | ||
1258 | } | ||
1259 | |||
1260 | /** | ||
1261 | * e1000_remove - Device Removal Routine | ||
1262 | * @pdev: PCI device information struct | ||
1263 | * | ||
1264 | * e1000_remove is called by the PCI subsystem to alert the driver | ||
1265 | * that it should release a PCI device. The could be caused by a | ||
1266 | * Hot-Plug event, or because the driver is going to be removed from | ||
1267 | * memory. | ||
1268 | **/ | ||
1269 | |||
1270 | static void __devexit e1000_remove(struct pci_dev *pdev) | ||
1271 | { | ||
1272 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
1273 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1274 | struct e1000_hw *hw = &adapter->hw; | ||
1275 | |||
1276 | e1000_down_and_stop(adapter); | ||
1277 | e1000_release_manageability(adapter); | ||
1278 | |||
1279 | unregister_netdev(netdev); | ||
1280 | |||
1281 | e1000_phy_hw_reset(hw); | ||
1282 | |||
1283 | kfree(adapter->tx_ring); | ||
1284 | kfree(adapter->rx_ring); | ||
1285 | |||
1286 | iounmap(hw->hw_addr); | ||
1287 | if (hw->flash_address) | ||
1288 | iounmap(hw->flash_address); | ||
1289 | pci_release_selected_regions(pdev, adapter->bars); | ||
1290 | |||
1291 | free_netdev(netdev); | ||
1292 | |||
1293 | pci_disable_device(pdev); | ||
1294 | } | ||
1295 | |||
1296 | /** | ||
1297 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | ||
1298 | * @adapter: board private structure to initialize | ||
1299 | * | ||
1300 | * e1000_sw_init initializes the Adapter private data structure. | ||
1301 | * e1000_init_hw_struct MUST be called before this function | ||
1302 | **/ | ||
1303 | |||
1304 | static int __devinit e1000_sw_init(struct e1000_adapter *adapter) | ||
1305 | { | ||
1306 | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
1307 | |||
1308 | adapter->num_tx_queues = 1; | ||
1309 | adapter->num_rx_queues = 1; | ||
1310 | |||
1311 | if (e1000_alloc_queues(adapter)) { | ||
1312 | e_err(probe, "Unable to allocate memory for queues\n"); | ||
1313 | return -ENOMEM; | ||
1314 | } | ||
1315 | |||
1316 | /* Explicitly disable IRQ since the NIC can be in any state. */ | ||
1317 | e1000_irq_disable(adapter); | ||
1318 | |||
1319 | spin_lock_init(&adapter->stats_lock); | ||
1320 | mutex_init(&adapter->mutex); | ||
1321 | |||
1322 | set_bit(__E1000_DOWN, &adapter->flags); | ||
1323 | |||
1324 | return 0; | ||
1325 | } | ||
1326 | |||
1327 | /** | ||
1328 | * e1000_alloc_queues - Allocate memory for all rings | ||
1329 | * @adapter: board private structure to initialize | ||
1330 | * | ||
1331 | * We allocate one ring per queue at run-time since we don't know the | ||
1332 | * number of queues at compile-time. | ||
1333 | **/ | ||
1334 | |||
1335 | static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) | ||
1336 | { | ||
1337 | adapter->tx_ring = kcalloc(adapter->num_tx_queues, | ||
1338 | sizeof(struct e1000_tx_ring), GFP_KERNEL); | ||
1339 | if (!adapter->tx_ring) | ||
1340 | return -ENOMEM; | ||
1341 | |||
1342 | adapter->rx_ring = kcalloc(adapter->num_rx_queues, | ||
1343 | sizeof(struct e1000_rx_ring), GFP_KERNEL); | ||
1344 | if (!adapter->rx_ring) { | ||
1345 | kfree(adapter->tx_ring); | ||
1346 | return -ENOMEM; | ||
1347 | } | ||
1348 | |||
1349 | return E1000_SUCCESS; | ||
1350 | } | ||
1351 | |||
1352 | /** | ||
1353 | * e1000_open - Called when a network interface is made active | ||
1354 | * @netdev: network interface device structure | ||
1355 | * | ||
1356 | * Returns 0 on success, negative value on failure | ||
1357 | * | ||
1358 | * The open entry point is called when a network interface is made | ||
1359 | * active by the system (IFF_UP). At this point all resources needed | ||
1360 | * for transmit and receive operations are allocated, the interrupt | ||
1361 | * handler is registered with the OS, the watchdog task is started, | ||
1362 | * and the stack is notified that the interface is ready. | ||
1363 | **/ | ||
1364 | |||
1365 | static int e1000_open(struct net_device *netdev) | ||
1366 | { | ||
1367 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1368 | struct e1000_hw *hw = &adapter->hw; | ||
1369 | int err; | ||
1370 | |||
1371 | /* disallow open during test */ | ||
1372 | if (test_bit(__E1000_TESTING, &adapter->flags)) | ||
1373 | return -EBUSY; | ||
1374 | |||
1375 | netif_carrier_off(netdev); | ||
1376 | |||
1377 | /* allocate transmit descriptors */ | ||
1378 | err = e1000_setup_all_tx_resources(adapter); | ||
1379 | if (err) | ||
1380 | goto err_setup_tx; | ||
1381 | |||
1382 | /* allocate receive descriptors */ | ||
1383 | err = e1000_setup_all_rx_resources(adapter); | ||
1384 | if (err) | ||
1385 | goto err_setup_rx; | ||
1386 | |||
1387 | e1000_power_up_phy(adapter); | ||
1388 | |||
1389 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
1390 | if ((hw->mng_cookie.status & | ||
1391 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { | ||
1392 | e1000_update_mng_vlan(adapter); | ||
1393 | } | ||
1394 | |||
1395 | /* before we allocate an interrupt, we must be ready to handle it. | ||
1396 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | ||
1397 | * as soon as we call pci_request_irq, so we have to setup our | ||
1398 | * clean_rx handler before we do so. */ | ||
1399 | e1000_configure(adapter); | ||
1400 | |||
1401 | err = e1000_request_irq(adapter); | ||
1402 | if (err) | ||
1403 | goto err_req_irq; | ||
1404 | |||
1405 | /* From here on the code is the same as e1000_up() */ | ||
1406 | clear_bit(__E1000_DOWN, &adapter->flags); | ||
1407 | |||
1408 | napi_enable(&adapter->napi); | ||
1409 | |||
1410 | e1000_irq_enable(adapter); | ||
1411 | |||
1412 | netif_start_queue(netdev); | ||
1413 | |||
1414 | /* fire a link status change interrupt to start the watchdog */ | ||
1415 | ew32(ICS, E1000_ICS_LSC); | ||
1416 | |||
1417 | return E1000_SUCCESS; | ||
1418 | |||
1419 | err_req_irq: | ||
1420 | e1000_power_down_phy(adapter); | ||
1421 | e1000_free_all_rx_resources(adapter); | ||
1422 | err_setup_rx: | ||
1423 | e1000_free_all_tx_resources(adapter); | ||
1424 | err_setup_tx: | ||
1425 | e1000_reset(adapter); | ||
1426 | |||
1427 | return err; | ||
1428 | } | ||
1429 | |||
1430 | /** | ||
1431 | * e1000_close - Disables a network interface | ||
1432 | * @netdev: network interface device structure | ||
1433 | * | ||
1434 | * Returns 0, this is not allowed to fail | ||
1435 | * | ||
1436 | * The close entry point is called when an interface is de-activated | ||
1437 | * by the OS. The hardware is still under the drivers control, but | ||
1438 | * needs to be disabled. A global MAC reset is issued to stop the | ||
1439 | * hardware, and all transmit and receive resources are freed. | ||
1440 | **/ | ||
1441 | |||
1442 | static int e1000_close(struct net_device *netdev) | ||
1443 | { | ||
1444 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1445 | struct e1000_hw *hw = &adapter->hw; | ||
1446 | |||
1447 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | ||
1448 | e1000_down(adapter); | ||
1449 | e1000_power_down_phy(adapter); | ||
1450 | e1000_free_irq(adapter); | ||
1451 | |||
1452 | e1000_free_all_tx_resources(adapter); | ||
1453 | e1000_free_all_rx_resources(adapter); | ||
1454 | |||
1455 | /* kill manageability vlan ID if supported, but not if a vlan with | ||
1456 | * the same ID is registered on the host OS (let 8021q kill it) */ | ||
1457 | if ((hw->mng_cookie.status & | ||
1458 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | ||
1459 | !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { | ||
1460 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
1461 | } | ||
1462 | |||
1463 | return 0; | ||
1464 | } | ||
1465 | |||
1466 | /** | ||
1467 | * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary | ||
1468 | * @adapter: address of board private structure | ||
1469 | * @start: address of beginning of memory | ||
1470 | * @len: length of memory | ||
1471 | **/ | ||
1472 | static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, | ||
1473 | unsigned long len) | ||
1474 | { | ||
1475 | struct e1000_hw *hw = &adapter->hw; | ||
1476 | unsigned long begin = (unsigned long)start; | ||
1477 | unsigned long end = begin + len; | ||
1478 | |||
1479 | /* First rev 82545 and 82546 need to not allow any memory | ||
1480 | * write location to cross 64k boundary due to errata 23 */ | ||
1481 | if (hw->mac_type == e1000_82545 || | ||
1482 | hw->mac_type == e1000_ce4100 || | ||
1483 | hw->mac_type == e1000_82546) { | ||
1484 | return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; | ||
1485 | } | ||
1486 | |||
1487 | return true; | ||
1488 | } | ||
1489 | |||
1490 | /** | ||
1491 | * e1000_setup_tx_resources - allocate Tx resources (Descriptors) | ||
1492 | * @adapter: board private structure | ||
1493 | * @txdr: tx descriptor ring (for a specific queue) to setup | ||
1494 | * | ||
1495 | * Return 0 on success, negative on failure | ||
1496 | **/ | ||
1497 | |||
1498 | static int e1000_setup_tx_resources(struct e1000_adapter *adapter, | ||
1499 | struct e1000_tx_ring *txdr) | ||
1500 | { | ||
1501 | struct pci_dev *pdev = adapter->pdev; | ||
1502 | int size; | ||
1503 | |||
1504 | size = sizeof(struct e1000_buffer) * txdr->count; | ||
1505 | txdr->buffer_info = vzalloc(size); | ||
1506 | if (!txdr->buffer_info) { | ||
1507 | e_err(probe, "Unable to allocate memory for the Tx descriptor " | ||
1508 | "ring\n"); | ||
1509 | return -ENOMEM; | ||
1510 | } | ||
1511 | |||
1512 | /* round up to nearest 4K */ | ||
1513 | |||
1514 | txdr->size = txdr->count * sizeof(struct e1000_tx_desc); | ||
1515 | txdr->size = ALIGN(txdr->size, 4096); | ||
1516 | |||
1517 | txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, | ||
1518 | GFP_KERNEL); | ||
1519 | if (!txdr->desc) { | ||
1520 | setup_tx_desc_die: | ||
1521 | vfree(txdr->buffer_info); | ||
1522 | e_err(probe, "Unable to allocate memory for the Tx descriptor " | ||
1523 | "ring\n"); | ||
1524 | return -ENOMEM; | ||
1525 | } | ||
1526 | |||
1527 | /* Fix for errata 23, can't cross 64kB boundary */ | ||
1528 | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | ||
1529 | void *olddesc = txdr->desc; | ||
1530 | dma_addr_t olddma = txdr->dma; | ||
1531 | e_err(tx_err, "txdr align check failed: %u bytes at %p\n", | ||
1532 | txdr->size, txdr->desc); | ||
1533 | /* Try again, without freeing the previous */ | ||
1534 | txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, | ||
1535 | &txdr->dma, GFP_KERNEL); | ||
1536 | /* Failed allocation, critical failure */ | ||
1537 | if (!txdr->desc) { | ||
1538 | dma_free_coherent(&pdev->dev, txdr->size, olddesc, | ||
1539 | olddma); | ||
1540 | goto setup_tx_desc_die; | ||
1541 | } | ||
1542 | |||
1543 | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | ||
1544 | /* give up */ | ||
1545 | dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, | ||
1546 | txdr->dma); | ||
1547 | dma_free_coherent(&pdev->dev, txdr->size, olddesc, | ||
1548 | olddma); | ||
1549 | e_err(probe, "Unable to allocate aligned memory " | ||
1550 | "for the transmit descriptor ring\n"); | ||
1551 | vfree(txdr->buffer_info); | ||
1552 | return -ENOMEM; | ||
1553 | } else { | ||
1554 | /* Free old allocation, new allocation was successful */ | ||
1555 | dma_free_coherent(&pdev->dev, txdr->size, olddesc, | ||
1556 | olddma); | ||
1557 | } | ||
1558 | } | ||
1559 | memset(txdr->desc, 0, txdr->size); | ||
1560 | |||
1561 | txdr->next_to_use = 0; | ||
1562 | txdr->next_to_clean = 0; | ||
1563 | |||
1564 | return 0; | ||
1565 | } | ||
1566 | |||
1567 | /** | ||
1568 | * e1000_setup_all_tx_resources - wrapper to allocate Tx resources | ||
1569 | * (Descriptors) for all queues | ||
1570 | * @adapter: board private structure | ||
1571 | * | ||
1572 | * Return 0 on success, negative on failure | ||
1573 | **/ | ||
1574 | |||
1575 | int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) | ||
1576 | { | ||
1577 | int i, err = 0; | ||
1578 | |||
1579 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
1580 | err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); | ||
1581 | if (err) { | ||
1582 | e_err(probe, "Allocation for Tx Queue %u failed\n", i); | ||
1583 | for (i-- ; i >= 0; i--) | ||
1584 | e1000_free_tx_resources(adapter, | ||
1585 | &adapter->tx_ring[i]); | ||
1586 | break; | ||
1587 | } | ||
1588 | } | ||
1589 | |||
1590 | return err; | ||
1591 | } | ||
1592 | |||
1593 | /** | ||
1594 | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | ||
1595 | * @adapter: board private structure | ||
1596 | * | ||
1597 | * Configure the Tx unit of the MAC after a reset. | ||
1598 | **/ | ||
1599 | |||
1600 | static void e1000_configure_tx(struct e1000_adapter *adapter) | ||
1601 | { | ||
1602 | u64 tdba; | ||
1603 | struct e1000_hw *hw = &adapter->hw; | ||
1604 | u32 tdlen, tctl, tipg; | ||
1605 | u32 ipgr1, ipgr2; | ||
1606 | |||
1607 | /* Setup the HW Tx Head and Tail descriptor pointers */ | ||
1608 | |||
1609 | switch (adapter->num_tx_queues) { | ||
1610 | case 1: | ||
1611 | default: | ||
1612 | tdba = adapter->tx_ring[0].dma; | ||
1613 | tdlen = adapter->tx_ring[0].count * | ||
1614 | sizeof(struct e1000_tx_desc); | ||
1615 | ew32(TDLEN, tdlen); | ||
1616 | ew32(TDBAH, (tdba >> 32)); | ||
1617 | ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); | ||
1618 | ew32(TDT, 0); | ||
1619 | ew32(TDH, 0); | ||
1620 | adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); | ||
1621 | adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); | ||
1622 | break; | ||
1623 | } | ||
1624 | |||
1625 | /* Set the default values for the Tx Inter Packet Gap timer */ | ||
1626 | if ((hw->media_type == e1000_media_type_fiber || | ||
1627 | hw->media_type == e1000_media_type_internal_serdes)) | ||
1628 | tipg = DEFAULT_82543_TIPG_IPGT_FIBER; | ||
1629 | else | ||
1630 | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; | ||
1631 | |||
1632 | switch (hw->mac_type) { | ||
1633 | case e1000_82542_rev2_0: | ||
1634 | case e1000_82542_rev2_1: | ||
1635 | tipg = DEFAULT_82542_TIPG_IPGT; | ||
1636 | ipgr1 = DEFAULT_82542_TIPG_IPGR1; | ||
1637 | ipgr2 = DEFAULT_82542_TIPG_IPGR2; | ||
1638 | break; | ||
1639 | default: | ||
1640 | ipgr1 = DEFAULT_82543_TIPG_IPGR1; | ||
1641 | ipgr2 = DEFAULT_82543_TIPG_IPGR2; | ||
1642 | break; | ||
1643 | } | ||
1644 | tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; | ||
1645 | tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | ||
1646 | ew32(TIPG, tipg); | ||
1647 | |||
1648 | /* Set the Tx Interrupt Delay register */ | ||
1649 | |||
1650 | ew32(TIDV, adapter->tx_int_delay); | ||
1651 | if (hw->mac_type >= e1000_82540) | ||
1652 | ew32(TADV, adapter->tx_abs_int_delay); | ||
1653 | |||
1654 | /* Program the Transmit Control Register */ | ||
1655 | |||
1656 | tctl = er32(TCTL); | ||
1657 | tctl &= ~E1000_TCTL_CT; | ||
1658 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | ||
1659 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | ||
1660 | |||
1661 | e1000_config_collision_dist(hw); | ||
1662 | |||
1663 | /* Setup Transmit Descriptor Settings for eop descriptor */ | ||
1664 | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | ||
1665 | |||
1666 | /* only set IDE if we are delaying interrupts using the timers */ | ||
1667 | if (adapter->tx_int_delay) | ||
1668 | adapter->txd_cmd |= E1000_TXD_CMD_IDE; | ||
1669 | |||
1670 | if (hw->mac_type < e1000_82543) | ||
1671 | adapter->txd_cmd |= E1000_TXD_CMD_RPS; | ||
1672 | else | ||
1673 | adapter->txd_cmd |= E1000_TXD_CMD_RS; | ||
1674 | |||
1675 | /* Cache if we're 82544 running in PCI-X because we'll | ||
1676 | * need this to apply a workaround later in the send path. */ | ||
1677 | if (hw->mac_type == e1000_82544 && | ||
1678 | hw->bus_type == e1000_bus_type_pcix) | ||
1679 | adapter->pcix_82544 = 1; | ||
1680 | |||
1681 | ew32(TCTL, tctl); | ||
1682 | |||
1683 | } | ||
1684 | |||
1685 | /** | ||
1686 | * e1000_setup_rx_resources - allocate Rx resources (Descriptors) | ||
1687 | * @adapter: board private structure | ||
1688 | * @rxdr: rx descriptor ring (for a specific queue) to setup | ||
1689 | * | ||
1690 | * Returns 0 on success, negative on failure | ||
1691 | **/ | ||
1692 | |||
1693 | static int e1000_setup_rx_resources(struct e1000_adapter *adapter, | ||
1694 | struct e1000_rx_ring *rxdr) | ||
1695 | { | ||
1696 | struct pci_dev *pdev = adapter->pdev; | ||
1697 | int size, desc_len; | ||
1698 | |||
1699 | size = sizeof(struct e1000_buffer) * rxdr->count; | ||
1700 | rxdr->buffer_info = vzalloc(size); | ||
1701 | if (!rxdr->buffer_info) { | ||
1702 | e_err(probe, "Unable to allocate memory for the Rx descriptor " | ||
1703 | "ring\n"); | ||
1704 | return -ENOMEM; | ||
1705 | } | ||
1706 | |||
1707 | desc_len = sizeof(struct e1000_rx_desc); | ||
1708 | |||
1709 | /* Round up to nearest 4K */ | ||
1710 | |||
1711 | rxdr->size = rxdr->count * desc_len; | ||
1712 | rxdr->size = ALIGN(rxdr->size, 4096); | ||
1713 | |||
1714 | rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, | ||
1715 | GFP_KERNEL); | ||
1716 | |||
1717 | if (!rxdr->desc) { | ||
1718 | e_err(probe, "Unable to allocate memory for the Rx descriptor " | ||
1719 | "ring\n"); | ||
1720 | setup_rx_desc_die: | ||
1721 | vfree(rxdr->buffer_info); | ||
1722 | return -ENOMEM; | ||
1723 | } | ||
1724 | |||
1725 | /* Fix for errata 23, can't cross 64kB boundary */ | ||
1726 | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | ||
1727 | void *olddesc = rxdr->desc; | ||
1728 | dma_addr_t olddma = rxdr->dma; | ||
1729 | e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", | ||
1730 | rxdr->size, rxdr->desc); | ||
1731 | /* Try again, without freeing the previous */ | ||
1732 | rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, | ||
1733 | &rxdr->dma, GFP_KERNEL); | ||
1734 | /* Failed allocation, critical failure */ | ||
1735 | if (!rxdr->desc) { | ||
1736 | dma_free_coherent(&pdev->dev, rxdr->size, olddesc, | ||
1737 | olddma); | ||
1738 | e_err(probe, "Unable to allocate memory for the Rx " | ||
1739 | "descriptor ring\n"); | ||
1740 | goto setup_rx_desc_die; | ||
1741 | } | ||
1742 | |||
1743 | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | ||
1744 | /* give up */ | ||
1745 | dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, | ||
1746 | rxdr->dma); | ||
1747 | dma_free_coherent(&pdev->dev, rxdr->size, olddesc, | ||
1748 | olddma); | ||
1749 | e_err(probe, "Unable to allocate aligned memory for " | ||
1750 | "the Rx descriptor ring\n"); | ||
1751 | goto setup_rx_desc_die; | ||
1752 | } else { | ||
1753 | /* Free old allocation, new allocation was successful */ | ||
1754 | dma_free_coherent(&pdev->dev, rxdr->size, olddesc, | ||
1755 | olddma); | ||
1756 | } | ||
1757 | } | ||
1758 | memset(rxdr->desc, 0, rxdr->size); | ||
1759 | |||
1760 | rxdr->next_to_clean = 0; | ||
1761 | rxdr->next_to_use = 0; | ||
1762 | rxdr->rx_skb_top = NULL; | ||
1763 | |||
1764 | return 0; | ||
1765 | } | ||
1766 | |||
1767 | /** | ||
1768 | * e1000_setup_all_rx_resources - wrapper to allocate Rx resources | ||
1769 | * (Descriptors) for all queues | ||
1770 | * @adapter: board private structure | ||
1771 | * | ||
1772 | * Return 0 on success, negative on failure | ||
1773 | **/ | ||
1774 | |||
1775 | int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) | ||
1776 | { | ||
1777 | int i, err = 0; | ||
1778 | |||
1779 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
1780 | err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); | ||
1781 | if (err) { | ||
1782 | e_err(probe, "Allocation for Rx Queue %u failed\n", i); | ||
1783 | for (i-- ; i >= 0; i--) | ||
1784 | e1000_free_rx_resources(adapter, | ||
1785 | &adapter->rx_ring[i]); | ||
1786 | break; | ||
1787 | } | ||
1788 | } | ||
1789 | |||
1790 | return err; | ||
1791 | } | ||
1792 | |||
1793 | /** | ||
1794 | * e1000_setup_rctl - configure the receive control registers | ||
1795 | * @adapter: Board private structure | ||
1796 | **/ | ||
1797 | static void e1000_setup_rctl(struct e1000_adapter *adapter) | ||
1798 | { | ||
1799 | struct e1000_hw *hw = &adapter->hw; | ||
1800 | u32 rctl; | ||
1801 | |||
1802 | rctl = er32(RCTL); | ||
1803 | |||
1804 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | ||
1805 | |||
1806 | rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | | ||
1807 | E1000_RCTL_RDMTS_HALF | | ||
1808 | (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
1809 | |||
1810 | if (hw->tbi_compatibility_on == 1) | ||
1811 | rctl |= E1000_RCTL_SBP; | ||
1812 | else | ||
1813 | rctl &= ~E1000_RCTL_SBP; | ||
1814 | |||
1815 | if (adapter->netdev->mtu <= ETH_DATA_LEN) | ||
1816 | rctl &= ~E1000_RCTL_LPE; | ||
1817 | else | ||
1818 | rctl |= E1000_RCTL_LPE; | ||
1819 | |||
1820 | /* Setup buffer sizes */ | ||
1821 | rctl &= ~E1000_RCTL_SZ_4096; | ||
1822 | rctl |= E1000_RCTL_BSEX; | ||
1823 | switch (adapter->rx_buffer_len) { | ||
1824 | case E1000_RXBUFFER_2048: | ||
1825 | default: | ||
1826 | rctl |= E1000_RCTL_SZ_2048; | ||
1827 | rctl &= ~E1000_RCTL_BSEX; | ||
1828 | break; | ||
1829 | case E1000_RXBUFFER_4096: | ||
1830 | rctl |= E1000_RCTL_SZ_4096; | ||
1831 | break; | ||
1832 | case E1000_RXBUFFER_8192: | ||
1833 | rctl |= E1000_RCTL_SZ_8192; | ||
1834 | break; | ||
1835 | case E1000_RXBUFFER_16384: | ||
1836 | rctl |= E1000_RCTL_SZ_16384; | ||
1837 | break; | ||
1838 | } | ||
1839 | |||
1840 | ew32(RCTL, rctl); | ||
1841 | } | ||
1842 | |||
1843 | /** | ||
1844 | * e1000_configure_rx - Configure 8254x Receive Unit after Reset | ||
1845 | * @adapter: board private structure | ||
1846 | * | ||
1847 | * Configure the Rx unit of the MAC after a reset. | ||
1848 | **/ | ||
1849 | |||
1850 | static void e1000_configure_rx(struct e1000_adapter *adapter) | ||
1851 | { | ||
1852 | u64 rdba; | ||
1853 | struct e1000_hw *hw = &adapter->hw; | ||
1854 | u32 rdlen, rctl, rxcsum; | ||
1855 | |||
1856 | if (adapter->netdev->mtu > ETH_DATA_LEN) { | ||
1857 | rdlen = adapter->rx_ring[0].count * | ||
1858 | sizeof(struct e1000_rx_desc); | ||
1859 | adapter->clean_rx = e1000_clean_jumbo_rx_irq; | ||
1860 | adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; | ||
1861 | } else { | ||
1862 | rdlen = adapter->rx_ring[0].count * | ||
1863 | sizeof(struct e1000_rx_desc); | ||
1864 | adapter->clean_rx = e1000_clean_rx_irq; | ||
1865 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | ||
1866 | } | ||
1867 | |||
1868 | /* disable receives while setting up the descriptors */ | ||
1869 | rctl = er32(RCTL); | ||
1870 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
1871 | |||
1872 | /* set the Receive Delay Timer Register */ | ||
1873 | ew32(RDTR, adapter->rx_int_delay); | ||
1874 | |||
1875 | if (hw->mac_type >= e1000_82540) { | ||
1876 | ew32(RADV, adapter->rx_abs_int_delay); | ||
1877 | if (adapter->itr_setting != 0) | ||
1878 | ew32(ITR, 1000000000 / (adapter->itr * 256)); | ||
1879 | } | ||
1880 | |||
1881 | /* Setup the HW Rx Head and Tail Descriptor Pointers and | ||
1882 | * the Base and Length of the Rx Descriptor Ring */ | ||
1883 | switch (adapter->num_rx_queues) { | ||
1884 | case 1: | ||
1885 | default: | ||
1886 | rdba = adapter->rx_ring[0].dma; | ||
1887 | ew32(RDLEN, rdlen); | ||
1888 | ew32(RDBAH, (rdba >> 32)); | ||
1889 | ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); | ||
1890 | ew32(RDT, 0); | ||
1891 | ew32(RDH, 0); | ||
1892 | adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); | ||
1893 | adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); | ||
1894 | break; | ||
1895 | } | ||
1896 | |||
1897 | /* Enable 82543 Receive Checksum Offload for TCP and UDP */ | ||
1898 | if (hw->mac_type >= e1000_82543) { | ||
1899 | rxcsum = er32(RXCSUM); | ||
1900 | if (adapter->rx_csum) | ||
1901 | rxcsum |= E1000_RXCSUM_TUOFL; | ||
1902 | else | ||
1903 | /* don't need to clear IPPCSE as it defaults to 0 */ | ||
1904 | rxcsum &= ~E1000_RXCSUM_TUOFL; | ||
1905 | ew32(RXCSUM, rxcsum); | ||
1906 | } | ||
1907 | |||
1908 | /* Enable Receives */ | ||
1909 | ew32(RCTL, rctl | E1000_RCTL_EN); | ||
1910 | } | ||
1911 | |||
1912 | /** | ||
1913 | * e1000_free_tx_resources - Free Tx Resources per Queue | ||
1914 | * @adapter: board private structure | ||
1915 | * @tx_ring: Tx descriptor ring for a specific queue | ||
1916 | * | ||
1917 | * Free all transmit software resources | ||
1918 | **/ | ||
1919 | |||
1920 | static void e1000_free_tx_resources(struct e1000_adapter *adapter, | ||
1921 | struct e1000_tx_ring *tx_ring) | ||
1922 | { | ||
1923 | struct pci_dev *pdev = adapter->pdev; | ||
1924 | |||
1925 | e1000_clean_tx_ring(adapter, tx_ring); | ||
1926 | |||
1927 | vfree(tx_ring->buffer_info); | ||
1928 | tx_ring->buffer_info = NULL; | ||
1929 | |||
1930 | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | ||
1931 | tx_ring->dma); | ||
1932 | |||
1933 | tx_ring->desc = NULL; | ||
1934 | } | ||
1935 | |||
1936 | /** | ||
1937 | * e1000_free_all_tx_resources - Free Tx Resources for All Queues | ||
1938 | * @adapter: board private structure | ||
1939 | * | ||
1940 | * Free all transmit software resources | ||
1941 | **/ | ||
1942 | |||
1943 | void e1000_free_all_tx_resources(struct e1000_adapter *adapter) | ||
1944 | { | ||
1945 | int i; | ||
1946 | |||
1947 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
1948 | e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); | ||
1949 | } | ||
1950 | |||
1951 | static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, | ||
1952 | struct e1000_buffer *buffer_info) | ||
1953 | { | ||
1954 | if (buffer_info->dma) { | ||
1955 | if (buffer_info->mapped_as_page) | ||
1956 | dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, | ||
1957 | buffer_info->length, DMA_TO_DEVICE); | ||
1958 | else | ||
1959 | dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, | ||
1960 | buffer_info->length, | ||
1961 | DMA_TO_DEVICE); | ||
1962 | buffer_info->dma = 0; | ||
1963 | } | ||
1964 | if (buffer_info->skb) { | ||
1965 | dev_kfree_skb_any(buffer_info->skb); | ||
1966 | buffer_info->skb = NULL; | ||
1967 | } | ||
1968 | buffer_info->time_stamp = 0; | ||
1969 | /* buffer_info must be completely set up in the transmit path */ | ||
1970 | } | ||
1971 | |||
1972 | /** | ||
1973 | * e1000_clean_tx_ring - Free Tx Buffers | ||
1974 | * @adapter: board private structure | ||
1975 | * @tx_ring: ring to be cleaned | ||
1976 | **/ | ||
1977 | |||
1978 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter, | ||
1979 | struct e1000_tx_ring *tx_ring) | ||
1980 | { | ||
1981 | struct e1000_hw *hw = &adapter->hw; | ||
1982 | struct e1000_buffer *buffer_info; | ||
1983 | unsigned long size; | ||
1984 | unsigned int i; | ||
1985 | |||
1986 | /* Free all the Tx ring sk_buffs */ | ||
1987 | |||
1988 | for (i = 0; i < tx_ring->count; i++) { | ||
1989 | buffer_info = &tx_ring->buffer_info[i]; | ||
1990 | e1000_unmap_and_free_tx_resource(adapter, buffer_info); | ||
1991 | } | ||
1992 | |||
1993 | size = sizeof(struct e1000_buffer) * tx_ring->count; | ||
1994 | memset(tx_ring->buffer_info, 0, size); | ||
1995 | |||
1996 | /* Zero out the descriptor ring */ | ||
1997 | |||
1998 | memset(tx_ring->desc, 0, tx_ring->size); | ||
1999 | |||
2000 | tx_ring->next_to_use = 0; | ||
2001 | tx_ring->next_to_clean = 0; | ||
2002 | tx_ring->last_tx_tso = 0; | ||
2003 | |||
2004 | writel(0, hw->hw_addr + tx_ring->tdh); | ||
2005 | writel(0, hw->hw_addr + tx_ring->tdt); | ||
2006 | } | ||
2007 | |||
2008 | /** | ||
2009 | * e1000_clean_all_tx_rings - Free Tx Buffers for all queues | ||
2010 | * @adapter: board private structure | ||
2011 | **/ | ||
2012 | |||
2013 | static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) | ||
2014 | { | ||
2015 | int i; | ||
2016 | |||
2017 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
2018 | e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); | ||
2019 | } | ||
2020 | |||
2021 | /** | ||
2022 | * e1000_free_rx_resources - Free Rx Resources | ||
2023 | * @adapter: board private structure | ||
2024 | * @rx_ring: ring to clean the resources from | ||
2025 | * | ||
2026 | * Free all receive software resources | ||
2027 | **/ | ||
2028 | |||
2029 | static void e1000_free_rx_resources(struct e1000_adapter *adapter, | ||
2030 | struct e1000_rx_ring *rx_ring) | ||
2031 | { | ||
2032 | struct pci_dev *pdev = adapter->pdev; | ||
2033 | |||
2034 | e1000_clean_rx_ring(adapter, rx_ring); | ||
2035 | |||
2036 | vfree(rx_ring->buffer_info); | ||
2037 | rx_ring->buffer_info = NULL; | ||
2038 | |||
2039 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | ||
2040 | rx_ring->dma); | ||
2041 | |||
2042 | rx_ring->desc = NULL; | ||
2043 | } | ||
2044 | |||
2045 | /** | ||
2046 | * e1000_free_all_rx_resources - Free Rx Resources for All Queues | ||
2047 | * @adapter: board private structure | ||
2048 | * | ||
2049 | * Free all receive software resources | ||
2050 | **/ | ||
2051 | |||
2052 | void e1000_free_all_rx_resources(struct e1000_adapter *adapter) | ||
2053 | { | ||
2054 | int i; | ||
2055 | |||
2056 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
2057 | e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); | ||
2058 | } | ||
2059 | |||
2060 | /** | ||
2061 | * e1000_clean_rx_ring - Free Rx Buffers per Queue | ||
2062 | * @adapter: board private structure | ||
2063 | * @rx_ring: ring to free buffers from | ||
2064 | **/ | ||
2065 | |||
2066 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter, | ||
2067 | struct e1000_rx_ring *rx_ring) | ||
2068 | { | ||
2069 | struct e1000_hw *hw = &adapter->hw; | ||
2070 | struct e1000_buffer *buffer_info; | ||
2071 | struct pci_dev *pdev = adapter->pdev; | ||
2072 | unsigned long size; | ||
2073 | unsigned int i; | ||
2074 | |||
2075 | /* Free all the Rx ring sk_buffs */ | ||
2076 | for (i = 0; i < rx_ring->count; i++) { | ||
2077 | buffer_info = &rx_ring->buffer_info[i]; | ||
2078 | if (buffer_info->dma && | ||
2079 | adapter->clean_rx == e1000_clean_rx_irq) { | ||
2080 | dma_unmap_single(&pdev->dev, buffer_info->dma, | ||
2081 | buffer_info->length, | ||
2082 | DMA_FROM_DEVICE); | ||
2083 | } else if (buffer_info->dma && | ||
2084 | adapter->clean_rx == e1000_clean_jumbo_rx_irq) { | ||
2085 | dma_unmap_page(&pdev->dev, buffer_info->dma, | ||
2086 | buffer_info->length, | ||
2087 | DMA_FROM_DEVICE); | ||
2088 | } | ||
2089 | |||
2090 | buffer_info->dma = 0; | ||
2091 | if (buffer_info->page) { | ||
2092 | put_page(buffer_info->page); | ||
2093 | buffer_info->page = NULL; | ||
2094 | } | ||
2095 | if (buffer_info->skb) { | ||
2096 | dev_kfree_skb(buffer_info->skb); | ||
2097 | buffer_info->skb = NULL; | ||
2098 | } | ||
2099 | } | ||
2100 | |||
2101 | /* there also may be some cached data from a chained receive */ | ||
2102 | if (rx_ring->rx_skb_top) { | ||
2103 | dev_kfree_skb(rx_ring->rx_skb_top); | ||
2104 | rx_ring->rx_skb_top = NULL; | ||
2105 | } | ||
2106 | |||
2107 | size = sizeof(struct e1000_buffer) * rx_ring->count; | ||
2108 | memset(rx_ring->buffer_info, 0, size); | ||
2109 | |||
2110 | /* Zero out the descriptor ring */ | ||
2111 | memset(rx_ring->desc, 0, rx_ring->size); | ||
2112 | |||
2113 | rx_ring->next_to_clean = 0; | ||
2114 | rx_ring->next_to_use = 0; | ||
2115 | |||
2116 | writel(0, hw->hw_addr + rx_ring->rdh); | ||
2117 | writel(0, hw->hw_addr + rx_ring->rdt); | ||
2118 | } | ||
2119 | |||
2120 | /** | ||
2121 | * e1000_clean_all_rx_rings - Free Rx Buffers for all queues | ||
2122 | * @adapter: board private structure | ||
2123 | **/ | ||
2124 | |||
2125 | static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) | ||
2126 | { | ||
2127 | int i; | ||
2128 | |||
2129 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
2130 | e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); | ||
2131 | } | ||
2132 | |||
2133 | /* The 82542 2.0 (revision 2) needs to have the receive unit in reset | ||
2134 | * and memory write and invalidate disabled for certain operations | ||
2135 | */ | ||
2136 | static void e1000_enter_82542_rst(struct e1000_adapter *adapter) | ||
2137 | { | ||
2138 | struct e1000_hw *hw = &adapter->hw; | ||
2139 | struct net_device *netdev = adapter->netdev; | ||
2140 | u32 rctl; | ||
2141 | |||
2142 | e1000_pci_clear_mwi(hw); | ||
2143 | |||
2144 | rctl = er32(RCTL); | ||
2145 | rctl |= E1000_RCTL_RST; | ||
2146 | ew32(RCTL, rctl); | ||
2147 | E1000_WRITE_FLUSH(); | ||
2148 | mdelay(5); | ||
2149 | |||
2150 | if (netif_running(netdev)) | ||
2151 | e1000_clean_all_rx_rings(adapter); | ||
2152 | } | ||
2153 | |||
2154 | static void e1000_leave_82542_rst(struct e1000_adapter *adapter) | ||
2155 | { | ||
2156 | struct e1000_hw *hw = &adapter->hw; | ||
2157 | struct net_device *netdev = adapter->netdev; | ||
2158 | u32 rctl; | ||
2159 | |||
2160 | rctl = er32(RCTL); | ||
2161 | rctl &= ~E1000_RCTL_RST; | ||
2162 | ew32(RCTL, rctl); | ||
2163 | E1000_WRITE_FLUSH(); | ||
2164 | mdelay(5); | ||
2165 | |||
2166 | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | ||
2167 | e1000_pci_set_mwi(hw); | ||
2168 | |||
2169 | if (netif_running(netdev)) { | ||
2170 | /* No need to loop, because 82542 supports only 1 queue */ | ||
2171 | struct e1000_rx_ring *ring = &adapter->rx_ring[0]; | ||
2172 | e1000_configure_rx(adapter); | ||
2173 | adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); | ||
2174 | } | ||
2175 | } | ||
2176 | |||
2177 | /** | ||
2178 | * e1000_set_mac - Change the Ethernet Address of the NIC | ||
2179 | * @netdev: network interface device structure | ||
2180 | * @p: pointer to an address structure | ||
2181 | * | ||
2182 | * Returns 0 on success, negative on failure | ||
2183 | **/ | ||
2184 | |||
2185 | static int e1000_set_mac(struct net_device *netdev, void *p) | ||
2186 | { | ||
2187 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
2188 | struct e1000_hw *hw = &adapter->hw; | ||
2189 | struct sockaddr *addr = p; | ||
2190 | |||
2191 | if (!is_valid_ether_addr(addr->sa_data)) | ||
2192 | return -EADDRNOTAVAIL; | ||
2193 | |||
2194 | /* 82542 2.0 needs to be in reset to write receive address registers */ | ||
2195 | |||
2196 | if (hw->mac_type == e1000_82542_rev2_0) | ||
2197 | e1000_enter_82542_rst(adapter); | ||
2198 | |||
2199 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
2200 | memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); | ||
2201 | |||
2202 | e1000_rar_set(hw, hw->mac_addr, 0); | ||
2203 | |||
2204 | if (hw->mac_type == e1000_82542_rev2_0) | ||
2205 | e1000_leave_82542_rst(adapter); | ||
2206 | |||
2207 | return 0; | ||
2208 | } | ||
2209 | |||
2210 | /** | ||
2211 | * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set | ||
2212 | * @netdev: network interface device structure | ||
2213 | * | ||
2214 | * The set_rx_mode entry point is called whenever the unicast or multicast | ||
2215 | * address lists or the network interface flags are updated. This routine is | ||
2216 | * responsible for configuring the hardware for proper unicast, multicast, | ||
2217 | * promiscuous mode, and all-multi behavior. | ||
2218 | **/ | ||
2219 | |||
2220 | static void e1000_set_rx_mode(struct net_device *netdev) | ||
2221 | { | ||
2222 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
2223 | struct e1000_hw *hw = &adapter->hw; | ||
2224 | struct netdev_hw_addr *ha; | ||
2225 | bool use_uc = false; | ||
2226 | u32 rctl; | ||
2227 | u32 hash_value; | ||
2228 | int i, rar_entries = E1000_RAR_ENTRIES; | ||
2229 | int mta_reg_count = E1000_NUM_MTA_REGISTERS; | ||
2230 | u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); | ||
2231 | |||
2232 | if (!mcarray) { | ||
2233 | e_err(probe, "memory allocation failed\n"); | ||
2234 | return; | ||
2235 | } | ||
2236 | |||
2237 | /* Check for Promiscuous and All Multicast modes */ | ||
2238 | |||
2239 | rctl = er32(RCTL); | ||
2240 | |||
2241 | if (netdev->flags & IFF_PROMISC) { | ||
2242 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
2243 | rctl &= ~E1000_RCTL_VFE; | ||
2244 | } else { | ||
2245 | if (netdev->flags & IFF_ALLMULTI) | ||
2246 | rctl |= E1000_RCTL_MPE; | ||
2247 | else | ||
2248 | rctl &= ~E1000_RCTL_MPE; | ||
2249 | /* Enable VLAN filter if there is a VLAN */ | ||
2250 | if (e1000_vlan_used(adapter)) | ||
2251 | rctl |= E1000_RCTL_VFE; | ||
2252 | } | ||
2253 | |||
2254 | if (netdev_uc_count(netdev) > rar_entries - 1) { | ||
2255 | rctl |= E1000_RCTL_UPE; | ||
2256 | } else if (!(netdev->flags & IFF_PROMISC)) { | ||
2257 | rctl &= ~E1000_RCTL_UPE; | ||
2258 | use_uc = true; | ||
2259 | } | ||
2260 | |||
2261 | ew32(RCTL, rctl); | ||
2262 | |||
2263 | /* 82542 2.0 needs to be in reset to write receive address registers */ | ||
2264 | |||
2265 | if (hw->mac_type == e1000_82542_rev2_0) | ||
2266 | e1000_enter_82542_rst(adapter); | ||
2267 | |||
2268 | /* load the first 14 addresses into the exact filters 1-14. Unicast | ||
2269 | * addresses take precedence to avoid disabling unicast filtering | ||
2270 | * when possible. | ||
2271 | * | ||
2272 | * RAR 0 is used for the station MAC address | ||
2273 | * if there are not 14 addresses, go ahead and clear the filters | ||
2274 | */ | ||
2275 | i = 1; | ||
2276 | if (use_uc) | ||
2277 | netdev_for_each_uc_addr(ha, netdev) { | ||
2278 | if (i == rar_entries) | ||
2279 | break; | ||
2280 | e1000_rar_set(hw, ha->addr, i++); | ||
2281 | } | ||
2282 | |||
2283 | netdev_for_each_mc_addr(ha, netdev) { | ||
2284 | if (i == rar_entries) { | ||
2285 | /* load any remaining addresses into the hash table */ | ||
2286 | u32 hash_reg, hash_bit, mta; | ||
2287 | hash_value = e1000_hash_mc_addr(hw, ha->addr); | ||
2288 | hash_reg = (hash_value >> 5) & 0x7F; | ||
2289 | hash_bit = hash_value & 0x1F; | ||
2290 | mta = (1 << hash_bit); | ||
2291 | mcarray[hash_reg] |= mta; | ||
2292 | } else { | ||
2293 | e1000_rar_set(hw, ha->addr, i++); | ||
2294 | } | ||
2295 | } | ||
2296 | |||
2297 | for (; i < rar_entries; i++) { | ||
2298 | E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); | ||
2299 | E1000_WRITE_FLUSH(); | ||
2300 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); | ||
2301 | E1000_WRITE_FLUSH(); | ||
2302 | } | ||
2303 | |||
2304 | /* write the hash table completely, write from bottom to avoid | ||
2305 | * both stupid write combining chipsets, and flushing each write */ | ||
2306 | for (i = mta_reg_count - 1; i >= 0 ; i--) { | ||
2307 | /* | ||
2308 | * If we are on an 82544 has an errata where writing odd | ||
2309 | * offsets overwrites the previous even offset, but writing | ||
2310 | * backwards over the range solves the issue by always | ||
2311 | * writing the odd offset first | ||
2312 | */ | ||
2313 | E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); | ||
2314 | } | ||
2315 | E1000_WRITE_FLUSH(); | ||
2316 | |||
2317 | if (hw->mac_type == e1000_82542_rev2_0) | ||
2318 | e1000_leave_82542_rst(adapter); | ||
2319 | |||
2320 | kfree(mcarray); | ||
2321 | } | ||
2322 | |||
2323 | /** | ||
2324 | * e1000_update_phy_info_task - get phy info | ||
2325 | * @work: work struct contained inside adapter struct | ||
2326 | * | ||
2327 | * Need to wait a few seconds after link up to get diagnostic information from | ||
2328 | * the phy | ||
2329 | */ | ||
2330 | static void e1000_update_phy_info_task(struct work_struct *work) | ||
2331 | { | ||
2332 | struct e1000_adapter *adapter = container_of(work, | ||
2333 | struct e1000_adapter, | ||
2334 | phy_info_task.work); | ||
2335 | if (test_bit(__E1000_DOWN, &adapter->flags)) | ||
2336 | return; | ||
2337 | mutex_lock(&adapter->mutex); | ||
2338 | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); | ||
2339 | mutex_unlock(&adapter->mutex); | ||
2340 | } | ||
2341 | |||
2342 | /** | ||
2343 | * e1000_82547_tx_fifo_stall_task - task to complete work | ||
2344 | * @work: work struct contained inside adapter struct | ||
2345 | **/ | ||
2346 | static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) | ||
2347 | { | ||
2348 | struct e1000_adapter *adapter = container_of(work, | ||
2349 | struct e1000_adapter, | ||
2350 | fifo_stall_task.work); | ||
2351 | struct e1000_hw *hw = &adapter->hw; | ||
2352 | struct net_device *netdev = adapter->netdev; | ||
2353 | u32 tctl; | ||
2354 | |||
2355 | if (test_bit(__E1000_DOWN, &adapter->flags)) | ||
2356 | return; | ||
2357 | mutex_lock(&adapter->mutex); | ||
2358 | if (atomic_read(&adapter->tx_fifo_stall)) { | ||
2359 | if ((er32(TDT) == er32(TDH)) && | ||
2360 | (er32(TDFT) == er32(TDFH)) && | ||
2361 | (er32(TDFTS) == er32(TDFHS))) { | ||
2362 | tctl = er32(TCTL); | ||
2363 | ew32(TCTL, tctl & ~E1000_TCTL_EN); | ||
2364 | ew32(TDFT, adapter->tx_head_addr); | ||
2365 | ew32(TDFH, adapter->tx_head_addr); | ||
2366 | ew32(TDFTS, adapter->tx_head_addr); | ||
2367 | ew32(TDFHS, adapter->tx_head_addr); | ||
2368 | ew32(TCTL, tctl); | ||
2369 | E1000_WRITE_FLUSH(); | ||
2370 | |||
2371 | adapter->tx_fifo_head = 0; | ||
2372 | atomic_set(&adapter->tx_fifo_stall, 0); | ||
2373 | netif_wake_queue(netdev); | ||
2374 | } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { | ||
2375 | schedule_delayed_work(&adapter->fifo_stall_task, 1); | ||
2376 | } | ||
2377 | } | ||
2378 | mutex_unlock(&adapter->mutex); | ||
2379 | } | ||
2380 | |||
2381 | bool e1000_has_link(struct e1000_adapter *adapter) | ||
2382 | { | ||
2383 | struct e1000_hw *hw = &adapter->hw; | ||
2384 | bool link_active = false; | ||
2385 | |||
2386 | /* get_link_status is set on LSC (link status) interrupt or rx | ||
2387 | * sequence error interrupt (except on intel ce4100). | ||
2388 | * get_link_status will stay false until the | ||
2389 | * e1000_check_for_link establishes link for copper adapters | ||
2390 | * ONLY | ||
2391 | */ | ||
2392 | switch (hw->media_type) { | ||
2393 | case e1000_media_type_copper: | ||
2394 | if (hw->mac_type == e1000_ce4100) | ||
2395 | hw->get_link_status = 1; | ||
2396 | if (hw->get_link_status) { | ||
2397 | e1000_check_for_link(hw); | ||
2398 | link_active = !hw->get_link_status; | ||
2399 | } else { | ||
2400 | link_active = true; | ||
2401 | } | ||
2402 | break; | ||
2403 | case e1000_media_type_fiber: | ||
2404 | e1000_check_for_link(hw); | ||
2405 | link_active = !!(er32(STATUS) & E1000_STATUS_LU); | ||
2406 | break; | ||
2407 | case e1000_media_type_internal_serdes: | ||
2408 | e1000_check_for_link(hw); | ||
2409 | link_active = hw->serdes_has_link; | ||
2410 | break; | ||
2411 | default: | ||
2412 | break; | ||
2413 | } | ||
2414 | |||
2415 | return link_active; | ||
2416 | } | ||
2417 | |||
2418 | /** | ||
2419 | * e1000_watchdog - work function | ||
2420 | * @work: work struct contained inside adapter struct | ||
2421 | **/ | ||
2422 | static void e1000_watchdog(struct work_struct *work) | ||
2423 | { | ||
2424 | struct e1000_adapter *adapter = container_of(work, | ||
2425 | struct e1000_adapter, | ||
2426 | watchdog_task.work); | ||
2427 | struct e1000_hw *hw = &adapter->hw; | ||
2428 | struct net_device *netdev = adapter->netdev; | ||
2429 | struct e1000_tx_ring *txdr = adapter->tx_ring; | ||
2430 | u32 link, tctl; | ||
2431 | |||
2432 | if (test_bit(__E1000_DOWN, &adapter->flags)) | ||
2433 | return; | ||
2434 | |||
2435 | mutex_lock(&adapter->mutex); | ||
2436 | link = e1000_has_link(adapter); | ||
2437 | if ((netif_carrier_ok(netdev)) && link) | ||
2438 | goto link_up; | ||
2439 | |||
2440 | if (link) { | ||
2441 | if (!netif_carrier_ok(netdev)) { | ||
2442 | u32 ctrl; | ||
2443 | bool txb2b = true; | ||
2444 | /* update snapshot of PHY registers on LSC */ | ||
2445 | e1000_get_speed_and_duplex(hw, | ||
2446 | &adapter->link_speed, | ||
2447 | &adapter->link_duplex); | ||
2448 | |||
2449 | ctrl = er32(CTRL); | ||
2450 | pr_info("%s NIC Link is Up %d Mbps %s, " | ||
2451 | "Flow Control: %s\n", | ||
2452 | netdev->name, | ||
2453 | adapter->link_speed, | ||
2454 | adapter->link_duplex == FULL_DUPLEX ? | ||
2455 | "Full Duplex" : "Half Duplex", | ||
2456 | ((ctrl & E1000_CTRL_TFCE) && (ctrl & | ||
2457 | E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & | ||
2458 | E1000_CTRL_RFCE) ? "RX" : ((ctrl & | ||
2459 | E1000_CTRL_TFCE) ? "TX" : "None"))); | ||
2460 | |||
2461 | /* adjust timeout factor according to speed/duplex */ | ||
2462 | adapter->tx_timeout_factor = 1; | ||
2463 | switch (adapter->link_speed) { | ||
2464 | case SPEED_10: | ||
2465 | txb2b = false; | ||
2466 | adapter->tx_timeout_factor = 16; | ||
2467 | break; | ||
2468 | case SPEED_100: | ||
2469 | txb2b = false; | ||
2470 | /* maybe add some timeout factor ? */ | ||
2471 | break; | ||
2472 | } | ||
2473 | |||
2474 | /* enable transmits in the hardware */ | ||
2475 | tctl = er32(TCTL); | ||
2476 | tctl |= E1000_TCTL_EN; | ||
2477 | ew32(TCTL, tctl); | ||
2478 | |||
2479 | netif_carrier_on(netdev); | ||
2480 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
2481 | schedule_delayed_work(&adapter->phy_info_task, | ||
2482 | 2 * HZ); | ||
2483 | adapter->smartspeed = 0; | ||
2484 | } | ||
2485 | } else { | ||
2486 | if (netif_carrier_ok(netdev)) { | ||
2487 | adapter->link_speed = 0; | ||
2488 | adapter->link_duplex = 0; | ||
2489 | pr_info("%s NIC Link is Down\n", | ||
2490 | netdev->name); | ||
2491 | netif_carrier_off(netdev); | ||
2492 | |||
2493 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
2494 | schedule_delayed_work(&adapter->phy_info_task, | ||
2495 | 2 * HZ); | ||
2496 | } | ||
2497 | |||
2498 | e1000_smartspeed(adapter); | ||
2499 | } | ||
2500 | |||
2501 | link_up: | ||
2502 | e1000_update_stats(adapter); | ||
2503 | |||
2504 | hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | ||
2505 | adapter->tpt_old = adapter->stats.tpt; | ||
2506 | hw->collision_delta = adapter->stats.colc - adapter->colc_old; | ||
2507 | adapter->colc_old = adapter->stats.colc; | ||
2508 | |||
2509 | adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; | ||
2510 | adapter->gorcl_old = adapter->stats.gorcl; | ||
2511 | adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; | ||
2512 | adapter->gotcl_old = adapter->stats.gotcl; | ||
2513 | |||
2514 | e1000_update_adaptive(hw); | ||
2515 | |||
2516 | if (!netif_carrier_ok(netdev)) { | ||
2517 | if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { | ||
2518 | /* We've lost link, so the controller stops DMA, | ||
2519 | * but we've got queued Tx work that's never going | ||
2520 | * to get done, so reset controller to flush Tx. | ||
2521 | * (Do the reset outside of interrupt context). */ | ||
2522 | adapter->tx_timeout_count++; | ||
2523 | schedule_work(&adapter->reset_task); | ||
2524 | /* exit immediately since reset is imminent */ | ||
2525 | goto unlock; | ||
2526 | } | ||
2527 | } | ||
2528 | |||
2529 | /* Simple mode for Interrupt Throttle Rate (ITR) */ | ||
2530 | if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { | ||
2531 | /* | ||
2532 | * Symmetric Tx/Rx gets a reduced ITR=2000; | ||
2533 | * Total asymmetrical Tx or Rx gets ITR=8000; | ||
2534 | * everyone else is between 2000-8000. | ||
2535 | */ | ||
2536 | u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; | ||
2537 | u32 dif = (adapter->gotcl > adapter->gorcl ? | ||
2538 | adapter->gotcl - adapter->gorcl : | ||
2539 | adapter->gorcl - adapter->gotcl) / 10000; | ||
2540 | u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; | ||
2541 | |||
2542 | ew32(ITR, 1000000000 / (itr * 256)); | ||
2543 | } | ||
2544 | |||
2545 | /* Cause software interrupt to ensure rx ring is cleaned */ | ||
2546 | ew32(ICS, E1000_ICS_RXDMT0); | ||
2547 | |||
2548 | /* Force detection of hung controller every watchdog period */ | ||
2549 | adapter->detect_tx_hung = true; | ||
2550 | |||
2551 | /* Reschedule the task */ | ||
2552 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
2553 | schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); | ||
2554 | |||
2555 | unlock: | ||
2556 | mutex_unlock(&adapter->mutex); | ||
2557 | } | ||
2558 | |||
2559 | enum latency_range { | ||
2560 | lowest_latency = 0, | ||
2561 | low_latency = 1, | ||
2562 | bulk_latency = 2, | ||
2563 | latency_invalid = 255 | ||
2564 | }; | ||
2565 | |||
2566 | /** | ||
2567 | * e1000_update_itr - update the dynamic ITR value based on statistics | ||
2568 | * @adapter: pointer to adapter | ||
2569 | * @itr_setting: current adapter->itr | ||
2570 | * @packets: the number of packets during this measurement interval | ||
2571 | * @bytes: the number of bytes during this measurement interval | ||
2572 | * | ||
2573 | * Stores a new ITR value based on packets and byte | ||
2574 | * counts during the last interrupt. The advantage of per interrupt | ||
2575 | * computation is faster updates and more accurate ITR for the current | ||
2576 | * traffic pattern. Constants in this function were computed | ||
2577 | * based on theoretical maximum wire speed and thresholds were set based | ||
2578 | * on testing data as well as attempting to minimize response time | ||
2579 | * while increasing bulk throughput. | ||
2580 | * this functionality is controlled by the InterruptThrottleRate module | ||
2581 | * parameter (see e1000_param.c) | ||
2582 | **/ | ||
2583 | static unsigned int e1000_update_itr(struct e1000_adapter *adapter, | ||
2584 | u16 itr_setting, int packets, int bytes) | ||
2585 | { | ||
2586 | unsigned int retval = itr_setting; | ||
2587 | struct e1000_hw *hw = &adapter->hw; | ||
2588 | |||
2589 | if (unlikely(hw->mac_type < e1000_82540)) | ||
2590 | goto update_itr_done; | ||
2591 | |||
2592 | if (packets == 0) | ||
2593 | goto update_itr_done; | ||
2594 | |||
2595 | switch (itr_setting) { | ||
2596 | case lowest_latency: | ||
2597 | /* jumbo frames get bulk treatment*/ | ||
2598 | if (bytes/packets > 8000) | ||
2599 | retval = bulk_latency; | ||
2600 | else if ((packets < 5) && (bytes > 512)) | ||
2601 | retval = low_latency; | ||
2602 | break; | ||
2603 | case low_latency: /* 50 usec aka 20000 ints/s */ | ||
2604 | if (bytes > 10000) { | ||
2605 | /* jumbo frames need bulk latency setting */ | ||
2606 | if (bytes/packets > 8000) | ||
2607 | retval = bulk_latency; | ||
2608 | else if ((packets < 10) || ((bytes/packets) > 1200)) | ||
2609 | retval = bulk_latency; | ||
2610 | else if ((packets > 35)) | ||
2611 | retval = lowest_latency; | ||
2612 | } else if (bytes/packets > 2000) | ||
2613 | retval = bulk_latency; | ||
2614 | else if (packets <= 2 && bytes < 512) | ||
2615 | retval = lowest_latency; | ||
2616 | break; | ||
2617 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | ||
2618 | if (bytes > 25000) { | ||
2619 | if (packets > 35) | ||
2620 | retval = low_latency; | ||
2621 | } else if (bytes < 6000) { | ||
2622 | retval = low_latency; | ||
2623 | } | ||
2624 | break; | ||
2625 | } | ||
2626 | |||
2627 | update_itr_done: | ||
2628 | return retval; | ||
2629 | } | ||
2630 | |||
2631 | static void e1000_set_itr(struct e1000_adapter *adapter) | ||
2632 | { | ||
2633 | struct e1000_hw *hw = &adapter->hw; | ||
2634 | u16 current_itr; | ||
2635 | u32 new_itr = adapter->itr; | ||
2636 | |||
2637 | if (unlikely(hw->mac_type < e1000_82540)) | ||
2638 | return; | ||
2639 | |||
2640 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | ||
2641 | if (unlikely(adapter->link_speed != SPEED_1000)) { | ||
2642 | current_itr = 0; | ||
2643 | new_itr = 4000; | ||
2644 | goto set_itr_now; | ||
2645 | } | ||
2646 | |||
2647 | adapter->tx_itr = e1000_update_itr(adapter, | ||
2648 | adapter->tx_itr, | ||
2649 | adapter->total_tx_packets, | ||
2650 | adapter->total_tx_bytes); | ||
2651 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
2652 | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | ||
2653 | adapter->tx_itr = low_latency; | ||
2654 | |||
2655 | adapter->rx_itr = e1000_update_itr(adapter, | ||
2656 | adapter->rx_itr, | ||
2657 | adapter->total_rx_packets, | ||
2658 | adapter->total_rx_bytes); | ||
2659 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
2660 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | ||
2661 | adapter->rx_itr = low_latency; | ||
2662 | |||
2663 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | ||
2664 | |||
2665 | switch (current_itr) { | ||
2666 | /* counts and packets in update_itr are dependent on these numbers */ | ||
2667 | case lowest_latency: | ||
2668 | new_itr = 70000; | ||
2669 | break; | ||
2670 | case low_latency: | ||
2671 | new_itr = 20000; /* aka hwitr = ~200 */ | ||
2672 | break; | ||
2673 | case bulk_latency: | ||
2674 | new_itr = 4000; | ||
2675 | break; | ||
2676 | default: | ||
2677 | break; | ||
2678 | } | ||
2679 | |||
2680 | set_itr_now: | ||
2681 | if (new_itr != adapter->itr) { | ||
2682 | /* this attempts to bias the interrupt rate towards Bulk | ||
2683 | * by adding intermediate steps when interrupt rate is | ||
2684 | * increasing */ | ||
2685 | new_itr = new_itr > adapter->itr ? | ||
2686 | min(adapter->itr + (new_itr >> 2), new_itr) : | ||
2687 | new_itr; | ||
2688 | adapter->itr = new_itr; | ||
2689 | ew32(ITR, 1000000000 / (new_itr * 256)); | ||
2690 | } | ||
2691 | } | ||
2692 | |||
2693 | #define E1000_TX_FLAGS_CSUM 0x00000001 | ||
2694 | #define E1000_TX_FLAGS_VLAN 0x00000002 | ||
2695 | #define E1000_TX_FLAGS_TSO 0x00000004 | ||
2696 | #define E1000_TX_FLAGS_IPV4 0x00000008 | ||
2697 | #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
2698 | #define E1000_TX_FLAGS_VLAN_SHIFT 16 | ||
2699 | |||
2700 | static int e1000_tso(struct e1000_adapter *adapter, | ||
2701 | struct e1000_tx_ring *tx_ring, struct sk_buff *skb) | ||
2702 | { | ||
2703 | struct e1000_context_desc *context_desc; | ||
2704 | struct e1000_buffer *buffer_info; | ||
2705 | unsigned int i; | ||
2706 | u32 cmd_length = 0; | ||
2707 | u16 ipcse = 0, tucse, mss; | ||
2708 | u8 ipcss, ipcso, tucss, tucso, hdr_len; | ||
2709 | int err; | ||
2710 | |||
2711 | if (skb_is_gso(skb)) { | ||
2712 | if (skb_header_cloned(skb)) { | ||
2713 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
2714 | if (err) | ||
2715 | return err; | ||
2716 | } | ||
2717 | |||
2718 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | ||
2719 | mss = skb_shinfo(skb)->gso_size; | ||
2720 | if (skb->protocol == htons(ETH_P_IP)) { | ||
2721 | struct iphdr *iph = ip_hdr(skb); | ||
2722 | iph->tot_len = 0; | ||
2723 | iph->check = 0; | ||
2724 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | ||
2725 | iph->daddr, 0, | ||
2726 | IPPROTO_TCP, | ||
2727 | 0); | ||
2728 | cmd_length = E1000_TXD_CMD_IP; | ||
2729 | ipcse = skb_transport_offset(skb) - 1; | ||
2730 | } else if (skb->protocol == htons(ETH_P_IPV6)) { | ||
2731 | ipv6_hdr(skb)->payload_len = 0; | ||
2732 | tcp_hdr(skb)->check = | ||
2733 | ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
2734 | &ipv6_hdr(skb)->daddr, | ||
2735 | 0, IPPROTO_TCP, 0); | ||
2736 | ipcse = 0; | ||
2737 | } | ||
2738 | ipcss = skb_network_offset(skb); | ||
2739 | ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; | ||
2740 | tucss = skb_transport_offset(skb); | ||
2741 | tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; | ||
2742 | tucse = 0; | ||
2743 | |||
2744 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | ||
2745 | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | ||
2746 | |||
2747 | i = tx_ring->next_to_use; | ||
2748 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | ||
2749 | buffer_info = &tx_ring->buffer_info[i]; | ||
2750 | |||
2751 | context_desc->lower_setup.ip_fields.ipcss = ipcss; | ||
2752 | context_desc->lower_setup.ip_fields.ipcso = ipcso; | ||
2753 | context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); | ||
2754 | context_desc->upper_setup.tcp_fields.tucss = tucss; | ||
2755 | context_desc->upper_setup.tcp_fields.tucso = tucso; | ||
2756 | context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | ||
2757 | context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); | ||
2758 | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | ||
2759 | context_desc->cmd_and_length = cpu_to_le32(cmd_length); | ||
2760 | |||
2761 | buffer_info->time_stamp = jiffies; | ||
2762 | buffer_info->next_to_watch = i; | ||
2763 | |||
2764 | if (++i == tx_ring->count) i = 0; | ||
2765 | tx_ring->next_to_use = i; | ||
2766 | |||
2767 | return true; | ||
2768 | } | ||
2769 | return false; | ||
2770 | } | ||
2771 | |||
2772 | static bool e1000_tx_csum(struct e1000_adapter *adapter, | ||
2773 | struct e1000_tx_ring *tx_ring, struct sk_buff *skb) | ||
2774 | { | ||
2775 | struct e1000_context_desc *context_desc; | ||
2776 | struct e1000_buffer *buffer_info; | ||
2777 | unsigned int i; | ||
2778 | u8 css; | ||
2779 | u32 cmd_len = E1000_TXD_CMD_DEXT; | ||
2780 | |||
2781 | if (skb->ip_summed != CHECKSUM_PARTIAL) | ||
2782 | return false; | ||
2783 | |||
2784 | switch (skb->protocol) { | ||
2785 | case cpu_to_be16(ETH_P_IP): | ||
2786 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | ||
2787 | cmd_len |= E1000_TXD_CMD_TCP; | ||
2788 | break; | ||
2789 | case cpu_to_be16(ETH_P_IPV6): | ||
2790 | /* XXX not handling all IPV6 headers */ | ||
2791 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | ||
2792 | cmd_len |= E1000_TXD_CMD_TCP; | ||
2793 | break; | ||
2794 | default: | ||
2795 | if (unlikely(net_ratelimit())) | ||
2796 | e_warn(drv, "checksum_partial proto=%x!\n", | ||
2797 | skb->protocol); | ||
2798 | break; | ||
2799 | } | ||
2800 | |||
2801 | css = skb_checksum_start_offset(skb); | ||
2802 | |||
2803 | i = tx_ring->next_to_use; | ||
2804 | buffer_info = &tx_ring->buffer_info[i]; | ||
2805 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | ||
2806 | |||
2807 | context_desc->lower_setup.ip_config = 0; | ||
2808 | context_desc->upper_setup.tcp_fields.tucss = css; | ||
2809 | context_desc->upper_setup.tcp_fields.tucso = | ||
2810 | css + skb->csum_offset; | ||
2811 | context_desc->upper_setup.tcp_fields.tucse = 0; | ||
2812 | context_desc->tcp_seg_setup.data = 0; | ||
2813 | context_desc->cmd_and_length = cpu_to_le32(cmd_len); | ||
2814 | |||
2815 | buffer_info->time_stamp = jiffies; | ||
2816 | buffer_info->next_to_watch = i; | ||
2817 | |||
2818 | if (unlikely(++i == tx_ring->count)) i = 0; | ||
2819 | tx_ring->next_to_use = i; | ||
2820 | |||
2821 | return true; | ||
2822 | } | ||
2823 | |||
2824 | #define E1000_MAX_TXD_PWR 12 | ||
2825 | #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) | ||
2826 | |||
2827 | static int e1000_tx_map(struct e1000_adapter *adapter, | ||
2828 | struct e1000_tx_ring *tx_ring, | ||
2829 | struct sk_buff *skb, unsigned int first, | ||
2830 | unsigned int max_per_txd, unsigned int nr_frags, | ||
2831 | unsigned int mss) | ||
2832 | { | ||
2833 | struct e1000_hw *hw = &adapter->hw; | ||
2834 | struct pci_dev *pdev = adapter->pdev; | ||
2835 | struct e1000_buffer *buffer_info; | ||
2836 | unsigned int len = skb_headlen(skb); | ||
2837 | unsigned int offset = 0, size, count = 0, i; | ||
2838 | unsigned int f, bytecount, segs; | ||
2839 | |||
2840 | i = tx_ring->next_to_use; | ||
2841 | |||
2842 | while (len) { | ||
2843 | buffer_info = &tx_ring->buffer_info[i]; | ||
2844 | size = min(len, max_per_txd); | ||
2845 | /* Workaround for Controller erratum -- | ||
2846 | * descriptor for non-tso packet in a linear SKB that follows a | ||
2847 | * tso gets written back prematurely before the data is fully | ||
2848 | * DMA'd to the controller */ | ||
2849 | if (!skb->data_len && tx_ring->last_tx_tso && | ||
2850 | !skb_is_gso(skb)) { | ||
2851 | tx_ring->last_tx_tso = 0; | ||
2852 | size -= 4; | ||
2853 | } | ||
2854 | |||
2855 | /* Workaround for premature desc write-backs | ||
2856 | * in TSO mode. Append 4-byte sentinel desc */ | ||
2857 | if (unlikely(mss && !nr_frags && size == len && size > 8)) | ||
2858 | size -= 4; | ||
2859 | /* work-around for errata 10 and it applies | ||
2860 | * to all controllers in PCI-X mode | ||
2861 | * The fix is to make sure that the first descriptor of a | ||
2862 | * packet is smaller than 2048 - 16 - 16 (or 2016) bytes | ||
2863 | */ | ||
2864 | if (unlikely((hw->bus_type == e1000_bus_type_pcix) && | ||
2865 | (size > 2015) && count == 0)) | ||
2866 | size = 2015; | ||
2867 | |||
2868 | /* Workaround for potential 82544 hang in PCI-X. Avoid | ||
2869 | * terminating buffers within evenly-aligned dwords. */ | ||
2870 | if (unlikely(adapter->pcix_82544 && | ||
2871 | !((unsigned long)(skb->data + offset + size - 1) & 4) && | ||
2872 | size > 4)) | ||
2873 | size -= 4; | ||
2874 | |||
2875 | buffer_info->length = size; | ||
2876 | /* set time_stamp *before* dma to help avoid a possible race */ | ||
2877 | buffer_info->time_stamp = jiffies; | ||
2878 | buffer_info->mapped_as_page = false; | ||
2879 | buffer_info->dma = dma_map_single(&pdev->dev, | ||
2880 | skb->data + offset, | ||
2881 | size, DMA_TO_DEVICE); | ||
2882 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) | ||
2883 | goto dma_error; | ||
2884 | buffer_info->next_to_watch = i; | ||
2885 | |||
2886 | len -= size; | ||
2887 | offset += size; | ||
2888 | count++; | ||
2889 | if (len) { | ||
2890 | i++; | ||
2891 | if (unlikely(i == tx_ring->count)) | ||
2892 | i = 0; | ||
2893 | } | ||
2894 | } | ||
2895 | |||
2896 | for (f = 0; f < nr_frags; f++) { | ||
2897 | const struct skb_frag_struct *frag; | ||
2898 | |||
2899 | frag = &skb_shinfo(skb)->frags[f]; | ||
2900 | len = skb_frag_size(frag); | ||
2901 | offset = 0; | ||
2902 | |||
2903 | while (len) { | ||
2904 | unsigned long bufend; | ||
2905 | i++; | ||
2906 | if (unlikely(i == tx_ring->count)) | ||
2907 | i = 0; | ||
2908 | |||
2909 | buffer_info = &tx_ring->buffer_info[i]; | ||
2910 | size = min(len, max_per_txd); | ||
2911 | /* Workaround for premature desc write-backs | ||
2912 | * in TSO mode. Append 4-byte sentinel desc */ | ||
2913 | if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) | ||
2914 | size -= 4; | ||
2915 | /* Workaround for potential 82544 hang in PCI-X. | ||
2916 | * Avoid terminating buffers within evenly-aligned | ||
2917 | * dwords. */ | ||
2918 | bufend = (unsigned long) | ||
2919 | page_to_phys(skb_frag_page(frag)); | ||
2920 | bufend += offset + size - 1; | ||
2921 | if (unlikely(adapter->pcix_82544 && | ||
2922 | !(bufend & 4) && | ||
2923 | size > 4)) | ||
2924 | size -= 4; | ||
2925 | |||
2926 | buffer_info->length = size; | ||
2927 | buffer_info->time_stamp = jiffies; | ||
2928 | buffer_info->mapped_as_page = true; | ||
2929 | buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, | ||
2930 | offset, size, DMA_TO_DEVICE); | ||
2931 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) | ||
2932 | goto dma_error; | ||
2933 | buffer_info->next_to_watch = i; | ||
2934 | |||
2935 | len -= size; | ||
2936 | offset += size; | ||
2937 | count++; | ||
2938 | } | ||
2939 | } | ||
2940 | |||
2941 | segs = skb_shinfo(skb)->gso_segs ?: 1; | ||
2942 | /* multiply data chunks by size of headers */ | ||
2943 | bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; | ||
2944 | |||
2945 | tx_ring->buffer_info[i].skb = skb; | ||
2946 | tx_ring->buffer_info[i].segs = segs; | ||
2947 | tx_ring->buffer_info[i].bytecount = bytecount; | ||
2948 | tx_ring->buffer_info[first].next_to_watch = i; | ||
2949 | |||
2950 | return count; | ||
2951 | |||
2952 | dma_error: | ||
2953 | dev_err(&pdev->dev, "TX DMA map failed\n"); | ||
2954 | buffer_info->dma = 0; | ||
2955 | if (count) | ||
2956 | count--; | ||
2957 | |||
2958 | while (count--) { | ||
2959 | if (i==0) | ||
2960 | i += tx_ring->count; | ||
2961 | i--; | ||
2962 | buffer_info = &tx_ring->buffer_info[i]; | ||
2963 | e1000_unmap_and_free_tx_resource(adapter, buffer_info); | ||
2964 | } | ||
2965 | |||
2966 | return 0; | ||
2967 | } | ||
2968 | |||
2969 | static void e1000_tx_queue(struct e1000_adapter *adapter, | ||
2970 | struct e1000_tx_ring *tx_ring, int tx_flags, | ||
2971 | int count) | ||
2972 | { | ||
2973 | struct e1000_hw *hw = &adapter->hw; | ||
2974 | struct e1000_tx_desc *tx_desc = NULL; | ||
2975 | struct e1000_buffer *buffer_info; | ||
2976 | u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | ||
2977 | unsigned int i; | ||
2978 | |||
2979 | if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { | ||
2980 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | ||
2981 | E1000_TXD_CMD_TSE; | ||
2982 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | ||
2983 | |||
2984 | if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) | ||
2985 | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | ||
2986 | } | ||
2987 | |||
2988 | if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { | ||
2989 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | ||
2990 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | ||
2991 | } | ||
2992 | |||
2993 | if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { | ||
2994 | txd_lower |= E1000_TXD_CMD_VLE; | ||
2995 | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | ||
2996 | } | ||
2997 | |||
2998 | i = tx_ring->next_to_use; | ||
2999 | |||
3000 | while (count--) { | ||
3001 | buffer_info = &tx_ring->buffer_info[i]; | ||
3002 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
3003 | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
3004 | tx_desc->lower.data = | ||
3005 | cpu_to_le32(txd_lower | buffer_info->length); | ||
3006 | tx_desc->upper.data = cpu_to_le32(txd_upper); | ||
3007 | if (unlikely(++i == tx_ring->count)) i = 0; | ||
3008 | } | ||
3009 | |||
3010 | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | ||
3011 | |||
3012 | /* Force memory writes to complete before letting h/w | ||
3013 | * know there are new descriptors to fetch. (Only | ||
3014 | * applicable for weak-ordered memory model archs, | ||
3015 | * such as IA-64). */ | ||
3016 | wmb(); | ||
3017 | |||
3018 | tx_ring->next_to_use = i; | ||
3019 | writel(i, hw->hw_addr + tx_ring->tdt); | ||
3020 | /* we need this if more than one processor can write to our tail | ||
3021 | * at a time, it syncronizes IO on IA64/Altix systems */ | ||
3022 | mmiowb(); | ||
3023 | } | ||
3024 | |||
3025 | /** | ||
3026 | * 82547 workaround to avoid controller hang in half-duplex environment. | ||
3027 | * The workaround is to avoid queuing a large packet that would span | ||
3028 | * the internal Tx FIFO ring boundary by notifying the stack to resend | ||
3029 | * the packet at a later time. This gives the Tx FIFO an opportunity to | ||
3030 | * flush all packets. When that occurs, we reset the Tx FIFO pointers | ||
3031 | * to the beginning of the Tx FIFO. | ||
3032 | **/ | ||
3033 | |||
3034 | #define E1000_FIFO_HDR 0x10 | ||
3035 | #define E1000_82547_PAD_LEN 0x3E0 | ||
3036 | |||
3037 | static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, | ||
3038 | struct sk_buff *skb) | ||
3039 | { | ||
3040 | u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; | ||
3041 | u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; | ||
3042 | |||
3043 | skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); | ||
3044 | |||
3045 | if (adapter->link_duplex != HALF_DUPLEX) | ||
3046 | goto no_fifo_stall_required; | ||
3047 | |||
3048 | if (atomic_read(&adapter->tx_fifo_stall)) | ||
3049 | return 1; | ||
3050 | |||
3051 | if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { | ||
3052 | atomic_set(&adapter->tx_fifo_stall, 1); | ||
3053 | return 1; | ||
3054 | } | ||
3055 | |||
3056 | no_fifo_stall_required: | ||
3057 | adapter->tx_fifo_head += skb_fifo_len; | ||
3058 | if (adapter->tx_fifo_head >= adapter->tx_fifo_size) | ||
3059 | adapter->tx_fifo_head -= adapter->tx_fifo_size; | ||
3060 | return 0; | ||
3061 | } | ||
3062 | |||
3063 | static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) | ||
3064 | { | ||
3065 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3066 | struct e1000_tx_ring *tx_ring = adapter->tx_ring; | ||
3067 | |||
3068 | netif_stop_queue(netdev); | ||
3069 | /* Herbert's original patch had: | ||
3070 | * smp_mb__after_netif_stop_queue(); | ||
3071 | * but since that doesn't exist yet, just open code it. */ | ||
3072 | smp_mb(); | ||
3073 | |||
3074 | /* We need to check again in a case another CPU has just | ||
3075 | * made room available. */ | ||
3076 | if (likely(E1000_DESC_UNUSED(tx_ring) < size)) | ||
3077 | return -EBUSY; | ||
3078 | |||
3079 | /* A reprieve! */ | ||
3080 | netif_start_queue(netdev); | ||
3081 | ++adapter->restart_queue; | ||
3082 | return 0; | ||
3083 | } | ||
3084 | |||
3085 | static int e1000_maybe_stop_tx(struct net_device *netdev, | ||
3086 | struct e1000_tx_ring *tx_ring, int size) | ||
3087 | { | ||
3088 | if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) | ||
3089 | return 0; | ||
3090 | return __e1000_maybe_stop_tx(netdev, size); | ||
3091 | } | ||
3092 | |||
3093 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | ||
3094 | static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, | ||
3095 | struct net_device *netdev) | ||
3096 | { | ||
3097 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3098 | struct e1000_hw *hw = &adapter->hw; | ||
3099 | struct e1000_tx_ring *tx_ring; | ||
3100 | unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; | ||
3101 | unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | ||
3102 | unsigned int tx_flags = 0; | ||
3103 | unsigned int len = skb_headlen(skb); | ||
3104 | unsigned int nr_frags; | ||
3105 | unsigned int mss; | ||
3106 | int count = 0; | ||
3107 | int tso; | ||
3108 | unsigned int f; | ||
3109 | |||
3110 | /* This goes back to the question of how to logically map a tx queue | ||
3111 | * to a flow. Right now, performance is impacted slightly negatively | ||
3112 | * if using multiple tx queues. If the stack breaks away from a | ||
3113 | * single qdisc implementation, we can look at this again. */ | ||
3114 | tx_ring = adapter->tx_ring; | ||
3115 | |||
3116 | if (unlikely(skb->len <= 0)) { | ||
3117 | dev_kfree_skb_any(skb); | ||
3118 | return NETDEV_TX_OK; | ||
3119 | } | ||
3120 | |||
3121 | mss = skb_shinfo(skb)->gso_size; | ||
3122 | /* The controller does a simple calculation to | ||
3123 | * make sure there is enough room in the FIFO before | ||
3124 | * initiating the DMA for each buffer. The calc is: | ||
3125 | * 4 = ceil(buffer len/mss). To make sure we don't | ||
3126 | * overrun the FIFO, adjust the max buffer len if mss | ||
3127 | * drops. */ | ||
3128 | if (mss) { | ||
3129 | u8 hdr_len; | ||
3130 | max_per_txd = min(mss << 2, max_per_txd); | ||
3131 | max_txd_pwr = fls(max_per_txd) - 1; | ||
3132 | |||
3133 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | ||
3134 | if (skb->data_len && hdr_len == len) { | ||
3135 | switch (hw->mac_type) { | ||
3136 | unsigned int pull_size; | ||
3137 | case e1000_82544: | ||
3138 | /* Make sure we have room to chop off 4 bytes, | ||
3139 | * and that the end alignment will work out to | ||
3140 | * this hardware's requirements | ||
3141 | * NOTE: this is a TSO only workaround | ||
3142 | * if end byte alignment not correct move us | ||
3143 | * into the next dword */ | ||
3144 | if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) | ||
3145 | break; | ||
3146 | /* fall through */ | ||
3147 | pull_size = min((unsigned int)4, skb->data_len); | ||
3148 | if (!__pskb_pull_tail(skb, pull_size)) { | ||
3149 | e_err(drv, "__pskb_pull_tail " | ||
3150 | "failed.\n"); | ||
3151 | dev_kfree_skb_any(skb); | ||
3152 | return NETDEV_TX_OK; | ||
3153 | } | ||
3154 | len = skb_headlen(skb); | ||
3155 | break; | ||
3156 | default: | ||
3157 | /* do nothing */ | ||
3158 | break; | ||
3159 | } | ||
3160 | } | ||
3161 | } | ||
3162 | |||
3163 | /* reserve a descriptor for the offload context */ | ||
3164 | if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | ||
3165 | count++; | ||
3166 | count++; | ||
3167 | |||
3168 | /* Controller Erratum workaround */ | ||
3169 | if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) | ||
3170 | count++; | ||
3171 | |||
3172 | count += TXD_USE_COUNT(len, max_txd_pwr); | ||
3173 | |||
3174 | if (adapter->pcix_82544) | ||
3175 | count++; | ||
3176 | |||
3177 | /* work-around for errata 10 and it applies to all controllers | ||
3178 | * in PCI-X mode, so add one more descriptor to the count | ||
3179 | */ | ||
3180 | if (unlikely((hw->bus_type == e1000_bus_type_pcix) && | ||
3181 | (len > 2015))) | ||
3182 | count++; | ||
3183 | |||
3184 | nr_frags = skb_shinfo(skb)->nr_frags; | ||
3185 | for (f = 0; f < nr_frags; f++) | ||
3186 | count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), | ||
3187 | max_txd_pwr); | ||
3188 | if (adapter->pcix_82544) | ||
3189 | count += nr_frags; | ||
3190 | |||
3191 | /* need: count + 2 desc gap to keep tail from touching | ||
3192 | * head, otherwise try next time */ | ||
3193 | if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) | ||
3194 | return NETDEV_TX_BUSY; | ||
3195 | |||
3196 | if (unlikely((hw->mac_type == e1000_82547) && | ||
3197 | (e1000_82547_fifo_workaround(adapter, skb)))) { | ||
3198 | netif_stop_queue(netdev); | ||
3199 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
3200 | schedule_delayed_work(&adapter->fifo_stall_task, 1); | ||
3201 | return NETDEV_TX_BUSY; | ||
3202 | } | ||
3203 | |||
3204 | if (vlan_tx_tag_present(skb)) { | ||
3205 | tx_flags |= E1000_TX_FLAGS_VLAN; | ||
3206 | tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | ||
3207 | } | ||
3208 | |||
3209 | first = tx_ring->next_to_use; | ||
3210 | |||
3211 | tso = e1000_tso(adapter, tx_ring, skb); | ||
3212 | if (tso < 0) { | ||
3213 | dev_kfree_skb_any(skb); | ||
3214 | return NETDEV_TX_OK; | ||
3215 | } | ||
3216 | |||
3217 | if (likely(tso)) { | ||
3218 | if (likely(hw->mac_type != e1000_82544)) | ||
3219 | tx_ring->last_tx_tso = 1; | ||
3220 | tx_flags |= E1000_TX_FLAGS_TSO; | ||
3221 | } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) | ||
3222 | tx_flags |= E1000_TX_FLAGS_CSUM; | ||
3223 | |||
3224 | if (likely(skb->protocol == htons(ETH_P_IP))) | ||
3225 | tx_flags |= E1000_TX_FLAGS_IPV4; | ||
3226 | |||
3227 | count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, | ||
3228 | nr_frags, mss); | ||
3229 | |||
3230 | if (count) { | ||
3231 | e1000_tx_queue(adapter, tx_ring, tx_flags, count); | ||
3232 | /* Make sure there is space in the ring for the next send. */ | ||
3233 | e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); | ||
3234 | |||
3235 | } else { | ||
3236 | dev_kfree_skb_any(skb); | ||
3237 | tx_ring->buffer_info[first].time_stamp = 0; | ||
3238 | tx_ring->next_to_use = first; | ||
3239 | } | ||
3240 | |||
3241 | return NETDEV_TX_OK; | ||
3242 | } | ||
3243 | |||
3244 | /** | ||
3245 | * e1000_tx_timeout - Respond to a Tx Hang | ||
3246 | * @netdev: network interface device structure | ||
3247 | **/ | ||
3248 | |||
3249 | static void e1000_tx_timeout(struct net_device *netdev) | ||
3250 | { | ||
3251 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3252 | |||
3253 | /* Do the reset outside of interrupt context */ | ||
3254 | adapter->tx_timeout_count++; | ||
3255 | schedule_work(&adapter->reset_task); | ||
3256 | } | ||
3257 | |||
3258 | static void e1000_reset_task(struct work_struct *work) | ||
3259 | { | ||
3260 | struct e1000_adapter *adapter = | ||
3261 | container_of(work, struct e1000_adapter, reset_task); | ||
3262 | |||
3263 | if (test_bit(__E1000_DOWN, &adapter->flags)) | ||
3264 | return; | ||
3265 | e1000_reinit_safe(adapter); | ||
3266 | } | ||
3267 | |||
3268 | /** | ||
3269 | * e1000_get_stats - Get System Network Statistics | ||
3270 | * @netdev: network interface device structure | ||
3271 | * | ||
3272 | * Returns the address of the device statistics structure. | ||
3273 | * The statistics are actually updated from the watchdog. | ||
3274 | **/ | ||
3275 | |||
3276 | static struct net_device_stats *e1000_get_stats(struct net_device *netdev) | ||
3277 | { | ||
3278 | /* only return the current stats */ | ||
3279 | return &netdev->stats; | ||
3280 | } | ||
3281 | |||
3282 | /** | ||
3283 | * e1000_change_mtu - Change the Maximum Transfer Unit | ||
3284 | * @netdev: network interface device structure | ||
3285 | * @new_mtu: new value for maximum frame size | ||
3286 | * | ||
3287 | * Returns 0 on success, negative on failure | ||
3288 | **/ | ||
3289 | |||
3290 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) | ||
3291 | { | ||
3292 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3293 | struct e1000_hw *hw = &adapter->hw; | ||
3294 | int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | ||
3295 | |||
3296 | if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || | ||
3297 | (max_frame > MAX_JUMBO_FRAME_SIZE)) { | ||
3298 | e_err(probe, "Invalid MTU setting\n"); | ||
3299 | return -EINVAL; | ||
3300 | } | ||
3301 | |||
3302 | /* Adapter-specific max frame size limits. */ | ||
3303 | switch (hw->mac_type) { | ||
3304 | case e1000_undefined ... e1000_82542_rev2_1: | ||
3305 | if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { | ||
3306 | e_err(probe, "Jumbo Frames not supported.\n"); | ||
3307 | return -EINVAL; | ||
3308 | } | ||
3309 | break; | ||
3310 | default: | ||
3311 | /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ | ||
3312 | break; | ||
3313 | } | ||
3314 | |||
3315 | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | ||
3316 | msleep(1); | ||
3317 | /* e1000_down has a dependency on max_frame_size */ | ||
3318 | hw->max_frame_size = max_frame; | ||
3319 | if (netif_running(netdev)) | ||
3320 | e1000_down(adapter); | ||
3321 | |||
3322 | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | ||
3323 | * means we reserve 2 more, this pushes us to allocate from the next | ||
3324 | * larger slab size. | ||
3325 | * i.e. RXBUFFER_2048 --> size-4096 slab | ||
3326 | * however with the new *_jumbo_rx* routines, jumbo receives will use | ||
3327 | * fragmented skbs */ | ||
3328 | |||
3329 | if (max_frame <= E1000_RXBUFFER_2048) | ||
3330 | adapter->rx_buffer_len = E1000_RXBUFFER_2048; | ||
3331 | else | ||
3332 | #if (PAGE_SIZE >= E1000_RXBUFFER_16384) | ||
3333 | adapter->rx_buffer_len = E1000_RXBUFFER_16384; | ||
3334 | #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) | ||
3335 | adapter->rx_buffer_len = PAGE_SIZE; | ||
3336 | #endif | ||
3337 | |||
3338 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | ||
3339 | if (!hw->tbi_compatibility_on && | ||
3340 | ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || | ||
3341 | (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) | ||
3342 | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
3343 | |||
3344 | pr_info("%s changing MTU from %d to %d\n", | ||
3345 | netdev->name, netdev->mtu, new_mtu); | ||
3346 | netdev->mtu = new_mtu; | ||
3347 | |||
3348 | if (netif_running(netdev)) | ||
3349 | e1000_up(adapter); | ||
3350 | else | ||
3351 | e1000_reset(adapter); | ||
3352 | |||
3353 | clear_bit(__E1000_RESETTING, &adapter->flags); | ||
3354 | |||
3355 | return 0; | ||
3356 | } | ||
3357 | |||
3358 | /** | ||
3359 | * e1000_update_stats - Update the board statistics counters | ||
3360 | * @adapter: board private structure | ||
3361 | **/ | ||
3362 | |||
3363 | void e1000_update_stats(struct e1000_adapter *adapter) | ||
3364 | { | ||
3365 | struct net_device *netdev = adapter->netdev; | ||
3366 | struct e1000_hw *hw = &adapter->hw; | ||
3367 | struct pci_dev *pdev = adapter->pdev; | ||
3368 | unsigned long flags; | ||
3369 | u16 phy_tmp; | ||
3370 | |||
3371 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | ||
3372 | |||
3373 | /* | ||
3374 | * Prevent stats update while adapter is being reset, or if the pci | ||
3375 | * connection is down. | ||
3376 | */ | ||
3377 | if (adapter->link_speed == 0) | ||
3378 | return; | ||
3379 | if (pci_channel_offline(pdev)) | ||
3380 | return; | ||
3381 | |||
3382 | spin_lock_irqsave(&adapter->stats_lock, flags); | ||
3383 | |||
3384 | /* these counters are modified from e1000_tbi_adjust_stats, | ||
3385 | * called from the interrupt context, so they must only | ||
3386 | * be written while holding adapter->stats_lock | ||
3387 | */ | ||
3388 | |||
3389 | adapter->stats.crcerrs += er32(CRCERRS); | ||
3390 | adapter->stats.gprc += er32(GPRC); | ||
3391 | adapter->stats.gorcl += er32(GORCL); | ||
3392 | adapter->stats.gorch += er32(GORCH); | ||
3393 | adapter->stats.bprc += er32(BPRC); | ||
3394 | adapter->stats.mprc += er32(MPRC); | ||
3395 | adapter->stats.roc += er32(ROC); | ||
3396 | |||
3397 | adapter->stats.prc64 += er32(PRC64); | ||
3398 | adapter->stats.prc127 += er32(PRC127); | ||
3399 | adapter->stats.prc255 += er32(PRC255); | ||
3400 | adapter->stats.prc511 += er32(PRC511); | ||
3401 | adapter->stats.prc1023 += er32(PRC1023); | ||
3402 | adapter->stats.prc1522 += er32(PRC1522); | ||
3403 | |||
3404 | adapter->stats.symerrs += er32(SYMERRS); | ||
3405 | adapter->stats.mpc += er32(MPC); | ||
3406 | adapter->stats.scc += er32(SCC); | ||
3407 | adapter->stats.ecol += er32(ECOL); | ||
3408 | adapter->stats.mcc += er32(MCC); | ||
3409 | adapter->stats.latecol += er32(LATECOL); | ||
3410 | adapter->stats.dc += er32(DC); | ||
3411 | adapter->stats.sec += er32(SEC); | ||
3412 | adapter->stats.rlec += er32(RLEC); | ||
3413 | adapter->stats.xonrxc += er32(XONRXC); | ||
3414 | adapter->stats.xontxc += er32(XONTXC); | ||
3415 | adapter->stats.xoffrxc += er32(XOFFRXC); | ||
3416 | adapter->stats.xofftxc += er32(XOFFTXC); | ||
3417 | adapter->stats.fcruc += er32(FCRUC); | ||
3418 | adapter->stats.gptc += er32(GPTC); | ||
3419 | adapter->stats.gotcl += er32(GOTCL); | ||
3420 | adapter->stats.gotch += er32(GOTCH); | ||
3421 | adapter->stats.rnbc += er32(RNBC); | ||
3422 | adapter->stats.ruc += er32(RUC); | ||
3423 | adapter->stats.rfc += er32(RFC); | ||
3424 | adapter->stats.rjc += er32(RJC); | ||
3425 | adapter->stats.torl += er32(TORL); | ||
3426 | adapter->stats.torh += er32(TORH); | ||
3427 | adapter->stats.totl += er32(TOTL); | ||
3428 | adapter->stats.toth += er32(TOTH); | ||
3429 | adapter->stats.tpr += er32(TPR); | ||
3430 | |||
3431 | adapter->stats.ptc64 += er32(PTC64); | ||
3432 | adapter->stats.ptc127 += er32(PTC127); | ||
3433 | adapter->stats.ptc255 += er32(PTC255); | ||
3434 | adapter->stats.ptc511 += er32(PTC511); | ||
3435 | adapter->stats.ptc1023 += er32(PTC1023); | ||
3436 | adapter->stats.ptc1522 += er32(PTC1522); | ||
3437 | |||
3438 | adapter->stats.mptc += er32(MPTC); | ||
3439 | adapter->stats.bptc += er32(BPTC); | ||
3440 | |||
3441 | /* used for adaptive IFS */ | ||
3442 | |||
3443 | hw->tx_packet_delta = er32(TPT); | ||
3444 | adapter->stats.tpt += hw->tx_packet_delta; | ||
3445 | hw->collision_delta = er32(COLC); | ||
3446 | adapter->stats.colc += hw->collision_delta; | ||
3447 | |||
3448 | if (hw->mac_type >= e1000_82543) { | ||
3449 | adapter->stats.algnerrc += er32(ALGNERRC); | ||
3450 | adapter->stats.rxerrc += er32(RXERRC); | ||
3451 | adapter->stats.tncrs += er32(TNCRS); | ||
3452 | adapter->stats.cexterr += er32(CEXTERR); | ||
3453 | adapter->stats.tsctc += er32(TSCTC); | ||
3454 | adapter->stats.tsctfc += er32(TSCTFC); | ||
3455 | } | ||
3456 | |||
3457 | /* Fill out the OS statistics structure */ | ||
3458 | netdev->stats.multicast = adapter->stats.mprc; | ||
3459 | netdev->stats.collisions = adapter->stats.colc; | ||
3460 | |||
3461 | /* Rx Errors */ | ||
3462 | |||
3463 | /* RLEC on some newer hardware can be incorrect so build | ||
3464 | * our own version based on RUC and ROC */ | ||
3465 | netdev->stats.rx_errors = adapter->stats.rxerrc + | ||
3466 | adapter->stats.crcerrs + adapter->stats.algnerrc + | ||
3467 | adapter->stats.ruc + adapter->stats.roc + | ||
3468 | adapter->stats.cexterr; | ||
3469 | adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; | ||
3470 | netdev->stats.rx_length_errors = adapter->stats.rlerrc; | ||
3471 | netdev->stats.rx_crc_errors = adapter->stats.crcerrs; | ||
3472 | netdev->stats.rx_frame_errors = adapter->stats.algnerrc; | ||
3473 | netdev->stats.rx_missed_errors = adapter->stats.mpc; | ||
3474 | |||
3475 | /* Tx Errors */ | ||
3476 | adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; | ||
3477 | netdev->stats.tx_errors = adapter->stats.txerrc; | ||
3478 | netdev->stats.tx_aborted_errors = adapter->stats.ecol; | ||
3479 | netdev->stats.tx_window_errors = adapter->stats.latecol; | ||
3480 | netdev->stats.tx_carrier_errors = adapter->stats.tncrs; | ||
3481 | if (hw->bad_tx_carr_stats_fd && | ||
3482 | adapter->link_duplex == FULL_DUPLEX) { | ||
3483 | netdev->stats.tx_carrier_errors = 0; | ||
3484 | adapter->stats.tncrs = 0; | ||
3485 | } | ||
3486 | |||
3487 | /* Tx Dropped needs to be maintained elsewhere */ | ||
3488 | |||
3489 | /* Phy Stats */ | ||
3490 | if (hw->media_type == e1000_media_type_copper) { | ||
3491 | if ((adapter->link_speed == SPEED_1000) && | ||
3492 | (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { | ||
3493 | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | ||
3494 | adapter->phy_stats.idle_errors += phy_tmp; | ||
3495 | } | ||
3496 | |||
3497 | if ((hw->mac_type <= e1000_82546) && | ||
3498 | (hw->phy_type == e1000_phy_m88) && | ||
3499 | !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) | ||
3500 | adapter->phy_stats.receive_errors += phy_tmp; | ||
3501 | } | ||
3502 | |||
3503 | /* Management Stats */ | ||
3504 | if (hw->has_smbus) { | ||
3505 | adapter->stats.mgptc += er32(MGTPTC); | ||
3506 | adapter->stats.mgprc += er32(MGTPRC); | ||
3507 | adapter->stats.mgpdc += er32(MGTPDC); | ||
3508 | } | ||
3509 | |||
3510 | spin_unlock_irqrestore(&adapter->stats_lock, flags); | ||
3511 | } | ||
3512 | |||
3513 | /** | ||
3514 | * e1000_intr - Interrupt Handler | ||
3515 | * @irq: interrupt number | ||
3516 | * @data: pointer to a network interface device structure | ||
3517 | **/ | ||
3518 | |||
3519 | static irqreturn_t e1000_intr(int irq, void *data) | ||
3520 | { | ||
3521 | struct net_device *netdev = data; | ||
3522 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3523 | struct e1000_hw *hw = &adapter->hw; | ||
3524 | u32 icr = er32(ICR); | ||
3525 | |||
3526 | if (unlikely((!icr))) | ||
3527 | return IRQ_NONE; /* Not our interrupt */ | ||
3528 | |||
3529 | /* | ||
3530 | * we might have caused the interrupt, but the above | ||
3531 | * read cleared it, and just in case the driver is | ||
3532 | * down there is nothing to do so return handled | ||
3533 | */ | ||
3534 | if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) | ||
3535 | return IRQ_HANDLED; | ||
3536 | |||
3537 | if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { | ||
3538 | hw->get_link_status = 1; | ||
3539 | /* guard against interrupt when we're going down */ | ||
3540 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
3541 | schedule_delayed_work(&adapter->watchdog_task, 1); | ||
3542 | } | ||
3543 | |||
3544 | /* disable interrupts, without the synchronize_irq bit */ | ||
3545 | ew32(IMC, ~0); | ||
3546 | E1000_WRITE_FLUSH(); | ||
3547 | |||
3548 | if (likely(napi_schedule_prep(&adapter->napi))) { | ||
3549 | adapter->total_tx_bytes = 0; | ||
3550 | adapter->total_tx_packets = 0; | ||
3551 | adapter->total_rx_bytes = 0; | ||
3552 | adapter->total_rx_packets = 0; | ||
3553 | __napi_schedule(&adapter->napi); | ||
3554 | } else { | ||
3555 | /* this really should not happen! if it does it is basically a | ||
3556 | * bug, but not a hard error, so enable ints and continue */ | ||
3557 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
3558 | e1000_irq_enable(adapter); | ||
3559 | } | ||
3560 | |||
3561 | return IRQ_HANDLED; | ||
3562 | } | ||
3563 | |||
3564 | /** | ||
3565 | * e1000_clean - NAPI Rx polling callback | ||
3566 | * @adapter: board private structure | ||
3567 | **/ | ||
3568 | static int e1000_clean(struct napi_struct *napi, int budget) | ||
3569 | { | ||
3570 | struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); | ||
3571 | int tx_clean_complete = 0, work_done = 0; | ||
3572 | |||
3573 | tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); | ||
3574 | |||
3575 | adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); | ||
3576 | |||
3577 | if (!tx_clean_complete) | ||
3578 | work_done = budget; | ||
3579 | |||
3580 | /* If budget not fully consumed, exit the polling mode */ | ||
3581 | if (work_done < budget) { | ||
3582 | if (likely(adapter->itr_setting & 3)) | ||
3583 | e1000_set_itr(adapter); | ||
3584 | napi_complete(napi); | ||
3585 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
3586 | e1000_irq_enable(adapter); | ||
3587 | } | ||
3588 | |||
3589 | return work_done; | ||
3590 | } | ||
3591 | |||
3592 | /** | ||
3593 | * e1000_clean_tx_irq - Reclaim resources after transmit completes | ||
3594 | * @adapter: board private structure | ||
3595 | **/ | ||
3596 | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, | ||
3597 | struct e1000_tx_ring *tx_ring) | ||
3598 | { | ||
3599 | struct e1000_hw *hw = &adapter->hw; | ||
3600 | struct net_device *netdev = adapter->netdev; | ||
3601 | struct e1000_tx_desc *tx_desc, *eop_desc; | ||
3602 | struct e1000_buffer *buffer_info; | ||
3603 | unsigned int i, eop; | ||
3604 | unsigned int count = 0; | ||
3605 | unsigned int total_tx_bytes=0, total_tx_packets=0; | ||
3606 | |||
3607 | i = tx_ring->next_to_clean; | ||
3608 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
3609 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
3610 | |||
3611 | while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && | ||
3612 | (count < tx_ring->count)) { | ||
3613 | bool cleaned = false; | ||
3614 | rmb(); /* read buffer_info after eop_desc */ | ||
3615 | for ( ; !cleaned; count++) { | ||
3616 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
3617 | buffer_info = &tx_ring->buffer_info[i]; | ||
3618 | cleaned = (i == eop); | ||
3619 | |||
3620 | if (cleaned) { | ||
3621 | total_tx_packets += buffer_info->segs; | ||
3622 | total_tx_bytes += buffer_info->bytecount; | ||
3623 | } | ||
3624 | e1000_unmap_and_free_tx_resource(adapter, buffer_info); | ||
3625 | tx_desc->upper.data = 0; | ||
3626 | |||
3627 | if (unlikely(++i == tx_ring->count)) i = 0; | ||
3628 | } | ||
3629 | |||
3630 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
3631 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
3632 | } | ||
3633 | |||
3634 | tx_ring->next_to_clean = i; | ||
3635 | |||
3636 | #define TX_WAKE_THRESHOLD 32 | ||
3637 | if (unlikely(count && netif_carrier_ok(netdev) && | ||
3638 | E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { | ||
3639 | /* Make sure that anybody stopping the queue after this | ||
3640 | * sees the new next_to_clean. | ||
3641 | */ | ||
3642 | smp_mb(); | ||
3643 | |||
3644 | if (netif_queue_stopped(netdev) && | ||
3645 | !(test_bit(__E1000_DOWN, &adapter->flags))) { | ||
3646 | netif_wake_queue(netdev); | ||
3647 | ++adapter->restart_queue; | ||
3648 | } | ||
3649 | } | ||
3650 | |||
3651 | if (adapter->detect_tx_hung) { | ||
3652 | /* Detect a transmit hang in hardware, this serializes the | ||
3653 | * check with the clearing of time_stamp and movement of i */ | ||
3654 | adapter->detect_tx_hung = false; | ||
3655 | if (tx_ring->buffer_info[eop].time_stamp && | ||
3656 | time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + | ||
3657 | (adapter->tx_timeout_factor * HZ)) && | ||
3658 | !(er32(STATUS) & E1000_STATUS_TXOFF)) { | ||
3659 | |||
3660 | /* detected Tx unit hang */ | ||
3661 | e_err(drv, "Detected Tx Unit Hang\n" | ||
3662 | " Tx Queue <%lu>\n" | ||
3663 | " TDH <%x>\n" | ||
3664 | " TDT <%x>\n" | ||
3665 | " next_to_use <%x>\n" | ||
3666 | " next_to_clean <%x>\n" | ||
3667 | "buffer_info[next_to_clean]\n" | ||
3668 | " time_stamp <%lx>\n" | ||
3669 | " next_to_watch <%x>\n" | ||
3670 | " jiffies <%lx>\n" | ||
3671 | " next_to_watch.status <%x>\n", | ||
3672 | (unsigned long)((tx_ring - adapter->tx_ring) / | ||
3673 | sizeof(struct e1000_tx_ring)), | ||
3674 | readl(hw->hw_addr + tx_ring->tdh), | ||
3675 | readl(hw->hw_addr + tx_ring->tdt), | ||
3676 | tx_ring->next_to_use, | ||
3677 | tx_ring->next_to_clean, | ||
3678 | tx_ring->buffer_info[eop].time_stamp, | ||
3679 | eop, | ||
3680 | jiffies, | ||
3681 | eop_desc->upper.fields.status); | ||
3682 | netif_stop_queue(netdev); | ||
3683 | } | ||
3684 | } | ||
3685 | adapter->total_tx_bytes += total_tx_bytes; | ||
3686 | adapter->total_tx_packets += total_tx_packets; | ||
3687 | netdev->stats.tx_bytes += total_tx_bytes; | ||
3688 | netdev->stats.tx_packets += total_tx_packets; | ||
3689 | return count < tx_ring->count; | ||
3690 | } | ||
3691 | |||
3692 | /** | ||
3693 | * e1000_rx_checksum - Receive Checksum Offload for 82543 | ||
3694 | * @adapter: board private structure | ||
3695 | * @status_err: receive descriptor status and error fields | ||
3696 | * @csum: receive descriptor csum field | ||
3697 | * @sk_buff: socket buffer with received data | ||
3698 | **/ | ||
3699 | |||
3700 | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, | ||
3701 | u32 csum, struct sk_buff *skb) | ||
3702 | { | ||
3703 | struct e1000_hw *hw = &adapter->hw; | ||
3704 | u16 status = (u16)status_err; | ||
3705 | u8 errors = (u8)(status_err >> 24); | ||
3706 | |||
3707 | skb_checksum_none_assert(skb); | ||
3708 | |||
3709 | /* 82543 or newer only */ | ||
3710 | if (unlikely(hw->mac_type < e1000_82543)) return; | ||
3711 | /* Ignore Checksum bit is set */ | ||
3712 | if (unlikely(status & E1000_RXD_STAT_IXSM)) return; | ||
3713 | /* TCP/UDP checksum error bit is set */ | ||
3714 | if (unlikely(errors & E1000_RXD_ERR_TCPE)) { | ||
3715 | /* let the stack verify checksum errors */ | ||
3716 | adapter->hw_csum_err++; | ||
3717 | return; | ||
3718 | } | ||
3719 | /* TCP/UDP Checksum has not been calculated */ | ||
3720 | if (!(status & E1000_RXD_STAT_TCPCS)) | ||
3721 | return; | ||
3722 | |||
3723 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
3724 | if (likely(status & E1000_RXD_STAT_TCPCS)) { | ||
3725 | /* TCP checksum is good */ | ||
3726 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
3727 | } | ||
3728 | adapter->hw_csum_good++; | ||
3729 | } | ||
3730 | |||
3731 | /** | ||
3732 | * e1000_consume_page - helper function | ||
3733 | **/ | ||
3734 | static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, | ||
3735 | u16 length) | ||
3736 | { | ||
3737 | bi->page = NULL; | ||
3738 | skb->len += length; | ||
3739 | skb->data_len += length; | ||
3740 | skb->truesize += PAGE_SIZE; | ||
3741 | } | ||
3742 | |||
3743 | /** | ||
3744 | * e1000_receive_skb - helper function to handle rx indications | ||
3745 | * @adapter: board private structure | ||
3746 | * @status: descriptor status field as written by hardware | ||
3747 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | ||
3748 | * @skb: pointer to sk_buff to be indicated to stack | ||
3749 | */ | ||
3750 | static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, | ||
3751 | __le16 vlan, struct sk_buff *skb) | ||
3752 | { | ||
3753 | skb->protocol = eth_type_trans(skb, adapter->netdev); | ||
3754 | |||
3755 | if (status & E1000_RXD_STAT_VP) { | ||
3756 | u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; | ||
3757 | |||
3758 | __vlan_hwaccel_put_tag(skb, vid); | ||
3759 | } | ||
3760 | napi_gro_receive(&adapter->napi, skb); | ||
3761 | } | ||
3762 | |||
3763 | /** | ||
3764 | * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy | ||
3765 | * @adapter: board private structure | ||
3766 | * @rx_ring: ring to clean | ||
3767 | * @work_done: amount of napi work completed this call | ||
3768 | * @work_to_do: max amount of work allowed for this call to do | ||
3769 | * | ||
3770 | * the return value indicates whether actual cleaning was done, there | ||
3771 | * is no guarantee that everything was cleaned | ||
3772 | */ | ||
3773 | static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, | ||
3774 | struct e1000_rx_ring *rx_ring, | ||
3775 | int *work_done, int work_to_do) | ||
3776 | { | ||
3777 | struct e1000_hw *hw = &adapter->hw; | ||
3778 | struct net_device *netdev = adapter->netdev; | ||
3779 | struct pci_dev *pdev = adapter->pdev; | ||
3780 | struct e1000_rx_desc *rx_desc, *next_rxd; | ||
3781 | struct e1000_buffer *buffer_info, *next_buffer; | ||
3782 | unsigned long irq_flags; | ||
3783 | u32 length; | ||
3784 | unsigned int i; | ||
3785 | int cleaned_count = 0; | ||
3786 | bool cleaned = false; | ||
3787 | unsigned int total_rx_bytes=0, total_rx_packets=0; | ||
3788 | |||
3789 | i = rx_ring->next_to_clean; | ||
3790 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
3791 | buffer_info = &rx_ring->buffer_info[i]; | ||
3792 | |||
3793 | while (rx_desc->status & E1000_RXD_STAT_DD) { | ||
3794 | struct sk_buff *skb; | ||
3795 | u8 status; | ||
3796 | |||
3797 | if (*work_done >= work_to_do) | ||
3798 | break; | ||
3799 | (*work_done)++; | ||
3800 | rmb(); /* read descriptor and rx_buffer_info after status DD */ | ||
3801 | |||
3802 | status = rx_desc->status; | ||
3803 | skb = buffer_info->skb; | ||
3804 | buffer_info->skb = NULL; | ||
3805 | |||
3806 | if (++i == rx_ring->count) i = 0; | ||
3807 | next_rxd = E1000_RX_DESC(*rx_ring, i); | ||
3808 | prefetch(next_rxd); | ||
3809 | |||
3810 | next_buffer = &rx_ring->buffer_info[i]; | ||
3811 | |||
3812 | cleaned = true; | ||
3813 | cleaned_count++; | ||
3814 | dma_unmap_page(&pdev->dev, buffer_info->dma, | ||
3815 | buffer_info->length, DMA_FROM_DEVICE); | ||
3816 | buffer_info->dma = 0; | ||
3817 | |||
3818 | length = le16_to_cpu(rx_desc->length); | ||
3819 | |||
3820 | /* errors is only valid for DD + EOP descriptors */ | ||
3821 | if (unlikely((status & E1000_RXD_STAT_EOP) && | ||
3822 | (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { | ||
3823 | u8 last_byte = *(skb->data + length - 1); | ||
3824 | if (TBI_ACCEPT(hw, status, rx_desc->errors, length, | ||
3825 | last_byte)) { | ||
3826 | spin_lock_irqsave(&adapter->stats_lock, | ||
3827 | irq_flags); | ||
3828 | e1000_tbi_adjust_stats(hw, &adapter->stats, | ||
3829 | length, skb->data); | ||
3830 | spin_unlock_irqrestore(&adapter->stats_lock, | ||
3831 | irq_flags); | ||
3832 | length--; | ||
3833 | } else { | ||
3834 | /* recycle both page and skb */ | ||
3835 | buffer_info->skb = skb; | ||
3836 | /* an error means any chain goes out the window | ||
3837 | * too */ | ||
3838 | if (rx_ring->rx_skb_top) | ||
3839 | dev_kfree_skb(rx_ring->rx_skb_top); | ||
3840 | rx_ring->rx_skb_top = NULL; | ||
3841 | goto next_desc; | ||
3842 | } | ||
3843 | } | ||
3844 | |||
3845 | #define rxtop rx_ring->rx_skb_top | ||
3846 | if (!(status & E1000_RXD_STAT_EOP)) { | ||
3847 | /* this descriptor is only the beginning (or middle) */ | ||
3848 | if (!rxtop) { | ||
3849 | /* this is the beginning of a chain */ | ||
3850 | rxtop = skb; | ||
3851 | skb_fill_page_desc(rxtop, 0, buffer_info->page, | ||
3852 | 0, length); | ||
3853 | } else { | ||
3854 | /* this is the middle of a chain */ | ||
3855 | skb_fill_page_desc(rxtop, | ||
3856 | skb_shinfo(rxtop)->nr_frags, | ||
3857 | buffer_info->page, 0, length); | ||
3858 | /* re-use the skb, only consumed the page */ | ||
3859 | buffer_info->skb = skb; | ||
3860 | } | ||
3861 | e1000_consume_page(buffer_info, rxtop, length); | ||
3862 | goto next_desc; | ||
3863 | } else { | ||
3864 | if (rxtop) { | ||
3865 | /* end of the chain */ | ||
3866 | skb_fill_page_desc(rxtop, | ||
3867 | skb_shinfo(rxtop)->nr_frags, | ||
3868 | buffer_info->page, 0, length); | ||
3869 | /* re-use the current skb, we only consumed the | ||
3870 | * page */ | ||
3871 | buffer_info->skb = skb; | ||
3872 | skb = rxtop; | ||
3873 | rxtop = NULL; | ||
3874 | e1000_consume_page(buffer_info, skb, length); | ||
3875 | } else { | ||
3876 | /* no chain, got EOP, this buf is the packet | ||
3877 | * copybreak to save the put_page/alloc_page */ | ||
3878 | if (length <= copybreak && | ||
3879 | skb_tailroom(skb) >= length) { | ||
3880 | u8 *vaddr; | ||
3881 | vaddr = kmap_atomic(buffer_info->page, | ||
3882 | KM_SKB_DATA_SOFTIRQ); | ||
3883 | memcpy(skb_tail_pointer(skb), vaddr, length); | ||
3884 | kunmap_atomic(vaddr, | ||
3885 | KM_SKB_DATA_SOFTIRQ); | ||
3886 | /* re-use the page, so don't erase | ||
3887 | * buffer_info->page */ | ||
3888 | skb_put(skb, length); | ||
3889 | } else { | ||
3890 | skb_fill_page_desc(skb, 0, | ||
3891 | buffer_info->page, 0, | ||
3892 | length); | ||
3893 | e1000_consume_page(buffer_info, skb, | ||
3894 | length); | ||
3895 | } | ||
3896 | } | ||
3897 | } | ||
3898 | |||
3899 | /* Receive Checksum Offload XXX recompute due to CRC strip? */ | ||
3900 | e1000_rx_checksum(adapter, | ||
3901 | (u32)(status) | | ||
3902 | ((u32)(rx_desc->errors) << 24), | ||
3903 | le16_to_cpu(rx_desc->csum), skb); | ||
3904 | |||
3905 | pskb_trim(skb, skb->len - 4); | ||
3906 | |||
3907 | /* probably a little skewed due to removing CRC */ | ||
3908 | total_rx_bytes += skb->len; | ||
3909 | total_rx_packets++; | ||
3910 | |||
3911 | /* eth type trans needs skb->data to point to something */ | ||
3912 | if (!pskb_may_pull(skb, ETH_HLEN)) { | ||
3913 | e_err(drv, "pskb_may_pull failed.\n"); | ||
3914 | dev_kfree_skb(skb); | ||
3915 | goto next_desc; | ||
3916 | } | ||
3917 | |||
3918 | e1000_receive_skb(adapter, status, rx_desc->special, skb); | ||
3919 | |||
3920 | next_desc: | ||
3921 | rx_desc->status = 0; | ||
3922 | |||
3923 | /* return some buffers to hardware, one at a time is too slow */ | ||
3924 | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | ||
3925 | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | ||
3926 | cleaned_count = 0; | ||
3927 | } | ||
3928 | |||
3929 | /* use prefetched values */ | ||
3930 | rx_desc = next_rxd; | ||
3931 | buffer_info = next_buffer; | ||
3932 | } | ||
3933 | rx_ring->next_to_clean = i; | ||
3934 | |||
3935 | cleaned_count = E1000_DESC_UNUSED(rx_ring); | ||
3936 | if (cleaned_count) | ||
3937 | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | ||
3938 | |||
3939 | adapter->total_rx_packets += total_rx_packets; | ||
3940 | adapter->total_rx_bytes += total_rx_bytes; | ||
3941 | netdev->stats.rx_bytes += total_rx_bytes; | ||
3942 | netdev->stats.rx_packets += total_rx_packets; | ||
3943 | return cleaned; | ||
3944 | } | ||
3945 | |||
3946 | /* | ||
3947 | * this should improve performance for small packets with large amounts | ||
3948 | * of reassembly being done in the stack | ||
3949 | */ | ||
3950 | static void e1000_check_copybreak(struct net_device *netdev, | ||
3951 | struct e1000_buffer *buffer_info, | ||
3952 | u32 length, struct sk_buff **skb) | ||
3953 | { | ||
3954 | struct sk_buff *new_skb; | ||
3955 | |||
3956 | if (length > copybreak) | ||
3957 | return; | ||
3958 | |||
3959 | new_skb = netdev_alloc_skb_ip_align(netdev, length); | ||
3960 | if (!new_skb) | ||
3961 | return; | ||
3962 | |||
3963 | skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN, | ||
3964 | (*skb)->data - NET_IP_ALIGN, | ||
3965 | length + NET_IP_ALIGN); | ||
3966 | /* save the skb in buffer_info as good */ | ||
3967 | buffer_info->skb = *skb; | ||
3968 | *skb = new_skb; | ||
3969 | } | ||
3970 | |||
3971 | /** | ||
3972 | * e1000_clean_rx_irq - Send received data up the network stack; legacy | ||
3973 | * @adapter: board private structure | ||
3974 | * @rx_ring: ring to clean | ||
3975 | * @work_done: amount of napi work completed this call | ||
3976 | * @work_to_do: max amount of work allowed for this call to do | ||
3977 | */ | ||
3978 | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | ||
3979 | struct e1000_rx_ring *rx_ring, | ||
3980 | int *work_done, int work_to_do) | ||
3981 | { | ||
3982 | struct e1000_hw *hw = &adapter->hw; | ||
3983 | struct net_device *netdev = adapter->netdev; | ||
3984 | struct pci_dev *pdev = adapter->pdev; | ||
3985 | struct e1000_rx_desc *rx_desc, *next_rxd; | ||
3986 | struct e1000_buffer *buffer_info, *next_buffer; | ||
3987 | unsigned long flags; | ||
3988 | u32 length; | ||
3989 | unsigned int i; | ||
3990 | int cleaned_count = 0; | ||
3991 | bool cleaned = false; | ||
3992 | unsigned int total_rx_bytes=0, total_rx_packets=0; | ||
3993 | |||
3994 | i = rx_ring->next_to_clean; | ||
3995 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
3996 | buffer_info = &rx_ring->buffer_info[i]; | ||
3997 | |||
3998 | while (rx_desc->status & E1000_RXD_STAT_DD) { | ||
3999 | struct sk_buff *skb; | ||
4000 | u8 status; | ||
4001 | |||
4002 | if (*work_done >= work_to_do) | ||
4003 | break; | ||
4004 | (*work_done)++; | ||
4005 | rmb(); /* read descriptor and rx_buffer_info after status DD */ | ||
4006 | |||
4007 | status = rx_desc->status; | ||
4008 | skb = buffer_info->skb; | ||
4009 | buffer_info->skb = NULL; | ||
4010 | |||
4011 | prefetch(skb->data - NET_IP_ALIGN); | ||
4012 | |||
4013 | if (++i == rx_ring->count) i = 0; | ||
4014 | next_rxd = E1000_RX_DESC(*rx_ring, i); | ||
4015 | prefetch(next_rxd); | ||
4016 | |||
4017 | next_buffer = &rx_ring->buffer_info[i]; | ||
4018 | |||
4019 | cleaned = true; | ||
4020 | cleaned_count++; | ||
4021 | dma_unmap_single(&pdev->dev, buffer_info->dma, | ||
4022 | buffer_info->length, DMA_FROM_DEVICE); | ||
4023 | buffer_info->dma = 0; | ||
4024 | |||
4025 | length = le16_to_cpu(rx_desc->length); | ||
4026 | /* !EOP means multiple descriptors were used to store a single | ||
4027 | * packet, if thats the case we need to toss it. In fact, we | ||
4028 | * to toss every packet with the EOP bit clear and the next | ||
4029 | * frame that _does_ have the EOP bit set, as it is by | ||
4030 | * definition only a frame fragment | ||
4031 | */ | ||
4032 | if (unlikely(!(status & E1000_RXD_STAT_EOP))) | ||
4033 | adapter->discarding = true; | ||
4034 | |||
4035 | if (adapter->discarding) { | ||
4036 | /* All receives must fit into a single buffer */ | ||
4037 | e_dbg("Receive packet consumed multiple buffers\n"); | ||
4038 | /* recycle */ | ||
4039 | buffer_info->skb = skb; | ||
4040 | if (status & E1000_RXD_STAT_EOP) | ||
4041 | adapter->discarding = false; | ||
4042 | goto next_desc; | ||
4043 | } | ||
4044 | |||
4045 | if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { | ||
4046 | u8 last_byte = *(skb->data + length - 1); | ||
4047 | if (TBI_ACCEPT(hw, status, rx_desc->errors, length, | ||
4048 | last_byte)) { | ||
4049 | spin_lock_irqsave(&adapter->stats_lock, flags); | ||
4050 | e1000_tbi_adjust_stats(hw, &adapter->stats, | ||
4051 | length, skb->data); | ||
4052 | spin_unlock_irqrestore(&adapter->stats_lock, | ||
4053 | flags); | ||
4054 | length--; | ||
4055 | } else { | ||
4056 | /* recycle */ | ||
4057 | buffer_info->skb = skb; | ||
4058 | goto next_desc; | ||
4059 | } | ||
4060 | } | ||
4061 | |||
4062 | /* adjust length to remove Ethernet CRC, this must be | ||
4063 | * done after the TBI_ACCEPT workaround above */ | ||
4064 | length -= 4; | ||
4065 | |||
4066 | /* probably a little skewed due to removing CRC */ | ||
4067 | total_rx_bytes += length; | ||
4068 | total_rx_packets++; | ||
4069 | |||
4070 | e1000_check_copybreak(netdev, buffer_info, length, &skb); | ||
4071 | |||
4072 | skb_put(skb, length); | ||
4073 | |||
4074 | /* Receive Checksum Offload */ | ||
4075 | e1000_rx_checksum(adapter, | ||
4076 | (u32)(status) | | ||
4077 | ((u32)(rx_desc->errors) << 24), | ||
4078 | le16_to_cpu(rx_desc->csum), skb); | ||
4079 | |||
4080 | e1000_receive_skb(adapter, status, rx_desc->special, skb); | ||
4081 | |||
4082 | next_desc: | ||
4083 | rx_desc->status = 0; | ||
4084 | |||
4085 | /* return some buffers to hardware, one at a time is too slow */ | ||
4086 | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | ||
4087 | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | ||
4088 | cleaned_count = 0; | ||
4089 | } | ||
4090 | |||
4091 | /* use prefetched values */ | ||
4092 | rx_desc = next_rxd; | ||
4093 | buffer_info = next_buffer; | ||
4094 | } | ||
4095 | rx_ring->next_to_clean = i; | ||
4096 | |||
4097 | cleaned_count = E1000_DESC_UNUSED(rx_ring); | ||
4098 | if (cleaned_count) | ||
4099 | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | ||
4100 | |||
4101 | adapter->total_rx_packets += total_rx_packets; | ||
4102 | adapter->total_rx_bytes += total_rx_bytes; | ||
4103 | netdev->stats.rx_bytes += total_rx_bytes; | ||
4104 | netdev->stats.rx_packets += total_rx_packets; | ||
4105 | return cleaned; | ||
4106 | } | ||
4107 | |||
4108 | /** | ||
4109 | * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers | ||
4110 | * @adapter: address of board private structure | ||
4111 | * @rx_ring: pointer to receive ring structure | ||
4112 | * @cleaned_count: number of buffers to allocate this pass | ||
4113 | **/ | ||
4114 | |||
4115 | static void | ||
4116 | e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, | ||
4117 | struct e1000_rx_ring *rx_ring, int cleaned_count) | ||
4118 | { | ||
4119 | struct net_device *netdev = adapter->netdev; | ||
4120 | struct pci_dev *pdev = adapter->pdev; | ||
4121 | struct e1000_rx_desc *rx_desc; | ||
4122 | struct e1000_buffer *buffer_info; | ||
4123 | struct sk_buff *skb; | ||
4124 | unsigned int i; | ||
4125 | unsigned int bufsz = 256 - 16 /*for skb_reserve */ ; | ||
4126 | |||
4127 | i = rx_ring->next_to_use; | ||
4128 | buffer_info = &rx_ring->buffer_info[i]; | ||
4129 | |||
4130 | while (cleaned_count--) { | ||
4131 | skb = buffer_info->skb; | ||
4132 | if (skb) { | ||
4133 | skb_trim(skb, 0); | ||
4134 | goto check_page; | ||
4135 | } | ||
4136 | |||
4137 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); | ||
4138 | if (unlikely(!skb)) { | ||
4139 | /* Better luck next round */ | ||
4140 | adapter->alloc_rx_buff_failed++; | ||
4141 | break; | ||
4142 | } | ||
4143 | |||
4144 | /* Fix for errata 23, can't cross 64kB boundary */ | ||
4145 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | ||
4146 | struct sk_buff *oldskb = skb; | ||
4147 | e_err(rx_err, "skb align check failed: %u bytes at " | ||
4148 | "%p\n", bufsz, skb->data); | ||
4149 | /* Try again, without freeing the previous */ | ||
4150 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); | ||
4151 | /* Failed allocation, critical failure */ | ||
4152 | if (!skb) { | ||
4153 | dev_kfree_skb(oldskb); | ||
4154 | adapter->alloc_rx_buff_failed++; | ||
4155 | break; | ||
4156 | } | ||
4157 | |||
4158 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | ||
4159 | /* give up */ | ||
4160 | dev_kfree_skb(skb); | ||
4161 | dev_kfree_skb(oldskb); | ||
4162 | break; /* while (cleaned_count--) */ | ||
4163 | } | ||
4164 | |||
4165 | /* Use new allocation */ | ||
4166 | dev_kfree_skb(oldskb); | ||
4167 | } | ||
4168 | buffer_info->skb = skb; | ||
4169 | buffer_info->length = adapter->rx_buffer_len; | ||
4170 | check_page: | ||
4171 | /* allocate a new page if necessary */ | ||
4172 | if (!buffer_info->page) { | ||
4173 | buffer_info->page = alloc_page(GFP_ATOMIC); | ||
4174 | if (unlikely(!buffer_info->page)) { | ||
4175 | adapter->alloc_rx_buff_failed++; | ||
4176 | break; | ||
4177 | } | ||
4178 | } | ||
4179 | |||
4180 | if (!buffer_info->dma) { | ||
4181 | buffer_info->dma = dma_map_page(&pdev->dev, | ||
4182 | buffer_info->page, 0, | ||
4183 | buffer_info->length, | ||
4184 | DMA_FROM_DEVICE); | ||
4185 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { | ||
4186 | put_page(buffer_info->page); | ||
4187 | dev_kfree_skb(skb); | ||
4188 | buffer_info->page = NULL; | ||
4189 | buffer_info->skb = NULL; | ||
4190 | buffer_info->dma = 0; | ||
4191 | adapter->alloc_rx_buff_failed++; | ||
4192 | break; /* while !buffer_info->skb */ | ||
4193 | } | ||
4194 | } | ||
4195 | |||
4196 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
4197 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
4198 | |||
4199 | if (unlikely(++i == rx_ring->count)) | ||
4200 | i = 0; | ||
4201 | buffer_info = &rx_ring->buffer_info[i]; | ||
4202 | } | ||
4203 | |||
4204 | if (likely(rx_ring->next_to_use != i)) { | ||
4205 | rx_ring->next_to_use = i; | ||
4206 | if (unlikely(i-- == 0)) | ||
4207 | i = (rx_ring->count - 1); | ||
4208 | |||
4209 | /* Force memory writes to complete before letting h/w | ||
4210 | * know there are new descriptors to fetch. (Only | ||
4211 | * applicable for weak-ordered memory model archs, | ||
4212 | * such as IA-64). */ | ||
4213 | wmb(); | ||
4214 | writel(i, adapter->hw.hw_addr + rx_ring->rdt); | ||
4215 | } | ||
4216 | } | ||
4217 | |||
4218 | /** | ||
4219 | * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended | ||
4220 | * @adapter: address of board private structure | ||
4221 | **/ | ||
4222 | |||
4223 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | ||
4224 | struct e1000_rx_ring *rx_ring, | ||
4225 | int cleaned_count) | ||
4226 | { | ||
4227 | struct e1000_hw *hw = &adapter->hw; | ||
4228 | struct net_device *netdev = adapter->netdev; | ||
4229 | struct pci_dev *pdev = adapter->pdev; | ||
4230 | struct e1000_rx_desc *rx_desc; | ||
4231 | struct e1000_buffer *buffer_info; | ||
4232 | struct sk_buff *skb; | ||
4233 | unsigned int i; | ||
4234 | unsigned int bufsz = adapter->rx_buffer_len; | ||
4235 | |||
4236 | i = rx_ring->next_to_use; | ||
4237 | buffer_info = &rx_ring->buffer_info[i]; | ||
4238 | |||
4239 | while (cleaned_count--) { | ||
4240 | skb = buffer_info->skb; | ||
4241 | if (skb) { | ||
4242 | skb_trim(skb, 0); | ||
4243 | goto map_skb; | ||
4244 | } | ||
4245 | |||
4246 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); | ||
4247 | if (unlikely(!skb)) { | ||
4248 | /* Better luck next round */ | ||
4249 | adapter->alloc_rx_buff_failed++; | ||
4250 | break; | ||
4251 | } | ||
4252 | |||
4253 | /* Fix for errata 23, can't cross 64kB boundary */ | ||
4254 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | ||
4255 | struct sk_buff *oldskb = skb; | ||
4256 | e_err(rx_err, "skb align check failed: %u bytes at " | ||
4257 | "%p\n", bufsz, skb->data); | ||
4258 | /* Try again, without freeing the previous */ | ||
4259 | skb = netdev_alloc_skb_ip_align(netdev, bufsz); | ||
4260 | /* Failed allocation, critical failure */ | ||
4261 | if (!skb) { | ||
4262 | dev_kfree_skb(oldskb); | ||
4263 | adapter->alloc_rx_buff_failed++; | ||
4264 | break; | ||
4265 | } | ||
4266 | |||
4267 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | ||
4268 | /* give up */ | ||
4269 | dev_kfree_skb(skb); | ||
4270 | dev_kfree_skb(oldskb); | ||
4271 | adapter->alloc_rx_buff_failed++; | ||
4272 | break; /* while !buffer_info->skb */ | ||
4273 | } | ||
4274 | |||
4275 | /* Use new allocation */ | ||
4276 | dev_kfree_skb(oldskb); | ||
4277 | } | ||
4278 | buffer_info->skb = skb; | ||
4279 | buffer_info->length = adapter->rx_buffer_len; | ||
4280 | map_skb: | ||
4281 | buffer_info->dma = dma_map_single(&pdev->dev, | ||
4282 | skb->data, | ||
4283 | buffer_info->length, | ||
4284 | DMA_FROM_DEVICE); | ||
4285 | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { | ||
4286 | dev_kfree_skb(skb); | ||
4287 | buffer_info->skb = NULL; | ||
4288 | buffer_info->dma = 0; | ||
4289 | adapter->alloc_rx_buff_failed++; | ||
4290 | break; /* while !buffer_info->skb */ | ||
4291 | } | ||
4292 | |||
4293 | /* | ||
4294 | * XXX if it was allocated cleanly it will never map to a | ||
4295 | * boundary crossing | ||
4296 | */ | ||
4297 | |||
4298 | /* Fix for errata 23, can't cross 64kB boundary */ | ||
4299 | if (!e1000_check_64k_bound(adapter, | ||
4300 | (void *)(unsigned long)buffer_info->dma, | ||
4301 | adapter->rx_buffer_len)) { | ||
4302 | e_err(rx_err, "dma align check failed: %u bytes at " | ||
4303 | "%p\n", adapter->rx_buffer_len, | ||
4304 | (void *)(unsigned long)buffer_info->dma); | ||
4305 | dev_kfree_skb(skb); | ||
4306 | buffer_info->skb = NULL; | ||
4307 | |||
4308 | dma_unmap_single(&pdev->dev, buffer_info->dma, | ||
4309 | adapter->rx_buffer_len, | ||
4310 | DMA_FROM_DEVICE); | ||
4311 | buffer_info->dma = 0; | ||
4312 | |||
4313 | adapter->alloc_rx_buff_failed++; | ||
4314 | break; /* while !buffer_info->skb */ | ||
4315 | } | ||
4316 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
4317 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
4318 | |||
4319 | if (unlikely(++i == rx_ring->count)) | ||
4320 | i = 0; | ||
4321 | buffer_info = &rx_ring->buffer_info[i]; | ||
4322 | } | ||
4323 | |||
4324 | if (likely(rx_ring->next_to_use != i)) { | ||
4325 | rx_ring->next_to_use = i; | ||
4326 | if (unlikely(i-- == 0)) | ||
4327 | i = (rx_ring->count - 1); | ||
4328 | |||
4329 | /* Force memory writes to complete before letting h/w | ||
4330 | * know there are new descriptors to fetch. (Only | ||
4331 | * applicable for weak-ordered memory model archs, | ||
4332 | * such as IA-64). */ | ||
4333 | wmb(); | ||
4334 | writel(i, hw->hw_addr + rx_ring->rdt); | ||
4335 | } | ||
4336 | } | ||
4337 | |||
4338 | /** | ||
4339 | * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. | ||
4340 | * @adapter: | ||
4341 | **/ | ||
4342 | |||
4343 | static void e1000_smartspeed(struct e1000_adapter *adapter) | ||
4344 | { | ||
4345 | struct e1000_hw *hw = &adapter->hw; | ||
4346 | u16 phy_status; | ||
4347 | u16 phy_ctrl; | ||
4348 | |||
4349 | if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || | ||
4350 | !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) | ||
4351 | return; | ||
4352 | |||
4353 | if (adapter->smartspeed == 0) { | ||
4354 | /* If Master/Slave config fault is asserted twice, | ||
4355 | * we assume back-to-back */ | ||
4356 | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); | ||
4357 | if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; | ||
4358 | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); | ||
4359 | if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; | ||
4360 | e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); | ||
4361 | if (phy_ctrl & CR_1000T_MS_ENABLE) { | ||
4362 | phy_ctrl &= ~CR_1000T_MS_ENABLE; | ||
4363 | e1000_write_phy_reg(hw, PHY_1000T_CTRL, | ||
4364 | phy_ctrl); | ||
4365 | adapter->smartspeed++; | ||
4366 | if (!e1000_phy_setup_autoneg(hw) && | ||
4367 | !e1000_read_phy_reg(hw, PHY_CTRL, | ||
4368 | &phy_ctrl)) { | ||
4369 | phy_ctrl |= (MII_CR_AUTO_NEG_EN | | ||
4370 | MII_CR_RESTART_AUTO_NEG); | ||
4371 | e1000_write_phy_reg(hw, PHY_CTRL, | ||
4372 | phy_ctrl); | ||
4373 | } | ||
4374 | } | ||
4375 | return; | ||
4376 | } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { | ||
4377 | /* If still no link, perhaps using 2/3 pair cable */ | ||
4378 | e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); | ||
4379 | phy_ctrl |= CR_1000T_MS_ENABLE; | ||
4380 | e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); | ||
4381 | if (!e1000_phy_setup_autoneg(hw) && | ||
4382 | !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { | ||
4383 | phy_ctrl |= (MII_CR_AUTO_NEG_EN | | ||
4384 | MII_CR_RESTART_AUTO_NEG); | ||
4385 | e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); | ||
4386 | } | ||
4387 | } | ||
4388 | /* Restart process after E1000_SMARTSPEED_MAX iterations */ | ||
4389 | if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) | ||
4390 | adapter->smartspeed = 0; | ||
4391 | } | ||
4392 | |||
4393 | /** | ||
4394 | * e1000_ioctl - | ||
4395 | * @netdev: | ||
4396 | * @ifreq: | ||
4397 | * @cmd: | ||
4398 | **/ | ||
4399 | |||
4400 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
4401 | { | ||
4402 | switch (cmd) { | ||
4403 | case SIOCGMIIPHY: | ||
4404 | case SIOCGMIIREG: | ||
4405 | case SIOCSMIIREG: | ||
4406 | return e1000_mii_ioctl(netdev, ifr, cmd); | ||
4407 | default: | ||
4408 | return -EOPNOTSUPP; | ||
4409 | } | ||
4410 | } | ||
4411 | |||
4412 | /** | ||
4413 | * e1000_mii_ioctl - | ||
4414 | * @netdev: | ||
4415 | * @ifreq: | ||
4416 | * @cmd: | ||
4417 | **/ | ||
4418 | |||
4419 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | ||
4420 | int cmd) | ||
4421 | { | ||
4422 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4423 | struct e1000_hw *hw = &adapter->hw; | ||
4424 | struct mii_ioctl_data *data = if_mii(ifr); | ||
4425 | int retval; | ||
4426 | u16 mii_reg; | ||
4427 | unsigned long flags; | ||
4428 | |||
4429 | if (hw->media_type != e1000_media_type_copper) | ||
4430 | return -EOPNOTSUPP; | ||
4431 | |||
4432 | switch (cmd) { | ||
4433 | case SIOCGMIIPHY: | ||
4434 | data->phy_id = hw->phy_addr; | ||
4435 | break; | ||
4436 | case SIOCGMIIREG: | ||
4437 | spin_lock_irqsave(&adapter->stats_lock, flags); | ||
4438 | if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, | ||
4439 | &data->val_out)) { | ||
4440 | spin_unlock_irqrestore(&adapter->stats_lock, flags); | ||
4441 | return -EIO; | ||
4442 | } | ||
4443 | spin_unlock_irqrestore(&adapter->stats_lock, flags); | ||
4444 | break; | ||
4445 | case SIOCSMIIREG: | ||
4446 | if (data->reg_num & ~(0x1F)) | ||
4447 | return -EFAULT; | ||
4448 | mii_reg = data->val_in; | ||
4449 | spin_lock_irqsave(&adapter->stats_lock, flags); | ||
4450 | if (e1000_write_phy_reg(hw, data->reg_num, | ||
4451 | mii_reg)) { | ||
4452 | spin_unlock_irqrestore(&adapter->stats_lock, flags); | ||
4453 | return -EIO; | ||
4454 | } | ||
4455 | spin_unlock_irqrestore(&adapter->stats_lock, flags); | ||
4456 | if (hw->media_type == e1000_media_type_copper) { | ||
4457 | switch (data->reg_num) { | ||
4458 | case PHY_CTRL: | ||
4459 | if (mii_reg & MII_CR_POWER_DOWN) | ||
4460 | break; | ||
4461 | if (mii_reg & MII_CR_AUTO_NEG_EN) { | ||
4462 | hw->autoneg = 1; | ||
4463 | hw->autoneg_advertised = 0x2F; | ||
4464 | } else { | ||
4465 | u32 speed; | ||
4466 | if (mii_reg & 0x40) | ||
4467 | speed = SPEED_1000; | ||
4468 | else if (mii_reg & 0x2000) | ||
4469 | speed = SPEED_100; | ||
4470 | else | ||
4471 | speed = SPEED_10; | ||
4472 | retval = e1000_set_spd_dplx( | ||
4473 | adapter, speed, | ||
4474 | ((mii_reg & 0x100) | ||
4475 | ? DUPLEX_FULL : | ||
4476 | DUPLEX_HALF)); | ||
4477 | if (retval) | ||
4478 | return retval; | ||
4479 | } | ||
4480 | if (netif_running(adapter->netdev)) | ||
4481 | e1000_reinit_locked(adapter); | ||
4482 | else | ||
4483 | e1000_reset(adapter); | ||
4484 | break; | ||
4485 | case M88E1000_PHY_SPEC_CTRL: | ||
4486 | case M88E1000_EXT_PHY_SPEC_CTRL: | ||
4487 | if (e1000_phy_reset(hw)) | ||
4488 | return -EIO; | ||
4489 | break; | ||
4490 | } | ||
4491 | } else { | ||
4492 | switch (data->reg_num) { | ||
4493 | case PHY_CTRL: | ||
4494 | if (mii_reg & MII_CR_POWER_DOWN) | ||
4495 | break; | ||
4496 | if (netif_running(adapter->netdev)) | ||
4497 | e1000_reinit_locked(adapter); | ||
4498 | else | ||
4499 | e1000_reset(adapter); | ||
4500 | break; | ||
4501 | } | ||
4502 | } | ||
4503 | break; | ||
4504 | default: | ||
4505 | return -EOPNOTSUPP; | ||
4506 | } | ||
4507 | return E1000_SUCCESS; | ||
4508 | } | ||
4509 | |||
4510 | void e1000_pci_set_mwi(struct e1000_hw *hw) | ||
4511 | { | ||
4512 | struct e1000_adapter *adapter = hw->back; | ||
4513 | int ret_val = pci_set_mwi(adapter->pdev); | ||
4514 | |||
4515 | if (ret_val) | ||
4516 | e_err(probe, "Error in setting MWI\n"); | ||
4517 | } | ||
4518 | |||
4519 | void e1000_pci_clear_mwi(struct e1000_hw *hw) | ||
4520 | { | ||
4521 | struct e1000_adapter *adapter = hw->back; | ||
4522 | |||
4523 | pci_clear_mwi(adapter->pdev); | ||
4524 | } | ||
4525 | |||
4526 | int e1000_pcix_get_mmrbc(struct e1000_hw *hw) | ||
4527 | { | ||
4528 | struct e1000_adapter *adapter = hw->back; | ||
4529 | return pcix_get_mmrbc(adapter->pdev); | ||
4530 | } | ||
4531 | |||
4532 | void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) | ||
4533 | { | ||
4534 | struct e1000_adapter *adapter = hw->back; | ||
4535 | pcix_set_mmrbc(adapter->pdev, mmrbc); | ||
4536 | } | ||
4537 | |||
4538 | void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) | ||
4539 | { | ||
4540 | outl(value, port); | ||
4541 | } | ||
4542 | |||
4543 | static bool e1000_vlan_used(struct e1000_adapter *adapter) | ||
4544 | { | ||
4545 | u16 vid; | ||
4546 | |||
4547 | for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) | ||
4548 | return true; | ||
4549 | return false; | ||
4550 | } | ||
4551 | |||
4552 | static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, | ||
4553 | bool filter_on) | ||
4554 | { | ||
4555 | struct e1000_hw *hw = &adapter->hw; | ||
4556 | u32 rctl; | ||
4557 | |||
4558 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
4559 | e1000_irq_disable(adapter); | ||
4560 | |||
4561 | if (filter_on) { | ||
4562 | /* enable VLAN receive filtering */ | ||
4563 | rctl = er32(RCTL); | ||
4564 | rctl &= ~E1000_RCTL_CFIEN; | ||
4565 | if (!(adapter->netdev->flags & IFF_PROMISC)) | ||
4566 | rctl |= E1000_RCTL_VFE; | ||
4567 | ew32(RCTL, rctl); | ||
4568 | e1000_update_mng_vlan(adapter); | ||
4569 | } else { | ||
4570 | /* disable VLAN receive filtering */ | ||
4571 | rctl = er32(RCTL); | ||
4572 | rctl &= ~E1000_RCTL_VFE; | ||
4573 | ew32(RCTL, rctl); | ||
4574 | } | ||
4575 | |||
4576 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
4577 | e1000_irq_enable(adapter); | ||
4578 | } | ||
4579 | |||
4580 | static void e1000_vlan_mode(struct net_device *netdev, u32 features) | ||
4581 | { | ||
4582 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4583 | struct e1000_hw *hw = &adapter->hw; | ||
4584 | u32 ctrl; | ||
4585 | |||
4586 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
4587 | e1000_irq_disable(adapter); | ||
4588 | |||
4589 | ctrl = er32(CTRL); | ||
4590 | if (features & NETIF_F_HW_VLAN_RX) { | ||
4591 | /* enable VLAN tag insert/strip */ | ||
4592 | ctrl |= E1000_CTRL_VME; | ||
4593 | } else { | ||
4594 | /* disable VLAN tag insert/strip */ | ||
4595 | ctrl &= ~E1000_CTRL_VME; | ||
4596 | } | ||
4597 | ew32(CTRL, ctrl); | ||
4598 | |||
4599 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
4600 | e1000_irq_enable(adapter); | ||
4601 | } | ||
4602 | |||
4603 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | ||
4604 | { | ||
4605 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4606 | struct e1000_hw *hw = &adapter->hw; | ||
4607 | u32 vfta, index; | ||
4608 | |||
4609 | if ((hw->mng_cookie.status & | ||
4610 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | ||
4611 | (vid == adapter->mng_vlan_id)) | ||
4612 | return; | ||
4613 | |||
4614 | if (!e1000_vlan_used(adapter)) | ||
4615 | e1000_vlan_filter_on_off(adapter, true); | ||
4616 | |||
4617 | /* add VID to filter table */ | ||
4618 | index = (vid >> 5) & 0x7F; | ||
4619 | vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); | ||
4620 | vfta |= (1 << (vid & 0x1F)); | ||
4621 | e1000_write_vfta(hw, index, vfta); | ||
4622 | |||
4623 | set_bit(vid, adapter->active_vlans); | ||
4624 | } | ||
4625 | |||
4626 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | ||
4627 | { | ||
4628 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4629 | struct e1000_hw *hw = &adapter->hw; | ||
4630 | u32 vfta, index; | ||
4631 | |||
4632 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
4633 | e1000_irq_disable(adapter); | ||
4634 | if (!test_bit(__E1000_DOWN, &adapter->flags)) | ||
4635 | e1000_irq_enable(adapter); | ||
4636 | |||
4637 | /* remove VID from filter table */ | ||
4638 | index = (vid >> 5) & 0x7F; | ||
4639 | vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); | ||
4640 | vfta &= ~(1 << (vid & 0x1F)); | ||
4641 | e1000_write_vfta(hw, index, vfta); | ||
4642 | |||
4643 | clear_bit(vid, adapter->active_vlans); | ||
4644 | |||
4645 | if (!e1000_vlan_used(adapter)) | ||
4646 | e1000_vlan_filter_on_off(adapter, false); | ||
4647 | } | ||
4648 | |||
4649 | static void e1000_restore_vlan(struct e1000_adapter *adapter) | ||
4650 | { | ||
4651 | u16 vid; | ||
4652 | |||
4653 | if (!e1000_vlan_used(adapter)) | ||
4654 | return; | ||
4655 | |||
4656 | e1000_vlan_filter_on_off(adapter, true); | ||
4657 | for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) | ||
4658 | e1000_vlan_rx_add_vid(adapter->netdev, vid); | ||
4659 | } | ||
4660 | |||
4661 | int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) | ||
4662 | { | ||
4663 | struct e1000_hw *hw = &adapter->hw; | ||
4664 | |||
4665 | hw->autoneg = 0; | ||
4666 | |||
4667 | /* Make sure dplx is at most 1 bit and lsb of speed is not set | ||
4668 | * for the switch() below to work */ | ||
4669 | if ((spd & 1) || (dplx & ~1)) | ||
4670 | goto err_inval; | ||
4671 | |||
4672 | /* Fiber NICs only allow 1000 gbps Full duplex */ | ||
4673 | if ((hw->media_type == e1000_media_type_fiber) && | ||
4674 | spd != SPEED_1000 && | ||
4675 | dplx != DUPLEX_FULL) | ||
4676 | goto err_inval; | ||
4677 | |||
4678 | switch (spd + dplx) { | ||
4679 | case SPEED_10 + DUPLEX_HALF: | ||
4680 | hw->forced_speed_duplex = e1000_10_half; | ||
4681 | break; | ||
4682 | case SPEED_10 + DUPLEX_FULL: | ||
4683 | hw->forced_speed_duplex = e1000_10_full; | ||
4684 | break; | ||
4685 | case SPEED_100 + DUPLEX_HALF: | ||
4686 | hw->forced_speed_duplex = e1000_100_half; | ||
4687 | break; | ||
4688 | case SPEED_100 + DUPLEX_FULL: | ||
4689 | hw->forced_speed_duplex = e1000_100_full; | ||
4690 | break; | ||
4691 | case SPEED_1000 + DUPLEX_FULL: | ||
4692 | hw->autoneg = 1; | ||
4693 | hw->autoneg_advertised = ADVERTISE_1000_FULL; | ||
4694 | break; | ||
4695 | case SPEED_1000 + DUPLEX_HALF: /* not supported */ | ||
4696 | default: | ||
4697 | goto err_inval; | ||
4698 | } | ||
4699 | return 0; | ||
4700 | |||
4701 | err_inval: | ||
4702 | e_err(probe, "Unsupported Speed/Duplex configuration\n"); | ||
4703 | return -EINVAL; | ||
4704 | } | ||
4705 | |||
4706 | static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) | ||
4707 | { | ||
4708 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
4709 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4710 | struct e1000_hw *hw = &adapter->hw; | ||
4711 | u32 ctrl, ctrl_ext, rctl, status; | ||
4712 | u32 wufc = adapter->wol; | ||
4713 | #ifdef CONFIG_PM | ||
4714 | int retval = 0; | ||
4715 | #endif | ||
4716 | |||
4717 | netif_device_detach(netdev); | ||
4718 | |||
4719 | mutex_lock(&adapter->mutex); | ||
4720 | |||
4721 | if (netif_running(netdev)) { | ||
4722 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | ||
4723 | e1000_down(adapter); | ||
4724 | } | ||
4725 | |||
4726 | #ifdef CONFIG_PM | ||
4727 | retval = pci_save_state(pdev); | ||
4728 | if (retval) { | ||
4729 | mutex_unlock(&adapter->mutex); | ||
4730 | return retval; | ||
4731 | } | ||
4732 | #endif | ||
4733 | |||
4734 | status = er32(STATUS); | ||
4735 | if (status & E1000_STATUS_LU) | ||
4736 | wufc &= ~E1000_WUFC_LNKC; | ||
4737 | |||
4738 | if (wufc) { | ||
4739 | e1000_setup_rctl(adapter); | ||
4740 | e1000_set_rx_mode(netdev); | ||
4741 | |||
4742 | /* turn on all-multi mode if wake on multicast is enabled */ | ||
4743 | if (wufc & E1000_WUFC_MC) { | ||
4744 | rctl = er32(RCTL); | ||
4745 | rctl |= E1000_RCTL_MPE; | ||
4746 | ew32(RCTL, rctl); | ||
4747 | } | ||
4748 | |||
4749 | if (hw->mac_type >= e1000_82540) { | ||
4750 | ctrl = er32(CTRL); | ||
4751 | /* advertise wake from D3Cold */ | ||
4752 | #define E1000_CTRL_ADVD3WUC 0x00100000 | ||
4753 | /* phy power management enable */ | ||
4754 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | ||
4755 | ctrl |= E1000_CTRL_ADVD3WUC | | ||
4756 | E1000_CTRL_EN_PHY_PWR_MGMT; | ||
4757 | ew32(CTRL, ctrl); | ||
4758 | } | ||
4759 | |||
4760 | if (hw->media_type == e1000_media_type_fiber || | ||
4761 | hw->media_type == e1000_media_type_internal_serdes) { | ||
4762 | /* keep the laser running in D3 */ | ||
4763 | ctrl_ext = er32(CTRL_EXT); | ||
4764 | ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; | ||
4765 | ew32(CTRL_EXT, ctrl_ext); | ||
4766 | } | ||
4767 | |||
4768 | ew32(WUC, E1000_WUC_PME_EN); | ||
4769 | ew32(WUFC, wufc); | ||
4770 | } else { | ||
4771 | ew32(WUC, 0); | ||
4772 | ew32(WUFC, 0); | ||
4773 | } | ||
4774 | |||
4775 | e1000_release_manageability(adapter); | ||
4776 | |||
4777 | *enable_wake = !!wufc; | ||
4778 | |||
4779 | /* make sure adapter isn't asleep if manageability is enabled */ | ||
4780 | if (adapter->en_mng_pt) | ||
4781 | *enable_wake = true; | ||
4782 | |||
4783 | if (netif_running(netdev)) | ||
4784 | e1000_free_irq(adapter); | ||
4785 | |||
4786 | mutex_unlock(&adapter->mutex); | ||
4787 | |||
4788 | pci_disable_device(pdev); | ||
4789 | |||
4790 | return 0; | ||
4791 | } | ||
4792 | |||
4793 | #ifdef CONFIG_PM | ||
4794 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) | ||
4795 | { | ||
4796 | int retval; | ||
4797 | bool wake; | ||
4798 | |||
4799 | retval = __e1000_shutdown(pdev, &wake); | ||
4800 | if (retval) | ||
4801 | return retval; | ||
4802 | |||
4803 | if (wake) { | ||
4804 | pci_prepare_to_sleep(pdev); | ||
4805 | } else { | ||
4806 | pci_wake_from_d3(pdev, false); | ||
4807 | pci_set_power_state(pdev, PCI_D3hot); | ||
4808 | } | ||
4809 | |||
4810 | return 0; | ||
4811 | } | ||
4812 | |||
4813 | static int e1000_resume(struct pci_dev *pdev) | ||
4814 | { | ||
4815 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
4816 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4817 | struct e1000_hw *hw = &adapter->hw; | ||
4818 | u32 err; | ||
4819 | |||
4820 | pci_set_power_state(pdev, PCI_D0); | ||
4821 | pci_restore_state(pdev); | ||
4822 | pci_save_state(pdev); | ||
4823 | |||
4824 | if (adapter->need_ioport) | ||
4825 | err = pci_enable_device(pdev); | ||
4826 | else | ||
4827 | err = pci_enable_device_mem(pdev); | ||
4828 | if (err) { | ||
4829 | pr_err("Cannot enable PCI device from suspend\n"); | ||
4830 | return err; | ||
4831 | } | ||
4832 | pci_set_master(pdev); | ||
4833 | |||
4834 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
4835 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
4836 | |||
4837 | if (netif_running(netdev)) { | ||
4838 | err = e1000_request_irq(adapter); | ||
4839 | if (err) | ||
4840 | return err; | ||
4841 | } | ||
4842 | |||
4843 | e1000_power_up_phy(adapter); | ||
4844 | e1000_reset(adapter); | ||
4845 | ew32(WUS, ~0); | ||
4846 | |||
4847 | e1000_init_manageability(adapter); | ||
4848 | |||
4849 | if (netif_running(netdev)) | ||
4850 | e1000_up(adapter); | ||
4851 | |||
4852 | netif_device_attach(netdev); | ||
4853 | |||
4854 | return 0; | ||
4855 | } | ||
4856 | #endif | ||
4857 | |||
4858 | static void e1000_shutdown(struct pci_dev *pdev) | ||
4859 | { | ||
4860 | bool wake; | ||
4861 | |||
4862 | __e1000_shutdown(pdev, &wake); | ||
4863 | |||
4864 | if (system_state == SYSTEM_POWER_OFF) { | ||
4865 | pci_wake_from_d3(pdev, wake); | ||
4866 | pci_set_power_state(pdev, PCI_D3hot); | ||
4867 | } | ||
4868 | } | ||
4869 | |||
4870 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
4871 | /* | ||
4872 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
4873 | * without having to re-enable interrupts. It's not called while | ||
4874 | * the interrupt routine is executing. | ||
4875 | */ | ||
4876 | static void e1000_netpoll(struct net_device *netdev) | ||
4877 | { | ||
4878 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4879 | |||
4880 | disable_irq(adapter->pdev->irq); | ||
4881 | e1000_intr(adapter->pdev->irq, netdev); | ||
4882 | enable_irq(adapter->pdev->irq); | ||
4883 | } | ||
4884 | #endif | ||
4885 | |||
4886 | /** | ||
4887 | * e1000_io_error_detected - called when PCI error is detected | ||
4888 | * @pdev: Pointer to PCI device | ||
4889 | * @state: The current pci connection state | ||
4890 | * | ||
4891 | * This function is called after a PCI bus error affecting | ||
4892 | * this device has been detected. | ||
4893 | */ | ||
4894 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | ||
4895 | pci_channel_state_t state) | ||
4896 | { | ||
4897 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
4898 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4899 | |||
4900 | netif_device_detach(netdev); | ||
4901 | |||
4902 | if (state == pci_channel_io_perm_failure) | ||
4903 | return PCI_ERS_RESULT_DISCONNECT; | ||
4904 | |||
4905 | if (netif_running(netdev)) | ||
4906 | e1000_down(adapter); | ||
4907 | pci_disable_device(pdev); | ||
4908 | |||
4909 | /* Request a slot slot reset. */ | ||
4910 | return PCI_ERS_RESULT_NEED_RESET; | ||
4911 | } | ||
4912 | |||
4913 | /** | ||
4914 | * e1000_io_slot_reset - called after the pci bus has been reset. | ||
4915 | * @pdev: Pointer to PCI device | ||
4916 | * | ||
4917 | * Restart the card from scratch, as if from a cold-boot. Implementation | ||
4918 | * resembles the first-half of the e1000_resume routine. | ||
4919 | */ | ||
4920 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | ||
4921 | { | ||
4922 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
4923 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4924 | struct e1000_hw *hw = &adapter->hw; | ||
4925 | int err; | ||
4926 | |||
4927 | if (adapter->need_ioport) | ||
4928 | err = pci_enable_device(pdev); | ||
4929 | else | ||
4930 | err = pci_enable_device_mem(pdev); | ||
4931 | if (err) { | ||
4932 | pr_err("Cannot re-enable PCI device after reset.\n"); | ||
4933 | return PCI_ERS_RESULT_DISCONNECT; | ||
4934 | } | ||
4935 | pci_set_master(pdev); | ||
4936 | |||
4937 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
4938 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
4939 | |||
4940 | e1000_reset(adapter); | ||
4941 | ew32(WUS, ~0); | ||
4942 | |||
4943 | return PCI_ERS_RESULT_RECOVERED; | ||
4944 | } | ||
4945 | |||
4946 | /** | ||
4947 | * e1000_io_resume - called when traffic can start flowing again. | ||
4948 | * @pdev: Pointer to PCI device | ||
4949 | * | ||
4950 | * This callback is called when the error recovery driver tells us that | ||
4951 | * its OK to resume normal operation. Implementation resembles the | ||
4952 | * second-half of the e1000_resume routine. | ||
4953 | */ | ||
4954 | static void e1000_io_resume(struct pci_dev *pdev) | ||
4955 | { | ||
4956 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
4957 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4958 | |||
4959 | e1000_init_manageability(adapter); | ||
4960 | |||
4961 | if (netif_running(netdev)) { | ||
4962 | if (e1000_up(adapter)) { | ||
4963 | pr_info("can't bring device back up after reset\n"); | ||
4964 | return; | ||
4965 | } | ||
4966 | } | ||
4967 | |||
4968 | netif_device_attach(netdev); | ||
4969 | } | ||
4970 | |||
4971 | /* e1000_main.c */ | ||