aboutsummaryrefslogtreecommitdiffstats
path: root/arch/sparc/kernel/entry.h
diff options
context:
space:
mode:
Diffstat (limited to 'arch/sparc/kernel/entry.h')
0 files changed, 0 insertions, 0 deletions
p-mc-bipasa'>wip-mc-bipasa The LITMUS^RT kernel.Bjoern Brandenburg
aboutsummaryrefslogblamecommitdiffstats
path: root/fs/buffer.c
blob: 0befa724ab98db16d6174b7bc1884137c97a2ea0 (plain) (tree)
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842



























































































































































































































                                                                              
                          















                                                        
                          


























                                                                             
                          







































































































































































































































































                                                                                      
                                                           




















































































































































































































































                                                                               
                                                          



                                                                          


                                                                              











































































































































































































































































































































































































































                                                                               
                           


















































                                                                              
                                     













































































































































































































































                                                                                
                                        
























































































































































































































































                                                                              
                                      
























































                                                                               



























                                                                               






                                                           

                             
                          





































                                                                             





















                                                                    









































                                                                        
                                      








































                                                                             
                                   
         



                           















































































                                                                         
                                  















                                                                                

                                    

                                              

                                                                      






                                                                            

                                                                


























































































































































































































































































































































































































































































































































































































































































































































                                                                                
                                                          
                                                                     



                                                     
                                                   
                                                                    






































































                                                                               
                                                               




































































































































































































                                                                               
                                                                                 

































                                                                              
/*
 *  linux/fs/buffer.c
 *
 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
 */

/*
 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
 *
 * Removed a lot of unnecessary code and simplified things now that
 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
 *
 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
 *
 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
 *
 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
 */

#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/syscalls.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/percpu.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/blkdev.h>
#include <linux/file.h>
#include <linux/quotaops.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/writeback.h>
#include <linux/hash.h>
#include <linux/suspend.h>
#include <linux/buffer_head.h>
#include <linux/bio.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/bitops.h>
#include <linux/mpage.h>

static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
static void invalidate_bh_lrus(void);

#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)

inline void
init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
{
	bh->b_end_io = handler;
	bh->b_private = private;
}

static int sync_buffer(void *word)
{
	struct block_device *bd;
	struct buffer_head *bh
		= container_of(word, struct buffer_head, b_state);

	smp_mb();
	bd = bh->b_bdev;
	if (bd)
		blk_run_address_space(bd->bd_inode->i_mapping);
	io_schedule();
	return 0;
}

void fastcall __lock_buffer(struct buffer_head *bh)
{
	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
							TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(__lock_buffer);

void fastcall unlock_buffer(struct buffer_head *bh)
{
	clear_buffer_locked(bh);
	smp_mb__after_clear_bit();
	wake_up_bit(&bh->b_state, BH_Lock);
}

/*
 * Block until a buffer comes unlocked.  This doesn't stop it
 * from becoming locked again - you have to lock it yourself
 * if you want to preserve its state.
 */
void __wait_on_buffer(struct buffer_head * bh)
{
	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
}

static void
__clear_page_buffers(struct page *page)
{
	ClearPagePrivate(page);
	page->private = 0;
	page_cache_release(page);
}

static void buffer_io_error(struct buffer_head *bh)
{
	char b[BDEVNAME_SIZE];

	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
			bdevname(bh->b_bdev, b),
			(unsigned long long)bh->b_blocknr);
}

/*
 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 * unlock the buffer. This is what ll_rw_block uses too.
 */
void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
{
	if (uptodate) {
		set_buffer_uptodate(bh);
	} else {
		/* This happens, due to failed READA attempts. */
		clear_buffer_uptodate(bh);
	}
	unlock_buffer(bh);
	put_bh(bh);
}

void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
{
	char b[BDEVNAME_SIZE];

	if (uptodate) {
		set_buffer_uptodate(bh);
	} else {
		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
			buffer_io_error(bh);
			printk(KERN_WARNING "lost page write due to "
					"I/O error on %s\n",
				       bdevname(bh->b_bdev, b));
		}
		set_buffer_write_io_error(bh);
		clear_buffer_uptodate(bh);
	}
	unlock_buffer(bh);
	put_bh(bh);
}

/*
 * Write out and wait upon all the dirty data associated with a block
 * device via its mapping.  Does not take the superblock lock.
 */
int sync_blockdev(struct block_device *bdev)
{
	int ret = 0;

	if (bdev) {
		int err;

		ret = filemap_fdatawrite(bdev->bd_inode->i_mapping);
		err = filemap_fdatawait(bdev->bd_inode->i_mapping);
		if (!ret)
			ret = err;
	}
	return ret;
}
EXPORT_SYMBOL(sync_blockdev);

/*
 * Write out and wait upon all dirty data associated with this
 * superblock.  Filesystem data as well as the underlying block
 * device.  Takes the superblock lock.
 */
int fsync_super(struct super_block *sb)
{
	sync_inodes_sb(sb, 0);
	DQUOT_SYNC(sb);
	lock_super(sb);
	if (sb->s_dirt && sb->s_op->write_super)
		sb->s_op->write_super(sb);
	unlock_super(sb);
	if (sb->s_op->sync_fs)
		sb->s_op->sync_fs(sb, 1);
	sync_blockdev(sb->s_bdev);
	sync_inodes_sb(sb, 1);

	return sync_blockdev(sb->s_bdev);
}

/*
 * Write out and wait upon all dirty data associated with this
 * device.   Filesystem data as well as the underlying block
 * device.  Takes the superblock lock.
 */
int fsync_bdev(struct block_device *bdev)
{
	struct super_block *sb = get_super(bdev);
	if (sb) {
		int res = fsync_super(sb);
		drop_super(sb);
		return res;
	}
	return sync_blockdev(bdev);
}

/**
 * freeze_bdev  --  lock a filesystem and force it into a consistent state
 * @bdev:	blockdevice to lock
 *
 * This takes the block device bd_mount_sem to make sure no new mounts
 * happen on bdev until thaw_bdev() is called.
 * If a superblock is found on this device, we take the s_umount semaphore
 * on it to make sure nobody unmounts until the snapshot creation is done.
 */
struct super_block *freeze_bdev(struct block_device *bdev)
{
	struct super_block *sb;

	down(&bdev->bd_mount_sem);
	sb = get_super(bdev);
	if (sb && !(sb->s_flags & MS_RDONLY)) {
		sb->s_frozen = SB_FREEZE_WRITE;
		smp_wmb();

		sync_inodes_sb(sb, 0);
		DQUOT_SYNC(sb);

		lock_super(sb);
		if (sb->s_dirt && sb->s_op->write_super)
			sb->s_op->write_super(sb);
		unlock_super(sb);

		if (sb->s_op->sync_fs)
			sb->s_op->sync_fs(sb, 1);

		sync_blockdev(sb->s_bdev);
		sync_inodes_sb(sb, 1);

		sb->s_frozen = SB_FREEZE_TRANS;
		smp_wmb();

		sync_blockdev(sb->s_bdev);

		if (sb->s_op->write_super_lockfs)
			sb->s_op->write_super_lockfs(sb);
	}

	sync_blockdev(bdev);
	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
}
EXPORT_SYMBOL(freeze_bdev);

/**
 * thaw_bdev  -- unlock filesystem
 * @bdev:	blockdevice to unlock
 * @sb:		associated superblock
 *
 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
 */
void thaw_bdev(struct block_device *bdev, struct super_block *sb)
{
	if (sb) {
		BUG_ON(sb->s_bdev != bdev);

		if (sb->s_op->unlockfs)
			sb->s_op->unlockfs(sb);
		sb->s_frozen = SB_UNFROZEN;
		smp_wmb();
		wake_up(&sb->s_wait_unfrozen);
		drop_super(sb);
	}

	up(&bdev->bd_mount_sem);
}
EXPORT_SYMBOL(thaw_bdev);

/*
 * sync everything.  Start out by waking pdflush, because that writes back
 * all queues in parallel.
 */
static void do_sync(unsigned long wait)
{
	wakeup_bdflush(0);
	sync_inodes(0);		/* All mappings, inodes and their blockdevs */
	DQUOT_SYNC(NULL);
	sync_supers();		/* Write the superblocks */
	sync_filesystems(0);	/* Start syncing the filesystems */
	sync_filesystems(wait);	/* Waitingly sync the filesystems */
	sync_inodes(wait);	/* Mappings, inodes and blockdevs, again. */
	if (!wait)
		printk("Emergency Sync complete\n");
	if (unlikely(laptop_mode))
		laptop_sync_completion();
}

asmlinkage long sys_sync(void)
{
	do_sync(1);
	return 0;
}

void emergency_sync(void)
{
	pdflush_operation(do_sync, 0);
}

/*
 * Generic function to fsync a file.
 *
 * filp may be NULL if called via the msync of a vma.
 */
 
int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
{
	struct inode * inode = dentry->d_inode;
	struct super_block * sb;
	int ret, err;

	/* sync the inode to buffers */
	ret = write_inode_now(inode, 0);

	/* sync the superblock to buffers */
	sb = inode->i_sb;
	lock_super(sb);
	if (sb->s_op->write_super)
		sb->s_op->write_super(sb);
	unlock_super(sb);

	/* .. finally sync the buffers to disk */
	err = sync_blockdev(sb->s_bdev);
	if (!ret)
		ret = err;
	return ret;
}

asmlinkage long sys_fsync(unsigned int fd)
{
	struct file * file;
	struct address_space *mapping;
	int ret, err;

	ret = -EBADF;
	file = fget(fd);
	if (!file)
		goto out;

	mapping = file->f_mapping;

	ret = -EINVAL;
	if (!file->f_op || !file->f_op->fsync) {
		/* Why?  We can still call filemap_fdatawrite */
		goto out_putf;
	}

	current->flags |= PF_SYNCWRITE;
	ret = filemap_fdatawrite(mapping);

	/*
	 * We need to protect against concurrent writers,
	 * which could cause livelocks in fsync_buffers_list
	 */
	down(&mapping->host->i_sem);
	err = file->f_op->fsync(file, file->f_dentry, 0);
	if (!ret)
		ret = err;
	up(&mapping->host->i_sem);
	err = filemap_fdatawait(mapping);
	if (!ret)
		ret = err;
	current->flags &= ~PF_SYNCWRITE;

out_putf:
	fput(file);
out:
	return ret;
}

asmlinkage long sys_fdatasync(unsigned int fd)
{
	struct file * file;
	struct address_space *mapping;
	int ret, err;

	ret = -EBADF;
	file = fget(fd);
	if (!file)
		goto out;

	ret = -EINVAL;
	if (!file->f_op || !file->f_op->fsync)
		goto out_putf;

	mapping = file->f_mapping;

	current->flags |= PF_SYNCWRITE;
	ret = filemap_fdatawrite(mapping);
	down(&mapping->host->i_sem);
	err = file->f_op->fsync(file, file->f_dentry, 1);
	if (!ret)
		ret = err;
	up(&mapping->host->i_sem);
	err = filemap_fdatawait(mapping);
	if (!ret)
		ret = err;
	current->flags &= ~PF_SYNCWRITE;

out_putf:
	fput(file);
out:
	return ret;
}

/*
 * Various filesystems appear to want __find_get_block to be non-blocking.
 * But it's the page lock which protects the buffers.  To get around this,
 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 * private_lock.
 *
 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 * may be quite high.  This code could TryLock the page, and if that
 * succeeds, there is no need to take private_lock. (But if
 * private_lock is contended then so is mapping->tree_lock).
 */
static struct buffer_head *
__find_get_block_slow(struct block_device *bdev, sector_t block, int unused)
{
	struct inode *bd_inode = bdev->bd_inode;
	struct address_space *bd_mapping = bd_inode->i_mapping;
	struct buffer_head *ret = NULL;
	pgoff_t index;
	struct buffer_head *bh;
	struct buffer_head *head;
	struct page *page;
	int all_mapped = 1;

	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
	page = find_get_page(bd_mapping, index);
	if (!page)
		goto out;

	spin_lock(&bd_mapping->private_lock);
	if (!page_has_buffers(page))
		goto out_unlock;
	head = page_buffers(page);
	bh = head;
	do {
		if (bh->b_blocknr == block) {
			ret = bh;
			get_bh(bh);
			goto out_unlock;
		}
		if (!buffer_mapped(bh))
			all_mapped = 0;
		bh = bh->b_this_page;
	} while (bh != head);

	/* we might be here because some of the buffers on this page are
	 * not mapped.  This is due to various races between
	 * file io on the block device and getblk.  It gets dealt with
	 * elsewhere, don't buffer_error if we had some unmapped buffers
	 */
	if (all_mapped) {
		printk("__find_get_block_slow() failed. "
			"block=%llu, b_blocknr=%llu\n",
			(unsigned long long)block, (unsigned long long)bh->b_blocknr);
		printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
	}
out_unlock:
	spin_unlock(&bd_mapping->private_lock);
	page_cache_release(page);
out:
	return ret;
}

/* If invalidate_buffers() will trash dirty buffers, it means some kind
   of fs corruption is going on. Trashing dirty data always imply losing
   information that was supposed to be just stored on the physical layer
   by the user.

   Thus invalidate_buffers in general usage is not allwowed to trash
   dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
   be preserved.  These buffers are simply skipped.
  
   We also skip buffers which are still in use.  For example this can
   happen if a userspace program is reading the block device.

   NOTE: In the case where the user removed a removable-media-disk even if
   there's still dirty data not synced on disk (due a bug in the device driver
   or due an error of the user), by not destroying the dirty buffers we could
   generate corruption also on the next media inserted, thus a parameter is
   necessary to handle this case in the most safe way possible (trying
   to not corrupt also the new disk inserted with the data belonging to
   the old now corrupted disk). Also for the ramdisk the natural thing
   to do in order to release the ramdisk memory is to destroy dirty buffers.

   These are two special cases. Normal usage imply the device driver
   to issue a sync on the device (without waiting I/O completion) and
   then an invalidate_buffers call that doesn't trash dirty buffers.

   For handling cache coherency with the blkdev pagecache the 'update' case
   is been introduced. It is needed to re-read from disk any pinned
   buffer. NOTE: re-reading from disk is destructive so we can do it only
   when we assume nobody is changing the buffercache under our I/O and when
   we think the disk contains more recent information than the buffercache.
   The update == 1 pass marks the buffers we need to update, the update == 2
   pass does the actual I/O. */
void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
{
	invalidate_bh_lrus();
	/*
	 * FIXME: what about destroy_dirty_buffers?
	 * We really want to use invalidate_inode_pages2() for
	 * that, but not until that's cleaned up.
	 */
	invalidate_inode_pages(bdev->bd_inode->i_mapping);
}

/*
 * Kick pdflush then try to free up some ZONE_NORMAL memory.
 */
static void free_more_memory(void)
{
	struct zone **zones;
	pg_data_t *pgdat;

	wakeup_bdflush(1024);
	yield();

	for_each_pgdat(pgdat) {
		zones = pgdat->node_zonelists[GFP_NOFS&GFP_ZONEMASK].zones;
		if (*zones)
			try_to_free_pages(zones, GFP_NOFS);
	}
}

/*
 * I/O completion handler for block_read_full_page() - pages
 * which come unlocked at the end of I/O.
 */
static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
{
	static DEFINE_SPINLOCK(page_uptodate_lock);
	unsigned long flags;
	struct buffer_head *tmp;
	struct page *page;
	int page_uptodate = 1;

	BUG_ON(!buffer_async_read(bh));

	page = bh->b_page;
	if (uptodate) {
		set_buffer_uptodate(bh);
	} else {
		clear_buffer_uptodate(bh);
		if (printk_ratelimit())
			buffer_io_error(bh);
		SetPageError(page);
	}

	/*
	 * Be _very_ careful from here on. Bad things can happen if
	 * two buffer heads end IO at almost the same time and both
	 * decide that the page is now completely done.
	 */
	spin_lock_irqsave(&page_uptodate_lock, flags);
	clear_buffer_async_read(bh);
	unlock_buffer(bh);
	tmp = bh;
	do {
		if (!buffer_uptodate(tmp))
			page_uptodate = 0;
		if (buffer_async_read(tmp)) {
			BUG_ON(!buffer_locked(tmp));
			goto still_busy;
		}
		tmp = tmp->b_this_page;
	} while (tmp != bh);
	spin_unlock_irqrestore(&page_uptodate_lock, flags);

	/*
	 * If none of the buffers had errors and they are all
	 * uptodate then we can set the page uptodate.
	 */
	if (page_uptodate && !PageError(page))
		SetPageUptodate(page);
	unlock_page(page);
	return;

still_busy:
	spin_unlock_irqrestore(&page_uptodate_lock, flags);
	return;
}

/*
 * Completion handler for block_write_full_page() - pages which are unlocked
 * during I/O, and which have PageWriteback cleared upon I/O completion.
 */
void end_buffer_async_write(struct buffer_head *bh, int uptodate)
{
	char b[BDEVNAME_SIZE];
	static DEFINE_SPINLOCK(page_uptodate_lock);
	unsigned long flags;
	struct buffer_head *tmp;
	struct page *page;

	BUG_ON(!buffer_async_write(bh));

	page = bh->b_page;
	if (uptodate) {
		set_buffer_uptodate(bh);
	} else {
		if (printk_ratelimit()) {
			buffer_io_error(bh);
			printk(KERN_WARNING "lost page write due to "
					"I/O error on %s\n",
			       bdevname(bh->b_bdev, b));
		}
		set_bit(AS_EIO, &page->mapping->flags);
		clear_buffer_uptodate(bh);
		SetPageError(page);
	}

	spin_lock_irqsave(&page_uptodate_lock, flags);
	clear_buffer_async_write(bh);
	unlock_buffer(bh);
	tmp = bh->b_this_page;
	while (tmp != bh) {
		if (buffer_async_write(tmp)) {
			BUG_ON(!buffer_locked(tmp));
			goto still_busy;
		}
		tmp = tmp->b_this_page;
	}
	spin_unlock_irqrestore(&page_uptodate_lock, flags);
	end_page_writeback(page);
	return;

still_busy:
	spin_unlock_irqrestore(&page_uptodate_lock, flags);
	return;
}

/*
 * If a page's buffers are under async readin (end_buffer_async_read
 * completion) then there is a possibility that another thread of
 * control could lock one of the buffers after it has completed
 * but while some of the other buffers have not completed.  This
 * locked buffer would confuse end_buffer_async_read() into not unlocking
 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 * that this buffer is not under async I/O.
 *
 * The page comes unlocked when it has no locked buffer_async buffers
 * left.
 *
 * PageLocked prevents anyone starting new async I/O reads any of
 * the buffers.
 *
 * PageWriteback is used to prevent simultaneous writeout of the same
 * page.
 *
 * PageLocked prevents anyone from starting writeback of a page which is
 * under read I/O (PageWriteback is only ever set against a locked page).
 */
static void mark_buffer_async_read(struct buffer_head *bh)
{
	bh->b_end_io = end_buffer_async_read;
	set_buffer_async_read(bh);
}

void mark_buffer_async_write(struct buffer_head *bh)
{
	bh->b_end_io = end_buffer_async_write;
	set_buffer_async_write(bh);
}
EXPORT_SYMBOL(mark_buffer_async_write);


/*
 * fs/buffer.c contains helper functions for buffer-backed address space's
 * fsync functions.  A common requirement for buffer-based filesystems is
 * that certain data from the backing blockdev needs to be written out for
 * a successful fsync().  For example, ext2 indirect blocks need to be
 * written back and waited upon before fsync() returns.
 *
 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 * management of a list of dependent buffers at ->i_mapping->private_list.
 *
 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 * from their controlling inode's queue when they are being freed.  But
 * try_to_free_buffers() will be operating against the *blockdev* mapping
 * at the time, not against the S_ISREG file which depends on those buffers.
 * So the locking for private_list is via the private_lock in the address_space
 * which backs the buffers.  Which is different from the address_space 
 * against which the buffers are listed.  So for a particular address_space,
 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 * mapping->private_list will always be protected by the backing blockdev's
 * ->private_lock.
 *
 * Which introduces a requirement: all buffers on an address_space's
 * ->private_list must be from the same address_space: the blockdev's.
 *
 * address_spaces which do not place buffers at ->private_list via these
 * utility functions are free to use private_lock and private_list for
 * whatever they want.  The only requirement is that list_empty(private_list)
 * be true at clear_inode() time.
 *
 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 * filesystems should do that.  invalidate_inode_buffers() should just go
 * BUG_ON(!list_empty).
 *
 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 * take an address_space, not an inode.  And it should be called
 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 * queued up.
 *
 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 * list if it is already on a list.  Because if the buffer is on a list,
 * it *must* already be on the right one.  If not, the filesystem is being
 * silly.  This will save a ton of locking.  But first we have to ensure
 * that buffers are taken *off* the old inode's list when they are freed
 * (presumably in truncate).  That requires careful auditing of all
 * filesystems (do it inside bforget()).  It could also be done by bringing
 * b_inode back.
 */

/*
 * The buffer's backing address_space's private_lock must be held
 */
static inline void __remove_assoc_queue(struct buffer_head *bh)
{
	list_del_init(&bh->b_assoc_buffers);
}

int inode_has_buffers(struct inode *inode)
{
	return !list_empty(&inode->i_data.private_list);
}

/*
 * osync is designed to support O_SYNC io.  It waits synchronously for
 * all already-submitted IO to complete, but does not queue any new
 * writes to the disk.
 *
 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 * you dirty the buffers, and then use osync_inode_buffers to wait for
 * completion.  Any other dirty buffers which are not yet queued for
 * write will not be flushed to disk by the osync.
 */
static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
{
	struct buffer_head *bh;
	struct list_head *p;
	int err = 0;

	spin_lock(lock);
repeat:
	list_for_each_prev(p, list) {
		bh = BH_ENTRY(p);
		if (buffer_locked(bh)) {
			get_bh(bh);
			spin_unlock(lock);
			wait_on_buffer(bh);
			if (!buffer_uptodate(bh))
				err = -EIO;
			brelse(bh);
			spin_lock(lock);
			goto repeat;
		}
	}
	spin_unlock(lock);
	return err;
}

/**
 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
 *                        buffers
 * @mapping: the mapping which wants those buffers written
 *
 * Starts I/O against the buffers at mapping->private_list, and waits upon
 * that I/O.
 *
 * Basically, this is a convenience function for fsync().
 * @mapping is a file or directory which needs those buffers to be written for
 * a successful fsync().
 */
int sync_mapping_buffers(struct address_space *mapping)
{
	struct address_space *buffer_mapping = mapping->assoc_mapping;

	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
		return 0;

	return fsync_buffers_list(&buffer_mapping->private_lock,
					&mapping->private_list);
}
EXPORT_SYMBOL(sync_mapping_buffers);

/*
 * Called when we've recently written block `bblock', and it is known that
 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 */
void write_boundary_block(struct block_device *bdev,
			sector_t bblock, unsigned blocksize)
{
	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
	if (bh) {
		if (buffer_dirty(bh))
			ll_rw_block(WRITE, 1, &bh);
		put_bh(bh);
	}
}

void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
{
	struct address_space *mapping = inode->i_mapping;
	struct address_space *buffer_mapping = bh->b_page->mapping;

	mark_buffer_dirty(bh);
	if (!mapping->assoc_mapping) {
		mapping->assoc_mapping = buffer_mapping;
	} else {
		if (mapping->assoc_mapping != buffer_mapping)
			BUG();
	}
	if (list_empty(&bh->b_assoc_buffers)) {
		spin_lock(&buffer_mapping->private_lock);
		list_move_tail(&bh->b_assoc_buffers,
				&mapping->private_list);
		spin_unlock(&buffer_mapping->private_lock);
	}
}
EXPORT_SYMBOL(mark_buffer_dirty_inode);

/*
 * Add a page to the dirty page list.
 *
 * It is a sad fact of life that this function is called from several places
 * deeply under spinlocking.  It may not sleep.
 *
 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 * dirty-state coherency between the page and the buffers.  It the page does
 * not have buffers then when they are later attached they will all be set
 * dirty.
 *
 * The buffers are dirtied before the page is dirtied.  There's a small race
 * window in which a writepage caller may see the page cleanness but not the
 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 * before the buffers, a concurrent writepage caller could clear the page dirty
 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 * page on the dirty page list.
 *
 * We use private_lock to lock against try_to_free_buffers while using the
 * page's buffer list.  Also use this to protect against clean buffers being
 * added to the page after it was set dirty.
 *
 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 * address_space though.
 */
int __set_page_dirty_buffers(struct page *page)
{
	struct address_space * const mapping = page->mapping;

	spin_lock(&mapping->private_lock);
	if (page_has_buffers(page)) {
		struct buffer_head *head = page_buffers(page);
		struct buffer_head *bh = head;

		do {
			set_buffer_dirty(bh);
			bh = bh->b_this_page;
		} while (bh != head);
	}
	spin_unlock(&mapping->private_lock);

	if (!TestSetPageDirty(page)) {
		write_lock_irq(&mapping->tree_lock);
		if (page->mapping) {	/* Race with truncate? */
			if (mapping_cap_account_dirty(mapping))
				inc_page_state(nr_dirty);
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
		}
		write_unlock_irq(&mapping->tree_lock);
		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
	}
	
	return 0;
}
EXPORT_SYMBOL(__set_page_dirty_buffers);

/*
 * Write out and wait upon a list of buffers.
 *
 * We have conflicting pressures: we want to make sure that all
 * initially dirty buffers get waited on, but that any subsequently
 * dirtied buffers don't.  After all, we don't want fsync to last
 * forever if somebody is actively writing to the file.
 *
 * Do this in two main stages: first we copy dirty buffers to a
 * temporary inode list, queueing the writes as we go.  Then we clean
 * up, waiting for those writes to complete.
 * 
 * During this second stage, any subsequent updates to the file may end
 * up refiling the buffer on the original inode's dirty list again, so
 * there is a chance we will end up with a buffer queued for write but
 * not yet completed on that list.  So, as a final cleanup we go through
 * the osync code to catch these locked, dirty buffers without requeuing
 * any newly dirty buffers for write.
 */
static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
{
	struct buffer_head *bh;
	struct list_head tmp;
	int err = 0, err2;

	INIT_LIST_HEAD(&tmp);

	spin_lock(lock);
	while (!list_empty(list)) {
		bh = BH_ENTRY(list->next);
		list_del_init(&bh->b_assoc_buffers);
		if (buffer_dirty(bh) || buffer_locked(bh)) {
			list_add(&bh->b_assoc_buffers, &tmp);
			if (buffer_dirty(bh)) {
				get_bh(bh);
				spin_unlock(lock);
				/*
				 * Ensure any pending I/O completes so that
				 * ll_rw_block() actually writes the current
				 * contents - it is a noop if I/O is still in
				 * flight on potentially older contents.
				 */
				wait_on_buffer(bh);
				ll_rw_block(WRITE, 1, &bh);
				brelse(bh);
				spin_lock(lock);
			}
		}
	}

	while (!list_empty(&tmp)) {
		bh = BH_ENTRY(tmp.prev);
		__remove_assoc_queue(bh);
		get_bh(bh);
		spin_unlock(lock);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh))
			err = -EIO;
		brelse(bh);
		spin_lock(lock);
	}
	
	spin_unlock(lock);
	err2 = osync_buffers_list(lock, list);
	if (err)
		return err;
	else
		return err2;
}

/*
 * Invalidate any and all dirty buffers on a given inode.  We are
 * probably unmounting the fs, but that doesn't mean we have already
 * done a sync().  Just drop the buffers from the inode list.
 *
 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 * assumes that all the buffers are against the blockdev.  Not true
 * for reiserfs.
 */
void invalidate_inode_buffers(struct inode *inode)
{
	if (inode_has_buffers(inode)) {
		struct address_space *mapping = &inode->i_data;
		struct list_head *list = &mapping->private_list;
		struct address_space *buffer_mapping = mapping->assoc_mapping;

		spin_lock(&buffer_mapping->private_lock);
		while (!list_empty(list))
			__remove_assoc_queue(BH_ENTRY(list->next));
		spin_unlock(&buffer_mapping->private_lock);
	}
}

/*
 * Remove any clean buffers from the inode's buffer list.  This is called
 * when we're trying to free the inode itself.  Those buffers can pin it.
 *
 * Returns true if all buffers were removed.
 */
int remove_inode_buffers(struct inode *inode)
{
	int ret = 1;

	if (inode_has_buffers(inode)) {
		struct address_space *mapping = &inode->i_data;
		struct list_head *list = &mapping->private_list;
		struct address_space *buffer_mapping = mapping->assoc_mapping;

		spin_lock(&buffer_mapping->private_lock);
		while (!list_empty(list)) {
			struct buffer_head *bh = BH_ENTRY(list->next);
			if (buffer_dirty(bh)) {
				ret = 0;
				break;
			}
			__remove_assoc_queue(bh);
		}
		spin_unlock(&buffer_mapping->private_lock);
	}
	return ret;
}

/*
 * Create the appropriate buffers when given a page for data area and
 * the size of each buffer.. Use the bh->b_this_page linked list to
 * follow the buffers created.  Return NULL if unable to create more
 * buffers.
 *
 * The retry flag is used to differentiate async IO (paging, swapping)
 * which may not fail from ordinary buffer allocations.
 */
struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
		int retry)
{
	struct buffer_head *bh, *head;
	long offset;

try_again:
	head = NULL;
	offset = PAGE_SIZE;
	while ((offset -= size) >= 0) {
		bh = alloc_buffer_head(GFP_NOFS);
		if (!bh)
			goto no_grow;

		bh->b_bdev = NULL;
		bh->b_this_page = head;
		bh->b_blocknr = -1;
		head = bh;

		bh->b_state = 0;
		atomic_set(&bh->b_count, 0);
		bh->b_size = size;

		/* Link the buffer to its page */
		set_bh_page(bh, page, offset);

		bh->b_end_io = NULL;
	}
	return head;
/*
 * In case anything failed, we just free everything we got.
 */
no_grow:
	if (head) {
		do {
			bh = head;
			head = head->b_this_page;
			free_buffer_head(bh);
		} while (head);
	}

	/*
	 * Return failure for non-async IO requests.  Async IO requests
	 * are not allowed to fail, so we have to wait until buffer heads
	 * become available.  But we don't want tasks sleeping with 
	 * partially complete buffers, so all were released above.
	 */
	if (!retry)
		return NULL;

	/* We're _really_ low on memory. Now we just
	 * wait for old buffer heads to become free due to
	 * finishing IO.  Since this is an async request and
	 * the reserve list is empty, we're sure there are 
	 * async buffer heads in use.
	 */
	free_more_memory();
	goto try_again;
}
EXPORT_SYMBOL_GPL(alloc_page_buffers);

static inline void
link_dev_buffers(struct page *page, struct buffer_head *head)
{
	struct buffer_head *bh, *tail;

	bh = head;
	do {
		tail = bh;
		bh = bh->b_this_page;
	} while (bh);
	tail->b_this_page = head;
	attach_page_buffers(page, head);
}

/*
 * Initialise the state of a blockdev page's buffers.
 */ 
static void
init_page_buffers(struct page *page, struct block_device *bdev,
			sector_t block, int size)
{
	struct buffer_head *head = page_buffers(page);
	struct buffer_head *bh = head;
	int uptodate = PageUptodate(page);

	do {