diff options
Diffstat (limited to 'arch/x86/entry/entry_64.S')
-rw-r--r-- | arch/x86/entry/entry_64.S | 1458 |
1 files changed, 1458 insertions, 0 deletions
diff --git a/arch/x86/entry/entry_64.S b/arch/x86/entry/entry_64.S new file mode 100644 index 000000000000..3bb2c4302df1 --- /dev/null +++ b/arch/x86/entry/entry_64.S | |||
@@ -0,0 +1,1458 @@ | |||
1 | /* | ||
2 | * linux/arch/x86_64/entry.S | ||
3 | * | ||
4 | * Copyright (C) 1991, 1992 Linus Torvalds | ||
5 | * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs | ||
6 | * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> | ||
7 | * | ||
8 | * entry.S contains the system-call and fault low-level handling routines. | ||
9 | * | ||
10 | * Some of this is documented in Documentation/x86/entry_64.txt | ||
11 | * | ||
12 | * A note on terminology: | ||
13 | * - iret frame: Architecture defined interrupt frame from SS to RIP | ||
14 | * at the top of the kernel process stack. | ||
15 | * | ||
16 | * Some macro usage: | ||
17 | * - ENTRY/END: Define functions in the symbol table. | ||
18 | * - TRACE_IRQ_*: Trace hardirq state for lock debugging. | ||
19 | * - idtentry: Define exception entry points. | ||
20 | */ | ||
21 | #include <linux/linkage.h> | ||
22 | #include <asm/segment.h> | ||
23 | #include <asm/cache.h> | ||
24 | #include <asm/errno.h> | ||
25 | #include "calling.h" | ||
26 | #include <asm/asm-offsets.h> | ||
27 | #include <asm/msr.h> | ||
28 | #include <asm/unistd.h> | ||
29 | #include <asm/thread_info.h> | ||
30 | #include <asm/hw_irq.h> | ||
31 | #include <asm/page_types.h> | ||
32 | #include <asm/irqflags.h> | ||
33 | #include <asm/paravirt.h> | ||
34 | #include <asm/percpu.h> | ||
35 | #include <asm/asm.h> | ||
36 | #include <asm/context_tracking.h> | ||
37 | #include <asm/smap.h> | ||
38 | #include <asm/pgtable_types.h> | ||
39 | #include <linux/err.h> | ||
40 | |||
41 | /* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */ | ||
42 | #include <linux/elf-em.h> | ||
43 | #define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE) | ||
44 | #define __AUDIT_ARCH_64BIT 0x80000000 | ||
45 | #define __AUDIT_ARCH_LE 0x40000000 | ||
46 | |||
47 | .code64 | ||
48 | .section .entry.text, "ax" | ||
49 | |||
50 | #ifdef CONFIG_PARAVIRT | ||
51 | ENTRY(native_usergs_sysret64) | ||
52 | swapgs | ||
53 | sysretq | ||
54 | ENDPROC(native_usergs_sysret64) | ||
55 | #endif /* CONFIG_PARAVIRT */ | ||
56 | |||
57 | .macro TRACE_IRQS_IRETQ | ||
58 | #ifdef CONFIG_TRACE_IRQFLAGS | ||
59 | bt $9, EFLAGS(%rsp) /* interrupts off? */ | ||
60 | jnc 1f | ||
61 | TRACE_IRQS_ON | ||
62 | 1: | ||
63 | #endif | ||
64 | .endm | ||
65 | |||
66 | /* | ||
67 | * When dynamic function tracer is enabled it will add a breakpoint | ||
68 | * to all locations that it is about to modify, sync CPUs, update | ||
69 | * all the code, sync CPUs, then remove the breakpoints. In this time | ||
70 | * if lockdep is enabled, it might jump back into the debug handler | ||
71 | * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF). | ||
72 | * | ||
73 | * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to | ||
74 | * make sure the stack pointer does not get reset back to the top | ||
75 | * of the debug stack, and instead just reuses the current stack. | ||
76 | */ | ||
77 | #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS) | ||
78 | |||
79 | .macro TRACE_IRQS_OFF_DEBUG | ||
80 | call debug_stack_set_zero | ||
81 | TRACE_IRQS_OFF | ||
82 | call debug_stack_reset | ||
83 | .endm | ||
84 | |||
85 | .macro TRACE_IRQS_ON_DEBUG | ||
86 | call debug_stack_set_zero | ||
87 | TRACE_IRQS_ON | ||
88 | call debug_stack_reset | ||
89 | .endm | ||
90 | |||
91 | .macro TRACE_IRQS_IRETQ_DEBUG | ||
92 | bt $9, EFLAGS(%rsp) /* interrupts off? */ | ||
93 | jnc 1f | ||
94 | TRACE_IRQS_ON_DEBUG | ||
95 | 1: | ||
96 | .endm | ||
97 | |||
98 | #else | ||
99 | # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF | ||
100 | # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON | ||
101 | # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ | ||
102 | #endif | ||
103 | |||
104 | /* | ||
105 | * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. | ||
106 | * | ||
107 | * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, | ||
108 | * then loads new ss, cs, and rip from previously programmed MSRs. | ||
109 | * rflags gets masked by a value from another MSR (so CLD and CLAC | ||
110 | * are not needed). SYSCALL does not save anything on the stack | ||
111 | * and does not change rsp. | ||
112 | * | ||
113 | * Registers on entry: | ||
114 | * rax system call number | ||
115 | * rcx return address | ||
116 | * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) | ||
117 | * rdi arg0 | ||
118 | * rsi arg1 | ||
119 | * rdx arg2 | ||
120 | * r10 arg3 (needs to be moved to rcx to conform to C ABI) | ||
121 | * r8 arg4 | ||
122 | * r9 arg5 | ||
123 | * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) | ||
124 | * | ||
125 | * Only called from user space. | ||
126 | * | ||
127 | * When user can change pt_regs->foo always force IRET. That is because | ||
128 | * it deals with uncanonical addresses better. SYSRET has trouble | ||
129 | * with them due to bugs in both AMD and Intel CPUs. | ||
130 | */ | ||
131 | |||
132 | ENTRY(entry_SYSCALL_64) | ||
133 | /* | ||
134 | * Interrupts are off on entry. | ||
135 | * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON, | ||
136 | * it is too small to ever cause noticeable irq latency. | ||
137 | */ | ||
138 | SWAPGS_UNSAFE_STACK | ||
139 | /* | ||
140 | * A hypervisor implementation might want to use a label | ||
141 | * after the swapgs, so that it can do the swapgs | ||
142 | * for the guest and jump here on syscall. | ||
143 | */ | ||
144 | GLOBAL(entry_SYSCALL_64_after_swapgs) | ||
145 | |||
146 | movq %rsp, PER_CPU_VAR(rsp_scratch) | ||
147 | movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp | ||
148 | |||
149 | /* Construct struct pt_regs on stack */ | ||
150 | pushq $__USER_DS /* pt_regs->ss */ | ||
151 | pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */ | ||
152 | /* | ||
153 | * Re-enable interrupts. | ||
154 | * We use 'rsp_scratch' as a scratch space, hence irq-off block above | ||
155 | * must execute atomically in the face of possible interrupt-driven | ||
156 | * task preemption. We must enable interrupts only after we're done | ||
157 | * with using rsp_scratch: | ||
158 | */ | ||
159 | ENABLE_INTERRUPTS(CLBR_NONE) | ||
160 | pushq %r11 /* pt_regs->flags */ | ||
161 | pushq $__USER_CS /* pt_regs->cs */ | ||
162 | pushq %rcx /* pt_regs->ip */ | ||
163 | pushq %rax /* pt_regs->orig_ax */ | ||
164 | pushq %rdi /* pt_regs->di */ | ||
165 | pushq %rsi /* pt_regs->si */ | ||
166 | pushq %rdx /* pt_regs->dx */ | ||
167 | pushq %rcx /* pt_regs->cx */ | ||
168 | pushq $-ENOSYS /* pt_regs->ax */ | ||
169 | pushq %r8 /* pt_regs->r8 */ | ||
170 | pushq %r9 /* pt_regs->r9 */ | ||
171 | pushq %r10 /* pt_regs->r10 */ | ||
172 | pushq %r11 /* pt_regs->r11 */ | ||
173 | sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */ | ||
174 | |||
175 | testl $_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS) | ||
176 | jnz tracesys | ||
177 | entry_SYSCALL_64_fastpath: | ||
178 | #if __SYSCALL_MASK == ~0 | ||
179 | cmpq $__NR_syscall_max, %rax | ||
180 | #else | ||
181 | andl $__SYSCALL_MASK, %eax | ||
182 | cmpl $__NR_syscall_max, %eax | ||
183 | #endif | ||
184 | ja 1f /* return -ENOSYS (already in pt_regs->ax) */ | ||
185 | movq %r10, %rcx | ||
186 | call *sys_call_table(, %rax, 8) | ||
187 | movq %rax, RAX(%rsp) | ||
188 | 1: | ||
189 | /* | ||
190 | * Syscall return path ending with SYSRET (fast path). | ||
191 | * Has incompletely filled pt_regs. | ||
192 | */ | ||
193 | LOCKDEP_SYS_EXIT | ||
194 | /* | ||
195 | * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON, | ||
196 | * it is too small to ever cause noticeable irq latency. | ||
197 | */ | ||
198 | DISABLE_INTERRUPTS(CLBR_NONE) | ||
199 | |||
200 | /* | ||
201 | * We must check ti flags with interrupts (or at least preemption) | ||
202 | * off because we must *never* return to userspace without | ||
203 | * processing exit work that is enqueued if we're preempted here. | ||
204 | * In particular, returning to userspace with any of the one-shot | ||
205 | * flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is | ||
206 | * very bad. | ||
207 | */ | ||
208 | testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS) | ||
209 | jnz int_ret_from_sys_call_irqs_off /* Go to the slow path */ | ||
210 | |||
211 | RESTORE_C_REGS_EXCEPT_RCX_R11 | ||
212 | movq RIP(%rsp), %rcx | ||
213 | movq EFLAGS(%rsp), %r11 | ||
214 | movq RSP(%rsp), %rsp | ||
215 | /* | ||
216 | * 64-bit SYSRET restores rip from rcx, | ||
217 | * rflags from r11 (but RF and VM bits are forced to 0), | ||
218 | * cs and ss are loaded from MSRs. | ||
219 | * Restoration of rflags re-enables interrupts. | ||
220 | * | ||
221 | * NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss | ||
222 | * descriptor is not reinitialized. This means that we should | ||
223 | * avoid SYSRET with SS == NULL, which could happen if we schedule, | ||
224 | * exit the kernel, and re-enter using an interrupt vector. (All | ||
225 | * interrupt entries on x86_64 set SS to NULL.) We prevent that | ||
226 | * from happening by reloading SS in __switch_to. (Actually | ||
227 | * detecting the failure in 64-bit userspace is tricky but can be | ||
228 | * done.) | ||
229 | */ | ||
230 | USERGS_SYSRET64 | ||
231 | |||
232 | /* Do syscall entry tracing */ | ||
233 | tracesys: | ||
234 | movq %rsp, %rdi | ||
235 | movl $AUDIT_ARCH_X86_64, %esi | ||
236 | call syscall_trace_enter_phase1 | ||
237 | test %rax, %rax | ||
238 | jnz tracesys_phase2 /* if needed, run the slow path */ | ||
239 | RESTORE_C_REGS_EXCEPT_RAX /* else restore clobbered regs */ | ||
240 | movq ORIG_RAX(%rsp), %rax | ||
241 | jmp entry_SYSCALL_64_fastpath /* and return to the fast path */ | ||
242 | |||
243 | tracesys_phase2: | ||
244 | SAVE_EXTRA_REGS | ||
245 | movq %rsp, %rdi | ||
246 | movl $AUDIT_ARCH_X86_64, %esi | ||
247 | movq %rax, %rdx | ||
248 | call syscall_trace_enter_phase2 | ||
249 | |||
250 | /* | ||
251 | * Reload registers from stack in case ptrace changed them. | ||
252 | * We don't reload %rax because syscall_trace_entry_phase2() returned | ||
253 | * the value it wants us to use in the table lookup. | ||
254 | */ | ||
255 | RESTORE_C_REGS_EXCEPT_RAX | ||
256 | RESTORE_EXTRA_REGS | ||
257 | #if __SYSCALL_MASK == ~0 | ||
258 | cmpq $__NR_syscall_max, %rax | ||
259 | #else | ||
260 | andl $__SYSCALL_MASK, %eax | ||
261 | cmpl $__NR_syscall_max, %eax | ||
262 | #endif | ||
263 | ja 1f /* return -ENOSYS (already in pt_regs->ax) */ | ||
264 | movq %r10, %rcx /* fixup for C */ | ||
265 | call *sys_call_table(, %rax, 8) | ||
266 | movq %rax, RAX(%rsp) | ||
267 | 1: | ||
268 | /* Use IRET because user could have changed pt_regs->foo */ | ||
269 | |||
270 | /* | ||
271 | * Syscall return path ending with IRET. | ||
272 | * Has correct iret frame. | ||
273 | */ | ||
274 | GLOBAL(int_ret_from_sys_call) | ||
275 | DISABLE_INTERRUPTS(CLBR_NONE) | ||
276 | int_ret_from_sys_call_irqs_off: /* jumps come here from the irqs-off SYSRET path */ | ||
277 | TRACE_IRQS_OFF | ||
278 | movl $_TIF_ALLWORK_MASK, %edi | ||
279 | /* edi: mask to check */ | ||
280 | GLOBAL(int_with_check) | ||
281 | LOCKDEP_SYS_EXIT_IRQ | ||
282 | GET_THREAD_INFO(%rcx) | ||
283 | movl TI_flags(%rcx), %edx | ||
284 | andl %edi, %edx | ||
285 | jnz int_careful | ||
286 | andl $~TS_COMPAT, TI_status(%rcx) | ||
287 | jmp syscall_return | ||
288 | |||
289 | /* | ||
290 | * Either reschedule or signal or syscall exit tracking needed. | ||
291 | * First do a reschedule test. | ||
292 | * edx: work, edi: workmask | ||
293 | */ | ||
294 | int_careful: | ||
295 | bt $TIF_NEED_RESCHED, %edx | ||
296 | jnc int_very_careful | ||
297 | TRACE_IRQS_ON | ||
298 | ENABLE_INTERRUPTS(CLBR_NONE) | ||
299 | pushq %rdi | ||
300 | SCHEDULE_USER | ||
301 | popq %rdi | ||
302 | DISABLE_INTERRUPTS(CLBR_NONE) | ||
303 | TRACE_IRQS_OFF | ||
304 | jmp int_with_check | ||
305 | |||
306 | /* handle signals and tracing -- both require a full pt_regs */ | ||
307 | int_very_careful: | ||
308 | TRACE_IRQS_ON | ||
309 | ENABLE_INTERRUPTS(CLBR_NONE) | ||
310 | SAVE_EXTRA_REGS | ||
311 | /* Check for syscall exit trace */ | ||
312 | testl $_TIF_WORK_SYSCALL_EXIT, %edx | ||
313 | jz int_signal | ||
314 | pushq %rdi | ||
315 | leaq 8(%rsp), %rdi /* &ptregs -> arg1 */ | ||
316 | call syscall_trace_leave | ||
317 | popq %rdi | ||
318 | andl $~(_TIF_WORK_SYSCALL_EXIT|_TIF_SYSCALL_EMU), %edi | ||
319 | jmp int_restore_rest | ||
320 | |||
321 | int_signal: | ||
322 | testl $_TIF_DO_NOTIFY_MASK, %edx | ||
323 | jz 1f | ||
324 | movq %rsp, %rdi /* &ptregs -> arg1 */ | ||
325 | xorl %esi, %esi /* oldset -> arg2 */ | ||
326 | call do_notify_resume | ||
327 | 1: movl $_TIF_WORK_MASK, %edi | ||
328 | int_restore_rest: | ||
329 | RESTORE_EXTRA_REGS | ||
330 | DISABLE_INTERRUPTS(CLBR_NONE) | ||
331 | TRACE_IRQS_OFF | ||
332 | jmp int_with_check | ||
333 | |||
334 | syscall_return: | ||
335 | /* The IRETQ could re-enable interrupts: */ | ||
336 | DISABLE_INTERRUPTS(CLBR_ANY) | ||
337 | TRACE_IRQS_IRETQ | ||
338 | |||
339 | /* | ||
340 | * Try to use SYSRET instead of IRET if we're returning to | ||
341 | * a completely clean 64-bit userspace context. | ||
342 | */ | ||
343 | movq RCX(%rsp), %rcx | ||
344 | movq RIP(%rsp), %r11 | ||
345 | cmpq %rcx, %r11 /* RCX == RIP */ | ||
346 | jne opportunistic_sysret_failed | ||
347 | |||
348 | /* | ||
349 | * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP | ||
350 | * in kernel space. This essentially lets the user take over | ||
351 | * the kernel, since userspace controls RSP. | ||
352 | * | ||
353 | * If width of "canonical tail" ever becomes variable, this will need | ||
354 | * to be updated to remain correct on both old and new CPUs. | ||
355 | */ | ||
356 | .ifne __VIRTUAL_MASK_SHIFT - 47 | ||
357 | .error "virtual address width changed -- SYSRET checks need update" | ||
358 | .endif | ||
359 | |||
360 | /* Change top 16 bits to be the sign-extension of 47th bit */ | ||
361 | shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx | ||
362 | sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx | ||
363 | |||
364 | /* If this changed %rcx, it was not canonical */ | ||
365 | cmpq %rcx, %r11 | ||
366 | jne opportunistic_sysret_failed | ||
367 | |||
368 | cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ | ||
369 | jne opportunistic_sysret_failed | ||
370 | |||
371 | movq R11(%rsp), %r11 | ||
372 | cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ | ||
373 | jne opportunistic_sysret_failed | ||
374 | |||
375 | /* | ||
376 | * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET, | ||
377 | * restoring TF results in a trap from userspace immediately after | ||
378 | * SYSRET. This would cause an infinite loop whenever #DB happens | ||
379 | * with register state that satisfies the opportunistic SYSRET | ||
380 | * conditions. For example, single-stepping this user code: | ||
381 | * | ||
382 | * movq $stuck_here, %rcx | ||
383 | * pushfq | ||
384 | * popq %r11 | ||
385 | * stuck_here: | ||
386 | * | ||
387 | * would never get past 'stuck_here'. | ||
388 | */ | ||
389 | testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 | ||
390 | jnz opportunistic_sysret_failed | ||
391 | |||
392 | /* nothing to check for RSP */ | ||
393 | |||
394 | cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ | ||
395 | jne opportunistic_sysret_failed | ||
396 | |||
397 | /* | ||
398 | * We win! This label is here just for ease of understanding | ||
399 | * perf profiles. Nothing jumps here. | ||
400 | */ | ||
401 | syscall_return_via_sysret: | ||
402 | /* rcx and r11 are already restored (see code above) */ | ||
403 | RESTORE_C_REGS_EXCEPT_RCX_R11 | ||
404 | movq RSP(%rsp), %rsp | ||
405 | USERGS_SYSRET64 | ||
406 | |||
407 | opportunistic_sysret_failed: | ||
408 | SWAPGS | ||
409 | jmp restore_c_regs_and_iret | ||
410 | END(entry_SYSCALL_64) | ||
411 | |||
412 | |||
413 | .macro FORK_LIKE func | ||
414 | ENTRY(stub_\func) | ||
415 | SAVE_EXTRA_REGS 8 | ||
416 | jmp sys_\func | ||
417 | END(stub_\func) | ||
418 | .endm | ||
419 | |||
420 | FORK_LIKE clone | ||
421 | FORK_LIKE fork | ||
422 | FORK_LIKE vfork | ||
423 | |||
424 | ENTRY(stub_execve) | ||
425 | call sys_execve | ||
426 | return_from_execve: | ||
427 | testl %eax, %eax | ||
428 | jz 1f | ||
429 | /* exec failed, can use fast SYSRET code path in this case */ | ||
430 | ret | ||
431 | 1: | ||
432 | /* must use IRET code path (pt_regs->cs may have changed) */ | ||
433 | addq $8, %rsp | ||
434 | ZERO_EXTRA_REGS | ||
435 | movq %rax, RAX(%rsp) | ||
436 | jmp int_ret_from_sys_call | ||
437 | END(stub_execve) | ||
438 | /* | ||
439 | * Remaining execve stubs are only 7 bytes long. | ||
440 | * ENTRY() often aligns to 16 bytes, which in this case has no benefits. | ||
441 | */ | ||
442 | .align 8 | ||
443 | GLOBAL(stub_execveat) | ||
444 | call sys_execveat | ||
445 | jmp return_from_execve | ||
446 | END(stub_execveat) | ||
447 | |||
448 | #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION) | ||
449 | .align 8 | ||
450 | GLOBAL(stub_x32_execve) | ||
451 | GLOBAL(stub32_execve) | ||
452 | call compat_sys_execve | ||
453 | jmp return_from_execve | ||
454 | END(stub32_execve) | ||
455 | END(stub_x32_execve) | ||
456 | .align 8 | ||
457 | GLOBAL(stub_x32_execveat) | ||
458 | GLOBAL(stub32_execveat) | ||
459 | call compat_sys_execveat | ||
460 | jmp return_from_execve | ||
461 | END(stub32_execveat) | ||
462 | END(stub_x32_execveat) | ||
463 | #endif | ||
464 | |||
465 | /* | ||
466 | * sigreturn is special because it needs to restore all registers on return. | ||
467 | * This cannot be done with SYSRET, so use the IRET return path instead. | ||
468 | */ | ||
469 | ENTRY(stub_rt_sigreturn) | ||
470 | /* | ||
471 | * SAVE_EXTRA_REGS result is not normally needed: | ||
472 | * sigreturn overwrites all pt_regs->GPREGS. | ||
473 | * But sigreturn can fail (!), and there is no easy way to detect that. | ||
474 | * To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error, | ||
475 | * we SAVE_EXTRA_REGS here. | ||
476 | */ | ||
477 | SAVE_EXTRA_REGS 8 | ||
478 | call sys_rt_sigreturn | ||
479 | return_from_stub: | ||
480 | addq $8, %rsp | ||
481 | RESTORE_EXTRA_REGS | ||
482 | movq %rax, RAX(%rsp) | ||
483 | jmp int_ret_from_sys_call | ||
484 | END(stub_rt_sigreturn) | ||
485 | |||
486 | #ifdef CONFIG_X86_X32_ABI | ||
487 | ENTRY(stub_x32_rt_sigreturn) | ||
488 | SAVE_EXTRA_REGS 8 | ||
489 | call sys32_x32_rt_sigreturn | ||
490 | jmp return_from_stub | ||
491 | END(stub_x32_rt_sigreturn) | ||
492 | #endif | ||
493 | |||
494 | /* | ||
495 | * A newly forked process directly context switches into this address. | ||
496 | * | ||
497 | * rdi: prev task we switched from | ||
498 | */ | ||
499 | ENTRY(ret_from_fork) | ||
500 | |||
501 | LOCK ; btr $TIF_FORK, TI_flags(%r8) | ||
502 | |||
503 | pushq $0x0002 | ||
504 | popfq /* reset kernel eflags */ | ||
505 | |||
506 | call schedule_tail /* rdi: 'prev' task parameter */ | ||
507 | |||
508 | RESTORE_EXTRA_REGS | ||
509 | |||
510 | testb $3, CS(%rsp) /* from kernel_thread? */ | ||
511 | |||
512 | /* | ||
513 | * By the time we get here, we have no idea whether our pt_regs, | ||
514 | * ti flags, and ti status came from the 64-bit SYSCALL fast path, | ||
515 | * the slow path, or one of the 32-bit compat paths. | ||
516 | * Use IRET code path to return, since it can safely handle | ||
517 | * all of the above. | ||
518 | */ | ||
519 | jnz int_ret_from_sys_call | ||
520 | |||
521 | /* | ||
522 | * We came from kernel_thread | ||
523 | * nb: we depend on RESTORE_EXTRA_REGS above | ||
524 | */ | ||
525 | movq %rbp, %rdi | ||
526 | call *%rbx | ||
527 | movl $0, RAX(%rsp) | ||
528 | RESTORE_EXTRA_REGS | ||
529 | jmp int_ret_from_sys_call | ||
530 | END(ret_from_fork) | ||
531 | |||
532 | /* | ||
533 | * Build the entry stubs with some assembler magic. | ||
534 | * We pack 1 stub into every 8-byte block. | ||
535 | */ | ||
536 | .align 8 | ||
537 | ENTRY(irq_entries_start) | ||
538 | vector=FIRST_EXTERNAL_VECTOR | ||
539 | .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR) | ||
540 | pushq $(~vector+0x80) /* Note: always in signed byte range */ | ||
541 | vector=vector+1 | ||
542 | jmp common_interrupt | ||
543 | .align 8 | ||
544 | .endr | ||
545 | END(irq_entries_start) | ||
546 | |||
547 | /* | ||
548 | * Interrupt entry/exit. | ||
549 | * | ||
550 | * Interrupt entry points save only callee clobbered registers in fast path. | ||
551 | * | ||
552 | * Entry runs with interrupts off. | ||
553 | */ | ||
554 | |||
555 | /* 0(%rsp): ~(interrupt number) */ | ||
556 | .macro interrupt func | ||
557 | cld | ||
558 | /* | ||
559 | * Since nothing in interrupt handling code touches r12...r15 members | ||
560 | * of "struct pt_regs", and since interrupts can nest, we can save | ||
561 | * four stack slots and simultaneously provide | ||
562 | * an unwind-friendly stack layout by saving "truncated" pt_regs | ||
563 | * exactly up to rbp slot, without these members. | ||
564 | */ | ||
565 | ALLOC_PT_GPREGS_ON_STACK -RBP | ||
566 | SAVE_C_REGS -RBP | ||
567 | /* this goes to 0(%rsp) for unwinder, not for saving the value: */ | ||
568 | SAVE_EXTRA_REGS_RBP -RBP | ||
569 | |||
570 | leaq -RBP(%rsp), %rdi /* arg1 for \func (pointer to pt_regs) */ | ||
571 | |||
572 | testb $3, CS-RBP(%rsp) | ||
573 | jz 1f | ||
574 | SWAPGS | ||
575 | 1: | ||
576 | /* | ||
577 | * Save previous stack pointer, optionally switch to interrupt stack. | ||
578 | * irq_count is used to check if a CPU is already on an interrupt stack | ||
579 | * or not. While this is essentially redundant with preempt_count it is | ||
580 | * a little cheaper to use a separate counter in the PDA (short of | ||
581 | * moving irq_enter into assembly, which would be too much work) | ||
582 | */ | ||
583 | movq %rsp, %rsi | ||
584 | incl PER_CPU_VAR(irq_count) | ||
585 | cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp | ||
586 | pushq %rsi | ||
587 | /* We entered an interrupt context - irqs are off: */ | ||
588 | TRACE_IRQS_OFF | ||
589 | |||
590 | call \func | ||
591 | .endm | ||
592 | |||
593 | /* | ||
594 | * The interrupt stubs push (~vector+0x80) onto the stack and | ||
595 | * then jump to common_interrupt. | ||
596 | */ | ||
597 | .p2align CONFIG_X86_L1_CACHE_SHIFT | ||
598 | common_interrupt: | ||
599 | ASM_CLAC | ||
600 | addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */ | ||
601 | interrupt do_IRQ | ||
602 | /* 0(%rsp): old RSP */ | ||
603 | ret_from_intr: | ||
604 | DISABLE_INTERRUPTS(CLBR_NONE) | ||
605 | TRACE_IRQS_OFF | ||
606 | decl PER_CPU_VAR(irq_count) | ||
607 | |||
608 | /* Restore saved previous stack */ | ||
609 | popq %rsi | ||
610 | /* return code expects complete pt_regs - adjust rsp accordingly: */ | ||
611 | leaq -RBP(%rsi), %rsp | ||
612 | |||
613 | testb $3, CS(%rsp) | ||
614 | jz retint_kernel | ||
615 | /* Interrupt came from user space */ | ||
616 | retint_user: | ||
617 | GET_THREAD_INFO(%rcx) | ||
618 | |||
619 | /* %rcx: thread info. Interrupts are off. */ | ||
620 | retint_with_reschedule: | ||
621 | movl $_TIF_WORK_MASK, %edi | ||
622 | retint_check: | ||
623 | LOCKDEP_SYS_EXIT_IRQ | ||
624 | movl TI_flags(%rcx), %edx | ||
625 | andl %edi, %edx | ||
626 | jnz retint_careful | ||
627 | |||
628 | retint_swapgs: /* return to user-space */ | ||
629 | /* | ||
630 | * The iretq could re-enable interrupts: | ||
631 | */ | ||
632 | DISABLE_INTERRUPTS(CLBR_ANY) | ||
633 | TRACE_IRQS_IRETQ | ||
634 | |||
635 | SWAPGS | ||
636 | jmp restore_c_regs_and_iret | ||
637 | |||
638 | /* Returning to kernel space */ | ||
639 | retint_kernel: | ||
640 | #ifdef CONFIG_PREEMPT | ||
641 | /* Interrupts are off */ | ||
642 | /* Check if we need preemption */ | ||
643 | bt $9, EFLAGS(%rsp) /* were interrupts off? */ | ||
644 | jnc 1f | ||
645 | 0: cmpl $0, PER_CPU_VAR(__preempt_count) | ||
646 | jnz 1f | ||
647 | call preempt_schedule_irq | ||
648 | jmp 0b | ||
649 | 1: | ||
650 | #endif | ||
651 | /* | ||
652 | * The iretq could re-enable interrupts: | ||
653 | */ | ||
654 | TRACE_IRQS_IRETQ | ||
655 | |||
656 | /* | ||
657 | * At this label, code paths which return to kernel and to user, | ||
658 | * which come from interrupts/exception and from syscalls, merge. | ||
659 | */ | ||
660 | restore_c_regs_and_iret: | ||
661 | RESTORE_C_REGS | ||
662 | REMOVE_PT_GPREGS_FROM_STACK 8 | ||
663 | INTERRUPT_RETURN | ||
664 | |||
665 | ENTRY(native_iret) | ||
666 | /* | ||
667 | * Are we returning to a stack segment from the LDT? Note: in | ||
668 | * 64-bit mode SS:RSP on the exception stack is always valid. | ||
669 | */ | ||
670 | #ifdef CONFIG_X86_ESPFIX64 | ||
671 | testb $4, (SS-RIP)(%rsp) | ||
672 | jnz native_irq_return_ldt | ||
673 | #endif | ||
674 | |||
675 | .global native_irq_return_iret | ||
676 | native_irq_return_iret: | ||
677 | /* | ||
678 | * This may fault. Non-paranoid faults on return to userspace are | ||
679 | * handled by fixup_bad_iret. These include #SS, #GP, and #NP. | ||
680 | * Double-faults due to espfix64 are handled in do_double_fault. | ||
681 | * Other faults here are fatal. | ||
682 | */ | ||
683 | iretq | ||
684 | |||
685 | #ifdef CONFIG_X86_ESPFIX64 | ||
686 | native_irq_return_ldt: | ||
687 | pushq %rax | ||
688 | pushq %rdi | ||
689 | SWAPGS | ||
690 | movq PER_CPU_VAR(espfix_waddr), %rdi | ||
691 | movq %rax, (0*8)(%rdi) /* RAX */ | ||
692 | movq (2*8)(%rsp), %rax /* RIP */ | ||
693 | movq %rax, (1*8)(%rdi) | ||
694 | movq (3*8)(%rsp), %rax /* CS */ | ||
695 | movq %rax, (2*8)(%rdi) | ||
696 | movq (4*8)(%rsp), %rax /* RFLAGS */ | ||
697 | movq %rax, (3*8)(%rdi) | ||
698 | movq (6*8)(%rsp), %rax /* SS */ | ||
699 | movq %rax, (5*8)(%rdi) | ||
700 | movq (5*8)(%rsp), %rax /* RSP */ | ||
701 | movq %rax, (4*8)(%rdi) | ||
702 | andl $0xffff0000, %eax | ||
703 | popq %rdi | ||
704 | orq PER_CPU_VAR(espfix_stack), %rax | ||
705 | SWAPGS | ||
706 | movq %rax, %rsp | ||
707 | popq %rax | ||
708 | jmp native_irq_return_iret | ||
709 | #endif | ||
710 | |||
711 | /* edi: workmask, edx: work */ | ||
712 | retint_careful: | ||
713 | bt $TIF_NEED_RESCHED, %edx | ||
714 | jnc retint_signal | ||
715 | TRACE_IRQS_ON | ||
716 | ENABLE_INTERRUPTS(CLBR_NONE) | ||
717 | pushq %rdi | ||
718 | SCHEDULE_USER | ||
719 | popq %rdi | ||
720 | GET_THREAD_INFO(%rcx) | ||
721 | DISABLE_INTERRUPTS(CLBR_NONE) | ||
722 | TRACE_IRQS_OFF | ||
723 | jmp retint_check | ||
724 | |||
725 | retint_signal: | ||
726 | testl $_TIF_DO_NOTIFY_MASK, %edx | ||
727 | jz retint_swapgs | ||
728 | TRACE_IRQS_ON | ||
729 | ENABLE_INTERRUPTS(CLBR_NONE) | ||
730 | SAVE_EXTRA_REGS | ||
731 | movq $-1, ORIG_RAX(%rsp) | ||
732 | xorl %esi, %esi /* oldset */ | ||
733 | movq %rsp, %rdi /* &pt_regs */ | ||
734 | call do_notify_resume | ||
735 | RESTORE_EXTRA_REGS | ||
736 | DISABLE_INTERRUPTS(CLBR_NONE) | ||
737 | TRACE_IRQS_OFF | ||
738 | GET_THREAD_INFO(%rcx) | ||
739 | jmp retint_with_reschedule | ||
740 | |||
741 | END(common_interrupt) | ||
742 | |||
743 | /* | ||
744 | * APIC interrupts. | ||
745 | */ | ||
746 | .macro apicinterrupt3 num sym do_sym | ||
747 | ENTRY(\sym) | ||
748 | ASM_CLAC | ||
749 | pushq $~(\num) | ||
750 | .Lcommon_\sym: | ||
751 | interrupt \do_sym | ||
752 | jmp ret_from_intr | ||
753 | END(\sym) | ||
754 | .endm | ||
755 | |||
756 | #ifdef CONFIG_TRACING | ||
757 | #define trace(sym) trace_##sym | ||
758 | #define smp_trace(sym) smp_trace_##sym | ||
759 | |||
760 | .macro trace_apicinterrupt num sym | ||
761 | apicinterrupt3 \num trace(\sym) smp_trace(\sym) | ||
762 | .endm | ||
763 | #else | ||
764 | .macro trace_apicinterrupt num sym do_sym | ||
765 | .endm | ||
766 | #endif | ||
767 | |||
768 | .macro apicinterrupt num sym do_sym | ||
769 | apicinterrupt3 \num \sym \do_sym | ||
770 | trace_apicinterrupt \num \sym | ||
771 | .endm | ||
772 | |||
773 | #ifdef CONFIG_SMP | ||
774 | apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt | ||
775 | apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt | ||
776 | #endif | ||
777 | |||
778 | #ifdef CONFIG_X86_UV | ||
779 | apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt | ||
780 | #endif | ||
781 | |||
782 | apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt | ||
783 | apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi | ||
784 | |||
785 | #ifdef CONFIG_HAVE_KVM | ||
786 | apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi | ||
787 | apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi | ||
788 | #endif | ||
789 | |||
790 | #ifdef CONFIG_X86_MCE_THRESHOLD | ||
791 | apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt | ||
792 | #endif | ||
793 | |||
794 | #ifdef CONFIG_X86_MCE_AMD | ||
795 | apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt | ||
796 | #endif | ||
797 | |||
798 | #ifdef CONFIG_X86_THERMAL_VECTOR | ||
799 | apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt | ||
800 | #endif | ||
801 | |||
802 | #ifdef CONFIG_SMP | ||
803 | apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt | ||
804 | apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt | ||
805 | apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt | ||
806 | #endif | ||
807 | |||
808 | apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt | ||
809 | apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt | ||
810 | |||
811 | #ifdef CONFIG_IRQ_WORK | ||
812 | apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt | ||
813 | #endif | ||
814 | |||
815 | /* | ||
816 | * Exception entry points. | ||
817 | */ | ||
818 | #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8) | ||
819 | |||
820 | .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 | ||
821 | ENTRY(\sym) | ||
822 | /* Sanity check */ | ||
823 | .if \shift_ist != -1 && \paranoid == 0 | ||
824 | .error "using shift_ist requires paranoid=1" | ||
825 | .endif | ||
826 | |||
827 | ASM_CLAC | ||
828 | PARAVIRT_ADJUST_EXCEPTION_FRAME | ||
829 | |||
830 | .ifeq \has_error_code | ||
831 | pushq $-1 /* ORIG_RAX: no syscall to restart */ | ||
832 | .endif | ||
833 | |||
834 | ALLOC_PT_GPREGS_ON_STACK | ||
835 | |||
836 | .if \paranoid | ||
837 | .if \paranoid == 1 | ||
838 | testb $3, CS(%rsp) /* If coming from userspace, switch stacks */ | ||
839 | jnz 1f | ||
840 | .endif | ||
841 | call paranoid_entry | ||
842 | .else | ||
843 | call error_entry | ||
844 | .endif | ||
845 | /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */ | ||
846 | |||
847 | .if \paranoid | ||
848 | .if \shift_ist != -1 | ||
849 | TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */ | ||
850 | .else | ||
851 | TRACE_IRQS_OFF | ||
852 | .endif | ||
853 | .endif | ||
854 | |||
855 | movq %rsp, %rdi /* pt_regs pointer */ | ||
856 | |||
857 | .if \has_error_code | ||
858 | movq ORIG_RAX(%rsp), %rsi /* get error code */ | ||
859 | movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ | ||
860 | .else | ||
861 | xorl %esi, %esi /* no error code */ | ||
862 | .endif | ||
863 | |||
864 | .if \shift_ist != -1 | ||
865 | subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist) | ||
866 | .endif | ||
867 | |||
868 | call \do_sym | ||
869 | |||
870 | .if \shift_ist != -1 | ||
871 | addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist) | ||
872 | .endif | ||
873 | |||
874 | /* these procedures expect "no swapgs" flag in ebx */ | ||
875 | .if \paranoid | ||
876 | jmp paranoid_exit | ||
877 | .else | ||
878 | jmp error_exit | ||
879 | .endif | ||
880 | |||
881 | .if \paranoid == 1 | ||
882 | /* | ||
883 | * Paranoid entry from userspace. Switch stacks and treat it | ||
884 | * as a normal entry. This means that paranoid handlers | ||
885 | * run in real process context if user_mode(regs). | ||
886 | */ | ||
887 | 1: | ||
888 | call error_entry | ||
889 | |||
890 | |||
891 | movq %rsp, %rdi /* pt_regs pointer */ | ||
892 | call sync_regs | ||
893 | movq %rax, %rsp /* switch stack */ | ||
894 | |||
895 | movq %rsp, %rdi /* pt_regs pointer */ | ||
896 | |||
897 | .if \has_error_code | ||
898 | movq ORIG_RAX(%rsp), %rsi /* get error code */ | ||
899 | movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ | ||
900 | .else | ||
901 | xorl %esi, %esi /* no error code */ | ||
902 | .endif | ||
903 | |||
904 | call \do_sym | ||
905 | |||
906 | jmp error_exit /* %ebx: no swapgs flag */ | ||
907 | .endif | ||
908 | END(\sym) | ||
909 | .endm | ||
910 | |||
911 | #ifdef CONFIG_TRACING | ||
912 | .macro trace_idtentry sym do_sym has_error_code:req | ||
913 | idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code | ||
914 | idtentry \sym \do_sym has_error_code=\has_error_code | ||
915 | .endm | ||
916 | #else | ||
917 | .macro trace_idtentry sym do_sym has_error_code:req | ||
918 | idtentry \sym \do_sym has_error_code=\has_error_code | ||
919 | .endm | ||
920 | #endif | ||
921 | |||
922 | idtentry divide_error do_divide_error has_error_code=0 | ||
923 | idtentry overflow do_overflow has_error_code=0 | ||
924 | idtentry bounds do_bounds has_error_code=0 | ||
925 | idtentry invalid_op do_invalid_op has_error_code=0 | ||
926 | idtentry device_not_available do_device_not_available has_error_code=0 | ||
927 | idtentry double_fault do_double_fault has_error_code=1 paranoid=2 | ||
928 | idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0 | ||
929 | idtentry invalid_TSS do_invalid_TSS has_error_code=1 | ||
930 | idtentry segment_not_present do_segment_not_present has_error_code=1 | ||
931 | idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0 | ||
932 | idtentry coprocessor_error do_coprocessor_error has_error_code=0 | ||
933 | idtentry alignment_check do_alignment_check has_error_code=1 | ||
934 | idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0 | ||
935 | |||
936 | |||
937 | /* | ||
938 | * Reload gs selector with exception handling | ||
939 | * edi: new selector | ||
940 | */ | ||
941 | ENTRY(native_load_gs_index) | ||
942 | pushfq | ||
943 | DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI) | ||
944 | SWAPGS | ||
945 | gs_change: | ||
946 | movl %edi, %gs | ||
947 | 2: mfence /* workaround */ | ||
948 | SWAPGS | ||
949 | popfq | ||
950 | ret | ||
951 | END(native_load_gs_index) | ||
952 | |||
953 | _ASM_EXTABLE(gs_change, bad_gs) | ||
954 | .section .fixup, "ax" | ||
955 | /* running with kernelgs */ | ||
956 | bad_gs: | ||
957 | SWAPGS /* switch back to user gs */ | ||
958 | xorl %eax, %eax | ||
959 | movl %eax, %gs | ||
960 | jmp 2b | ||
961 | .previous | ||
962 | |||
963 | /* Call softirq on interrupt stack. Interrupts are off. */ | ||
964 | ENTRY(do_softirq_own_stack) | ||
965 | pushq %rbp | ||
966 | mov %rsp, %rbp | ||
967 | incl PER_CPU_VAR(irq_count) | ||
968 | cmove PER_CPU_VAR(irq_stack_ptr), %rsp | ||
969 | push %rbp /* frame pointer backlink */ | ||
970 | call __do_softirq | ||
971 | leaveq | ||
972 | decl PER_CPU_VAR(irq_count) | ||
973 | ret | ||
974 | END(do_softirq_own_stack) | ||
975 | |||
976 | #ifdef CONFIG_XEN | ||
977 | idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0 | ||
978 | |||
979 | /* | ||
980 | * A note on the "critical region" in our callback handler. | ||
981 | * We want to avoid stacking callback handlers due to events occurring | ||
982 | * during handling of the last event. To do this, we keep events disabled | ||
983 | * until we've done all processing. HOWEVER, we must enable events before | ||
984 | * popping the stack frame (can't be done atomically) and so it would still | ||
985 | * be possible to get enough handler activations to overflow the stack. | ||
986 | * Although unlikely, bugs of that kind are hard to track down, so we'd | ||
987 | * like to avoid the possibility. | ||
988 | * So, on entry to the handler we detect whether we interrupted an | ||
989 | * existing activation in its critical region -- if so, we pop the current | ||
990 | * activation and restart the handler using the previous one. | ||
991 | */ | ||
992 | ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */ | ||
993 | |||
994 | /* | ||
995 | * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will | ||
996 | * see the correct pointer to the pt_regs | ||
997 | */ | ||
998 | movq %rdi, %rsp /* we don't return, adjust the stack frame */ | ||
999 | 11: incl PER_CPU_VAR(irq_count) | ||
1000 | movq %rsp, %rbp | ||
1001 | cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp | ||
1002 | pushq %rbp /* frame pointer backlink */ | ||
1003 | call xen_evtchn_do_upcall | ||
1004 | popq %rsp | ||
1005 | decl PER_CPU_VAR(irq_count) | ||
1006 | #ifndef CONFIG_PREEMPT | ||
1007 | call xen_maybe_preempt_hcall | ||
1008 | #endif | ||
1009 | jmp error_exit | ||
1010 | END(xen_do_hypervisor_callback) | ||
1011 | |||
1012 | /* | ||
1013 | * Hypervisor uses this for application faults while it executes. | ||
1014 | * We get here for two reasons: | ||
1015 | * 1. Fault while reloading DS, ES, FS or GS | ||
1016 | * 2. Fault while executing IRET | ||
1017 | * Category 1 we do not need to fix up as Xen has already reloaded all segment | ||
1018 | * registers that could be reloaded and zeroed the others. | ||
1019 | * Category 2 we fix up by killing the current process. We cannot use the | ||
1020 | * normal Linux return path in this case because if we use the IRET hypercall | ||
1021 | * to pop the stack frame we end up in an infinite loop of failsafe callbacks. | ||
1022 | * We distinguish between categories by comparing each saved segment register | ||
1023 | * with its current contents: any discrepancy means we in category 1. | ||
1024 | */ | ||
1025 | ENTRY(xen_failsafe_callback) | ||
1026 | movl %ds, %ecx | ||
1027 | cmpw %cx, 0x10(%rsp) | ||
1028 | jne 1f | ||
1029 | movl %es, %ecx | ||
1030 | cmpw %cx, 0x18(%rsp) | ||
1031 | jne 1f | ||
1032 | movl %fs, %ecx | ||
1033 | cmpw %cx, 0x20(%rsp) | ||
1034 | jne 1f | ||
1035 | movl %gs, %ecx | ||
1036 | cmpw %cx, 0x28(%rsp) | ||
1037 | jne 1f | ||
1038 | /* All segments match their saved values => Category 2 (Bad IRET). */ | ||
1039 | movq (%rsp), %rcx | ||
1040 | movq 8(%rsp), %r11 | ||
1041 | addq $0x30, %rsp | ||
1042 | pushq $0 /* RIP */ | ||
1043 | pushq %r11 | ||
1044 | pushq %rcx | ||
1045 | jmp general_protection | ||
1046 | 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ | ||
1047 | movq (%rsp), %rcx | ||
1048 | movq 8(%rsp), %r11 | ||
1049 | addq $0x30, %rsp | ||
1050 | pushq $-1 /* orig_ax = -1 => not a system call */ | ||
1051 | ALLOC_PT_GPREGS_ON_STACK | ||
1052 | SAVE_C_REGS | ||
1053 | SAVE_EXTRA_REGS | ||
1054 | jmp error_exit | ||
1055 | END(xen_failsafe_callback) | ||
1056 | |||
1057 | apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ | ||
1058 | xen_hvm_callback_vector xen_evtchn_do_upcall | ||
1059 | |||
1060 | #endif /* CONFIG_XEN */ | ||
1061 | |||
1062 | #if IS_ENABLED(CONFIG_HYPERV) | ||
1063 | apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \ | ||
1064 | hyperv_callback_vector hyperv_vector_handler | ||
1065 | #endif /* CONFIG_HYPERV */ | ||
1066 | |||
1067 | idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK | ||
1068 | idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK | ||
1069 | idtentry stack_segment do_stack_segment has_error_code=1 | ||
1070 | |||
1071 | #ifdef CONFIG_XEN | ||
1072 | idtentry xen_debug do_debug has_error_code=0 | ||
1073 | idtentry xen_int3 do_int3 has_error_code=0 | ||
1074 | idtentry xen_stack_segment do_stack_segment has_error_code=1 | ||
1075 | #endif | ||
1076 | |||
1077 | idtentry general_protection do_general_protection has_error_code=1 | ||
1078 | trace_idtentry page_fault do_page_fault has_error_code=1 | ||
1079 | |||
1080 | #ifdef CONFIG_KVM_GUEST | ||
1081 | idtentry async_page_fault do_async_page_fault has_error_code=1 | ||
1082 | #endif | ||
1083 | |||
1084 | #ifdef CONFIG_X86_MCE | ||
1085 | idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip) | ||
1086 | #endif | ||
1087 | |||
1088 | /* | ||
1089 | * Save all registers in pt_regs, and switch gs if needed. | ||
1090 | * Use slow, but surefire "are we in kernel?" check. | ||
1091 | * Return: ebx=0: need swapgs on exit, ebx=1: otherwise | ||
1092 | */ | ||
1093 | ENTRY(paranoid_entry) | ||
1094 | cld | ||
1095 | SAVE_C_REGS 8 | ||
1096 | SAVE_EXTRA_REGS 8 | ||
1097 | movl $1, %ebx | ||
1098 | movl $MSR_GS_BASE, %ecx | ||
1099 | rdmsr | ||
1100 | testl %edx, %edx | ||
1101 | js 1f /* negative -> in kernel */ | ||
1102 | SWAPGS | ||
1103 | xorl %ebx, %ebx | ||
1104 | 1: ret | ||
1105 | END(paranoid_entry) | ||
1106 | |||
1107 | /* | ||
1108 | * "Paranoid" exit path from exception stack. This is invoked | ||
1109 | * only on return from non-NMI IST interrupts that came | ||
1110 | * from kernel space. | ||
1111 | * | ||
1112 | * We may be returning to very strange contexts (e.g. very early | ||
1113 | * in syscall entry), so checking for preemption here would | ||
1114 | * be complicated. Fortunately, we there's no good reason | ||
1115 | * to try to handle preemption here. | ||
1116 | * | ||
1117 | * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it) | ||
1118 | */ | ||
1119 | ENTRY(paranoid_exit) | ||
1120 | DISABLE_INTERRUPTS(CLBR_NONE) | ||
1121 | TRACE_IRQS_OFF_DEBUG | ||
1122 | testl %ebx, %ebx /* swapgs needed? */ | ||
1123 | jnz paranoid_exit_no_swapgs | ||
1124 | TRACE_IRQS_IRETQ | ||
1125 | SWAPGS_UNSAFE_STACK | ||
1126 | jmp paranoid_exit_restore | ||
1127 | paranoid_exit_no_swapgs: | ||
1128 | TRACE_IRQS_IRETQ_DEBUG | ||
1129 | paranoid_exit_restore: | ||
1130 | RESTORE_EXTRA_REGS | ||
1131 | RESTORE_C_REGS | ||
1132 | REMOVE_PT_GPREGS_FROM_STACK 8 | ||
1133 | INTERRUPT_RETURN | ||
1134 | END(paranoid_exit) | ||
1135 | |||
1136 | /* | ||
1137 | * Save all registers in pt_regs, and switch gs if needed. | ||
1138 | * Return: EBX=0: came from user mode; EBX=1: otherwise | ||
1139 | */ | ||
1140 | ENTRY(error_entry) | ||
1141 | cld | ||
1142 | SAVE_C_REGS 8 | ||
1143 | SAVE_EXTRA_REGS 8 | ||
1144 | xorl %ebx, %ebx | ||
1145 | testb $3, CS+8(%rsp) | ||
1146 | jz error_kernelspace | ||
1147 | |||
1148 | /* We entered from user mode */ | ||
1149 | SWAPGS | ||
1150 | |||
1151 | error_entry_done: | ||
1152 | TRACE_IRQS_OFF | ||
1153 | ret | ||
1154 | |||
1155 | /* | ||
1156 | * There are two places in the kernel that can potentially fault with | ||
1157 | * usergs. Handle them here. B stepping K8s sometimes report a | ||
1158 | * truncated RIP for IRET exceptions returning to compat mode. Check | ||
1159 | * for these here too. | ||
1160 | */ | ||
1161 | error_kernelspace: | ||
1162 | incl %ebx | ||
1163 | leaq native_irq_return_iret(%rip), %rcx | ||
1164 | cmpq %rcx, RIP+8(%rsp) | ||
1165 | je error_bad_iret | ||
1166 | movl %ecx, %eax /* zero extend */ | ||
1167 | cmpq %rax, RIP+8(%rsp) | ||
1168 | je bstep_iret | ||
1169 | cmpq $gs_change, RIP+8(%rsp) | ||
1170 | jne error_entry_done | ||
1171 | |||
1172 | /* | ||
1173 | * hack: gs_change can fail with user gsbase. If this happens, fix up | ||
1174 | * gsbase and proceed. We'll fix up the exception and land in | ||
1175 | * gs_change's error handler with kernel gsbase. | ||
1176 | */ | ||
1177 | SWAPGS | ||
1178 | jmp error_entry_done | ||
1179 | |||
1180 | bstep_iret: | ||
1181 | /* Fix truncated RIP */ | ||
1182 | movq %rcx, RIP+8(%rsp) | ||
1183 | /* fall through */ | ||
1184 | |||
1185 | error_bad_iret: | ||
1186 | /* | ||
1187 | * We came from an IRET to user mode, so we have user gsbase. | ||
1188 | * Switch to kernel gsbase: | ||
1189 | */ | ||
1190 | SWAPGS | ||
1191 | |||
1192 | /* | ||
1193 | * Pretend that the exception came from user mode: set up pt_regs | ||
1194 | * as if we faulted immediately after IRET and clear EBX so that | ||
1195 | * error_exit knows that we will be returning to user mode. | ||
1196 | */ | ||
1197 | mov %rsp, %rdi | ||
1198 | call fixup_bad_iret | ||
1199 | mov %rax, %rsp | ||
1200 | decl %ebx | ||
1201 | jmp error_entry_done | ||
1202 | END(error_entry) | ||
1203 | |||
1204 | |||
1205 | /* | ||
1206 | * On entry, EBS is a "return to kernel mode" flag: | ||
1207 | * 1: already in kernel mode, don't need SWAPGS | ||
1208 | * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode | ||
1209 | */ | ||
1210 | ENTRY(error_exit) | ||
1211 | movl %ebx, %eax | ||
1212 | RESTORE_EXTRA_REGS | ||
1213 | DISABLE_INTERRUPTS(CLBR_NONE) | ||
1214 | TRACE_IRQS_OFF | ||
1215 | testl %eax, %eax | ||
1216 | jnz retint_kernel | ||
1217 | jmp retint_user | ||
1218 | END(error_exit) | ||
1219 | |||
1220 | /* Runs on exception stack */ | ||
1221 | ENTRY(nmi) | ||
1222 | PARAVIRT_ADJUST_EXCEPTION_FRAME | ||
1223 | /* | ||
1224 | * We allow breakpoints in NMIs. If a breakpoint occurs, then | ||
1225 | * the iretq it performs will take us out of NMI context. | ||
1226 | * This means that we can have nested NMIs where the next | ||
1227 | * NMI is using the top of the stack of the previous NMI. We | ||
1228 | * can't let it execute because the nested NMI will corrupt the | ||
1229 | * stack of the previous NMI. NMI handlers are not re-entrant | ||
1230 | * anyway. | ||
1231 | * | ||
1232 | * To handle this case we do the following: | ||
1233 | * Check the a special location on the stack that contains | ||
1234 | * a variable that is set when NMIs are executing. | ||
1235 | * The interrupted task's stack is also checked to see if it | ||
1236 | * is an NMI stack. | ||
1237 | * If the variable is not set and the stack is not the NMI | ||
1238 | * stack then: | ||
1239 | * o Set the special variable on the stack | ||
1240 | * o Copy the interrupt frame into a "saved" location on the stack | ||
1241 | * o Copy the interrupt frame into a "copy" location on the stack | ||
1242 | * o Continue processing the NMI | ||
1243 | * If the variable is set or the previous stack is the NMI stack: | ||
1244 | * o Modify the "copy" location to jump to the repeate_nmi | ||
1245 | * o return back to the first NMI | ||
1246 | * | ||
1247 | * Now on exit of the first NMI, we first clear the stack variable | ||
1248 | * The NMI stack will tell any nested NMIs at that point that it is | ||
1249 | * nested. Then we pop the stack normally with iret, and if there was | ||
1250 | * a nested NMI that updated the copy interrupt stack frame, a | ||
1251 | * jump will be made to the repeat_nmi code that will handle the second | ||
1252 | * NMI. | ||
1253 | */ | ||
1254 | |||
1255 | /* Use %rdx as our temp variable throughout */ | ||
1256 | pushq %rdx | ||
1257 | |||
1258 | /* | ||
1259 | * If %cs was not the kernel segment, then the NMI triggered in user | ||
1260 | * space, which means it is definitely not nested. | ||
1261 | */ | ||
1262 | cmpl $__KERNEL_CS, 16(%rsp) | ||
1263 | jne first_nmi | ||
1264 | |||
1265 | /* | ||
1266 | * Check the special variable on the stack to see if NMIs are | ||
1267 | * executing. | ||
1268 | */ | ||
1269 | cmpl $1, -8(%rsp) | ||
1270 | je nested_nmi | ||
1271 | |||
1272 | /* | ||
1273 | * Now test if the previous stack was an NMI stack. | ||
1274 | * We need the double check. We check the NMI stack to satisfy the | ||
1275 | * race when the first NMI clears the variable before returning. | ||
1276 | * We check the variable because the first NMI could be in a | ||
1277 | * breakpoint routine using a breakpoint stack. | ||
1278 | */ | ||
1279 | lea 6*8(%rsp), %rdx | ||
1280 | /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ | ||
1281 | cmpq %rdx, 4*8(%rsp) | ||
1282 | /* If the stack pointer is above the NMI stack, this is a normal NMI */ | ||
1283 | ja first_nmi | ||
1284 | |||
1285 | subq $EXCEPTION_STKSZ, %rdx | ||
1286 | cmpq %rdx, 4*8(%rsp) | ||
1287 | /* If it is below the NMI stack, it is a normal NMI */ | ||
1288 | jb first_nmi | ||
1289 | /* Ah, it is within the NMI stack, treat it as nested */ | ||
1290 | |||
1291 | nested_nmi: | ||
1292 | /* | ||
1293 | * Do nothing if we interrupted the fixup in repeat_nmi. | ||
1294 | * It's about to repeat the NMI handler, so we are fine | ||
1295 | * with ignoring this one. | ||
1296 | */ | ||
1297 | movq $repeat_nmi, %rdx | ||
1298 | cmpq 8(%rsp), %rdx | ||
1299 | ja 1f | ||
1300 | movq $end_repeat_nmi, %rdx | ||
1301 | cmpq 8(%rsp), %rdx | ||
1302 | ja nested_nmi_out | ||
1303 | |||
1304 | 1: | ||
1305 | /* Set up the interrupted NMIs stack to jump to repeat_nmi */ | ||
1306 | leaq -1*8(%rsp), %rdx | ||
1307 | movq %rdx, %rsp | ||
1308 | leaq -10*8(%rsp), %rdx | ||
1309 | pushq $__KERNEL_DS | ||
1310 | pushq %rdx | ||
1311 | pushfq | ||
1312 | pushq $__KERNEL_CS | ||
1313 | pushq $repeat_nmi | ||
1314 | |||
1315 | /* Put stack back */ | ||
1316 | addq $(6*8), %rsp | ||
1317 | |||
1318 | nested_nmi_out: | ||
1319 | popq %rdx | ||
1320 | |||
1321 | /* No need to check faults here */ | ||
1322 | INTERRUPT_RETURN | ||
1323 | |||
1324 | first_nmi: | ||
1325 | /* | ||
1326 | * Because nested NMIs will use the pushed location that we | ||
1327 | * stored in rdx, we must keep that space available. | ||
1328 | * Here's what our stack frame will look like: | ||
1329 | * +-------------------------+ | ||
1330 | * | original SS | | ||
1331 | * | original Return RSP | | ||
1332 | * | original RFLAGS | | ||
1333 | * | original CS | | ||
1334 | * | original RIP | | ||
1335 | * +-------------------------+ | ||
1336 | * | temp storage for rdx | | ||
1337 | * +-------------------------+ | ||
1338 | * | NMI executing variable | | ||
1339 | * +-------------------------+ | ||
1340 | * | copied SS | | ||
1341 | * | copied Return RSP | | ||
1342 | * | copied RFLAGS | | ||
1343 | * | copied CS | | ||
1344 | * | copied RIP | | ||
1345 | * +-------------------------+ | ||
1346 | * | Saved SS | | ||
1347 | * | Saved Return RSP | | ||
1348 | * | Saved RFLAGS | | ||
1349 | * | Saved CS | | ||
1350 | * | Saved RIP | | ||
1351 | * +-------------------------+ | ||
1352 | * | pt_regs | | ||
1353 | * +-------------------------+ | ||
1354 | * | ||
1355 | * The saved stack frame is used to fix up the copied stack frame | ||
1356 | * that a nested NMI may change to make the interrupted NMI iret jump | ||
1357 | * to the repeat_nmi. The original stack frame and the temp storage | ||
1358 | * is also used by nested NMIs and can not be trusted on exit. | ||
1359 | */ | ||
1360 | /* Do not pop rdx, nested NMIs will corrupt that part of the stack */ | ||
1361 | movq (%rsp), %rdx | ||
1362 | |||
1363 | /* Set the NMI executing variable on the stack. */ | ||
1364 | pushq $1 | ||
1365 | |||
1366 | /* Leave room for the "copied" frame */ | ||
1367 | subq $(5*8), %rsp | ||
1368 | |||
1369 | /* Copy the stack frame to the Saved frame */ | ||
1370 | .rept 5 | ||
1371 | pushq 11*8(%rsp) | ||
1372 | .endr | ||
1373 | |||
1374 | /* Everything up to here is safe from nested NMIs */ | ||
1375 | |||
1376 | /* | ||
1377 | * If there was a nested NMI, the first NMI's iret will return | ||
1378 | * here. But NMIs are still enabled and we can take another | ||
1379 | * nested NMI. The nested NMI checks the interrupted RIP to see | ||
1380 | * if it is between repeat_nmi and end_repeat_nmi, and if so | ||
1381 | * it will just return, as we are about to repeat an NMI anyway. | ||
1382 | * This makes it safe to copy to the stack frame that a nested | ||
1383 | * NMI will update. | ||
1384 | */ | ||
1385 | repeat_nmi: | ||
1386 | /* | ||
1387 | * Update the stack variable to say we are still in NMI (the update | ||
1388 | * is benign for the non-repeat case, where 1 was pushed just above | ||
1389 | * to this very stack slot). | ||
1390 | */ | ||
1391 | movq $1, 10*8(%rsp) | ||
1392 | |||
1393 | /* Make another copy, this one may be modified by nested NMIs */ | ||
1394 | addq $(10*8), %rsp | ||
1395 | .rept 5 | ||
1396 | pushq -6*8(%rsp) | ||
1397 | .endr | ||
1398 | subq $(5*8), %rsp | ||
1399 | end_repeat_nmi: | ||
1400 | |||
1401 | /* | ||
1402 | * Everything below this point can be preempted by a nested | ||
1403 | * NMI if the first NMI took an exception and reset our iret stack | ||
1404 | * so that we repeat another NMI. | ||
1405 | */ | ||
1406 | pushq $-1 /* ORIG_RAX: no syscall to restart */ | ||
1407 | ALLOC_PT_GPREGS_ON_STACK | ||
1408 | |||
1409 | /* | ||
1410 | * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit | ||
1411 | * as we should not be calling schedule in NMI context. | ||
1412 | * Even with normal interrupts enabled. An NMI should not be | ||
1413 | * setting NEED_RESCHED or anything that normal interrupts and | ||
1414 | * exceptions might do. | ||
1415 | */ | ||
1416 | call paranoid_entry | ||
1417 | |||
1418 | /* | ||
1419 | * Save off the CR2 register. If we take a page fault in the NMI then | ||
1420 | * it could corrupt the CR2 value. If the NMI preempts a page fault | ||
1421 | * handler before it was able to read the CR2 register, and then the | ||
1422 | * NMI itself takes a page fault, the page fault that was preempted | ||
1423 | * will read the information from the NMI page fault and not the | ||
1424 | * origin fault. Save it off and restore it if it changes. | ||
1425 | * Use the r12 callee-saved register. | ||
1426 | */ | ||
1427 | movq %cr2, %r12 | ||
1428 | |||
1429 | /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */ | ||
1430 | movq %rsp, %rdi | ||
1431 | movq $-1, %rsi | ||
1432 | call do_nmi | ||
1433 | |||
1434 | /* Did the NMI take a page fault? Restore cr2 if it did */ | ||
1435 | movq %cr2, %rcx | ||
1436 | cmpq %rcx, %r12 | ||
1437 | je 1f | ||
1438 | movq %r12, %cr2 | ||
1439 | 1: | ||
1440 | testl %ebx, %ebx /* swapgs needed? */ | ||
1441 | jnz nmi_restore | ||
1442 | nmi_swapgs: | ||
1443 | SWAPGS_UNSAFE_STACK | ||
1444 | nmi_restore: | ||
1445 | RESTORE_EXTRA_REGS | ||
1446 | RESTORE_C_REGS | ||
1447 | /* Pop the extra iret frame at once */ | ||
1448 | REMOVE_PT_GPREGS_FROM_STACK 6*8 | ||
1449 | |||
1450 | /* Clear the NMI executing stack variable */ | ||
1451 | movq $0, 5*8(%rsp) | ||
1452 | INTERRUPT_RETURN | ||
1453 | END(nmi) | ||
1454 | |||
1455 | ENTRY(ignore_sysret) | ||
1456 | mov $-ENOSYS, %eax | ||
1457 | sysret | ||
1458 | END(ignore_sysret) | ||