diff options
-rw-r--r-- | tools/testing/selftests/bpf/.gitignore | 1 | ||||
-rw-r--r-- | tools/testing/selftests/bpf/Makefile | 4 | ||||
-rw-r--r-- | tools/testing/selftests/bpf/test_lpm_map.c | 358 |
3 files changed, 361 insertions, 2 deletions
diff --git a/tools/testing/selftests/bpf/.gitignore b/tools/testing/selftests/bpf/.gitignore index 071431bedde8..d3b1c9bca407 100644 --- a/tools/testing/selftests/bpf/.gitignore +++ b/tools/testing/selftests/bpf/.gitignore | |||
@@ -1,3 +1,4 @@ | |||
1 | test_verifier | 1 | test_verifier |
2 | test_maps | 2 | test_maps |
3 | test_lru_map | 3 | test_lru_map |
4 | test_lpm_map | ||
diff --git a/tools/testing/selftests/bpf/Makefile b/tools/testing/selftests/bpf/Makefile index 7a5f24543a5f..064a3e5f2836 100644 --- a/tools/testing/selftests/bpf/Makefile +++ b/tools/testing/selftests/bpf/Makefile | |||
@@ -1,8 +1,8 @@ | |||
1 | CFLAGS += -Wall -O2 -I../../../../usr/include | 1 | CFLAGS += -Wall -O2 -I../../../../usr/include |
2 | 2 | ||
3 | test_objs = test_verifier test_maps test_lru_map | 3 | test_objs = test_verifier test_maps test_lru_map test_lpm_map |
4 | 4 | ||
5 | TEST_PROGS := test_verifier test_maps test_lru_map test_kmod.sh | 5 | TEST_PROGS := test_verifier test_maps test_lru_map test_lpm_map test_kmod.sh |
6 | TEST_FILES := $(test_objs) | 6 | TEST_FILES := $(test_objs) |
7 | 7 | ||
8 | all: $(test_objs) | 8 | all: $(test_objs) |
diff --git a/tools/testing/selftests/bpf/test_lpm_map.c b/tools/testing/selftests/bpf/test_lpm_map.c new file mode 100644 index 000000000000..26775c00273f --- /dev/null +++ b/tools/testing/selftests/bpf/test_lpm_map.c | |||
@@ -0,0 +1,358 @@ | |||
1 | /* | ||
2 | * Randomized tests for eBPF longest-prefix-match maps | ||
3 | * | ||
4 | * This program runs randomized tests against the lpm-bpf-map. It implements a | ||
5 | * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked | ||
6 | * lists. The implementation should be pretty straightforward. | ||
7 | * | ||
8 | * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies | ||
9 | * the trie-based bpf-map implementation behaves the same way as tlpm. | ||
10 | */ | ||
11 | |||
12 | #include <assert.h> | ||
13 | #include <errno.h> | ||
14 | #include <inttypes.h> | ||
15 | #include <linux/bpf.h> | ||
16 | #include <stdio.h> | ||
17 | #include <stdlib.h> | ||
18 | #include <string.h> | ||
19 | #include <time.h> | ||
20 | #include <unistd.h> | ||
21 | #include <arpa/inet.h> | ||
22 | #include <sys/time.h> | ||
23 | #include <sys/resource.h> | ||
24 | |||
25 | #include "bpf_sys.h" | ||
26 | #include "bpf_util.h" | ||
27 | |||
28 | struct tlpm_node { | ||
29 | struct tlpm_node *next; | ||
30 | size_t n_bits; | ||
31 | uint8_t key[]; | ||
32 | }; | ||
33 | |||
34 | static struct tlpm_node *tlpm_add(struct tlpm_node *list, | ||
35 | const uint8_t *key, | ||
36 | size_t n_bits) | ||
37 | { | ||
38 | struct tlpm_node *node; | ||
39 | size_t n; | ||
40 | |||
41 | /* add new entry with @key/@n_bits to @list and return new head */ | ||
42 | |||
43 | n = (n_bits + 7) / 8; | ||
44 | node = malloc(sizeof(*node) + n); | ||
45 | assert(node); | ||
46 | |||
47 | node->next = list; | ||
48 | node->n_bits = n_bits; | ||
49 | memcpy(node->key, key, n); | ||
50 | |||
51 | return node; | ||
52 | } | ||
53 | |||
54 | static void tlpm_clear(struct tlpm_node *list) | ||
55 | { | ||
56 | struct tlpm_node *node; | ||
57 | |||
58 | /* free all entries in @list */ | ||
59 | |||
60 | while ((node = list)) { | ||
61 | list = list->next; | ||
62 | free(node); | ||
63 | } | ||
64 | } | ||
65 | |||
66 | static struct tlpm_node *tlpm_match(struct tlpm_node *list, | ||
67 | const uint8_t *key, | ||
68 | size_t n_bits) | ||
69 | { | ||
70 | struct tlpm_node *best = NULL; | ||
71 | size_t i; | ||
72 | |||
73 | /* Perform longest prefix-match on @key/@n_bits. That is, iterate all | ||
74 | * entries and match each prefix against @key. Remember the "best" | ||
75 | * entry we find (i.e., the longest prefix that matches) and return it | ||
76 | * to the caller when done. | ||
77 | */ | ||
78 | |||
79 | for ( ; list; list = list->next) { | ||
80 | for (i = 0; i < n_bits && i < list->n_bits; ++i) { | ||
81 | if ((key[i / 8] & (1 << (7 - i % 8))) != | ||
82 | (list->key[i / 8] & (1 << (7 - i % 8)))) | ||
83 | break; | ||
84 | } | ||
85 | |||
86 | if (i >= list->n_bits) { | ||
87 | if (!best || i > best->n_bits) | ||
88 | best = list; | ||
89 | } | ||
90 | } | ||
91 | |||
92 | return best; | ||
93 | } | ||
94 | |||
95 | static void test_lpm_basic(void) | ||
96 | { | ||
97 | struct tlpm_node *list = NULL, *t1, *t2; | ||
98 | |||
99 | /* very basic, static tests to verify tlpm works as expected */ | ||
100 | |||
101 | assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); | ||
102 | |||
103 | t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8); | ||
104 | assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); | ||
105 | assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); | ||
106 | assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16)); | ||
107 | assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8)); | ||
108 | assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8)); | ||
109 | assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7)); | ||
110 | |||
111 | t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16); | ||
112 | assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); | ||
113 | assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); | ||
114 | assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15)); | ||
115 | assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16)); | ||
116 | |||
117 | tlpm_clear(list); | ||
118 | } | ||
119 | |||
120 | static void test_lpm_order(void) | ||
121 | { | ||
122 | struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL; | ||
123 | size_t i, j; | ||
124 | |||
125 | /* Verify the tlpm implementation works correctly regardless of the | ||
126 | * order of entries. Insert a random set of entries into @l1, and copy | ||
127 | * the same data in reverse order into @l2. Then verify a lookup of | ||
128 | * random keys will yield the same result in both sets. | ||
129 | */ | ||
130 | |||
131 | for (i = 0; i < (1 << 12); ++i) | ||
132 | l1 = tlpm_add(l1, (uint8_t[]){ | ||
133 | rand() % 0xff, | ||
134 | rand() % 0xff, | ||
135 | }, rand() % 16 + 1); | ||
136 | |||
137 | for (t1 = l1; t1; t1 = t1->next) | ||
138 | l2 = tlpm_add(l2, t1->key, t1->n_bits); | ||
139 | |||
140 | for (i = 0; i < (1 << 8); ++i) { | ||
141 | uint8_t key[] = { rand() % 0xff, rand() % 0xff }; | ||
142 | |||
143 | t1 = tlpm_match(l1, key, 16); | ||
144 | t2 = tlpm_match(l2, key, 16); | ||
145 | |||
146 | assert(!t1 == !t2); | ||
147 | if (t1) { | ||
148 | assert(t1->n_bits == t2->n_bits); | ||
149 | for (j = 0; j < t1->n_bits; ++j) | ||
150 | assert((t1->key[j / 8] & (1 << (7 - j % 8))) == | ||
151 | (t2->key[j / 8] & (1 << (7 - j % 8)))); | ||
152 | } | ||
153 | } | ||
154 | |||
155 | tlpm_clear(l1); | ||
156 | tlpm_clear(l2); | ||
157 | } | ||
158 | |||
159 | static void test_lpm_map(int keysize) | ||
160 | { | ||
161 | size_t i, j, n_matches, n_nodes, n_lookups; | ||
162 | struct tlpm_node *t, *list = NULL; | ||
163 | struct bpf_lpm_trie_key *key; | ||
164 | uint8_t *data, *value; | ||
165 | int r, map; | ||
166 | |||
167 | /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of | ||
168 | * prefixes and insert it into both tlpm and bpf-lpm. Then run some | ||
169 | * randomized lookups and verify both maps return the same result. | ||
170 | */ | ||
171 | |||
172 | n_matches = 0; | ||
173 | n_nodes = 1 << 8; | ||
174 | n_lookups = 1 << 16; | ||
175 | |||
176 | data = alloca(keysize); | ||
177 | memset(data, 0, keysize); | ||
178 | |||
179 | value = alloca(keysize + 1); | ||
180 | memset(value, 0, keysize + 1); | ||
181 | |||
182 | key = alloca(sizeof(*key) + keysize); | ||
183 | memset(key, 0, sizeof(*key) + keysize); | ||
184 | |||
185 | map = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, | ||
186 | sizeof(*key) + keysize, | ||
187 | keysize + 1, | ||
188 | 4096, | ||
189 | BPF_F_NO_PREALLOC); | ||
190 | assert(map >= 0); | ||
191 | |||
192 | for (i = 0; i < n_nodes; ++i) { | ||
193 | for (j = 0; j < keysize; ++j) | ||
194 | value[j] = rand() & 0xff; | ||
195 | value[keysize] = rand() % (8 * keysize + 1); | ||
196 | |||
197 | list = tlpm_add(list, value, value[keysize]); | ||
198 | |||
199 | key->prefixlen = value[keysize]; | ||
200 | memcpy(key->data, value, keysize); | ||
201 | r = bpf_map_update(map, key, value, 0); | ||
202 | assert(!r); | ||
203 | } | ||
204 | |||
205 | for (i = 0; i < n_lookups; ++i) { | ||
206 | for (j = 0; j < keysize; ++j) | ||
207 | data[j] = rand() & 0xff; | ||
208 | |||
209 | t = tlpm_match(list, data, 8 * keysize); | ||
210 | |||
211 | key->prefixlen = 8 * keysize; | ||
212 | memcpy(key->data, data, keysize); | ||
213 | r = bpf_map_lookup(map, key, value); | ||
214 | assert(!r || errno == ENOENT); | ||
215 | assert(!t == !!r); | ||
216 | |||
217 | if (t) { | ||
218 | ++n_matches; | ||
219 | assert(t->n_bits == value[keysize]); | ||
220 | for (j = 0; j < t->n_bits; ++j) | ||
221 | assert((t->key[j / 8] & (1 << (7 - j % 8))) == | ||
222 | (value[j / 8] & (1 << (7 - j % 8)))); | ||
223 | } | ||
224 | } | ||
225 | |||
226 | close(map); | ||
227 | tlpm_clear(list); | ||
228 | |||
229 | /* With 255 random nodes in the map, we are pretty likely to match | ||
230 | * something on every lookup. For statistics, use this: | ||
231 | * | ||
232 | * printf(" nodes: %zu\n" | ||
233 | * "lookups: %zu\n" | ||
234 | * "matches: %zu\n", n_nodes, n_lookups, n_matches); | ||
235 | */ | ||
236 | } | ||
237 | |||
238 | /* Test the implementation with some 'real world' examples */ | ||
239 | |||
240 | static void test_lpm_ipaddr(void) | ||
241 | { | ||
242 | struct bpf_lpm_trie_key *key_ipv4; | ||
243 | struct bpf_lpm_trie_key *key_ipv6; | ||
244 | size_t key_size_ipv4; | ||
245 | size_t key_size_ipv6; | ||
246 | int map_fd_ipv4; | ||
247 | int map_fd_ipv6; | ||
248 | __u64 value; | ||
249 | |||
250 | key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32); | ||
251 | key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4; | ||
252 | key_ipv4 = alloca(key_size_ipv4); | ||
253 | key_ipv6 = alloca(key_size_ipv6); | ||
254 | |||
255 | map_fd_ipv4 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, | ||
256 | key_size_ipv4, sizeof(value), | ||
257 | 100, BPF_F_NO_PREALLOC); | ||
258 | assert(map_fd_ipv4 >= 0); | ||
259 | |||
260 | map_fd_ipv6 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, | ||
261 | key_size_ipv6, sizeof(value), | ||
262 | 100, BPF_F_NO_PREALLOC); | ||
263 | assert(map_fd_ipv6 >= 0); | ||
264 | |||
265 | /* Fill data some IPv4 and IPv6 address ranges */ | ||
266 | value = 1; | ||
267 | key_ipv4->prefixlen = 16; | ||
268 | inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); | ||
269 | assert(bpf_map_update(map_fd_ipv4, key_ipv4, &value, 0) == 0); | ||
270 | |||
271 | value = 2; | ||
272 | key_ipv4->prefixlen = 24; | ||
273 | inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); | ||
274 | assert(bpf_map_update(map_fd_ipv4, key_ipv4, &value, 0) == 0); | ||
275 | |||
276 | value = 3; | ||
277 | key_ipv4->prefixlen = 24; | ||
278 | inet_pton(AF_INET, "192.168.128.0", key_ipv4->data); | ||
279 | assert(bpf_map_update(map_fd_ipv4, key_ipv4, &value, 0) == 0); | ||
280 | |||
281 | value = 5; | ||
282 | key_ipv4->prefixlen = 24; | ||
283 | inet_pton(AF_INET, "192.168.1.0", key_ipv4->data); | ||
284 | assert(bpf_map_update(map_fd_ipv4, key_ipv4, &value, 0) == 0); | ||
285 | |||
286 | value = 4; | ||
287 | key_ipv4->prefixlen = 23; | ||
288 | inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); | ||
289 | assert(bpf_map_update(map_fd_ipv4, key_ipv4, &value, 0) == 0); | ||
290 | |||
291 | value = 0xdeadbeef; | ||
292 | key_ipv6->prefixlen = 64; | ||
293 | inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data); | ||
294 | assert(bpf_map_update(map_fd_ipv6, key_ipv6, &value, 0) == 0); | ||
295 | |||
296 | /* Set tprefixlen to maximum for lookups */ | ||
297 | key_ipv4->prefixlen = 32; | ||
298 | key_ipv6->prefixlen = 128; | ||
299 | |||
300 | /* Test some lookups that should come back with a value */ | ||
301 | inet_pton(AF_INET, "192.168.128.23", key_ipv4->data); | ||
302 | assert(bpf_map_lookup(map_fd_ipv4, key_ipv4, &value) == 0); | ||
303 | assert(value == 3); | ||
304 | |||
305 | inet_pton(AF_INET, "192.168.0.1", key_ipv4->data); | ||
306 | assert(bpf_map_lookup(map_fd_ipv4, key_ipv4, &value) == 0); | ||
307 | assert(value == 2); | ||
308 | |||
309 | inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data); | ||
310 | assert(bpf_map_lookup(map_fd_ipv6, key_ipv6, &value) == 0); | ||
311 | assert(value == 0xdeadbeef); | ||
312 | |||
313 | inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data); | ||
314 | assert(bpf_map_lookup(map_fd_ipv6, key_ipv6, &value) == 0); | ||
315 | assert(value == 0xdeadbeef); | ||
316 | |||
317 | /* Test some lookups that should not match any entry */ | ||
318 | inet_pton(AF_INET, "10.0.0.1", key_ipv4->data); | ||
319 | assert(bpf_map_lookup(map_fd_ipv4, key_ipv4, &value) == -1 && | ||
320 | errno == ENOENT); | ||
321 | |||
322 | inet_pton(AF_INET, "11.11.11.11", key_ipv4->data); | ||
323 | assert(bpf_map_lookup(map_fd_ipv4, key_ipv4, &value) == -1 && | ||
324 | errno == ENOENT); | ||
325 | |||
326 | inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data); | ||
327 | assert(bpf_map_lookup(map_fd_ipv6, key_ipv6, &value) == -1 && | ||
328 | errno == ENOENT); | ||
329 | |||
330 | close(map_fd_ipv4); | ||
331 | close(map_fd_ipv6); | ||
332 | } | ||
333 | |||
334 | int main(void) | ||
335 | { | ||
336 | struct rlimit limit = { RLIM_INFINITY, RLIM_INFINITY }; | ||
337 | int i, ret; | ||
338 | |||
339 | /* we want predictable, pseudo random tests */ | ||
340 | srand(0xf00ba1); | ||
341 | |||
342 | /* allow unlimited locked memory */ | ||
343 | ret = setrlimit(RLIMIT_MEMLOCK, &limit); | ||
344 | if (ret < 0) | ||
345 | perror("Unable to lift memlock rlimit"); | ||
346 | |||
347 | test_lpm_basic(); | ||
348 | test_lpm_order(); | ||
349 | |||
350 | /* Test with 8, 16, 24, 32, ... 128 bit prefix length */ | ||
351 | for (i = 1; i <= 16; ++i) | ||
352 | test_lpm_map(i); | ||
353 | |||
354 | test_lpm_ipaddr(); | ||
355 | |||
356 | printf("test_lpm: OK\n"); | ||
357 | return 0; | ||
358 | } | ||