aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/nouveau/nvkm/subdev/secboot/gm200.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/nouveau/nvkm/subdev/secboot/gm200.c')
-rw-r--r--drivers/gpu/drm/nouveau/nvkm/subdev/secboot/gm200.c1391
1 files changed, 60 insertions, 1331 deletions
diff --git a/drivers/gpu/drm/nouveau/nvkm/subdev/secboot/gm200.c b/drivers/gpu/drm/nouveau/nvkm/subdev/secboot/gm200.c
index ec48e4ace37a..813c4eb0b25f 100644
--- a/drivers/gpu/drm/nouveau/nvkm/subdev/secboot/gm200.c
+++ b/drivers/gpu/drm/nouveau/nvkm/subdev/secboot/gm200.c
@@ -20,1313 +20,84 @@
20 * DEALINGS IN THE SOFTWARE. 20 * DEALINGS IN THE SOFTWARE.
21 */ 21 */
22 22
23/*
24 * Secure boot is the process by which NVIDIA-signed firmware is loaded into
25 * some of the falcons of a GPU. For production devices this is the only way
26 * for the firmware to access useful (but sensitive) registers.
27 *
28 * A Falcon microprocessor supporting advanced security modes can run in one of
29 * three modes:
30 *
31 * - Non-secure (NS). In this mode, functionality is similar to Falcon
32 * architectures before security modes were introduced (pre-Maxwell), but
33 * capability is restricted. In particular, certain registers may be
34 * inaccessible for reads and/or writes, and physical memory access may be
35 * disabled (on certain Falcon instances). This is the only possible mode that
36 * can be used if you don't have microcode cryptographically signed by NVIDIA.
37 *
38 * - Heavy Secure (HS). In this mode, the microprocessor is a black box - it's
39 * not possible to read or write any Falcon internal state or Falcon registers
40 * from outside the Falcon (for example, from the host system). The only way
41 * to enable this mode is by loading microcode that has been signed by NVIDIA.
42 * (The loading process involves tagging the IMEM block as secure, writing the
43 * signature into a Falcon register, and starting execution. The hardware will
44 * validate the signature, and if valid, grant HS privileges.)
45 *
46 * - Light Secure (LS). In this mode, the microprocessor has more privileges
47 * than NS but fewer than HS. Some of the microprocessor state is visible to
48 * host software to ease debugging. The only way to enable this mode is by HS
49 * microcode enabling LS mode. Some privileges available to HS mode are not
50 * available here. LS mode is introduced in GM20x.
51 *
52 * Secure boot consists in temporarily switching a HS-capable falcon (typically
53 * PMU) into HS mode in order to validate the LS firmwares of managed falcons,
54 * load them, and switch managed falcons into LS mode. Once secure boot
55 * completes, no falcon remains in HS mode.
56 *
57 * Secure boot requires a write-protected memory region (WPR) which can only be
58 * written by the secure falcon. On dGPU, the driver sets up the WPR region in
59 * video memory. On Tegra, it is set up by the bootloader and its location and
60 * size written into memory controller registers.
61 *
62 * The secure boot process takes place as follows:
63 *
64 * 1) A LS blob is constructed that contains all the LS firmwares we want to
65 * load, along with their signatures and bootloaders.
66 *
67 * 2) A HS blob (also called ACR) is created that contains the signed HS
68 * firmware in charge of loading the LS firmwares into their respective
69 * falcons.
70 *
71 * 3) The HS blob is loaded (via its own bootloader) and executed on the
72 * HS-capable falcon. It authenticates itself, switches the secure falcon to
73 * HS mode and setup the WPR region around the LS blob (dGPU) or copies the
74 * LS blob into the WPR region (Tegra).
75 *
76 * 4) The LS blob is now secure from all external tampering. The HS falcon
77 * checks the signatures of the LS firmwares and, if valid, switches the
78 * managed falcons to LS mode and makes them ready to run the LS firmware.
79 *
80 * 5) The managed falcons remain in LS mode and can be started.
81 *
82 */
83 23
84#include "priv.h" 24#include "acr.h"
25#include "gm200.h"
85 26
86#include <core/gpuobj.h> 27#include <core/gpuobj.h>
87#include <core/firmware.h>
88#include <subdev/fb.h> 28#include <subdev/fb.h>
89 29#include <engine/falcon.h>
90enum { 30#include <subdev/mc.h>
91 FALCON_DMAIDX_UCODE = 0,
92 FALCON_DMAIDX_VIRT = 1,
93 FALCON_DMAIDX_PHYS_VID = 2,
94 FALCON_DMAIDX_PHYS_SYS_COH = 3,
95 FALCON_DMAIDX_PHYS_SYS_NCOH = 4,
96};
97
98/**
99 * struct fw_bin_header - header of firmware files
100 * @bin_magic: always 0x3b1d14f0
101 * @bin_ver: version of the bin format
102 * @bin_size: entire image size including this header
103 * @header_offset: offset of the firmware/bootloader header in the file
104 * @data_offset: offset of the firmware/bootloader payload in the file
105 * @data_size: size of the payload
106 *
107 * This header is located at the beginning of the HS firmware and HS bootloader
108 * files, to describe where the headers and data can be found.
109 */
110struct fw_bin_header {
111 u32 bin_magic;
112 u32 bin_ver;
113 u32 bin_size;
114 u32 header_offset;
115 u32 data_offset;
116 u32 data_size;
117};
118
119/**
120 * struct fw_bl_desc - firmware bootloader descriptor
121 * @start_tag: starting tag of bootloader
122 * @desc_dmem_load_off: DMEM offset of flcn_bl_dmem_desc
123 * @code_off: offset of code section
124 * @code_size: size of code section
125 * @data_off: offset of data section
126 * @data_size: size of data section
127 *
128 * This structure is embedded in bootloader firmware files at to describe the
129 * IMEM and DMEM layout expected by the bootloader.
130 */
131struct fw_bl_desc {
132 u32 start_tag;
133 u32 dmem_load_off;
134 u32 code_off;
135 u32 code_size;
136 u32 data_off;
137 u32 data_size;
138};
139
140
141/*
142 *
143 * LS blob structures
144 *
145 */
146
147/**
148 * struct lsf_ucode_desc - LS falcon signatures
149 * @prd_keys: signature to use when the GPU is in production mode
150 * @dgb_keys: signature to use when the GPU is in debug mode
151 * @b_prd_present: whether the production key is present
152 * @b_dgb_present: whether the debug key is present
153 * @falcon_id: ID of the falcon the ucode applies to
154 *
155 * Directly loaded from a signature file.
156 */
157struct lsf_ucode_desc {
158 u8 prd_keys[2][16];
159 u8 dbg_keys[2][16];
160 u32 b_prd_present;
161 u32 b_dbg_present;
162 u32 falcon_id;
163};
164
165/**
166 * struct lsf_lsb_header - LS firmware header
167 * @signature: signature to verify the firmware against
168 * @ucode_off: offset of the ucode blob in the WPR region. The ucode
169 * blob contains the bootloader, code and data of the
170 * LS falcon
171 * @ucode_size: size of the ucode blob, including bootloader
172 * @data_size: size of the ucode blob data
173 * @bl_code_size: size of the bootloader code
174 * @bl_imem_off: offset in imem of the bootloader
175 * @bl_data_off: offset of the bootloader data in WPR region
176 * @bl_data_size: size of the bootloader data
177 * @app_code_off: offset of the app code relative to ucode_off
178 * @app_code_size: size of the app code
179 * @app_data_off: offset of the app data relative to ucode_off
180 * @app_data_size: size of the app data
181 * @flags: flags for the secure bootloader
182 *
183 * This structure is written into the WPR region for each managed falcon. Each
184 * instance is referenced by the lsb_offset member of the corresponding
185 * lsf_wpr_header.
186 */
187struct lsf_lsb_header {
188 struct lsf_ucode_desc signature;
189 u32 ucode_off;
190 u32 ucode_size;
191 u32 data_size;
192 u32 bl_code_size;
193 u32 bl_imem_off;
194 u32 bl_data_off;
195 u32 bl_data_size;
196 u32 app_code_off;
197 u32 app_code_size;
198 u32 app_data_off;
199 u32 app_data_size;
200 u32 flags;
201#define LSF_FLAG_LOAD_CODE_AT_0 1
202#define LSF_FLAG_DMACTL_REQ_CTX 4
203#define LSF_FLAG_FORCE_PRIV_LOAD 8
204};
205
206/**
207 * struct lsf_wpr_header - LS blob WPR Header
208 * @falcon_id: LS falcon ID
209 * @lsb_offset: offset of the lsb_lsf_header in the WPR region
210 * @bootstrap_owner: secure falcon reponsible for bootstrapping the LS falcon
211 * @lazy_bootstrap: skip bootstrapping by ACR
212 * @status: bootstrapping status
213 *
214 * An array of these is written at the beginning of the WPR region, one for
215 * each managed falcon. The array is terminated by an instance which falcon_id
216 * is LSF_FALCON_ID_INVALID.
217 */
218struct lsf_wpr_header {
219 u32 falcon_id;
220 u32 lsb_offset;
221 u32 bootstrap_owner;
222 u32 lazy_bootstrap;
223 u32 status;
224#define LSF_IMAGE_STATUS_NONE 0
225#define LSF_IMAGE_STATUS_COPY 1
226#define LSF_IMAGE_STATUS_VALIDATION_CODE_FAILED 2
227#define LSF_IMAGE_STATUS_VALIDATION_DATA_FAILED 3
228#define LSF_IMAGE_STATUS_VALIDATION_DONE 4
229#define LSF_IMAGE_STATUS_VALIDATION_SKIPPED 5
230#define LSF_IMAGE_STATUS_BOOTSTRAP_READY 6
231};
232
233
234/**
235 * struct ls_ucode_img_desc - descriptor of firmware image
236 * @descriptor_size: size of this descriptor
237 * @image_size: size of the whole image
238 * @bootloader_start_offset: start offset of the bootloader in ucode image
239 * @bootloader_size: size of the bootloader
240 * @bootloader_imem_offset: start off set of the bootloader in IMEM
241 * @bootloader_entry_point: entry point of the bootloader in IMEM
242 * @app_start_offset: start offset of the LS firmware
243 * @app_size: size of the LS firmware's code and data
244 * @app_imem_offset: offset of the app in IMEM
245 * @app_imem_entry: entry point of the app in IMEM
246 * @app_dmem_offset: offset of the data in DMEM
247 * @app_resident_code_offset: offset of app code from app_start_offset
248 * @app_resident_code_size: size of the code
249 * @app_resident_data_offset: offset of data from app_start_offset
250 * @app_resident_data_size: size of data
251 *
252 * A firmware image contains the code, data, and bootloader of a given LS
253 * falcon in a single blob. This structure describes where everything is.
254 *
255 * This can be generated from a (bootloader, code, data) set if they have
256 * been loaded separately, or come directly from a file.
257 */
258struct ls_ucode_img_desc {
259 u32 descriptor_size;
260 u32 image_size;
261 u32 tools_version;
262 u32 app_version;
263 char date[64];
264 u32 bootloader_start_offset;
265 u32 bootloader_size;
266 u32 bootloader_imem_offset;
267 u32 bootloader_entry_point;
268 u32 app_start_offset;
269 u32 app_size;
270 u32 app_imem_offset;
271 u32 app_imem_entry;
272 u32 app_dmem_offset;
273 u32 app_resident_code_offset;
274 u32 app_resident_code_size;
275 u32 app_resident_data_offset;
276 u32 app_resident_data_size;
277 u32 nb_overlays;
278 struct {u32 start; u32 size; } load_ovl[64];
279 u32 compressed;
280};
281
282/**
283 * struct ls_ucode_img - temporary storage for loaded LS firmwares
284 * @node: to link within lsf_ucode_mgr
285 * @falcon_id: ID of the falcon this LS firmware is for
286 * @ucode_desc: loaded or generated map of ucode_data
287 * @ucode_header: header of the firmware
288 * @ucode_data: firmware payload (code and data)
289 * @ucode_size: size in bytes of data in ucode_data
290 * @wpr_header: WPR header to be written to the LS blob
291 * @lsb_header: LSB header to be written to the LS blob
292 *
293 * Preparing the WPR LS blob requires information about all the LS firmwares
294 * (size, etc) to be known. This structure contains all the data of one LS
295 * firmware.
296 */
297struct ls_ucode_img {
298 struct list_head node;
299 enum nvkm_secboot_falcon falcon_id;
300
301 struct ls_ucode_img_desc ucode_desc;
302 u32 *ucode_header;
303 u8 *ucode_data;
304 u32 ucode_size;
305
306 struct lsf_wpr_header wpr_header;
307 struct lsf_lsb_header lsb_header;
308};
309
310/**
311 * struct ls_ucode_mgr - manager for all LS falcon firmwares
312 * @count: number of managed LS falcons
313 * @wpr_size: size of the required WPR region in bytes
314 * @img_list: linked list of lsf_ucode_img
315 */
316struct ls_ucode_mgr {
317 u16 count;
318 u32 wpr_size;
319 struct list_head img_list;
320};
321
322
323/*
324 *
325 * HS blob structures
326 *
327 */
328
329/**
330 * struct hsf_fw_header - HS firmware descriptor
331 * @sig_dbg_offset: offset of the debug signature
332 * @sig_dbg_size: size of the debug signature
333 * @sig_prod_offset: offset of the production signature
334 * @sig_prod_size: size of the production signature
335 * @patch_loc: offset of the offset (sic) of where the signature is
336 * @patch_sig: offset of the offset (sic) to add to sig_*_offset
337 * @hdr_offset: offset of the load header (see struct hs_load_header)
338 * @hdr_size: size of above header
339 *
340 * This structure is embedded in the HS firmware image at
341 * hs_bin_hdr.header_offset.
342 */
343struct hsf_fw_header {
344 u32 sig_dbg_offset;
345 u32 sig_dbg_size;
346 u32 sig_prod_offset;
347 u32 sig_prod_size;
348 u32 patch_loc;
349 u32 patch_sig;
350 u32 hdr_offset;
351 u32 hdr_size;
352};
353
354/**
355 * struct hsf_load_header - HS firmware load header
356 */
357struct hsf_load_header {
358 u32 non_sec_code_off;
359 u32 non_sec_code_size;
360 u32 data_dma_base;
361 u32 data_size;
362 u32 num_apps;
363 struct {
364 u32 sec_code_off;
365 u32 sec_code_size;
366 } app[0];
367};
368
369/**
370 * Convenience function to duplicate a firmware file in memory and check that
371 * it has the required minimum size.
372 */
373static void *
374gm200_secboot_load_firmware(struct nvkm_subdev *subdev, const char *name,
375 size_t min_size)
376{
377 const struct firmware *fw;
378 void *blob;
379 int ret;
380
381 ret = nvkm_firmware_get(subdev->device, name, &fw);
382 if (ret)
383 return ERR_PTR(ret);
384 if (fw->size < min_size) {
385 nvkm_error(subdev, "%s is smaller than expected size %zu\n",
386 name, min_size);
387 nvkm_firmware_put(fw);
388 return ERR_PTR(-EINVAL);
389 }
390 blob = kmemdup(fw->data, fw->size, GFP_KERNEL);
391 nvkm_firmware_put(fw);
392 if (!blob)
393 return ERR_PTR(-ENOMEM);
394
395 return blob;
396}
397
398
399/*
400 * Low-secure blob creation
401 */
402
403#define BL_DESC_BLK_SIZE 256
404/**
405 * Build a ucode image and descriptor from provided bootloader, code and data.
406 *
407 * @bl: bootloader image, including 16-bytes descriptor
408 * @code: LS firmware code segment
409 * @data: LS firmware data segment
410 * @desc: ucode descriptor to be written
411 *
412 * Return: allocated ucode image with corresponding descriptor information. desc
413 * is also updated to contain the right offsets within returned image.
414 */
415static void *
416ls_ucode_img_build(const struct firmware *bl, const struct firmware *code,
417 const struct firmware *data, struct ls_ucode_img_desc *desc)
418{
419 struct fw_bin_header *bin_hdr = (void *)bl->data;
420 struct fw_bl_desc *bl_desc = (void *)bl->data + bin_hdr->header_offset;
421 void *bl_data = (void *)bl->data + bin_hdr->data_offset;
422 u32 pos = 0;
423 void *image;
424
425 desc->bootloader_start_offset = pos;
426 desc->bootloader_size = ALIGN(bl_desc->code_size, sizeof(u32));
427 desc->bootloader_imem_offset = bl_desc->start_tag * 256;
428 desc->bootloader_entry_point = bl_desc->start_tag * 256;
429
430 pos = ALIGN(pos + desc->bootloader_size, BL_DESC_BLK_SIZE);
431 desc->app_start_offset = pos;
432 desc->app_size = ALIGN(code->size, BL_DESC_BLK_SIZE) +
433 ALIGN(data->size, BL_DESC_BLK_SIZE);
434 desc->app_imem_offset = 0;
435 desc->app_imem_entry = 0;
436 desc->app_dmem_offset = 0;
437 desc->app_resident_code_offset = 0;
438 desc->app_resident_code_size = ALIGN(code->size, BL_DESC_BLK_SIZE);
439
440 pos = ALIGN(pos + desc->app_resident_code_size, BL_DESC_BLK_SIZE);
441 desc->app_resident_data_offset = pos - desc->app_start_offset;
442 desc->app_resident_data_size = ALIGN(data->size, BL_DESC_BLK_SIZE);
443
444 desc->image_size = ALIGN(bl_desc->code_size, BL_DESC_BLK_SIZE) +
445 desc->app_size;
446
447 image = kzalloc(desc->image_size, GFP_KERNEL);
448 if (!image)
449 return ERR_PTR(-ENOMEM);
450
451 memcpy(image + desc->bootloader_start_offset, bl_data,
452 bl_desc->code_size);
453 memcpy(image + desc->app_start_offset, code->data, code->size);
454 memcpy(image + desc->app_start_offset + desc->app_resident_data_offset,
455 data->data, data->size);
456
457 return image;
458}
459
460/**
461 * ls_ucode_img_load_generic() - load and prepare a LS ucode image
462 *
463 * Load the LS microcode, bootloader and signature and pack them into a single
464 * blob. Also generate the corresponding ucode descriptor.
465 */
466static int
467ls_ucode_img_load_generic(struct nvkm_subdev *subdev,
468 struct ls_ucode_img *img, const char *falcon_name,
469 const u32 falcon_id)
470{
471 const struct firmware *bl, *code, *data;
472 struct lsf_ucode_desc *lsf_desc;
473 char f[64];
474 int ret;
475
476 img->ucode_header = NULL;
477
478 snprintf(f, sizeof(f), "gr/%s_bl", falcon_name);
479 ret = nvkm_firmware_get(subdev->device, f, &bl);
480 if (ret)
481 goto error;
482
483 snprintf(f, sizeof(f), "gr/%s_inst", falcon_name);
484 ret = nvkm_firmware_get(subdev->device, f, &code);
485 if (ret)
486 goto free_bl;
487
488 snprintf(f, sizeof(f), "gr/%s_data", falcon_name);
489 ret = nvkm_firmware_get(subdev->device, f, &data);
490 if (ret)
491 goto free_inst;
492
493 img->ucode_data = ls_ucode_img_build(bl, code, data,
494 &img->ucode_desc);
495 if (IS_ERR(img->ucode_data)) {
496 ret = PTR_ERR(img->ucode_data);
497 goto free_data;
498 }
499 img->ucode_size = img->ucode_desc.image_size;
500
501 snprintf(f, sizeof(f), "gr/%s_sig", falcon_name);
502 lsf_desc = gm200_secboot_load_firmware(subdev, f, sizeof(*lsf_desc));
503 if (IS_ERR(lsf_desc)) {
504 ret = PTR_ERR(lsf_desc);
505 goto free_image;
506 }
507 /* not needed? the signature should already have the right value */
508 lsf_desc->falcon_id = falcon_id;
509 memcpy(&img->lsb_header.signature, lsf_desc, sizeof(*lsf_desc));
510 img->falcon_id = lsf_desc->falcon_id;
511 kfree(lsf_desc);
512
513 /* success path - only free requested firmware files */
514 goto free_data;
515
516free_image:
517 kfree(img->ucode_data);
518free_data:
519 nvkm_firmware_put(data);
520free_inst:
521 nvkm_firmware_put(code);
522free_bl:
523 nvkm_firmware_put(bl);
524error:
525 return ret;
526}
527
528typedef int (*lsf_load_func)(struct nvkm_subdev *, struct ls_ucode_img *);
529
530static int
531ls_ucode_img_load_fecs(struct nvkm_subdev *subdev, struct ls_ucode_img *img)
532{
533 return ls_ucode_img_load_generic(subdev, img, "fecs",
534 NVKM_SECBOOT_FALCON_FECS);
535}
536
537static int
538ls_ucode_img_load_gpccs(struct nvkm_subdev *subdev, struct ls_ucode_img *img)
539{
540 return ls_ucode_img_load_generic(subdev, img, "gpccs",
541 NVKM_SECBOOT_FALCON_GPCCS);
542}
543
544/**
545 * ls_ucode_img_load() - create a lsf_ucode_img and load it
546 */
547static struct ls_ucode_img *
548ls_ucode_img_load(struct nvkm_subdev *subdev, lsf_load_func load_func)
549{
550 struct ls_ucode_img *img;
551 int ret;
552
553 img = kzalloc(sizeof(*img), GFP_KERNEL);
554 if (!img)
555 return ERR_PTR(-ENOMEM);
556
557 ret = load_func(subdev, img);
558 if (ret) {
559 kfree(img);
560 return ERR_PTR(ret);
561 }
562
563 return img;
564}
565
566static const lsf_load_func lsf_load_funcs[] = {
567 [NVKM_SECBOOT_FALCON_END] = NULL, /* reserve enough space */
568 [NVKM_SECBOOT_FALCON_FECS] = ls_ucode_img_load_fecs,
569 [NVKM_SECBOOT_FALCON_GPCCS] = ls_ucode_img_load_gpccs,
570};
571
572/**
573 * ls_ucode_img_populate_bl_desc() - populate a DMEM BL descriptor for LS image
574 * @img: ucode image to generate against
575 * @desc: descriptor to populate
576 * @sb: secure boot state to use for base addresses
577 *
578 * Populate the DMEM BL descriptor with the information contained in a
579 * ls_ucode_desc.
580 *
581 */
582static void
583ls_ucode_img_populate_bl_desc(struct ls_ucode_img *img, u64 wpr_addr,
584 struct gm200_flcn_bl_desc *desc)
585{
586 struct ls_ucode_img_desc *pdesc = &img->ucode_desc;
587 u64 addr_base;
588
589 addr_base = wpr_addr + img->lsb_header.ucode_off +
590 pdesc->app_start_offset;
591
592 memset(desc, 0, sizeof(*desc));
593 desc->ctx_dma = FALCON_DMAIDX_UCODE;
594 desc->code_dma_base.lo = lower_32_bits(
595 (addr_base + pdesc->app_resident_code_offset));
596 desc->code_dma_base.hi = upper_32_bits(
597 (addr_base + pdesc->app_resident_code_offset));
598 desc->non_sec_code_size = pdesc->app_resident_code_size;
599 desc->data_dma_base.lo = lower_32_bits(
600 (addr_base + pdesc->app_resident_data_offset));
601 desc->data_dma_base.hi = upper_32_bits(
602 (addr_base + pdesc->app_resident_data_offset));
603 desc->data_size = pdesc->app_resident_data_size;
604 desc->code_entry_point = pdesc->app_imem_entry;
605}
606
607#define LSF_LSB_HEADER_ALIGN 256
608#define LSF_BL_DATA_ALIGN 256
609#define LSF_BL_DATA_SIZE_ALIGN 256
610#define LSF_BL_CODE_SIZE_ALIGN 256
611#define LSF_UCODE_DATA_ALIGN 4096
612
613/**
614 * ls_ucode_img_fill_headers - fill the WPR and LSB headers of an image
615 * @gsb: secure boot device used
616 * @img: image to generate for
617 * @offset: offset in the WPR region where this image starts
618 *
619 * Allocate space in the WPR area from offset and write the WPR and LSB headers
620 * accordingly.
621 *
622 * Return: offset at the end of this image.
623 */
624static u32
625ls_ucode_img_fill_headers(struct gm200_secboot *gsb, struct ls_ucode_img *img,
626 u32 offset)
627{
628 struct lsf_wpr_header *whdr = &img->wpr_header;
629 struct lsf_lsb_header *lhdr = &img->lsb_header;
630 struct ls_ucode_img_desc *desc = &img->ucode_desc;
631
632 if (img->ucode_header) {
633 nvkm_fatal(&gsb->base.subdev,
634 "images withough loader are not supported yet!\n");
635 return offset;
636 }
637
638 /* Fill WPR header */
639 whdr->falcon_id = img->falcon_id;
640 whdr->bootstrap_owner = gsb->base.func->boot_falcon;
641 whdr->status = LSF_IMAGE_STATUS_COPY;
642
643 /* Align, save off, and include an LSB header size */
644 offset = ALIGN(offset, LSF_LSB_HEADER_ALIGN);
645 whdr->lsb_offset = offset;
646 offset += sizeof(struct lsf_lsb_header);
647
648 /*
649 * Align, save off, and include the original (static) ucode
650 * image size
651 */
652 offset = ALIGN(offset, LSF_UCODE_DATA_ALIGN);
653 lhdr->ucode_off = offset;
654 offset += img->ucode_size;
655
656 /*
657 * For falcons that use a boot loader (BL), we append a loader
658 * desc structure on the end of the ucode image and consider
659 * this the boot loader data. The host will then copy the loader
660 * desc args to this space within the WPR region (before locking
661 * down) and the HS bin will then copy them to DMEM 0 for the
662 * loader.
663 */
664 lhdr->bl_code_size = ALIGN(desc->bootloader_size,
665 LSF_BL_CODE_SIZE_ALIGN);
666 lhdr->ucode_size = ALIGN(desc->app_resident_data_offset,
667 LSF_BL_CODE_SIZE_ALIGN) + lhdr->bl_code_size;
668 lhdr->data_size = ALIGN(desc->app_size, LSF_BL_CODE_SIZE_ALIGN) +
669 lhdr->bl_code_size - lhdr->ucode_size;
670 /*
671 * Though the BL is located at 0th offset of the image, the VA
672 * is different to make sure that it doesn't collide the actual
673 * OS VA range
674 */
675 lhdr->bl_imem_off = desc->bootloader_imem_offset;
676 lhdr->app_code_off = desc->app_start_offset +
677 desc->app_resident_code_offset;
678 lhdr->app_code_size = desc->app_resident_code_size;
679 lhdr->app_data_off = desc->app_start_offset +
680 desc->app_resident_data_offset;
681 lhdr->app_data_size = desc->app_resident_data_size;
682
683 lhdr->flags = 0;
684 if (img->falcon_id == gsb->base.func->boot_falcon)
685 lhdr->flags = LSF_FLAG_DMACTL_REQ_CTX;
686
687 /* GPCCS will be loaded using PRI */
688 if (img->falcon_id == NVKM_SECBOOT_FALCON_GPCCS)
689 lhdr->flags |= LSF_FLAG_FORCE_PRIV_LOAD;
690
691 /* Align (size bloat) and save off BL descriptor size */
692 lhdr->bl_data_size = ALIGN(sizeof(struct gm200_flcn_bl_desc),
693 LSF_BL_DATA_SIZE_ALIGN);
694 /*
695 * Align, save off, and include the additional BL data
696 */
697 offset = ALIGN(offset, LSF_BL_DATA_ALIGN);
698 lhdr->bl_data_off = offset;
699 offset += lhdr->bl_data_size;
700
701 return offset;
702}
703
704static void
705ls_ucode_mgr_init(struct ls_ucode_mgr *mgr)
706{
707 memset(mgr, 0, sizeof(*mgr));
708 INIT_LIST_HEAD(&mgr->img_list);
709}
710
711static void
712ls_ucode_mgr_cleanup(struct ls_ucode_mgr *mgr)
713{
714 struct ls_ucode_img *img, *t;
715
716 list_for_each_entry_safe(img, t, &mgr->img_list, node) {
717 kfree(img->ucode_data);
718 kfree(img->ucode_header);
719 kfree(img);
720 }
721}
722
723static void
724ls_ucode_mgr_add_img(struct ls_ucode_mgr *mgr, struct ls_ucode_img *img)
725{
726 mgr->count++;
727 list_add_tail(&img->node, &mgr->img_list);
728}
729
730/**
731 * ls_ucode_mgr_fill_headers - fill WPR and LSB headers of all managed images
732 */
733static void
734ls_ucode_mgr_fill_headers(struct gm200_secboot *gsb, struct ls_ucode_mgr *mgr)
735{
736 struct ls_ucode_img *img;
737 u32 offset;
738
739 /*
740 * Start with an array of WPR headers at the base of the WPR.
741 * The expectation here is that the secure falcon will do a single DMA
742 * read of this array and cache it internally so it's ok to pack these.
743 * Also, we add 1 to the falcon count to indicate the end of the array.
744 */
745 offset = sizeof(struct lsf_wpr_header) * (mgr->count + 1);
746
747 /*
748 * Walk the managed falcons, accounting for the LSB structs
749 * as well as the ucode images.
750 */
751 list_for_each_entry(img, &mgr->img_list, node) {
752 offset = ls_ucode_img_fill_headers(gsb, img, offset);
753 }
754
755 mgr->wpr_size = offset;
756}
757
758/**
759 * ls_ucode_mgr_write_wpr - write the WPR blob contents
760 */
761static int
762ls_ucode_mgr_write_wpr(struct gm200_secboot *gsb, struct ls_ucode_mgr *mgr,
763 struct nvkm_gpuobj *wpr_blob)
764{
765 struct ls_ucode_img *img;
766 u32 pos = 0;
767
768 nvkm_kmap(wpr_blob);
769
770 list_for_each_entry(img, &mgr->img_list, node) {
771 nvkm_gpuobj_memcpy_to(wpr_blob, pos, &img->wpr_header,
772 sizeof(img->wpr_header));
773
774 nvkm_gpuobj_memcpy_to(wpr_blob, img->wpr_header.lsb_offset,
775 &img->lsb_header, sizeof(img->lsb_header));
776
777 /* Generate and write BL descriptor */
778 if (!img->ucode_header) {
779 u8 desc[gsb->func->bl_desc_size];
780 struct gm200_flcn_bl_desc gdesc;
781
782 ls_ucode_img_populate_bl_desc(img, gsb->wpr_addr,
783 &gdesc);
784 gsb->func->fixup_bl_desc(&gdesc, &desc);
785 nvkm_gpuobj_memcpy_to(wpr_blob,
786 img->lsb_header.bl_data_off,
787 &desc, gsb->func->bl_desc_size);
788 }
789
790 /* Copy ucode */
791 nvkm_gpuobj_memcpy_to(wpr_blob, img->lsb_header.ucode_off,
792 img->ucode_data, img->ucode_size);
793
794 pos += sizeof(img->wpr_header);
795 }
796
797 nvkm_wo32(wpr_blob, pos, NVKM_SECBOOT_FALCON_INVALID);
798
799 nvkm_done(wpr_blob);
800
801 return 0;
802}
803
804/* Both size and address of WPR need to be 128K-aligned */
805#define WPR_ALIGNMENT 0x20000
806/**
807 * gm200_secboot_prepare_ls_blob() - prepare the LS blob
808 *
809 * For each securely managed falcon, load the FW, signatures and bootloaders and
810 * prepare a ucode blob. Then, compute the offsets in the WPR region for each
811 * blob, and finally write the headers and ucode blobs into a GPU object that
812 * will be copied into the WPR region by the HS firmware.
813 */
814static int
815gm200_secboot_prepare_ls_blob(struct gm200_secboot *gsb)
816{
817 struct nvkm_secboot *sb = &gsb->base;
818 struct nvkm_device *device = sb->subdev.device;
819 struct ls_ucode_mgr mgr;
820 int falcon_id;
821 int ret;
822
823 ls_ucode_mgr_init(&mgr);
824
825 /* Load all LS blobs */
826 for_each_set_bit(falcon_id, &gsb->base.func->managed_falcons,
827 NVKM_SECBOOT_FALCON_END) {
828 struct ls_ucode_img *img;
829
830 img = ls_ucode_img_load(&sb->subdev, lsf_load_funcs[falcon_id]);
831
832 if (IS_ERR(img)) {
833 ret = PTR_ERR(img);
834 goto cleanup;
835 }
836 ls_ucode_mgr_add_img(&mgr, img);
837 }
838
839 /*
840 * Fill the WPR and LSF headers with the right offsets and compute
841 * required WPR size
842 */
843 ls_ucode_mgr_fill_headers(gsb, &mgr);
844 mgr.wpr_size = ALIGN(mgr.wpr_size, WPR_ALIGNMENT);
845
846 /* Allocate GPU object that will contain the WPR region */
847 ret = nvkm_gpuobj_new(device, mgr.wpr_size, WPR_ALIGNMENT, false, NULL,
848 &gsb->ls_blob);
849 if (ret)
850 goto cleanup;
851
852 nvkm_debug(&sb->subdev, "%d managed LS falcons, WPR size is %d bytes\n",
853 mgr.count, mgr.wpr_size);
854
855 /* If WPR address and size are not fixed, set them to fit the LS blob */
856 if (!gsb->wpr_size) {
857 gsb->wpr_addr = gsb->ls_blob->addr;
858 gsb->wpr_size = gsb->ls_blob->size;
859 }
860
861 /* Write LS blob */
862 ret = ls_ucode_mgr_write_wpr(gsb, &mgr, gsb->ls_blob);
863 if (ret)
864 nvkm_gpuobj_del(&gsb->ls_blob);
865
866cleanup:
867 ls_ucode_mgr_cleanup(&mgr);
868
869 return ret;
870}
871
872/*
873 * High-secure blob creation
874 */
875
876/**
877 * gm200_secboot_hsf_patch_signature() - patch HS blob with correct signature
878 */
879static void
880gm200_secboot_hsf_patch_signature(struct gm200_secboot *gsb, void *acr_image)
881{
882 struct nvkm_secboot *sb = &gsb->base;
883 struct fw_bin_header *hsbin_hdr = acr_image;
884 struct hsf_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset;
885 void *hs_data = acr_image + hsbin_hdr->data_offset;
886 void *sig;
887 u32 sig_size;
888
889 /* Falcon in debug or production mode? */
890 if ((nvkm_rd32(sb->subdev.device, sb->base + 0xc08) >> 20) & 0x1) {
891 sig = acr_image + fw_hdr->sig_dbg_offset;
892 sig_size = fw_hdr->sig_dbg_size;
893 } else {
894 sig = acr_image + fw_hdr->sig_prod_offset;
895 sig_size = fw_hdr->sig_prod_size;
896 }
897
898 /* Patch signature */
899 memcpy(hs_data + fw_hdr->patch_loc, sig + fw_hdr->patch_sig, sig_size);
900}
901
902/**
903 * gm200_secboot_populate_hsf_bl_desc() - populate BL descriptor for HS image
904 */
905static void
906gm200_secboot_populate_hsf_bl_desc(void *acr_image,
907 struct gm200_flcn_bl_desc *bl_desc)
908{
909 struct fw_bin_header *hsbin_hdr = acr_image;
910 struct hsf_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset;
911 struct hsf_load_header *load_hdr = acr_image + fw_hdr->hdr_offset;
912
913 /*
914 * Descriptor for the bootloader that will load the ACR image into
915 * IMEM/DMEM memory.
916 */
917 fw_hdr = acr_image + hsbin_hdr->header_offset;
918 load_hdr = acr_image + fw_hdr->hdr_offset;
919 memset(bl_desc, 0, sizeof(*bl_desc));
920 bl_desc->ctx_dma = FALCON_DMAIDX_VIRT;
921 bl_desc->non_sec_code_off = load_hdr->non_sec_code_off;
922 bl_desc->non_sec_code_size = load_hdr->non_sec_code_size;
923 bl_desc->sec_code_off = load_hdr->app[0].sec_code_off;
924 bl_desc->sec_code_size = load_hdr->app[0].sec_code_size;
925 bl_desc->code_entry_point = 0;
926 /*
927 * We need to set code_dma_base to the virtual address of the acr_blob,
928 * and add this address to data_dma_base before writing it into DMEM
929 */
930 bl_desc->code_dma_base.lo = 0;
931 bl_desc->data_dma_base.lo = load_hdr->data_dma_base;
932 bl_desc->data_size = load_hdr->data_size;
933}
934
935/**
936 * gm200_secboot_prepare_hs_blob - load and prepare a HS blob and BL descriptor
937 *
938 * @gsb secure boot instance to prepare for
939 * @fw name of the HS firmware to load
940 * @blob pointer to gpuobj that will be allocated to receive the HS FW payload
941 * @bl_desc pointer to the BL descriptor to write for this firmware
942 * @patch whether we should patch the HS descriptor (only for HS loaders)
943 */
944static int
945gm200_secboot_prepare_hs_blob(struct gm200_secboot *gsb, const char *fw,
946 struct nvkm_gpuobj **blob,
947 struct gm200_flcn_bl_desc *bl_desc, bool patch)
948{
949 struct nvkm_subdev *subdev = &gsb->base.subdev;
950 void *acr_image;
951 struct fw_bin_header *hsbin_hdr;
952 struct hsf_fw_header *fw_hdr;
953 void *acr_data;
954 struct hsf_load_header *load_hdr;
955 struct hsflcn_acr_desc *desc;
956 int ret;
957
958 acr_image = gm200_secboot_load_firmware(subdev, fw, 0);
959 if (IS_ERR(acr_image))
960 return PTR_ERR(acr_image);
961 hsbin_hdr = acr_image;
962
963 /* Patch signature */
964 gm200_secboot_hsf_patch_signature(gsb, acr_image);
965
966 acr_data = acr_image + hsbin_hdr->data_offset;
967
968 /* Patch descriptor? */
969 if (patch) {
970 fw_hdr = acr_image + hsbin_hdr->header_offset;
971 load_hdr = acr_image + fw_hdr->hdr_offset;
972 desc = acr_data + load_hdr->data_dma_base;
973 gsb->func->fixup_hs_desc(gsb, desc);
974 }
975
976 /* Generate HS BL descriptor */
977 gm200_secboot_populate_hsf_bl_desc(acr_image, bl_desc);
978
979 /* Create ACR blob and copy HS data to it */
980 ret = nvkm_gpuobj_new(subdev->device, ALIGN(hsbin_hdr->data_size, 256),
981 0x1000, false, NULL, blob);
982 if (ret)
983 goto cleanup;
984
985 nvkm_kmap(*blob);
986 nvkm_gpuobj_memcpy_to(*blob, 0, acr_data, hsbin_hdr->data_size);
987 nvkm_done(*blob);
988
989cleanup:
990 kfree(acr_image);
991
992 return ret;
993}
994
995/*
996 * High-secure bootloader blob creation
997 */
998
999static int
1000gm200_secboot_prepare_hsbl_blob(struct gm200_secboot *gsb)
1001{
1002 struct nvkm_subdev *subdev = &gsb->base.subdev;
1003
1004 gsb->hsbl_blob = gm200_secboot_load_firmware(subdev, "acr/bl", 0);
1005 if (IS_ERR(gsb->hsbl_blob)) {
1006 int ret = PTR_ERR(gsb->hsbl_blob);
1007
1008 gsb->hsbl_blob = NULL;
1009 return ret;
1010 }
1011
1012 return 0;
1013}
1014 31
1015/** 32/**
1016 * gm20x_secboot_prepare_blobs - load blobs common to all GM20X GPUs. 33 * gm200_secboot_run_blob() - run the given high-secure blob
1017 * 34 *
1018 * This includes the LS blob, HS ucode loading blob, and HS bootloader.
1019 *
1020 * The HS ucode unload blob is only used on dGPU.
1021 */ 35 */
1022int 36int
1023gm20x_secboot_prepare_blobs(struct gm200_secboot *gsb) 37gm200_secboot_run_blob(struct nvkm_secboot *sb, struct nvkm_gpuobj *blob)
1024{
1025 int ret;
1026
1027 /* Load and prepare the managed falcon's firmwares */
1028 if (!gsb->ls_blob) {
1029 ret = gm200_secboot_prepare_ls_blob(gsb);
1030 if (ret)
1031 return ret;
1032 }
1033
1034 /* Load the HS firmware that will load the LS firmwares */
1035 if (!gsb->acr_load_blob) {
1036 ret = gm200_secboot_prepare_hs_blob(gsb, "acr/ucode_load",
1037 &gsb->acr_load_blob,
1038 &gsb->acr_load_bl_desc, true);
1039 if (ret)
1040 return ret;
1041 }
1042
1043 /* Load the HS firmware bootloader */
1044 if (!gsb->hsbl_blob) {
1045 ret = gm200_secboot_prepare_hsbl_blob(gsb);
1046 if (ret)
1047 return ret;
1048 }
1049
1050 return 0;
1051}
1052
1053static int
1054gm200_secboot_prepare_blobs(struct gm200_secboot *gsb)
1055{
1056 int ret;
1057
1058 ret = gm20x_secboot_prepare_blobs(gsb);
1059 if (ret)
1060 return ret;
1061
1062 /* dGPU only: load the HS firmware that unprotects the WPR region */
1063 if (!gsb->acr_unload_blob) {
1064 ret = gm200_secboot_prepare_hs_blob(gsb, "acr/ucode_unload",
1065 &gsb->acr_unload_blob,
1066 &gsb->acr_unload_bl_desc, false);
1067 if (ret)
1068 return ret;
1069 }
1070
1071 return 0;
1072}
1073
1074static int
1075gm200_secboot_blobs_ready(struct gm200_secboot *gsb)
1076{ 38{
39 struct gm200_secboot *gsb = gm200_secboot(sb);
1077 struct nvkm_subdev *subdev = &gsb->base.subdev; 40 struct nvkm_subdev *subdev = &gsb->base.subdev;
41 struct nvkm_falcon *falcon = gsb->base.boot_falcon;
42 struct nvkm_vma vma;
1078 int ret; 43 int ret;
1079 44
1080 /* firmware already loaded, nothing to do... */ 45 ret = nvkm_falcon_get(falcon, subdev);
1081 if (gsb->firmware_ok)
1082 return 0;
1083
1084 ret = gsb->func->prepare_blobs(gsb);
1085 if (ret) {
1086 nvkm_error(subdev, "failed to load secure firmware\n");
1087 return ret;
1088 }
1089
1090 gsb->firmware_ok = true;
1091
1092 return 0;
1093}
1094
1095
1096/*
1097 * Secure Boot Execution
1098 */
1099
1100/**
1101 * gm200_secboot_load_hs_bl() - load HS bootloader into DMEM and IMEM
1102 */
1103static void
1104gm200_secboot_load_hs_bl(struct gm200_secboot *gsb, void *data, u32 data_size)
1105{
1106 struct nvkm_device *device = gsb->base.subdev.device;
1107 struct fw_bin_header *hdr = gsb->hsbl_blob;
1108 struct fw_bl_desc *hsbl_desc = gsb->hsbl_blob + hdr->header_offset;
1109 void *blob_data = gsb->hsbl_blob + hdr->data_offset;
1110 void *hsbl_code = blob_data + hsbl_desc->code_off;
1111 void *hsbl_data = blob_data + hsbl_desc->data_off;
1112 u32 code_size = ALIGN(hsbl_desc->code_size, 256);
1113 const u32 base = gsb->base.base;
1114 u32 blk;
1115 u32 tag;
1116 int i;
1117
1118 /*
1119 * Copy HS bootloader data
1120 */
1121 nvkm_wr32(device, base + 0x1c0, (0x00000000 | (0x1 << 24)));
1122 for (i = 0; i < hsbl_desc->data_size / 4; i++)
1123 nvkm_wr32(device, base + 0x1c4, ((u32 *)hsbl_data)[i]);
1124
1125 /*
1126 * Copy HS bootloader interface structure where the HS descriptor
1127 * expects it to be
1128 */
1129 nvkm_wr32(device, base + 0x1c0,
1130 (hsbl_desc->dmem_load_off | (0x1 << 24)));
1131 for (i = 0; i < data_size / 4; i++)
1132 nvkm_wr32(device, base + 0x1c4, ((u32 *)data)[i]);
1133
1134 /* Copy HS bootloader code to end of IMEM */
1135 blk = (nvkm_rd32(device, base + 0x108) & 0x1ff) - (code_size >> 8);
1136 tag = hsbl_desc->start_tag;
1137 nvkm_wr32(device, base + 0x180, ((blk & 0xff) << 8) | (0x1 << 24));
1138 for (i = 0; i < code_size / 4; i++) {
1139 /* write new tag every 256B */
1140 if ((i & 0x3f) == 0) {
1141 nvkm_wr32(device, base + 0x188, tag & 0xffff);
1142 tag++;
1143 }
1144 nvkm_wr32(device, base + 0x184, ((u32 *)hsbl_code)[i]);
1145 }
1146 nvkm_wr32(device, base + 0x188, 0);
1147}
1148
1149/**
1150 * gm200_secboot_setup_falcon() - set up the secure falcon for secure boot
1151 */
1152static int
1153gm200_secboot_setup_falcon(struct gm200_secboot *gsb)
1154{
1155 struct nvkm_device *device = gsb->base.subdev.device;
1156 struct fw_bin_header *hdr = gsb->hsbl_blob;
1157 struct fw_bl_desc *hsbl_desc = gsb->hsbl_blob + hdr->header_offset;
1158 /* virtual start address for boot vector */
1159 u32 virt_addr = hsbl_desc->start_tag << 8;
1160 const u32 base = gsb->base.base;
1161 const u32 reg_base = base + 0xe00;
1162 u32 inst_loc;
1163 int ret;
1164
1165 ret = nvkm_secboot_falcon_reset(&gsb->base);
1166 if (ret) 46 if (ret)
1167 return ret; 47 return ret;
1168 48
1169 /* setup apertures - virtual */
1170 nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_UCODE), 0x4);
1171 nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_VIRT), 0x0);
1172 /* setup apertures - physical */
1173 nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_VID), 0x4);
1174 nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_SYS_COH),
1175 0x4 | 0x1);
1176 nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_SYS_NCOH),
1177 0x4 | 0x2);
1178
1179 /* Set context */
1180 if (nvkm_memory_target(gsb->inst->memory) == NVKM_MEM_TARGET_VRAM)
1181 inst_loc = 0x0; /* FB */
1182 else
1183 inst_loc = 0x3; /* Non-coherent sysmem */
1184
1185 nvkm_mask(device, base + 0x048, 0x1, 0x1);
1186 nvkm_wr32(device, base + 0x480,
1187 ((gsb->inst->addr >> 12) & 0xfffffff) |
1188 (inst_loc << 28) | (1 << 30));
1189
1190 /* Set boot vector to code's starting virtual address */
1191 nvkm_wr32(device, base + 0x104, virt_addr);
1192
1193 return 0;
1194}
1195
1196/**
1197 * gm200_secboot_run_hs_blob() - run the given high-secure blob
1198 */
1199static int
1200gm200_secboot_run_hs_blob(struct gm200_secboot *gsb, struct nvkm_gpuobj *blob,
1201 struct gm200_flcn_bl_desc *desc)
1202{
1203 struct nvkm_vma vma;
1204 u64 vma_addr;
1205 const u32 bl_desc_size = gsb->func->bl_desc_size;
1206 u8 bl_desc[bl_desc_size];
1207 int ret;
1208
1209 /* Map the HS firmware so the HS bootloader can see it */ 49 /* Map the HS firmware so the HS bootloader can see it */
1210 ret = nvkm_gpuobj_map(blob, gsb->vm, NV_MEM_ACCESS_RW, &vma); 50 ret = nvkm_gpuobj_map(blob, gsb->vm, NV_MEM_ACCESS_RW, &vma);
1211 if (ret) 51 if (ret) {
52 nvkm_falcon_put(falcon, subdev);
1212 return ret; 53 return ret;
54 }
1213 55
1214 /* Add the mapping address to the DMA bases */ 56 /* Reset and set the falcon up */
1215 vma_addr = flcn64_to_u64(desc->code_dma_base) + vma.offset; 57 ret = nvkm_falcon_reset(falcon);
1216 desc->code_dma_base.lo = lower_32_bits(vma_addr);
1217 desc->code_dma_base.hi = upper_32_bits(vma_addr);
1218 vma_addr = flcn64_to_u64(desc->data_dma_base) + vma.offset;
1219 desc->data_dma_base.lo = lower_32_bits(vma_addr);
1220 desc->data_dma_base.hi = upper_32_bits(vma_addr);
1221
1222 /* Fixup the BL header */
1223 gsb->func->fixup_bl_desc(desc, &bl_desc);
1224
1225 /* Reset the falcon and make it ready to run the HS bootloader */
1226 ret = gm200_secboot_setup_falcon(gsb);
1227 if (ret) 58 if (ret)
1228 goto done; 59 goto end;
60 nvkm_falcon_bind_context(falcon, gsb->inst);
1229 61
1230 /* Load the HS bootloader into the falcon's IMEM/DMEM */ 62 /* Load the HS bootloader into the falcon's IMEM/DMEM */
1231 gm200_secboot_load_hs_bl(gsb, &bl_desc, bl_desc_size); 63 ret = sb->acr->func->load(sb->acr, &gsb->base, blob, vma.offset);
1232
1233 /* Start the HS bootloader */
1234 ret = nvkm_secboot_falcon_run(&gsb->base);
1235 if (ret) 64 if (ret)
1236 goto done; 65 goto end;
1237
1238done:
1239 /* Restore the original DMA addresses */
1240 vma_addr = flcn64_to_u64(desc->code_dma_base) - vma.offset;
1241 desc->code_dma_base.lo = lower_32_bits(vma_addr);
1242 desc->code_dma_base.hi = upper_32_bits(vma_addr);
1243 vma_addr = flcn64_to_u64(desc->data_dma_base) - vma.offset;
1244 desc->data_dma_base.lo = lower_32_bits(vma_addr);
1245 desc->data_dma_base.hi = upper_32_bits(vma_addr);
1246
1247 /* We don't need the ACR firmware anymore */
1248 nvkm_gpuobj_unmap(&vma);
1249 66
1250 return ret; 67 /* Disable interrupts as we will poll for the HALT bit */
1251} 68 nvkm_mc_intr_mask(sb->subdev.device, falcon->owner->index, false);
1252 69
1253/* 70 /* Set default error value in mailbox register */
1254 * gm200_secboot_reset() - execute secure boot from the prepared state 71 nvkm_falcon_wr32(falcon, 0x040, 0xdeada5a5);
1255 *
1256 * Load the HS bootloader and ask the falcon to run it. This will in turn
1257 * load the HS firmware and run it, so once the falcon stops all the managed
1258 * falcons should have their LS firmware loaded and be ready to run.
1259 */
1260int
1261gm200_secboot_reset(struct nvkm_secboot *sb, enum nvkm_secboot_falcon falcon)
1262{
1263 struct gm200_secboot *gsb = gm200_secboot(sb);
1264 int ret;
1265 72
1266 /* Make sure all blobs are ready */ 73 /* Start the HS bootloader */
1267 ret = gm200_secboot_blobs_ready(gsb); 74 nvkm_falcon_set_start_addr(falcon, sb->acr->start_address);
75 nvkm_falcon_start(falcon);
76 ret = nvkm_falcon_wait_for_halt(falcon, 100);
1268 if (ret) 77 if (ret)
1269 return ret;
1270
1271 /*
1272 * Dummy GM200 implementation: perform secure boot each time we are
1273 * called on FECS. Since only FECS and GPCCS are managed and started
1274 * together, this ought to be safe.
1275 *
1276 * Once we have proper PMU firmware and support, this will be changed
1277 * to a proper call to the PMU method.
1278 */
1279 if (falcon != NVKM_SECBOOT_FALCON_FECS)
1280 goto end; 78 goto end;
1281 79
1282 /* If WPR is set and we have an unload blob, run it to unlock WPR */ 80 /* If mailbox register contains an error code, then ACR has failed */
1283 if (gsb->acr_unload_blob && 81 ret = nvkm_falcon_rd32(falcon, 0x040);
1284 gsb->falcon_state[NVKM_SECBOOT_FALCON_FECS] != NON_SECURE) { 82 if (ret) {
1285 ret = gm200_secboot_run_hs_blob(gsb, gsb->acr_unload_blob, 83 nvkm_error(subdev, "ACR boot failed, ret 0x%08x", ret);
1286 &gsb->acr_unload_bl_desc); 84 ret = -EINVAL;
1287 if (ret) 85 goto end;
1288 return ret;
1289 } 86 }
1290 87
1291 /* Reload all managed falcons */
1292 ret = gm200_secboot_run_hs_blob(gsb, gsb->acr_load_blob,
1293 &gsb->acr_load_bl_desc);
1294 if (ret)
1295 return ret;
1296
1297end: 88end:
1298 gsb->falcon_state[falcon] = RESET; 89 /* Reenable interrupts */
1299 return 0; 90 nvkm_mc_intr_mask(sb->subdev.device, falcon->owner->index, true);
1300}
1301 91
1302int 92 /* We don't need the ACR firmware anymore */
1303gm200_secboot_start(struct nvkm_secboot *sb, enum nvkm_secboot_falcon falcon) 93 nvkm_gpuobj_unmap(&vma);
1304{ 94 nvkm_falcon_put(falcon, subdev);
1305 struct gm200_secboot *gsb = gm200_secboot(sb);
1306 int base;
1307
1308 switch (falcon) {
1309 case NVKM_SECBOOT_FALCON_FECS:
1310 base = 0x409000;
1311 break;
1312 case NVKM_SECBOOT_FALCON_GPCCS:
1313 base = 0x41a000;
1314 break;
1315 default:
1316 nvkm_error(&sb->subdev, "cannot start unhandled falcon!\n");
1317 return -EINVAL;
1318 }
1319
1320 nvkm_wr32(sb->subdev.device, base + 0x130, 0x00000002);
1321 gsb->falcon_state[falcon] = RUNNING;
1322 95
1323 return 0; 96 return ret;
1324} 97}
1325 98
1326
1327
1328int 99int
1329gm200_secboot_init(struct nvkm_secboot *sb) 100gm200_secboot_oneinit(struct nvkm_secboot *sb)
1330{ 101{
1331 struct gm200_secboot *gsb = gm200_secboot(sb); 102 struct gm200_secboot *gsb = gm200_secboot(sb);
1332 struct nvkm_device *device = sb->subdev.device; 103 struct nvkm_device *device = sb->subdev.device;
@@ -1361,24 +132,22 @@ gm200_secboot_init(struct nvkm_secboot *sb)
1361 nvkm_wo32(gsb->inst, 0x20c, upper_32_bits(vm_area_len - 1)); 132 nvkm_wo32(gsb->inst, 0x20c, upper_32_bits(vm_area_len - 1));
1362 nvkm_done(gsb->inst); 133 nvkm_done(gsb->inst);
1363 134
135 if (sb->acr->func->oneinit) {
136 ret = sb->acr->func->oneinit(sb->acr, sb);
137 if (ret)
138 return ret;
139 }
140
1364 return 0; 141 return 0;
1365} 142}
1366 143
1367static int 144int
1368gm200_secboot_fini(struct nvkm_secboot *sb, bool suspend) 145gm200_secboot_fini(struct nvkm_secboot *sb, bool suspend)
1369{ 146{
1370 struct gm200_secboot *gsb = gm200_secboot(sb);
1371 int ret = 0; 147 int ret = 0;
1372 int i;
1373 148
1374 /* Run the unload blob to unprotect the WPR region */ 149 if (sb->acr->func->fini)
1375 if (gsb->acr_unload_blob && 150 ret = sb->acr->func->fini(sb->acr, sb, suspend);
1376 gsb->falcon_state[NVKM_SECBOOT_FALCON_FECS] != NON_SECURE)
1377 ret = gm200_secboot_run_hs_blob(gsb, gsb->acr_unload_blob,
1378 &gsb->acr_unload_bl_desc);
1379
1380 for (i = 0; i < NVKM_SECBOOT_FALCON_END; i++)
1381 gsb->falcon_state[i] = NON_SECURE;
1382 151
1383 return ret; 152 return ret;
1384} 153}
@@ -1388,11 +157,7 @@ gm200_secboot_dtor(struct nvkm_secboot *sb)
1388{ 157{
1389 struct gm200_secboot *gsb = gm200_secboot(sb); 158 struct gm200_secboot *gsb = gm200_secboot(sb);
1390 159
1391 nvkm_gpuobj_del(&gsb->acr_unload_blob); 160 sb->acr->func->dtor(sb->acr);
1392
1393 kfree(gsb->hsbl_blob);
1394 nvkm_gpuobj_del(&gsb->acr_load_blob);
1395 nvkm_gpuobj_del(&gsb->ls_blob);
1396 161
1397 nvkm_vm_ref(NULL, &gsb->vm, gsb->pgd); 162 nvkm_vm_ref(NULL, &gsb->vm, gsb->pgd);
1398 nvkm_gpuobj_del(&gsb->pgd); 163 nvkm_gpuobj_del(&gsb->pgd);
@@ -1405,50 +170,9 @@ gm200_secboot_dtor(struct nvkm_secboot *sb)
1405static const struct nvkm_secboot_func 170static const struct nvkm_secboot_func
1406gm200_secboot = { 171gm200_secboot = {
1407 .dtor = gm200_secboot_dtor, 172 .dtor = gm200_secboot_dtor,
1408 .init = gm200_secboot_init, 173 .oneinit = gm200_secboot_oneinit,
1409 .fini = gm200_secboot_fini, 174 .fini = gm200_secboot_fini,
1410 .reset = gm200_secboot_reset, 175 .run_blob = gm200_secboot_run_blob,
1411 .start = gm200_secboot_start,
1412 .managed_falcons = BIT(NVKM_SECBOOT_FALCON_FECS) |
1413 BIT(NVKM_SECBOOT_FALCON_GPCCS),
1414 .boot_falcon = NVKM_SECBOOT_FALCON_PMU,
1415};
1416
1417/**
1418 * gm200_fixup_bl_desc - just copy the BL descriptor
1419 *
1420 * Use the GM200 descriptor format by default.
1421 */
1422static void
1423gm200_secboot_fixup_bl_desc(const struct gm200_flcn_bl_desc *desc, void *ret)
1424{
1425 memcpy(ret, desc, sizeof(*desc));
1426}
1427
1428static void
1429gm200_secboot_fixup_hs_desc(struct gm200_secboot *gsb,
1430 struct hsflcn_acr_desc *desc)
1431{
1432 desc->ucode_blob_base = gsb->ls_blob->addr;
1433 desc->ucode_blob_size = gsb->ls_blob->size;
1434
1435 desc->wpr_offset = 0;
1436
1437 /* WPR region information for the HS binary to set up */
1438 desc->wpr_region_id = 1;
1439 desc->regions.no_regions = 1;
1440 desc->regions.region_props[0].region_id = 1;
1441 desc->regions.region_props[0].start_addr = gsb->wpr_addr >> 8;
1442 desc->regions.region_props[0].end_addr =
1443 (gsb->wpr_addr + gsb->wpr_size) >> 8;
1444}
1445
1446static const struct gm200_secboot_func
1447gm200_secboot_func = {
1448 .bl_desc_size = sizeof(struct gm200_flcn_bl_desc),
1449 .fixup_bl_desc = gm200_secboot_fixup_bl_desc,
1450 .fixup_hs_desc = gm200_secboot_fixup_hs_desc,
1451 .prepare_blobs = gm200_secboot_prepare_blobs,
1452}; 176};
1453 177
1454int 178int
@@ -1457,6 +181,12 @@ gm200_secboot_new(struct nvkm_device *device, int index,
1457{ 181{
1458 int ret; 182 int ret;
1459 struct gm200_secboot *gsb; 183 struct gm200_secboot *gsb;
184 struct nvkm_acr *acr;
185
186 acr = acr_r361_new(BIT(NVKM_SECBOOT_FALCON_FECS) |
187 BIT(NVKM_SECBOOT_FALCON_GPCCS));
188 if (IS_ERR(acr))
189 return PTR_ERR(acr);
1460 190
1461 gsb = kzalloc(sizeof(*gsb), GFP_KERNEL); 191 gsb = kzalloc(sizeof(*gsb), GFP_KERNEL);
1462 if (!gsb) { 192 if (!gsb) {
@@ -1465,15 +195,14 @@ gm200_secboot_new(struct nvkm_device *device, int index,
1465 } 195 }
1466 *psb = &gsb->base; 196 *psb = &gsb->base;
1467 197
1468 ret = nvkm_secboot_ctor(&gm200_secboot, device, index, &gsb->base); 198 ret = nvkm_secboot_ctor(&gm200_secboot, acr, device, index, &gsb->base);
1469 if (ret) 199 if (ret)
1470 return ret; 200 return ret;
1471 201
1472 gsb->func = &gm200_secboot_func;
1473
1474 return 0; 202 return 0;
1475} 203}
1476 204
205
1477MODULE_FIRMWARE("nvidia/gm200/acr/bl.bin"); 206MODULE_FIRMWARE("nvidia/gm200/acr/bl.bin");
1478MODULE_FIRMWARE("nvidia/gm200/acr/ucode_load.bin"); 207MODULE_FIRMWARE("nvidia/gm200/acr/ucode_load.bin");
1479MODULE_FIRMWARE("nvidia/gm200/acr/ucode_unload.bin"); 208MODULE_FIRMWARE("nvidia/gm200/acr/ucode_unload.bin");