diff options
Diffstat (limited to 'drivers/net/cxgb3/l2t.c')
| -rw-r--r-- | drivers/net/cxgb3/l2t.c | 445 |
1 files changed, 0 insertions, 445 deletions
diff --git a/drivers/net/cxgb3/l2t.c b/drivers/net/cxgb3/l2t.c deleted file mode 100644 index f452c4003253..000000000000 --- a/drivers/net/cxgb3/l2t.c +++ /dev/null | |||
| @@ -1,445 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved. | ||
| 3 | * | ||
| 4 | * This software is available to you under a choice of one of two | ||
| 5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
| 6 | * General Public License (GPL) Version 2, available from the file | ||
| 7 | * COPYING in the main directory of this source tree, or the | ||
| 8 | * OpenIB.org BSD license below: | ||
| 9 | * | ||
| 10 | * Redistribution and use in source and binary forms, with or | ||
| 11 | * without modification, are permitted provided that the following | ||
| 12 | * conditions are met: | ||
| 13 | * | ||
| 14 | * - Redistributions of source code must retain the above | ||
| 15 | * copyright notice, this list of conditions and the following | ||
| 16 | * disclaimer. | ||
| 17 | * | ||
| 18 | * - Redistributions in binary form must reproduce the above | ||
| 19 | * copyright notice, this list of conditions and the following | ||
| 20 | * disclaimer in the documentation and/or other materials | ||
| 21 | * provided with the distribution. | ||
| 22 | * | ||
| 23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
| 24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
| 25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
| 26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
| 27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
| 28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
| 29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
| 30 | * SOFTWARE. | ||
| 31 | */ | ||
| 32 | #include <linux/skbuff.h> | ||
| 33 | #include <linux/netdevice.h> | ||
| 34 | #include <linux/if.h> | ||
| 35 | #include <linux/if_vlan.h> | ||
| 36 | #include <linux/jhash.h> | ||
| 37 | #include <linux/slab.h> | ||
| 38 | #include <net/neighbour.h> | ||
| 39 | #include "common.h" | ||
| 40 | #include "t3cdev.h" | ||
| 41 | #include "cxgb3_defs.h" | ||
| 42 | #include "l2t.h" | ||
| 43 | #include "t3_cpl.h" | ||
| 44 | #include "firmware_exports.h" | ||
| 45 | |||
| 46 | #define VLAN_NONE 0xfff | ||
| 47 | |||
| 48 | /* | ||
| 49 | * Module locking notes: There is a RW lock protecting the L2 table as a | ||
| 50 | * whole plus a spinlock per L2T entry. Entry lookups and allocations happen | ||
| 51 | * under the protection of the table lock, individual entry changes happen | ||
| 52 | * while holding that entry's spinlock. The table lock nests outside the | ||
| 53 | * entry locks. Allocations of new entries take the table lock as writers so | ||
| 54 | * no other lookups can happen while allocating new entries. Entry updates | ||
| 55 | * take the table lock as readers so multiple entries can be updated in | ||
| 56 | * parallel. An L2T entry can be dropped by decrementing its reference count | ||
| 57 | * and therefore can happen in parallel with entry allocation but no entry | ||
| 58 | * can change state or increment its ref count during allocation as both of | ||
| 59 | * these perform lookups. | ||
| 60 | */ | ||
| 61 | |||
| 62 | static inline unsigned int vlan_prio(const struct l2t_entry *e) | ||
| 63 | { | ||
| 64 | return e->vlan >> 13; | ||
| 65 | } | ||
| 66 | |||
| 67 | static inline unsigned int arp_hash(u32 key, int ifindex, | ||
| 68 | const struct l2t_data *d) | ||
| 69 | { | ||
| 70 | return jhash_2words(key, ifindex, 0) & (d->nentries - 1); | ||
| 71 | } | ||
| 72 | |||
| 73 | static inline void neigh_replace(struct l2t_entry *e, struct neighbour *n) | ||
| 74 | { | ||
| 75 | neigh_hold(n); | ||
| 76 | if (e->neigh) | ||
| 77 | neigh_release(e->neigh); | ||
| 78 | e->neigh = n; | ||
| 79 | } | ||
| 80 | |||
| 81 | /* | ||
| 82 | * Set up an L2T entry and send any packets waiting in the arp queue. The | ||
| 83 | * supplied skb is used for the CPL_L2T_WRITE_REQ. Must be called with the | ||
| 84 | * entry locked. | ||
| 85 | */ | ||
| 86 | static int setup_l2e_send_pending(struct t3cdev *dev, struct sk_buff *skb, | ||
| 87 | struct l2t_entry *e) | ||
| 88 | { | ||
| 89 | struct cpl_l2t_write_req *req; | ||
| 90 | struct sk_buff *tmp; | ||
| 91 | |||
| 92 | if (!skb) { | ||
| 93 | skb = alloc_skb(sizeof(*req), GFP_ATOMIC); | ||
| 94 | if (!skb) | ||
| 95 | return -ENOMEM; | ||
| 96 | } | ||
| 97 | |||
| 98 | req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); | ||
| 99 | req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); | ||
| 100 | OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx)); | ||
| 101 | req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) | | ||
| 102 | V_L2T_W_VLAN(e->vlan & VLAN_VID_MASK) | | ||
| 103 | V_L2T_W_PRIO(vlan_prio(e))); | ||
| 104 | memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); | ||
| 105 | memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); | ||
| 106 | skb->priority = CPL_PRIORITY_CONTROL; | ||
| 107 | cxgb3_ofld_send(dev, skb); | ||
| 108 | |||
| 109 | skb_queue_walk_safe(&e->arpq, skb, tmp) { | ||
| 110 | __skb_unlink(skb, &e->arpq); | ||
| 111 | cxgb3_ofld_send(dev, skb); | ||
| 112 | } | ||
| 113 | e->state = L2T_STATE_VALID; | ||
| 114 | |||
| 115 | return 0; | ||
| 116 | } | ||
| 117 | |||
| 118 | /* | ||
| 119 | * Add a packet to the an L2T entry's queue of packets awaiting resolution. | ||
| 120 | * Must be called with the entry's lock held. | ||
| 121 | */ | ||
| 122 | static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) | ||
| 123 | { | ||
| 124 | __skb_queue_tail(&e->arpq, skb); | ||
| 125 | } | ||
| 126 | |||
| 127 | int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb, | ||
| 128 | struct l2t_entry *e) | ||
| 129 | { | ||
| 130 | again: | ||
| 131 | switch (e->state) { | ||
| 132 | case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ | ||
| 133 | neigh_event_send(e->neigh, NULL); | ||
| 134 | spin_lock_bh(&e->lock); | ||
| 135 | if (e->state == L2T_STATE_STALE) | ||
| 136 | e->state = L2T_STATE_VALID; | ||
| 137 | spin_unlock_bh(&e->lock); | ||
| 138 | case L2T_STATE_VALID: /* fast-path, send the packet on */ | ||
| 139 | return cxgb3_ofld_send(dev, skb); | ||
| 140 | case L2T_STATE_RESOLVING: | ||
| 141 | spin_lock_bh(&e->lock); | ||
| 142 | if (e->state != L2T_STATE_RESOLVING) { | ||
| 143 | /* ARP already completed */ | ||
| 144 | spin_unlock_bh(&e->lock); | ||
| 145 | goto again; | ||
| 146 | } | ||
| 147 | arpq_enqueue(e, skb); | ||
| 148 | spin_unlock_bh(&e->lock); | ||
| 149 | |||
| 150 | /* | ||
| 151 | * Only the first packet added to the arpq should kick off | ||
| 152 | * resolution. However, because the alloc_skb below can fail, | ||
| 153 | * we allow each packet added to the arpq to retry resolution | ||
| 154 | * as a way of recovering from transient memory exhaustion. | ||
| 155 | * A better way would be to use a work request to retry L2T | ||
| 156 | * entries when there's no memory. | ||
| 157 | */ | ||
| 158 | if (!neigh_event_send(e->neigh, NULL)) { | ||
| 159 | skb = alloc_skb(sizeof(struct cpl_l2t_write_req), | ||
| 160 | GFP_ATOMIC); | ||
| 161 | if (!skb) | ||
| 162 | break; | ||
| 163 | |||
| 164 | spin_lock_bh(&e->lock); | ||
| 165 | if (!skb_queue_empty(&e->arpq)) | ||
| 166 | setup_l2e_send_pending(dev, skb, e); | ||
| 167 | else /* we lost the race */ | ||
| 168 | __kfree_skb(skb); | ||
| 169 | spin_unlock_bh(&e->lock); | ||
| 170 | } | ||
| 171 | } | ||
| 172 | return 0; | ||
| 173 | } | ||
| 174 | |||
| 175 | EXPORT_SYMBOL(t3_l2t_send_slow); | ||
| 176 | |||
| 177 | void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e) | ||
| 178 | { | ||
| 179 | again: | ||
| 180 | switch (e->state) { | ||
| 181 | case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ | ||
| 182 | neigh_event_send(e->neigh, NULL); | ||
| 183 | spin_lock_bh(&e->lock); | ||
| 184 | if (e->state == L2T_STATE_STALE) { | ||
| 185 | e->state = L2T_STATE_VALID; | ||
| 186 | } | ||
| 187 | spin_unlock_bh(&e->lock); | ||
| 188 | return; | ||
| 189 | case L2T_STATE_VALID: /* fast-path, send the packet on */ | ||
| 190 | return; | ||
| 191 | case L2T_STATE_RESOLVING: | ||
| 192 | spin_lock_bh(&e->lock); | ||
| 193 | if (e->state != L2T_STATE_RESOLVING) { | ||
| 194 | /* ARP already completed */ | ||
| 195 | spin_unlock_bh(&e->lock); | ||
| 196 | goto again; | ||
| 197 | } | ||
| 198 | spin_unlock_bh(&e->lock); | ||
| 199 | |||
| 200 | /* | ||
| 201 | * Only the first packet added to the arpq should kick off | ||
| 202 | * resolution. However, because the alloc_skb below can fail, | ||
| 203 | * we allow each packet added to the arpq to retry resolution | ||
| 204 | * as a way of recovering from transient memory exhaustion. | ||
| 205 | * A better way would be to use a work request to retry L2T | ||
| 206 | * entries when there's no memory. | ||
| 207 | */ | ||
| 208 | neigh_event_send(e->neigh, NULL); | ||
| 209 | } | ||
| 210 | } | ||
| 211 | |||
| 212 | EXPORT_SYMBOL(t3_l2t_send_event); | ||
| 213 | |||
| 214 | /* | ||
| 215 | * Allocate a free L2T entry. Must be called with l2t_data.lock held. | ||
| 216 | */ | ||
| 217 | static struct l2t_entry *alloc_l2e(struct l2t_data *d) | ||
| 218 | { | ||
| 219 | struct l2t_entry *end, *e, **p; | ||
| 220 | |||
| 221 | if (!atomic_read(&d->nfree)) | ||
| 222 | return NULL; | ||
| 223 | |||
| 224 | /* there's definitely a free entry */ | ||
| 225 | for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e) | ||
| 226 | if (atomic_read(&e->refcnt) == 0) | ||
| 227 | goto found; | ||
| 228 | |||
| 229 | for (e = &d->l2tab[1]; atomic_read(&e->refcnt); ++e) ; | ||
| 230 | found: | ||
| 231 | d->rover = e + 1; | ||
| 232 | atomic_dec(&d->nfree); | ||
| 233 | |||
| 234 | /* | ||
| 235 | * The entry we found may be an inactive entry that is | ||
| 236 | * presently in the hash table. We need to remove it. | ||
| 237 | */ | ||
| 238 | if (e->state != L2T_STATE_UNUSED) { | ||
| 239 | int hash = arp_hash(e->addr, e->ifindex, d); | ||
| 240 | |||
| 241 | for (p = &d->l2tab[hash].first; *p; p = &(*p)->next) | ||
| 242 | if (*p == e) { | ||
| 243 | *p = e->next; | ||
| 244 | break; | ||
| 245 | } | ||
| 246 | e->state = L2T_STATE_UNUSED; | ||
| 247 | } | ||
| 248 | return e; | ||
| 249 | } | ||
| 250 | |||
| 251 | /* | ||
| 252 | * Called when an L2T entry has no more users. The entry is left in the hash | ||
| 253 | * table since it is likely to be reused but we also bump nfree to indicate | ||
| 254 | * that the entry can be reallocated for a different neighbor. We also drop | ||
| 255 | * the existing neighbor reference in case the neighbor is going away and is | ||
| 256 | * waiting on our reference. | ||
| 257 | * | ||
| 258 | * Because entries can be reallocated to other neighbors once their ref count | ||
| 259 | * drops to 0 we need to take the entry's lock to avoid races with a new | ||
| 260 | * incarnation. | ||
| 261 | */ | ||
| 262 | void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e) | ||
| 263 | { | ||
| 264 | spin_lock_bh(&e->lock); | ||
| 265 | if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ | ||
| 266 | if (e->neigh) { | ||
| 267 | neigh_release(e->neigh); | ||
| 268 | e->neigh = NULL; | ||
| 269 | } | ||
| 270 | } | ||
| 271 | spin_unlock_bh(&e->lock); | ||
| 272 | atomic_inc(&d->nfree); | ||
| 273 | } | ||
| 274 | |||
| 275 | EXPORT_SYMBOL(t3_l2e_free); | ||
| 276 | |||
| 277 | /* | ||
| 278 | * Update an L2T entry that was previously used for the same next hop as neigh. | ||
| 279 | * Must be called with softirqs disabled. | ||
| 280 | */ | ||
| 281 | static inline void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) | ||
| 282 | { | ||
| 283 | unsigned int nud_state; | ||
| 284 | |||
| 285 | spin_lock(&e->lock); /* avoid race with t3_l2t_free */ | ||
| 286 | |||
| 287 | if (neigh != e->neigh) | ||
| 288 | neigh_replace(e, neigh); | ||
| 289 | nud_state = neigh->nud_state; | ||
| 290 | if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || | ||
| 291 | !(nud_state & NUD_VALID)) | ||
| 292 | e->state = L2T_STATE_RESOLVING; | ||
| 293 | else if (nud_state & NUD_CONNECTED) | ||
| 294 | e->state = L2T_STATE_VALID; | ||
| 295 | else | ||
| 296 | e->state = L2T_STATE_STALE; | ||
| 297 | spin_unlock(&e->lock); | ||
| 298 | } | ||
| 299 | |||
| 300 | struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct neighbour *neigh, | ||
| 301 | struct net_device *dev) | ||
| 302 | { | ||
| 303 | struct l2t_entry *e; | ||
| 304 | struct l2t_data *d = L2DATA(cdev); | ||
| 305 | u32 addr = *(u32 *) neigh->primary_key; | ||
| 306 | int ifidx = neigh->dev->ifindex; | ||
| 307 | int hash = arp_hash(addr, ifidx, d); | ||
| 308 | struct port_info *p = netdev_priv(dev); | ||
| 309 | int smt_idx = p->port_id; | ||
| 310 | |||
| 311 | write_lock_bh(&d->lock); | ||
| 312 | for (e = d->l2tab[hash].first; e; e = e->next) | ||
| 313 | if (e->addr == addr && e->ifindex == ifidx && | ||
| 314 | e->smt_idx == smt_idx) { | ||
| 315 | l2t_hold(d, e); | ||
| 316 | if (atomic_read(&e->refcnt) == 1) | ||
| 317 | reuse_entry(e, neigh); | ||
| 318 | goto done; | ||
| 319 | } | ||
| 320 | |||
| 321 | /* Need to allocate a new entry */ | ||
| 322 | e = alloc_l2e(d); | ||
| 323 | if (e) { | ||
| 324 | spin_lock(&e->lock); /* avoid race with t3_l2t_free */ | ||
| 325 | e->next = d->l2tab[hash].first; | ||
| 326 | d->l2tab[hash].first = e; | ||
| 327 | e->state = L2T_STATE_RESOLVING; | ||
| 328 | e->addr = addr; | ||
| 329 | e->ifindex = ifidx; | ||
| 330 | e->smt_idx = smt_idx; | ||
| 331 | atomic_set(&e->refcnt, 1); | ||
| 332 | neigh_replace(e, neigh); | ||
| 333 | if (neigh->dev->priv_flags & IFF_802_1Q_VLAN) | ||
| 334 | e->vlan = vlan_dev_vlan_id(neigh->dev); | ||
| 335 | else | ||
| 336 | e->vlan = VLAN_NONE; | ||
| 337 | spin_unlock(&e->lock); | ||
| 338 | } | ||
| 339 | done: | ||
| 340 | write_unlock_bh(&d->lock); | ||
| 341 | return e; | ||
| 342 | } | ||
| 343 | |||
| 344 | EXPORT_SYMBOL(t3_l2t_get); | ||
| 345 | |||
| 346 | /* | ||
| 347 | * Called when address resolution fails for an L2T entry to handle packets | ||
| 348 | * on the arpq head. If a packet specifies a failure handler it is invoked, | ||
| 349 | * otherwise the packets is sent to the offload device. | ||
| 350 | * | ||
| 351 | * XXX: maybe we should abandon the latter behavior and just require a failure | ||
| 352 | * handler. | ||
| 353 | */ | ||
| 354 | static void handle_failed_resolution(struct t3cdev *dev, struct sk_buff_head *arpq) | ||
| 355 | { | ||
| 356 | struct sk_buff *skb, *tmp; | ||
| 357 | |||
| 358 | skb_queue_walk_safe(arpq, skb, tmp) { | ||
| 359 | struct l2t_skb_cb *cb = L2T_SKB_CB(skb); | ||
| 360 | |||
| 361 | __skb_unlink(skb, arpq); | ||
| 362 | if (cb->arp_failure_handler) | ||
| 363 | cb->arp_failure_handler(dev, skb); | ||
| 364 | else | ||
| 365 | cxgb3_ofld_send(dev, skb); | ||
| 366 | } | ||
| 367 | } | ||
| 368 | |||
| 369 | /* | ||
| 370 | * Called when the host's ARP layer makes a change to some entry that is | ||
| 371 | * loaded into the HW L2 table. | ||
| 372 | */ | ||
| 373 | void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh) | ||
| 374 | { | ||
| 375 | struct sk_buff_head arpq; | ||
| 376 | struct l2t_entry *e; | ||
| 377 | struct l2t_data *d = L2DATA(dev); | ||
| 378 | u32 addr = *(u32 *) neigh->primary_key; | ||
| 379 | int ifidx = neigh->dev->ifindex; | ||
| 380 | int hash = arp_hash(addr, ifidx, d); | ||
| 381 | |||
| 382 | read_lock_bh(&d->lock); | ||
| 383 | for (e = d->l2tab[hash].first; e; e = e->next) | ||
| 384 | if (e->addr == addr && e->ifindex == ifidx) { | ||
| 385 | spin_lock(&e->lock); | ||
| 386 | goto found; | ||
| 387 | } | ||
| 388 | read_unlock_bh(&d->lock); | ||
| 389 | return; | ||
| 390 | |||
| 391 | found: | ||
| 392 | __skb_queue_head_init(&arpq); | ||
| 393 | |||
| 394 | read_unlock(&d->lock); | ||
| 395 | if (atomic_read(&e->refcnt)) { | ||
| 396 | if (neigh != e->neigh) | ||
| 397 | neigh_replace(e, neigh); | ||
| 398 | |||
| 399 | if (e->state == L2T_STATE_RESOLVING) { | ||
| 400 | if (neigh->nud_state & NUD_FAILED) { | ||
| 401 | skb_queue_splice_init(&e->arpq, &arpq); | ||
| 402 | } else if (neigh->nud_state & (NUD_CONNECTED|NUD_STALE)) | ||
| 403 | setup_l2e_send_pending(dev, NULL, e); | ||
| 404 | } else { | ||
| 405 | e->state = neigh->nud_state & NUD_CONNECTED ? | ||
| 406 | L2T_STATE_VALID : L2T_STATE_STALE; | ||
| 407 | if (memcmp(e->dmac, neigh->ha, 6)) | ||
| 408 | setup_l2e_send_pending(dev, NULL, e); | ||
| 409 | } | ||
| 410 | } | ||
| 411 | spin_unlock_bh(&e->lock); | ||
| 412 | |||
| 413 | if (!skb_queue_empty(&arpq)) | ||
| 414 | handle_failed_resolution(dev, &arpq); | ||
| 415 | } | ||
| 416 | |||
| 417 | struct l2t_data *t3_init_l2t(unsigned int l2t_capacity) | ||
| 418 | { | ||
| 419 | struct l2t_data *d; | ||
| 420 | int i, size = sizeof(*d) + l2t_capacity * sizeof(struct l2t_entry); | ||
| 421 | |||
| 422 | d = cxgb_alloc_mem(size); | ||
| 423 | if (!d) | ||
| 424 | return NULL; | ||
| 425 | |||
| 426 | d->nentries = l2t_capacity; | ||
| 427 | d->rover = &d->l2tab[1]; /* entry 0 is not used */ | ||
| 428 | atomic_set(&d->nfree, l2t_capacity - 1); | ||
| 429 | rwlock_init(&d->lock); | ||
| 430 | |||
| 431 | for (i = 0; i < l2t_capacity; ++i) { | ||
| 432 | d->l2tab[i].idx = i; | ||
| 433 | d->l2tab[i].state = L2T_STATE_UNUSED; | ||
| 434 | __skb_queue_head_init(&d->l2tab[i].arpq); | ||
| 435 | spin_lock_init(&d->l2tab[i].lock); | ||
| 436 | atomic_set(&d->l2tab[i].refcnt, 0); | ||
| 437 | } | ||
| 438 | return d; | ||
| 439 | } | ||
| 440 | |||
| 441 | void t3_free_l2t(struct l2t_data *d) | ||
| 442 | { | ||
| 443 | cxgb_free_mem(d); | ||
| 444 | } | ||
| 445 | |||
