aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c')
-rw-r--r--drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c371
1 files changed, 270 insertions, 101 deletions
diff --git a/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c b/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c
index cd7feb1b25f6..fc419bb8eab7 100644
--- a/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c
+++ b/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c
@@ -23,35 +23,42 @@
23/* 23/*
24 * GK20A does not have dedicated video memory, and to accurately represent this 24 * GK20A does not have dedicated video memory, and to accurately represent this
25 * fact Nouveau will not create a RAM device for it. Therefore its instmem 25 * fact Nouveau will not create a RAM device for it. Therefore its instmem
26 * implementation must be done directly on top of system memory, while providing 26 * implementation must be done directly on top of system memory, while
27 * coherent read and write operations. 27 * preserving coherency for read and write operations.
28 * 28 *
29 * Instmem can be allocated through two means: 29 * Instmem can be allocated through two means:
30 * 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory 30 * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
31 * pages contiguous to the GPU. This is the preferred way. 31 * pages contiguous to the GPU. This is the preferred way.
32 * 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically 32 * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
33 * contiguous memory. 33 * contiguous memory.
34 * 34 *
35 * In both cases CPU read and writes are performed using PRAMIN (i.e. using the 35 * In both cases CPU read and writes are performed by creating a write-combined
36 * GPU path) to ensure these operations are coherent for the GPU. This allows us 36 * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
37 * to use more "relaxed" allocation parameters when using the DMA API, since we 37 * be conservative we do this every time we acquire or release an instobj, but
38 * never need a kernel mapping. 38 * ideally L2 management should be handled at a higher level.
39 *
40 * To improve performance, CPU mappings are not removed upon instobj release.
41 * Instead they are placed into a LRU list to be recycled when the mapped space
42 * goes beyond a certain threshold. At the moment this limit is 1MB.
39 */ 43 */
40#define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
41#include "priv.h" 44#include "priv.h"
42 45
43#include <core/memory.h> 46#include <core/memory.h>
44#include <core/mm.h> 47#include <core/mm.h>
45#include <core/tegra.h> 48#include <core/tegra.h>
46#include <subdev/fb.h> 49#include <subdev/fb.h>
47 50#include <subdev/ltc.h>
48#define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
49 51
50struct gk20a_instobj { 52struct gk20a_instobj {
51 struct nvkm_memory memory; 53 struct nvkm_memory memory;
52 struct gk20a_instmem *imem;
53 struct nvkm_mem mem; 54 struct nvkm_mem mem;
55 struct gk20a_instmem *imem;
56
57 /* CPU mapping */
58 u32 *vaddr;
59 struct list_head vaddr_node;
54}; 60};
61#define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
55 62
56/* 63/*
57 * Used for objects allocated using the DMA API 64 * Used for objects allocated using the DMA API
@@ -59,10 +66,12 @@ struct gk20a_instobj {
59struct gk20a_instobj_dma { 66struct gk20a_instobj_dma {
60 struct gk20a_instobj base; 67 struct gk20a_instobj base;
61 68
62 void *cpuaddr; 69 u32 *cpuaddr;
63 dma_addr_t handle; 70 dma_addr_t handle;
64 struct nvkm_mm_node r; 71 struct nvkm_mm_node r;
65}; 72};
73#define gk20a_instobj_dma(p) \
74 container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)
66 75
67/* 76/*
68 * Used for objects flattened using the IOMMU API 77 * Used for objects flattened using the IOMMU API
@@ -70,25 +79,38 @@ struct gk20a_instobj_dma {
70struct gk20a_instobj_iommu { 79struct gk20a_instobj_iommu {
71 struct gk20a_instobj base; 80 struct gk20a_instobj base;
72 81
73 /* array of base.mem->size pages */ 82 /* will point to the higher half of pages */
83 dma_addr_t *dma_addrs;
84 /* array of base.mem->size pages (+ dma_addr_ts) */
74 struct page *pages[]; 85 struct page *pages[];
75}; 86};
87#define gk20a_instobj_iommu(p) \
88 container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)
76 89
77struct gk20a_instmem { 90struct gk20a_instmem {
78 struct nvkm_instmem base; 91 struct nvkm_instmem base;
79 unsigned long lock_flags; 92
93 /* protects vaddr_* and gk20a_instobj::vaddr* */
80 spinlock_t lock; 94 spinlock_t lock;
81 u64 addr; 95
96 /* CPU mappings LRU */
97 unsigned int vaddr_use;
98 unsigned int vaddr_max;
99 struct list_head vaddr_lru;
82 100
83 /* Only used if IOMMU if present */ 101 /* Only used if IOMMU if present */
84 struct mutex *mm_mutex; 102 struct mutex *mm_mutex;
85 struct nvkm_mm *mm; 103 struct nvkm_mm *mm;
86 struct iommu_domain *domain; 104 struct iommu_domain *domain;
87 unsigned long iommu_pgshift; 105 unsigned long iommu_pgshift;
106 u16 iommu_bit;
88 107
89 /* Only used by DMA API */ 108 /* Only used by DMA API */
90 struct dma_attrs attrs; 109 struct dma_attrs attrs;
110
111 void __iomem * (*cpu_map)(struct nvkm_memory *);
91}; 112};
113#define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
92 114
93static enum nvkm_memory_target 115static enum nvkm_memory_target
94gk20a_instobj_target(struct nvkm_memory *memory) 116gk20a_instobj_target(struct nvkm_memory *memory)
@@ -100,7 +122,6 @@ static u64
100gk20a_instobj_addr(struct nvkm_memory *memory) 122gk20a_instobj_addr(struct nvkm_memory *memory)
101{ 123{
102 return gk20a_instobj(memory)->mem.offset; 124 return gk20a_instobj(memory)->mem.offset;
103
104} 125}
105 126
106static u64 127static u64
@@ -110,107 +131,217 @@ gk20a_instobj_size(struct nvkm_memory *memory)
110} 131}
111 132
112static void __iomem * 133static void __iomem *
134gk20a_instobj_cpu_map_dma(struct nvkm_memory *memory)
135{
136 struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
137 struct device *dev = node->base.imem->base.subdev.device->dev;
138 int npages = nvkm_memory_size(memory) >> 12;
139 struct page *pages[npages];
140 int i;
141
142 /* phys_to_page does not exist on all platforms... */
143 pages[0] = pfn_to_page(dma_to_phys(dev, node->handle) >> PAGE_SHIFT);
144 for (i = 1; i < npages; i++)
145 pages[i] = pages[0] + i;
146
147 return vmap(pages, npages, VM_MAP, pgprot_writecombine(PAGE_KERNEL));
148}
149
150static void __iomem *
151gk20a_instobj_cpu_map_iommu(struct nvkm_memory *memory)
152{
153 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
154 int npages = nvkm_memory_size(memory) >> 12;
155
156 return vmap(node->pages, npages, VM_MAP,
157 pgprot_writecombine(PAGE_KERNEL));
158}
159
160/*
161 * Must be called while holding gk20a_instmem_lock
162 */
163static void
164gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size)
165{
166 while (imem->vaddr_use + size > imem->vaddr_max) {
167 struct gk20a_instobj *obj;
168
169 /* no candidate that can be unmapped, abort... */
170 if (list_empty(&imem->vaddr_lru))
171 break;
172
173 obj = list_first_entry(&imem->vaddr_lru, struct gk20a_instobj,
174 vaddr_node);
175 list_del(&obj->vaddr_node);
176 vunmap(obj->vaddr);
177 obj->vaddr = NULL;
178 imem->vaddr_use -= nvkm_memory_size(&obj->memory);
179 nvkm_debug(&imem->base.subdev, "(GC) vaddr used: %x/%x\n",
180 imem->vaddr_use, imem->vaddr_max);
181
182 }
183}
184
185static void __iomem *
113gk20a_instobj_acquire(struct nvkm_memory *memory) 186gk20a_instobj_acquire(struct nvkm_memory *memory)
114{ 187{
115 struct gk20a_instmem *imem = gk20a_instobj(memory)->imem; 188 struct gk20a_instobj *node = gk20a_instobj(memory);
189 struct gk20a_instmem *imem = node->imem;
190 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
191 const u64 size = nvkm_memory_size(memory);
116 unsigned long flags; 192 unsigned long flags;
193
194 nvkm_ltc_flush(ltc);
195
117 spin_lock_irqsave(&imem->lock, flags); 196 spin_lock_irqsave(&imem->lock, flags);
118 imem->lock_flags = flags; 197
119 return NULL; 198 if (node->vaddr) {
199 /* remove us from the LRU list since we cannot be unmapped */
200 list_del(&node->vaddr_node);
201
202 goto out;
203 }
204
205 /* try to free some address space if we reached the limit */
206 gk20a_instmem_vaddr_gc(imem, size);
207
208 node->vaddr = imem->cpu_map(memory);
209
210 if (!node->vaddr) {
211 nvkm_error(&imem->base.subdev, "cannot map instobj - "
212 "this is not going to end well...\n");
213 goto out;
214 }
215
216 imem->vaddr_use += size;
217 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
218 imem->vaddr_use, imem->vaddr_max);
219
220out:
221 spin_unlock_irqrestore(&imem->lock, flags);
222
223 return node->vaddr;
120} 224}
121 225
122static void 226static void
123gk20a_instobj_release(struct nvkm_memory *memory) 227gk20a_instobj_release(struct nvkm_memory *memory)
124{ 228{
125 struct gk20a_instmem *imem = gk20a_instobj(memory)->imem; 229 struct gk20a_instobj *node = gk20a_instobj(memory);
126 spin_unlock_irqrestore(&imem->lock, imem->lock_flags); 230 struct gk20a_instmem *imem = node->imem;
127} 231 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
232 unsigned long flags;
128 233
129/* 234 spin_lock_irqsave(&imem->lock, flags);
130 * Use PRAMIN to read/write data and avoid coherency issues. 235
131 * PRAMIN uses the GPU path and ensures data will always be coherent. 236 /* add ourselves to the LRU list so our CPU mapping can be freed */
132 * 237 list_add_tail(&node->vaddr_node, &imem->vaddr_lru);
133 * A dynamic mapping based solution would be desirable in the future, but 238
134 * the issue remains of how to maintain coherency efficiently. On ARM it is 239 spin_unlock_irqrestore(&imem->lock, flags);
135 * not easy (if possible at all?) to create uncached temporary mappings. 240
136 */ 241 wmb();
242 nvkm_ltc_invalidate(ltc);
243}
137 244
138static u32 245static u32
139gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset) 246gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
140{ 247{
141 struct gk20a_instobj *node = gk20a_instobj(memory); 248 struct gk20a_instobj *node = gk20a_instobj(memory);
142 struct gk20a_instmem *imem = node->imem; 249
143 struct nvkm_device *device = imem->base.subdev.device; 250 return node->vaddr[offset / 4];
144 u64 base = (node->mem.offset + offset) & 0xffffff00000ULL;
145 u64 addr = (node->mem.offset + offset) & 0x000000fffffULL;
146 u32 data;
147
148 if (unlikely(imem->addr != base)) {
149 nvkm_wr32(device, 0x001700, base >> 16);
150 imem->addr = base;
151 }
152 data = nvkm_rd32(device, 0x700000 + addr);
153 return data;
154} 251}
155 252
156static void 253static void
157gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) 254gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
158{ 255{
159 struct gk20a_instobj *node = gk20a_instobj(memory); 256 struct gk20a_instobj *node = gk20a_instobj(memory);
160 struct gk20a_instmem *imem = node->imem;
161 struct nvkm_device *device = imem->base.subdev.device;
162 u64 base = (node->mem.offset + offset) & 0xffffff00000ULL;
163 u64 addr = (node->mem.offset + offset) & 0x000000fffffULL;
164 257
165 if (unlikely(imem->addr != base)) { 258 node->vaddr[offset / 4] = data;
166 nvkm_wr32(device, 0x001700, base >> 16);
167 imem->addr = base;
168 }
169 nvkm_wr32(device, 0x700000 + addr, data);
170} 259}
171 260
172static void 261static void
173gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset) 262gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
174{ 263{
175 struct gk20a_instobj *node = gk20a_instobj(memory); 264 struct gk20a_instobj *node = gk20a_instobj(memory);
265
176 nvkm_vm_map_at(vma, offset, &node->mem); 266 nvkm_vm_map_at(vma, offset, &node->mem);
177} 267}
178 268
269/*
270 * Clear the CPU mapping of an instobj if it exists
271 */
179static void 272static void
180gk20a_instobj_dtor_dma(struct gk20a_instobj *_node) 273gk20a_instobj_dtor(struct gk20a_instobj *node)
274{
275 struct gk20a_instmem *imem = node->imem;
276 struct gk20a_instobj *obj;
277 unsigned long flags;
278
279 spin_lock_irqsave(&imem->lock, flags);
280
281 if (!node->vaddr)
282 goto out;
283
284 list_for_each_entry(obj, &imem->vaddr_lru, vaddr_node) {
285 if (obj == node) {
286 list_del(&obj->vaddr_node);
287 break;
288 }
289 }
290 vunmap(node->vaddr);
291 node->vaddr = NULL;
292 imem->vaddr_use -= nvkm_memory_size(&node->memory);
293 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
294 imem->vaddr_use, imem->vaddr_max);
295
296out:
297 spin_unlock_irqrestore(&imem->lock, flags);
298}
299
300static void *
301gk20a_instobj_dtor_dma(struct nvkm_memory *memory)
181{ 302{
182 struct gk20a_instobj_dma *node = (void *)_node; 303 struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
183 struct gk20a_instmem *imem = _node->imem; 304 struct gk20a_instmem *imem = node->base.imem;
184 struct device *dev = imem->base.subdev.device->dev; 305 struct device *dev = imem->base.subdev.device->dev;
185 306
307 gk20a_instobj_dtor(&node->base);
308
186 if (unlikely(!node->cpuaddr)) 309 if (unlikely(!node->cpuaddr))
187 return; 310 goto out;
188 311
189 dma_free_attrs(dev, _node->mem.size << PAGE_SHIFT, node->cpuaddr, 312 dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->cpuaddr,
190 node->handle, &imem->attrs); 313 node->handle, &imem->attrs);
314
315out:
316 return node;
191} 317}
192 318
193static void 319static void *
194gk20a_instobj_dtor_iommu(struct gk20a_instobj *_node) 320gk20a_instobj_dtor_iommu(struct nvkm_memory *memory)
195{ 321{
196 struct gk20a_instobj_iommu *node = (void *)_node; 322 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
197 struct gk20a_instmem *imem = _node->imem; 323 struct gk20a_instmem *imem = node->base.imem;
324 struct device *dev = imem->base.subdev.device->dev;
198 struct nvkm_mm_node *r; 325 struct nvkm_mm_node *r;
199 int i; 326 int i;
200 327
201 if (unlikely(list_empty(&_node->mem.regions))) 328 gk20a_instobj_dtor(&node->base);
202 return;
203 329
204 r = list_first_entry(&_node->mem.regions, struct nvkm_mm_node, 330 if (unlikely(list_empty(&node->base.mem.regions)))
331 goto out;
332
333 r = list_first_entry(&node->base.mem.regions, struct nvkm_mm_node,
205 rl_entry); 334 rl_entry);
206 335
207 /* clear bit 34 to unmap pages */ 336 /* clear IOMMU bit to unmap pages */
208 r->offset &= ~BIT(34 - imem->iommu_pgshift); 337 r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift);
209 338
210 /* Unmap pages from GPU address space and free them */ 339 /* Unmap pages from GPU address space and free them */
211 for (i = 0; i < _node->mem.size; i++) { 340 for (i = 0; i < node->base.mem.size; i++) {
212 iommu_unmap(imem->domain, 341 iommu_unmap(imem->domain,
213 (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE); 342 (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
343 dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE,
344 DMA_BIDIRECTIONAL);
214 __free_page(node->pages[i]); 345 __free_page(node->pages[i]);
215 } 346 }
216 347
@@ -218,25 +349,27 @@ gk20a_instobj_dtor_iommu(struct gk20a_instobj *_node)
218 mutex_lock(imem->mm_mutex); 349 mutex_lock(imem->mm_mutex);
219 nvkm_mm_free(imem->mm, &r); 350 nvkm_mm_free(imem->mm, &r);
220 mutex_unlock(imem->mm_mutex); 351 mutex_unlock(imem->mm_mutex);
221}
222
223static void *
224gk20a_instobj_dtor(struct nvkm_memory *memory)
225{
226 struct gk20a_instobj *node = gk20a_instobj(memory);
227 struct gk20a_instmem *imem = node->imem;
228
229 if (imem->domain)
230 gk20a_instobj_dtor_iommu(node);
231 else
232 gk20a_instobj_dtor_dma(node);
233 352
353out:
234 return node; 354 return node;
235} 355}
236 356
237static const struct nvkm_memory_func 357static const struct nvkm_memory_func
238gk20a_instobj_func = { 358gk20a_instobj_func_dma = {
239 .dtor = gk20a_instobj_dtor, 359 .dtor = gk20a_instobj_dtor_dma,
360 .target = gk20a_instobj_target,
361 .addr = gk20a_instobj_addr,
362 .size = gk20a_instobj_size,
363 .acquire = gk20a_instobj_acquire,
364 .release = gk20a_instobj_release,
365 .rd32 = gk20a_instobj_rd32,
366 .wr32 = gk20a_instobj_wr32,
367 .map = gk20a_instobj_map,
368};
369
370static const struct nvkm_memory_func
371gk20a_instobj_func_iommu = {
372 .dtor = gk20a_instobj_dtor_iommu,
240 .target = gk20a_instobj_target, 373 .target = gk20a_instobj_target,
241 .addr = gk20a_instobj_addr, 374 .addr = gk20a_instobj_addr,
242 .size = gk20a_instobj_size, 375 .size = gk20a_instobj_size,
@@ -259,6 +392,8 @@ gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
259 return -ENOMEM; 392 return -ENOMEM;
260 *_node = &node->base; 393 *_node = &node->base;
261 394
395 nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory);
396
262 node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, 397 node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
263 &node->handle, GFP_KERNEL, 398 &node->handle, GFP_KERNEL,
264 &imem->attrs); 399 &imem->attrs);
@@ -292,24 +427,40 @@ gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
292{ 427{
293 struct gk20a_instobj_iommu *node; 428 struct gk20a_instobj_iommu *node;
294 struct nvkm_subdev *subdev = &imem->base.subdev; 429 struct nvkm_subdev *subdev = &imem->base.subdev;
430 struct device *dev = subdev->device->dev;
295 struct nvkm_mm_node *r; 431 struct nvkm_mm_node *r;
296 int ret; 432 int ret;
297 int i; 433 int i;
298 434
299 if (!(node = kzalloc(sizeof(*node) + 435 /*
300 sizeof( node->pages[0]) * npages, GFP_KERNEL))) 436 * despite their variable size, instmem allocations are small enough
437 * (< 1 page) to be handled by kzalloc
438 */
439 if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) +
440 sizeof(*node->dma_addrs)) * npages), GFP_KERNEL)))
301 return -ENOMEM; 441 return -ENOMEM;
302 *_node = &node->base; 442 *_node = &node->base;
443 node->dma_addrs = (void *)(node->pages + npages);
444
445 nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory);
303 446
304 /* Allocate backing memory */ 447 /* Allocate backing memory */
305 for (i = 0; i < npages; i++) { 448 for (i = 0; i < npages; i++) {
306 struct page *p = alloc_page(GFP_KERNEL); 449 struct page *p = alloc_page(GFP_KERNEL);
450 dma_addr_t dma_adr;
307 451
308 if (p == NULL) { 452 if (p == NULL) {
309 ret = -ENOMEM; 453 ret = -ENOMEM;
310 goto free_pages; 454 goto free_pages;
311 } 455 }
312 node->pages[i] = p; 456 node->pages[i] = p;
457 dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
458 if (dma_mapping_error(dev, dma_adr)) {
459 nvkm_error(subdev, "DMA mapping error!\n");
460 ret = -ENOMEM;
461 goto free_pages;
462 }
463 node->dma_addrs[i] = dma_adr;
313 } 464 }
314 465
315 mutex_lock(imem->mm_mutex); 466 mutex_lock(imem->mm_mutex);
@@ -318,16 +469,15 @@ gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
318 align >> imem->iommu_pgshift, &r); 469 align >> imem->iommu_pgshift, &r);
319 mutex_unlock(imem->mm_mutex); 470 mutex_unlock(imem->mm_mutex);
320 if (ret) { 471 if (ret) {
321 nvkm_error(subdev, "virtual space is full!\n"); 472 nvkm_error(subdev, "IOMMU space is full!\n");
322 goto free_pages; 473 goto free_pages;
323 } 474 }
324 475
325 /* Map into GPU address space */ 476 /* Map into GPU address space */
326 for (i = 0; i < npages; i++) { 477 for (i = 0; i < npages; i++) {
327 struct page *p = node->pages[i];
328 u32 offset = (r->offset + i) << imem->iommu_pgshift; 478 u32 offset = (r->offset + i) << imem->iommu_pgshift;
329 479
330 ret = iommu_map(imem->domain, offset, page_to_phys(p), 480 ret = iommu_map(imem->domain, offset, node->dma_addrs[i],
331 PAGE_SIZE, IOMMU_READ | IOMMU_WRITE); 481 PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
332 if (ret < 0) { 482 if (ret < 0) {
333 nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret); 483 nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
@@ -340,8 +490,8 @@ gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
340 } 490 }
341 } 491 }
342 492
343 /* Bit 34 tells that an address is to be resolved through the IOMMU */ 493 /* IOMMU bit tells that an address is to be resolved through the IOMMU */
344 r->offset |= BIT(34 - imem->iommu_pgshift); 494 r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift);
345 495
346 node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift; 496 node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
347 497
@@ -356,8 +506,13 @@ release_area:
356 mutex_unlock(imem->mm_mutex); 506 mutex_unlock(imem->mm_mutex);
357 507
358free_pages: 508free_pages:
359 for (i = 0; i < npages && node->pages[i] != NULL; i++) 509 for (i = 0; i < npages && node->pages[i] != NULL; i++) {
510 dma_addr_t dma_addr = node->dma_addrs[i];
511 if (dma_addr)
512 dma_unmap_page(dev, dma_addr, PAGE_SIZE,
513 DMA_BIDIRECTIONAL);
360 __free_page(node->pages[i]); 514 __free_page(node->pages[i]);
515 }
361 516
362 return ret; 517 return ret;
363} 518}
@@ -367,8 +522,8 @@ gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
367 struct nvkm_memory **pmemory) 522 struct nvkm_memory **pmemory)
368{ 523{
369 struct gk20a_instmem *imem = gk20a_instmem(base); 524 struct gk20a_instmem *imem = gk20a_instmem(base);
370 struct gk20a_instobj *node = NULL;
371 struct nvkm_subdev *subdev = &imem->base.subdev; 525 struct nvkm_subdev *subdev = &imem->base.subdev;
526 struct gk20a_instobj *node = NULL;
372 int ret; 527 int ret;
373 528
374 nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__, 529 nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
@@ -388,7 +543,6 @@ gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
388 if (ret) 543 if (ret)
389 return ret; 544 return ret;
390 545
391 nvkm_memory_ctor(&gk20a_instobj_func, &node->memory);
392 node->imem = imem; 546 node->imem = imem;
393 547
394 /* present memory for being mapped using small pages */ 548 /* present memory for being mapped using small pages */
@@ -402,15 +556,25 @@ gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
402 return 0; 556 return 0;
403} 557}
404 558
405static void 559static void *
406gk20a_instmem_fini(struct nvkm_instmem *base) 560gk20a_instmem_dtor(struct nvkm_instmem *base)
407{ 561{
408 gk20a_instmem(base)->addr = ~0ULL; 562 struct gk20a_instmem *imem = gk20a_instmem(base);
563
564 /* perform some sanity checks... */
565 if (!list_empty(&imem->vaddr_lru))
566 nvkm_warn(&base->subdev, "instobj LRU not empty!\n");
567
568 if (imem->vaddr_use != 0)
569 nvkm_warn(&base->subdev, "instobj vmap area not empty! "
570 "0x%x bytes still mapped\n", imem->vaddr_use);
571
572 return imem;
409} 573}
410 574
411static const struct nvkm_instmem_func 575static const struct nvkm_instmem_func
412gk20a_instmem = { 576gk20a_instmem = {
413 .fini = gk20a_instmem_fini, 577 .dtor = gk20a_instmem_dtor,
414 .memory_new = gk20a_instobj_new, 578 .memory_new = gk20a_instobj_new,
415 .persistent = true, 579 .persistent = true,
416 .zero = false, 580 .zero = false,
@@ -429,23 +593,28 @@ gk20a_instmem_new(struct nvkm_device *device, int index,
429 spin_lock_init(&imem->lock); 593 spin_lock_init(&imem->lock);
430 *pimem = &imem->base; 594 *pimem = &imem->base;
431 595
596 /* do not allow more than 1MB of CPU-mapped instmem */
597 imem->vaddr_use = 0;
598 imem->vaddr_max = 0x100000;
599 INIT_LIST_HEAD(&imem->vaddr_lru);
600
432 if (tdev->iommu.domain) { 601 if (tdev->iommu.domain) {
433 imem->domain = tdev->iommu.domain; 602 imem->mm_mutex = &tdev->iommu.mutex;
434 imem->mm = &tdev->iommu.mm; 603 imem->mm = &tdev->iommu.mm;
604 imem->domain = tdev->iommu.domain;
435 imem->iommu_pgshift = tdev->iommu.pgshift; 605 imem->iommu_pgshift = tdev->iommu.pgshift;
436 imem->mm_mutex = &tdev->iommu.mutex; 606 imem->cpu_map = gk20a_instobj_cpu_map_iommu;
607 imem->iommu_bit = tdev->func->iommu_bit;
437 608
438 nvkm_info(&imem->base.subdev, "using IOMMU\n"); 609 nvkm_info(&imem->base.subdev, "using IOMMU\n");
439 } else { 610 } else {
440 init_dma_attrs(&imem->attrs); 611 init_dma_attrs(&imem->attrs);
441 /* 612 /* We will access the memory through our own mapping */
442 * We will access instmem through PRAMIN and thus do not need a
443 * consistent CPU pointer or kernel mapping
444 */
445 dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs); 613 dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs);
446 dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs); 614 dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs);
447 dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs); 615 dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs);
448 dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs); 616 dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs);
617 imem->cpu_map = gk20a_instobj_cpu_map_dma;
449 618
450 nvkm_info(&imem->base.subdev, "using DMA API\n"); 619 nvkm_info(&imem->base.subdev, "using DMA API\n");
451 } 620 }