diff options
-rw-r--r-- | drivers/infiniband/core/Makefile | 2 | ||||
-rw-r--r-- | drivers/infiniband/core/rw.c | 509 | ||||
-rw-r--r-- | drivers/infiniband/core/verbs.c | 25 | ||||
-rw-r--r-- | include/rdma/ib_verbs.h | 14 | ||||
-rw-r--r-- | include/rdma/rw.h | 69 |
5 files changed, 617 insertions, 2 deletions
diff --git a/drivers/infiniband/core/Makefile b/drivers/infiniband/core/Makefile index 48bd9d829289..26987d9d7e1c 100644 --- a/drivers/infiniband/core/Makefile +++ b/drivers/infiniband/core/Makefile | |||
@@ -8,7 +8,7 @@ obj-$(CONFIG_INFINIBAND_USER_MAD) += ib_umad.o | |||
8 | obj-$(CONFIG_INFINIBAND_USER_ACCESS) += ib_uverbs.o ib_ucm.o \ | 8 | obj-$(CONFIG_INFINIBAND_USER_ACCESS) += ib_uverbs.o ib_ucm.o \ |
9 | $(user_access-y) | 9 | $(user_access-y) |
10 | 10 | ||
11 | ib_core-y := packer.o ud_header.o verbs.o cq.o sysfs.o \ | 11 | ib_core-y := packer.o ud_header.o verbs.o cq.o rw.o sysfs.o \ |
12 | device.o fmr_pool.o cache.o netlink.o \ | 12 | device.o fmr_pool.o cache.o netlink.o \ |
13 | roce_gid_mgmt.o mr_pool.o | 13 | roce_gid_mgmt.o mr_pool.o |
14 | ib_core-$(CONFIG_INFINIBAND_USER_MEM) += umem.o | 14 | ib_core-$(CONFIG_INFINIBAND_USER_MEM) += umem.o |
diff --git a/drivers/infiniband/core/rw.c b/drivers/infiniband/core/rw.c new file mode 100644 index 000000000000..bd700ff6d438 --- /dev/null +++ b/drivers/infiniband/core/rw.c | |||
@@ -0,0 +1,509 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2016 HGST, a Western Digital Company. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify it | ||
5 | * under the terms and conditions of the GNU General Public License, | ||
6 | * version 2, as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
11 | * more details. | ||
12 | */ | ||
13 | #include <linux/moduleparam.h> | ||
14 | #include <linux/slab.h> | ||
15 | #include <rdma/mr_pool.h> | ||
16 | #include <rdma/rw.h> | ||
17 | |||
18 | enum { | ||
19 | RDMA_RW_SINGLE_WR, | ||
20 | RDMA_RW_MULTI_WR, | ||
21 | RDMA_RW_MR, | ||
22 | }; | ||
23 | |||
24 | static bool rdma_rw_force_mr; | ||
25 | module_param_named(force_mr, rdma_rw_force_mr, bool, 0); | ||
26 | MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations"); | ||
27 | |||
28 | /* | ||
29 | * Check if the device might use memory registration. This is currently only | ||
30 | * true for iWarp devices. In the future we can hopefully fine tune this based | ||
31 | * on HCA driver input. | ||
32 | */ | ||
33 | static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num) | ||
34 | { | ||
35 | if (rdma_protocol_iwarp(dev, port_num)) | ||
36 | return true; | ||
37 | if (unlikely(rdma_rw_force_mr)) | ||
38 | return true; | ||
39 | return false; | ||
40 | } | ||
41 | |||
42 | /* | ||
43 | * Check if the device will use memory registration for this RW operation. | ||
44 | * We currently always use memory registrations for iWarp RDMA READs, and | ||
45 | * have a debug option to force usage of MRs. | ||
46 | * | ||
47 | * XXX: In the future we can hopefully fine tune this based on HCA driver | ||
48 | * input. | ||
49 | */ | ||
50 | static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num, | ||
51 | enum dma_data_direction dir, int dma_nents) | ||
52 | { | ||
53 | if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE) | ||
54 | return true; | ||
55 | if (unlikely(rdma_rw_force_mr)) | ||
56 | return true; | ||
57 | return false; | ||
58 | } | ||
59 | |||
60 | static inline u32 rdma_rw_max_sge(struct ib_device *dev, | ||
61 | enum dma_data_direction dir) | ||
62 | { | ||
63 | return dir == DMA_TO_DEVICE ? | ||
64 | dev->attrs.max_sge : dev->attrs.max_sge_rd; | ||
65 | } | ||
66 | |||
67 | static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev) | ||
68 | { | ||
69 | /* arbitrary limit to avoid allocating gigantic resources */ | ||
70 | return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256); | ||
71 | } | ||
72 | |||
73 | static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num, | ||
74 | struct rdma_rw_reg_ctx *reg, struct scatterlist *sg, | ||
75 | u32 sg_cnt, u32 offset) | ||
76 | { | ||
77 | u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); | ||
78 | u32 nents = min(sg_cnt, pages_per_mr); | ||
79 | int count = 0, ret; | ||
80 | |||
81 | reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs); | ||
82 | if (!reg->mr) | ||
83 | return -EAGAIN; | ||
84 | |||
85 | if (reg->mr->need_inval) { | ||
86 | reg->inv_wr.opcode = IB_WR_LOCAL_INV; | ||
87 | reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey; | ||
88 | reg->inv_wr.next = ®->reg_wr.wr; | ||
89 | count++; | ||
90 | } else { | ||
91 | reg->inv_wr.next = NULL; | ||
92 | } | ||
93 | |||
94 | ret = ib_map_mr_sg(reg->mr, sg, nents, offset, PAGE_SIZE); | ||
95 | if (ret < nents) { | ||
96 | ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr); | ||
97 | return -EINVAL; | ||
98 | } | ||
99 | |||
100 | reg->reg_wr.wr.opcode = IB_WR_REG_MR; | ||
101 | reg->reg_wr.mr = reg->mr; | ||
102 | reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; | ||
103 | if (rdma_protocol_iwarp(qp->device, port_num)) | ||
104 | reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; | ||
105 | count++; | ||
106 | |||
107 | reg->sge.addr = reg->mr->iova; | ||
108 | reg->sge.length = reg->mr->length; | ||
109 | return count; | ||
110 | } | ||
111 | |||
112 | static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, | ||
113 | u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset, | ||
114 | u64 remote_addr, u32 rkey, enum dma_data_direction dir) | ||
115 | { | ||
116 | u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); | ||
117 | int i, j, ret = 0, count = 0; | ||
118 | |||
119 | ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr; | ||
120 | ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL); | ||
121 | if (!ctx->reg) { | ||
122 | ret = -ENOMEM; | ||
123 | goto out; | ||
124 | } | ||
125 | |||
126 | for (i = 0; i < ctx->nr_ops; i++) { | ||
127 | struct rdma_rw_reg_ctx *prev = i ? &ctx->reg[i - 1] : NULL; | ||
128 | struct rdma_rw_reg_ctx *reg = &ctx->reg[i]; | ||
129 | u32 nents = min(sg_cnt, pages_per_mr); | ||
130 | |||
131 | ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt, | ||
132 | offset); | ||
133 | if (ret < 0) | ||
134 | goto out_free; | ||
135 | count += ret; | ||
136 | |||
137 | if (prev) { | ||
138 | if (reg->mr->need_inval) | ||
139 | prev->wr.wr.next = ®->inv_wr; | ||
140 | else | ||
141 | prev->wr.wr.next = ®->reg_wr.wr; | ||
142 | } | ||
143 | |||
144 | reg->reg_wr.wr.next = ®->wr.wr; | ||
145 | |||
146 | reg->wr.wr.sg_list = ®->sge; | ||
147 | reg->wr.wr.num_sge = 1; | ||
148 | reg->wr.remote_addr = remote_addr; | ||
149 | reg->wr.rkey = rkey; | ||
150 | if (dir == DMA_TO_DEVICE) { | ||
151 | reg->wr.wr.opcode = IB_WR_RDMA_WRITE; | ||
152 | } else if (!rdma_cap_read_inv(qp->device, port_num)) { | ||
153 | reg->wr.wr.opcode = IB_WR_RDMA_READ; | ||
154 | } else { | ||
155 | reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV; | ||
156 | reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey; | ||
157 | } | ||
158 | count++; | ||
159 | |||
160 | remote_addr += reg->sge.length; | ||
161 | sg_cnt -= nents; | ||
162 | for (j = 0; j < nents; j++) | ||
163 | sg = sg_next(sg); | ||
164 | offset = 0; | ||
165 | } | ||
166 | |||
167 | ctx->type = RDMA_RW_MR; | ||
168 | return count; | ||
169 | |||
170 | out_free: | ||
171 | while (--i >= 0) | ||
172 | ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); | ||
173 | kfree(ctx->reg); | ||
174 | out: | ||
175 | return ret; | ||
176 | } | ||
177 | |||
178 | static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, | ||
179 | struct scatterlist *sg, u32 sg_cnt, u32 offset, | ||
180 | u64 remote_addr, u32 rkey, enum dma_data_direction dir) | ||
181 | { | ||
182 | struct ib_device *dev = qp->pd->device; | ||
183 | u32 max_sge = rdma_rw_max_sge(dev, dir); | ||
184 | struct ib_sge *sge; | ||
185 | u32 total_len = 0, i, j; | ||
186 | |||
187 | ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge); | ||
188 | |||
189 | ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL); | ||
190 | if (!ctx->map.sges) | ||
191 | goto out; | ||
192 | |||
193 | ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL); | ||
194 | if (!ctx->map.wrs) | ||
195 | goto out_free_sges; | ||
196 | |||
197 | for (i = 0; i < ctx->nr_ops; i++) { | ||
198 | struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i]; | ||
199 | u32 nr_sge = min(sg_cnt, max_sge); | ||
200 | |||
201 | if (dir == DMA_TO_DEVICE) | ||
202 | rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; | ||
203 | else | ||
204 | rdma_wr->wr.opcode = IB_WR_RDMA_READ; | ||
205 | rdma_wr->remote_addr = remote_addr + total_len; | ||
206 | rdma_wr->rkey = rkey; | ||
207 | rdma_wr->wr.sg_list = sge; | ||
208 | |||
209 | for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) { | ||
210 | rdma_wr->wr.num_sge++; | ||
211 | |||
212 | sge->addr = ib_sg_dma_address(dev, sg) + offset; | ||
213 | sge->length = ib_sg_dma_len(dev, sg) - offset; | ||
214 | sge->lkey = qp->pd->local_dma_lkey; | ||
215 | |||
216 | total_len += sge->length; | ||
217 | sge++; | ||
218 | sg_cnt--; | ||
219 | offset = 0; | ||
220 | } | ||
221 | |||
222 | if (i + 1 < ctx->nr_ops) | ||
223 | rdma_wr->wr.next = &ctx->map.wrs[i + 1].wr; | ||
224 | } | ||
225 | |||
226 | ctx->type = RDMA_RW_MULTI_WR; | ||
227 | return ctx->nr_ops; | ||
228 | |||
229 | out_free_sges: | ||
230 | kfree(ctx->map.sges); | ||
231 | out: | ||
232 | return -ENOMEM; | ||
233 | } | ||
234 | |||
235 | static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp, | ||
236 | struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey, | ||
237 | enum dma_data_direction dir) | ||
238 | { | ||
239 | struct ib_device *dev = qp->pd->device; | ||
240 | struct ib_rdma_wr *rdma_wr = &ctx->single.wr; | ||
241 | |||
242 | ctx->nr_ops = 1; | ||
243 | |||
244 | ctx->single.sge.lkey = qp->pd->local_dma_lkey; | ||
245 | ctx->single.sge.addr = ib_sg_dma_address(dev, sg) + offset; | ||
246 | ctx->single.sge.length = ib_sg_dma_len(dev, sg) - offset; | ||
247 | |||
248 | memset(rdma_wr, 0, sizeof(*rdma_wr)); | ||
249 | if (dir == DMA_TO_DEVICE) | ||
250 | rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; | ||
251 | else | ||
252 | rdma_wr->wr.opcode = IB_WR_RDMA_READ; | ||
253 | rdma_wr->wr.sg_list = &ctx->single.sge; | ||
254 | rdma_wr->wr.num_sge = 1; | ||
255 | rdma_wr->remote_addr = remote_addr; | ||
256 | rdma_wr->rkey = rkey; | ||
257 | |||
258 | ctx->type = RDMA_RW_SINGLE_WR; | ||
259 | return 1; | ||
260 | } | ||
261 | |||
262 | /** | ||
263 | * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context | ||
264 | * @ctx: context to initialize | ||
265 | * @qp: queue pair to operate on | ||
266 | * @port_num: port num to which the connection is bound | ||
267 | * @sg: scatterlist to READ/WRITE from/to | ||
268 | * @sg_cnt: number of entries in @sg | ||
269 | * @sg_offset: current byte offset into @sg | ||
270 | * @remote_addr:remote address to read/write (relative to @rkey) | ||
271 | * @rkey: remote key to operate on | ||
272 | * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ | ||
273 | * | ||
274 | * Returns the number of WQEs that will be needed on the workqueue if | ||
275 | * successful, or a negative error code. | ||
276 | */ | ||
277 | int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, | ||
278 | struct scatterlist *sg, u32 sg_cnt, u32 sg_offset, | ||
279 | u64 remote_addr, u32 rkey, enum dma_data_direction dir) | ||
280 | { | ||
281 | struct ib_device *dev = qp->pd->device; | ||
282 | int ret; | ||
283 | |||
284 | ret = ib_dma_map_sg(dev, sg, sg_cnt, dir); | ||
285 | if (!ret) | ||
286 | return -ENOMEM; | ||
287 | sg_cnt = ret; | ||
288 | |||
289 | /* | ||
290 | * Skip to the S/G entry that sg_offset falls into: | ||
291 | */ | ||
292 | for (;;) { | ||
293 | u32 len = ib_sg_dma_len(dev, sg); | ||
294 | |||
295 | if (sg_offset < len) | ||
296 | break; | ||
297 | |||
298 | sg = sg_next(sg); | ||
299 | sg_offset -= len; | ||
300 | sg_cnt--; | ||
301 | } | ||
302 | |||
303 | ret = -EIO; | ||
304 | if (WARN_ON_ONCE(sg_cnt == 0)) | ||
305 | goto out_unmap_sg; | ||
306 | |||
307 | if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) { | ||
308 | ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt, | ||
309 | sg_offset, remote_addr, rkey, dir); | ||
310 | } else if (sg_cnt > 1) { | ||
311 | ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset, | ||
312 | remote_addr, rkey, dir); | ||
313 | } else { | ||
314 | ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset, | ||
315 | remote_addr, rkey, dir); | ||
316 | } | ||
317 | |||
318 | if (ret < 0) | ||
319 | goto out_unmap_sg; | ||
320 | return ret; | ||
321 | |||
322 | out_unmap_sg: | ||
323 | ib_dma_unmap_sg(dev, sg, sg_cnt, dir); | ||
324 | return ret; | ||
325 | } | ||
326 | EXPORT_SYMBOL(rdma_rw_ctx_init); | ||
327 | |||
328 | /* | ||
329 | * Now that we are going to post the WRs we can update the lkey and need_inval | ||
330 | * state on the MRs. If we were doing this at init time, we would get double | ||
331 | * or missing invalidations if a context was initialized but not actually | ||
332 | * posted. | ||
333 | */ | ||
334 | static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval) | ||
335 | { | ||
336 | reg->mr->need_inval = need_inval; | ||
337 | ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey)); | ||
338 | reg->reg_wr.key = reg->mr->lkey; | ||
339 | reg->sge.lkey = reg->mr->lkey; | ||
340 | } | ||
341 | |||
342 | /** | ||
343 | * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation | ||
344 | * @ctx: context to operate on | ||
345 | * @qp: queue pair to operate on | ||
346 | * @port_num: port num to which the connection is bound | ||
347 | * @cqe: completion queue entry for the last WR | ||
348 | * @chain_wr: WR to append to the posted chain | ||
349 | * | ||
350 | * Return the WR chain for the set of RDMA READ/WRITE operations described by | ||
351 | * @ctx, as well as any memory registration operations needed. If @chain_wr | ||
352 | * is non-NULL the WR it points to will be appended to the chain of WRs posted. | ||
353 | * If @chain_wr is not set @cqe must be set so that the caller gets a | ||
354 | * completion notification. | ||
355 | */ | ||
356 | struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, | ||
357 | u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr) | ||
358 | { | ||
359 | struct ib_send_wr *first_wr, *last_wr; | ||
360 | int i; | ||
361 | |||
362 | switch (ctx->type) { | ||
363 | case RDMA_RW_MR: | ||
364 | for (i = 0; i < ctx->nr_ops; i++) { | ||
365 | rdma_rw_update_lkey(&ctx->reg[i], | ||
366 | ctx->reg[i].wr.wr.opcode != | ||
367 | IB_WR_RDMA_READ_WITH_INV); | ||
368 | } | ||
369 | |||
370 | if (ctx->reg[0].inv_wr.next) | ||
371 | first_wr = &ctx->reg[0].inv_wr; | ||
372 | else | ||
373 | first_wr = &ctx->reg[0].reg_wr.wr; | ||
374 | last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr; | ||
375 | break; | ||
376 | case RDMA_RW_MULTI_WR: | ||
377 | first_wr = &ctx->map.wrs[0].wr; | ||
378 | last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr; | ||
379 | break; | ||
380 | case RDMA_RW_SINGLE_WR: | ||
381 | first_wr = &ctx->single.wr.wr; | ||
382 | last_wr = &ctx->single.wr.wr; | ||
383 | break; | ||
384 | default: | ||
385 | BUG(); | ||
386 | } | ||
387 | |||
388 | if (chain_wr) { | ||
389 | last_wr->next = chain_wr; | ||
390 | } else { | ||
391 | last_wr->wr_cqe = cqe; | ||
392 | last_wr->send_flags |= IB_SEND_SIGNALED; | ||
393 | } | ||
394 | |||
395 | return first_wr; | ||
396 | } | ||
397 | EXPORT_SYMBOL(rdma_rw_ctx_wrs); | ||
398 | |||
399 | /** | ||
400 | * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation | ||
401 | * @ctx: context to operate on | ||
402 | * @qp: queue pair to operate on | ||
403 | * @port_num: port num to which the connection is bound | ||
404 | * @cqe: completion queue entry for the last WR | ||
405 | * @chain_wr: WR to append to the posted chain | ||
406 | * | ||
407 | * Post the set of RDMA READ/WRITE operations described by @ctx, as well as | ||
408 | * any memory registration operations needed. If @chain_wr is non-NULL the | ||
409 | * WR it points to will be appended to the chain of WRs posted. If @chain_wr | ||
410 | * is not set @cqe must be set so that the caller gets a completion | ||
411 | * notification. | ||
412 | */ | ||
413 | int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, | ||
414 | struct ib_cqe *cqe, struct ib_send_wr *chain_wr) | ||
415 | { | ||
416 | struct ib_send_wr *first_wr, *bad_wr; | ||
417 | |||
418 | first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr); | ||
419 | return ib_post_send(qp, first_wr, &bad_wr); | ||
420 | } | ||
421 | EXPORT_SYMBOL(rdma_rw_ctx_post); | ||
422 | |||
423 | /** | ||
424 | * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init | ||
425 | * @ctx: context to release | ||
426 | * @qp: queue pair to operate on | ||
427 | * @port_num: port num to which the connection is bound | ||
428 | * @sg: scatterlist that was used for the READ/WRITE | ||
429 | * @sg_cnt: number of entries in @sg | ||
430 | * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ | ||
431 | */ | ||
432 | void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, | ||
433 | struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir) | ||
434 | { | ||
435 | int i; | ||
436 | |||
437 | switch (ctx->type) { | ||
438 | case RDMA_RW_MR: | ||
439 | for (i = 0; i < ctx->nr_ops; i++) | ||
440 | ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); | ||
441 | kfree(ctx->reg); | ||
442 | break; | ||
443 | case RDMA_RW_MULTI_WR: | ||
444 | kfree(ctx->map.wrs); | ||
445 | kfree(ctx->map.sges); | ||
446 | break; | ||
447 | case RDMA_RW_SINGLE_WR: | ||
448 | break; | ||
449 | default: | ||
450 | BUG(); | ||
451 | break; | ||
452 | } | ||
453 | |||
454 | ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); | ||
455 | } | ||
456 | EXPORT_SYMBOL(rdma_rw_ctx_destroy); | ||
457 | |||
458 | void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr) | ||
459 | { | ||
460 | u32 factor; | ||
461 | |||
462 | WARN_ON_ONCE(attr->port_num == 0); | ||
463 | |||
464 | /* | ||
465 | * Each context needs at least one RDMA READ or WRITE WR. | ||
466 | * | ||
467 | * For some hardware we might need more, eventually we should ask the | ||
468 | * HCA driver for a multiplier here. | ||
469 | */ | ||
470 | factor = 1; | ||
471 | |||
472 | /* | ||
473 | * If the devices needs MRs to perform RDMA READ or WRITE operations, | ||
474 | * we'll need two additional MRs for the registrations and the | ||
475 | * invalidation. | ||
476 | */ | ||
477 | if (rdma_rw_can_use_mr(dev, attr->port_num)) | ||
478 | factor += 2; /* inv + reg */ | ||
479 | |||
480 | attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs; | ||
481 | |||
482 | /* | ||
483 | * But maybe we were just too high in the sky and the device doesn't | ||
484 | * even support all we need, and we'll have to live with what we get.. | ||
485 | */ | ||
486 | attr->cap.max_send_wr = | ||
487 | min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr); | ||
488 | } | ||
489 | |||
490 | int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr) | ||
491 | { | ||
492 | struct ib_device *dev = qp->pd->device; | ||
493 | int ret = 0; | ||
494 | |||
495 | if (rdma_rw_can_use_mr(dev, attr->port_num)) { | ||
496 | ret = ib_mr_pool_init(qp, &qp->rdma_mrs, | ||
497 | attr->cap.max_rdma_ctxs, IB_MR_TYPE_MEM_REG, | ||
498 | rdma_rw_fr_page_list_len(dev)); | ||
499 | if (ret) | ||
500 | return ret; | ||
501 | } | ||
502 | |||
503 | return ret; | ||
504 | } | ||
505 | |||
506 | void rdma_rw_cleanup_mrs(struct ib_qp *qp) | ||
507 | { | ||
508 | ib_mr_pool_destroy(qp, &qp->rdma_mrs); | ||
509 | } | ||
diff --git a/drivers/infiniband/core/verbs.c b/drivers/infiniband/core/verbs.c index 76c9c3faac20..566bfb31cadb 100644 --- a/drivers/infiniband/core/verbs.c +++ b/drivers/infiniband/core/verbs.c | |||
@@ -48,6 +48,7 @@ | |||
48 | #include <rdma/ib_verbs.h> | 48 | #include <rdma/ib_verbs.h> |
49 | #include <rdma/ib_cache.h> | 49 | #include <rdma/ib_cache.h> |
50 | #include <rdma/ib_addr.h> | 50 | #include <rdma/ib_addr.h> |
51 | #include <rdma/rw.h> | ||
51 | 52 | ||
52 | #include "core_priv.h" | 53 | #include "core_priv.h" |
53 | 54 | ||
@@ -751,6 +752,16 @@ struct ib_qp *ib_create_qp(struct ib_pd *pd, | |||
751 | { | 752 | { |
752 | struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; | 753 | struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; |
753 | struct ib_qp *qp; | 754 | struct ib_qp *qp; |
755 | int ret; | ||
756 | |||
757 | /* | ||
758 | * If the callers is using the RDMA API calculate the resources | ||
759 | * needed for the RDMA READ/WRITE operations. | ||
760 | * | ||
761 | * Note that these callers need to pass in a port number. | ||
762 | */ | ||
763 | if (qp_init_attr->cap.max_rdma_ctxs) | ||
764 | rdma_rw_init_qp(device, qp_init_attr); | ||
754 | 765 | ||
755 | qp = device->create_qp(pd, qp_init_attr, NULL); | 766 | qp = device->create_qp(pd, qp_init_attr, NULL); |
756 | if (IS_ERR(qp)) | 767 | if (IS_ERR(qp)) |
@@ -764,6 +775,7 @@ struct ib_qp *ib_create_qp(struct ib_pd *pd, | |||
764 | atomic_set(&qp->usecnt, 0); | 775 | atomic_set(&qp->usecnt, 0); |
765 | qp->mrs_used = 0; | 776 | qp->mrs_used = 0; |
766 | spin_lock_init(&qp->mr_lock); | 777 | spin_lock_init(&qp->mr_lock); |
778 | INIT_LIST_HEAD(&qp->rdma_mrs); | ||
767 | 779 | ||
768 | if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) | 780 | if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) |
769 | return ib_create_xrc_qp(qp, qp_init_attr); | 781 | return ib_create_xrc_qp(qp, qp_init_attr); |
@@ -787,6 +799,16 @@ struct ib_qp *ib_create_qp(struct ib_pd *pd, | |||
787 | 799 | ||
788 | atomic_inc(&pd->usecnt); | 800 | atomic_inc(&pd->usecnt); |
789 | atomic_inc(&qp_init_attr->send_cq->usecnt); | 801 | atomic_inc(&qp_init_attr->send_cq->usecnt); |
802 | |||
803 | if (qp_init_attr->cap.max_rdma_ctxs) { | ||
804 | ret = rdma_rw_init_mrs(qp, qp_init_attr); | ||
805 | if (ret) { | ||
806 | pr_err("failed to init MR pool ret= %d\n", ret); | ||
807 | ib_destroy_qp(qp); | ||
808 | qp = ERR_PTR(ret); | ||
809 | } | ||
810 | } | ||
811 | |||
790 | return qp; | 812 | return qp; |
791 | } | 813 | } |
792 | EXPORT_SYMBOL(ib_create_qp); | 814 | EXPORT_SYMBOL(ib_create_qp); |
@@ -1271,6 +1293,9 @@ int ib_destroy_qp(struct ib_qp *qp) | |||
1271 | rcq = qp->recv_cq; | 1293 | rcq = qp->recv_cq; |
1272 | srq = qp->srq; | 1294 | srq = qp->srq; |
1273 | 1295 | ||
1296 | if (!qp->uobject) | ||
1297 | rdma_rw_cleanup_mrs(qp); | ||
1298 | |||
1274 | ret = qp->device->destroy_qp(qp); | 1299 | ret = qp->device->destroy_qp(qp); |
1275 | if (!ret) { | 1300 | if (!ret) { |
1276 | if (pd) | 1301 | if (pd) |
diff --git a/include/rdma/ib_verbs.h b/include/rdma/ib_verbs.h index 3f66647749ca..dd8e15dfc1a8 100644 --- a/include/rdma/ib_verbs.h +++ b/include/rdma/ib_verbs.h | |||
@@ -931,6 +931,13 @@ struct ib_qp_cap { | |||
931 | u32 max_send_sge; | 931 | u32 max_send_sge; |
932 | u32 max_recv_sge; | 932 | u32 max_recv_sge; |
933 | u32 max_inline_data; | 933 | u32 max_inline_data; |
934 | |||
935 | /* | ||
936 | * Maximum number of rdma_rw_ctx structures in flight at a time. | ||
937 | * ib_create_qp() will calculate the right amount of neededed WRs | ||
938 | * and MRs based on this. | ||
939 | */ | ||
940 | u32 max_rdma_ctxs; | ||
934 | }; | 941 | }; |
935 | 942 | ||
936 | enum ib_sig_type { | 943 | enum ib_sig_type { |
@@ -1002,7 +1009,11 @@ struct ib_qp_init_attr { | |||
1002 | enum ib_sig_type sq_sig_type; | 1009 | enum ib_sig_type sq_sig_type; |
1003 | enum ib_qp_type qp_type; | 1010 | enum ib_qp_type qp_type; |
1004 | enum ib_qp_create_flags create_flags; | 1011 | enum ib_qp_create_flags create_flags; |
1005 | u8 port_num; /* special QP types only */ | 1012 | |
1013 | /* | ||
1014 | * Only needed for special QP types, or when using the RW API. | ||
1015 | */ | ||
1016 | u8 port_num; | ||
1006 | }; | 1017 | }; |
1007 | 1018 | ||
1008 | struct ib_qp_open_attr { | 1019 | struct ib_qp_open_attr { |
@@ -1423,6 +1434,7 @@ struct ib_qp { | |||
1423 | struct ib_cq *recv_cq; | 1434 | struct ib_cq *recv_cq; |
1424 | spinlock_t mr_lock; | 1435 | spinlock_t mr_lock; |
1425 | int mrs_used; | 1436 | int mrs_used; |
1437 | struct list_head rdma_mrs; | ||
1426 | struct ib_srq *srq; | 1438 | struct ib_srq *srq; |
1427 | struct ib_xrcd *xrcd; /* XRC TGT QPs only */ | 1439 | struct ib_xrcd *xrcd; /* XRC TGT QPs only */ |
1428 | struct list_head xrcd_list; | 1440 | struct list_head xrcd_list; |
diff --git a/include/rdma/rw.h b/include/rdma/rw.h new file mode 100644 index 000000000000..d3896bb9134b --- /dev/null +++ b/include/rdma/rw.h | |||
@@ -0,0 +1,69 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2016 HGST, a Western Digital Company. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify it | ||
5 | * under the terms and conditions of the GNU General Public License, | ||
6 | * version 2, as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
11 | * more details. | ||
12 | */ | ||
13 | #ifndef _RDMA_RW_H | ||
14 | #define _RDMA_RW_H | ||
15 | |||
16 | #include <linux/dma-mapping.h> | ||
17 | #include <linux/scatterlist.h> | ||
18 | #include <rdma/ib_verbs.h> | ||
19 | #include <rdma/rdma_cm.h> | ||
20 | #include <rdma/mr_pool.h> | ||
21 | |||
22 | struct rdma_rw_ctx { | ||
23 | /* number of RDMA READ/WRITE WRs (not counting MR WRs) */ | ||
24 | u32 nr_ops; | ||
25 | |||
26 | /* tag for the union below: */ | ||
27 | u8 type; | ||
28 | |||
29 | union { | ||
30 | /* for mapping a single SGE: */ | ||
31 | struct { | ||
32 | struct ib_sge sge; | ||
33 | struct ib_rdma_wr wr; | ||
34 | } single; | ||
35 | |||
36 | /* for mapping of multiple SGEs: */ | ||
37 | struct { | ||
38 | struct ib_sge *sges; | ||
39 | struct ib_rdma_wr *wrs; | ||
40 | } map; | ||
41 | |||
42 | /* for registering multiple WRs: */ | ||
43 | struct rdma_rw_reg_ctx { | ||
44 | struct ib_sge sge; | ||
45 | struct ib_rdma_wr wr; | ||
46 | struct ib_reg_wr reg_wr; | ||
47 | struct ib_send_wr inv_wr; | ||
48 | struct ib_mr *mr; | ||
49 | } *reg; | ||
50 | }; | ||
51 | }; | ||
52 | |||
53 | int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, | ||
54 | struct scatterlist *sg, u32 sg_cnt, u32 sg_offset, | ||
55 | u64 remote_addr, u32 rkey, enum dma_data_direction dir); | ||
56 | void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, | ||
57 | struct scatterlist *sg, u32 sg_cnt, | ||
58 | enum dma_data_direction dir); | ||
59 | |||
60 | struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, | ||
61 | u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr); | ||
62 | int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, | ||
63 | struct ib_cqe *cqe, struct ib_send_wr *chain_wr); | ||
64 | |||
65 | void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr); | ||
66 | int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr); | ||
67 | void rdma_rw_cleanup_mrs(struct ib_qp *qp); | ||
68 | |||
69 | #endif /* _RDMA_RW_H */ | ||